| //===- ScalarEvolutionsTest.cpp - ScalarEvolution unit tests --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/AsmParser/Parser.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "gtest/gtest.h" |
| |
| namespace llvm { |
| namespace { |
| |
| // We use this fixture to ensure that we clean up ScalarEvolution before |
| // deleting the PassManager. |
| class ScalarEvolutionsTest : public testing::Test { |
| protected: |
| LLVMContext Context; |
| Module M; |
| TargetLibraryInfoImpl TLII; |
| TargetLibraryInfo TLI; |
| |
| std::unique_ptr<AssumptionCache> AC; |
| std::unique_ptr<DominatorTree> DT; |
| std::unique_ptr<LoopInfo> LI; |
| |
| ScalarEvolutionsTest() : M("", Context), TLII(), TLI(TLII) {} |
| |
| ScalarEvolution buildSE(Function &F) { |
| AC.reset(new AssumptionCache(F)); |
| DT.reset(new DominatorTree(F)); |
| LI.reset(new LoopInfo(*DT)); |
| return ScalarEvolution(F, TLI, *AC, *DT, *LI); |
| } |
| |
| void runWithSE( |
| Module &M, StringRef FuncName, |
| function_ref<void(Function &F, LoopInfo &LI, ScalarEvolution &SE)> Test) { |
| auto *F = M.getFunction(FuncName); |
| ASSERT_NE(F, nullptr) << "Could not find " << FuncName; |
| ScalarEvolution SE = buildSE(*F); |
| Test(*F, *LI, SE); |
| } |
| }; |
| |
| TEST_F(ScalarEvolutionsTest, SCEVUnknownRAUW) { |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), |
| std::vector<Type *>(), false); |
| Function *F = cast<Function>(M.getOrInsertFunction("f", FTy)); |
| BasicBlock *BB = BasicBlock::Create(Context, "entry", F); |
| ReturnInst::Create(Context, nullptr, BB); |
| |
| Type *Ty = Type::getInt1Ty(Context); |
| Constant *Init = Constant::getNullValue(Ty); |
| Value *V0 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V0"); |
| Value *V1 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V1"); |
| Value *V2 = new GlobalVariable(M, Ty, false, GlobalValue::ExternalLinkage, Init, "V2"); |
| |
| ScalarEvolution SE = buildSE(*F); |
| |
| const SCEV *S0 = SE.getSCEV(V0); |
| const SCEV *S1 = SE.getSCEV(V1); |
| const SCEV *S2 = SE.getSCEV(V2); |
| |
| const SCEV *P0 = SE.getAddExpr(S0, S0); |
| const SCEV *P1 = SE.getAddExpr(S1, S1); |
| const SCEV *P2 = SE.getAddExpr(S2, S2); |
| |
| const SCEVMulExpr *M0 = cast<SCEVMulExpr>(P0); |
| const SCEVMulExpr *M1 = cast<SCEVMulExpr>(P1); |
| const SCEVMulExpr *M2 = cast<SCEVMulExpr>(P2); |
| |
| EXPECT_EQ(cast<SCEVConstant>(M0->getOperand(0))->getValue()->getZExtValue(), |
| 2u); |
| EXPECT_EQ(cast<SCEVConstant>(M1->getOperand(0))->getValue()->getZExtValue(), |
| 2u); |
| EXPECT_EQ(cast<SCEVConstant>(M2->getOperand(0))->getValue()->getZExtValue(), |
| 2u); |
| |
| // Before the RAUWs, these are all pointing to separate values. |
| EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0); |
| EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V1); |
| EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V2); |
| |
| // Do some RAUWs. |
| V2->replaceAllUsesWith(V1); |
| V1->replaceAllUsesWith(V0); |
| |
| // After the RAUWs, these should all be pointing to V0. |
| EXPECT_EQ(cast<SCEVUnknown>(M0->getOperand(1))->getValue(), V0); |
| EXPECT_EQ(cast<SCEVUnknown>(M1->getOperand(1))->getValue(), V0); |
| EXPECT_EQ(cast<SCEVUnknown>(M2->getOperand(1))->getValue(), V0); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SimplifiedPHI) { |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), |
| std::vector<Type *>(), false); |
| Function *F = cast<Function>(M.getOrInsertFunction("f", FTy)); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); |
| BranchInst::Create(LoopBB, EntryBB); |
| BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), |
| LoopBB); |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| auto *Ty = Type::getInt32Ty(Context); |
| auto *PN = PHINode::Create(Ty, 2, "", &*LoopBB->begin()); |
| PN->addIncoming(Constant::getNullValue(Ty), EntryBB); |
| PN->addIncoming(UndefValue::get(Ty), LoopBB); |
| ScalarEvolution SE = buildSE(*F); |
| auto *S1 = SE.getSCEV(PN); |
| auto *S2 = SE.getSCEV(PN); |
| auto *ZeroConst = SE.getConstant(Ty, 0); |
| |
| // At some point, only the first call to getSCEV returned the simplified |
| // SCEVConstant and later calls just returned a SCEVUnknown referencing the |
| // PHI node. |
| EXPECT_EQ(S1, ZeroConst); |
| EXPECT_EQ(S1, S2); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, ExpandPtrTypeSCEV) { |
| // It is to test the fix for PR30213. It exercises the branch in scev |
| // expansion when the value in ValueOffsetPair is a ptr and the offset |
| // is not divisible by the elem type size of value. |
| auto *I8Ty = Type::getInt8Ty(Context); |
| auto *I8PtrTy = Type::getInt8PtrTy(Context); |
| auto *I32Ty = Type::getInt32Ty(Context); |
| auto *I32PtrTy = Type::getInt32PtrTy(Context); |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false); |
| Function *F = cast<Function>(M.getOrInsertFunction("f", FTy)); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); |
| BranchInst::Create(LoopBB, EntryBB); |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| |
| // loop: ; preds = %loop, %entry |
| // %alloca = alloca i32 |
| // %gep0 = getelementptr i32, i32* %alloca, i32 1 |
| // %bitcast1 = bitcast i32* %gep0 to i8* |
| // %gep1 = getelementptr i8, i8* %bitcast1, i32 1 |
| // %gep2 = getelementptr i8, i8* undef, i32 1 |
| // %cmp = icmp ult i8* undef, %bitcast1 |
| // %select = select i1 %cmp, i8* %gep1, i8* %gep2 |
| // %bitcast2 = bitcast i8* %select to i32* |
| // br i1 undef, label %loop, label %exit |
| |
| const DataLayout &DL = F->getParent()->getDataLayout(); |
| BranchInst *Br = BranchInst::Create( |
| LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); |
| AllocaInst *Alloca = new AllocaInst(I32Ty, DL.getAllocaAddrSpace(), |
| "alloca", Br); |
| ConstantInt *Ci32 = ConstantInt::get(Context, APInt(32, 1)); |
| GetElementPtrInst *Gep0 = |
| GetElementPtrInst::Create(I32Ty, Alloca, Ci32, "gep0", Br); |
| CastInst *CastA = |
| CastInst::CreateBitOrPointerCast(Gep0, I8PtrTy, "bitcast1", Br); |
| GetElementPtrInst *Gep1 = |
| GetElementPtrInst::Create(I8Ty, CastA, Ci32, "gep1", Br); |
| GetElementPtrInst *Gep2 = GetElementPtrInst::Create( |
| I8Ty, UndefValue::get(I8PtrTy), Ci32, "gep2", Br); |
| CmpInst *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULT, |
| UndefValue::get(I8PtrTy), CastA, "cmp", Br); |
| SelectInst *Sel = SelectInst::Create(Cmp, Gep1, Gep2, "select", Br); |
| CastInst *CastB = |
| CastInst::CreateBitOrPointerCast(Sel, I32PtrTy, "bitcast2", Br); |
| |
| ScalarEvolution SE = buildSE(*F); |
| auto *S = SE.getSCEV(CastB); |
| SCEVExpander Exp(SE, M.getDataLayout(), "expander"); |
| Value *V = |
| Exp.expandCodeFor(cast<SCEVAddExpr>(S)->getOperand(1), nullptr, Br); |
| |
| // Expect the expansion code contains: |
| // %0 = bitcast i32* %bitcast2 to i8* |
| // %uglygep = getelementptr i8, i8* %0, i64 -1 |
| // %1 = bitcast i8* %uglygep to i32* |
| EXPECT_TRUE(isa<BitCastInst>(V)); |
| Instruction *Gep = cast<Instruction>(V)->getPrevNode(); |
| EXPECT_TRUE(isa<GetElementPtrInst>(Gep)); |
| EXPECT_TRUE(isa<ConstantInt>(Gep->getOperand(1))); |
| EXPECT_EQ(cast<ConstantInt>(Gep->getOperand(1))->getSExtValue(), -1); |
| EXPECT_TRUE(isa<BitCastInst>(Gep->getPrevNode())); |
| } |
| |
| static Instruction *getInstructionByName(Function &F, StringRef Name) { |
| for (auto &I : instructions(F)) |
| if (I.getName() == Name) |
| return &I; |
| llvm_unreachable("Expected to find instruction!"); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, CommutativeExprOperandOrder) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " |
| " " |
| "@var_0 = external global i32, align 4" |
| "@var_1 = external global i32, align 4" |
| "@var_2 = external global i32, align 4" |
| " " |
| "declare i32 @unknown(i32, i32, i32)" |
| " " |
| "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) " |
| " local_unnamed_addr { " |
| "entry: " |
| " %entrycond = icmp sgt i32 %n, 0 " |
| " br i1 %entrycond, label %loop.ph, label %for.end " |
| " " |
| "loop.ph: " |
| " %a = load i32, i32* %A, align 4 " |
| " %b = load i32, i32* %B, align 4 " |
| " %mul = mul nsw i32 %b, %a " |
| " %iv0.init = getelementptr inbounds i8, i8* %arr, i32 %mul " |
| " br label %loop " |
| " " |
| "loop: " |
| " %iv0 = phi i8* [ %iv0.inc, %loop ], [ %iv0.init, %loop.ph ] " |
| " %iv1 = phi i32 [ %iv1.inc, %loop ], [ 0, %loop.ph ] " |
| " %conv = trunc i32 %iv1 to i8 " |
| " store i8 %conv, i8* %iv0, align 1 " |
| " %iv0.inc = getelementptr inbounds i8, i8* %iv0, i32 %b " |
| " %iv1.inc = add nuw nsw i32 %iv1, 1 " |
| " %exitcond = icmp eq i32 %iv1.inc, %n " |
| " br i1 %exitcond, label %for.end.loopexit, label %loop " |
| " " |
| "for.end.loopexit: " |
| " br label %for.end " |
| " " |
| "for.end: " |
| " ret void " |
| "} " |
| " " |
| "define void @f_2(i32* %X, i32* %Y, i32* %Z) { " |
| " %x = load i32, i32* %X " |
| " %y = load i32, i32* %Y " |
| " %z = load i32, i32* %Z " |
| " ret void " |
| "} " |
| " " |
| "define void @f_3() { " |
| " %x = load i32, i32* @var_0" |
| " %y = load i32, i32* @var_1" |
| " %z = load i32, i32* @var_2" |
| " ret void" |
| "} " |
| " " |
| "define void @f_4(i32 %a, i32 %b, i32 %c) { " |
| " %x = call i32 @unknown(i32 %a, i32 %b, i32 %c)" |
| " %y = call i32 @unknown(i32 %b, i32 %c, i32 %a)" |
| " %z = call i32 @unknown(i32 %c, i32 %a, i32 %b)" |
| " ret void" |
| "} " |
| , |
| Err, C); |
| |
| assert(M && "Could not parse module?"); |
| assert(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *IV0 = getInstructionByName(F, "iv0"); |
| auto *IV0Inc = getInstructionByName(F, "iv0.inc"); |
| |
| auto *FirstExprForIV0 = SE.getSCEV(IV0); |
| auto *FirstExprForIV0Inc = SE.getSCEV(IV0Inc); |
| auto *SecondExprForIV0 = SE.getSCEV(IV0); |
| |
| EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0)); |
| EXPECT_TRUE(isa<SCEVAddRecExpr>(FirstExprForIV0Inc)); |
| EXPECT_TRUE(isa<SCEVAddRecExpr>(SecondExprForIV0)); |
| }); |
| |
| auto CheckCommutativeMulExprs = [&](ScalarEvolution &SE, const SCEV *A, |
| const SCEV *B, const SCEV *C) { |
| EXPECT_EQ(SE.getMulExpr(A, B), SE.getMulExpr(B, A)); |
| EXPECT_EQ(SE.getMulExpr(B, C), SE.getMulExpr(C, B)); |
| EXPECT_EQ(SE.getMulExpr(A, C), SE.getMulExpr(C, A)); |
| |
| SmallVector<const SCEV *, 3> Ops0 = {A, B, C}; |
| SmallVector<const SCEV *, 3> Ops1 = {A, C, B}; |
| SmallVector<const SCEV *, 3> Ops2 = {B, A, C}; |
| SmallVector<const SCEV *, 3> Ops3 = {B, C, A}; |
| SmallVector<const SCEV *, 3> Ops4 = {C, B, A}; |
| SmallVector<const SCEV *, 3> Ops5 = {C, A, B}; |
| |
| auto *Mul0 = SE.getMulExpr(Ops0); |
| auto *Mul1 = SE.getMulExpr(Ops1); |
| auto *Mul2 = SE.getMulExpr(Ops2); |
| auto *Mul3 = SE.getMulExpr(Ops3); |
| auto *Mul4 = SE.getMulExpr(Ops4); |
| auto *Mul5 = SE.getMulExpr(Ops5); |
| |
| EXPECT_EQ(Mul0, Mul1) << "Expected " << *Mul0 << " == " << *Mul1; |
| EXPECT_EQ(Mul1, Mul2) << "Expected " << *Mul1 << " == " << *Mul2; |
| EXPECT_EQ(Mul2, Mul3) << "Expected " << *Mul2 << " == " << *Mul3; |
| EXPECT_EQ(Mul3, Mul4) << "Expected " << *Mul3 << " == " << *Mul4; |
| EXPECT_EQ(Mul4, Mul5) << "Expected " << *Mul4 << " == " << *Mul5; |
| }; |
| |
| for (StringRef FuncName : {"f_2", "f_3", "f_4"}) |
| runWithSE( |
| *M, FuncName, [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| CheckCommutativeMulExprs(SE, SE.getSCEV(getInstructionByName(F, "x")), |
| SE.getSCEV(getInstructionByName(F, "y")), |
| SE.getSCEV(getInstructionByName(F, "z"))); |
| }); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, CompareSCEVComplexity) { |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false); |
| Function *F = cast<Function>(M.getOrInsertFunction("f", FTy)); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "bb1", F); |
| BranchInst::Create(LoopBB, EntryBB); |
| |
| auto *Ty = Type::getInt32Ty(Context); |
| SmallVector<Instruction*, 8> Muls(8), Acc(8), NextAcc(8); |
| |
| Acc[0] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[1] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[2] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[3] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[4] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[5] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[6] = PHINode::Create(Ty, 2, "", LoopBB); |
| Acc[7] = PHINode::Create(Ty, 2, "", LoopBB); |
| |
| for (int i = 0; i < 20; i++) { |
| Muls[0] = BinaryOperator::CreateMul(Acc[0], Acc[0], "", LoopBB); |
| NextAcc[0] = BinaryOperator::CreateAdd(Muls[0], Acc[4], "", LoopBB); |
| Muls[1] = BinaryOperator::CreateMul(Acc[1], Acc[1], "", LoopBB); |
| NextAcc[1] = BinaryOperator::CreateAdd(Muls[1], Acc[5], "", LoopBB); |
| Muls[2] = BinaryOperator::CreateMul(Acc[2], Acc[2], "", LoopBB); |
| NextAcc[2] = BinaryOperator::CreateAdd(Muls[2], Acc[6], "", LoopBB); |
| Muls[3] = BinaryOperator::CreateMul(Acc[3], Acc[3], "", LoopBB); |
| NextAcc[3] = BinaryOperator::CreateAdd(Muls[3], Acc[7], "", LoopBB); |
| |
| Muls[4] = BinaryOperator::CreateMul(Acc[4], Acc[4], "", LoopBB); |
| NextAcc[4] = BinaryOperator::CreateAdd(Muls[4], Acc[0], "", LoopBB); |
| Muls[5] = BinaryOperator::CreateMul(Acc[5], Acc[5], "", LoopBB); |
| NextAcc[5] = BinaryOperator::CreateAdd(Muls[5], Acc[1], "", LoopBB); |
| Muls[6] = BinaryOperator::CreateMul(Acc[6], Acc[6], "", LoopBB); |
| NextAcc[6] = BinaryOperator::CreateAdd(Muls[6], Acc[2], "", LoopBB); |
| Muls[7] = BinaryOperator::CreateMul(Acc[7], Acc[7], "", LoopBB); |
| NextAcc[7] = BinaryOperator::CreateAdd(Muls[7], Acc[3], "", LoopBB); |
| Acc = NextAcc; |
| } |
| |
| auto II = LoopBB->begin(); |
| for (int i = 0; i < 8; i++) { |
| PHINode *Phi = cast<PHINode>(&*II++); |
| Phi->addIncoming(Acc[i], LoopBB); |
| Phi->addIncoming(UndefValue::get(Ty), EntryBB); |
| } |
| |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "bb2", F); |
| BranchInst::Create(LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), |
| LoopBB); |
| |
| Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); |
| Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB); |
| Acc[2] = BinaryOperator::CreateAdd(Acc[4], Acc[5], "", ExitBB); |
| Acc[3] = BinaryOperator::CreateAdd(Acc[6], Acc[7], "", ExitBB); |
| Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); |
| Acc[1] = BinaryOperator::CreateAdd(Acc[2], Acc[3], "", ExitBB); |
| Acc[0] = BinaryOperator::CreateAdd(Acc[0], Acc[1], "", ExitBB); |
| |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| |
| ScalarEvolution SE = buildSE(*F); |
| |
| EXPECT_NE(nullptr, SE.getSCEV(Acc[0])); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, CompareValueComplexity) { |
| IntegerType *IntPtrTy = M.getDataLayout().getIntPtrType(Context); |
| PointerType *IntPtrPtrTy = IntPtrTy->getPointerTo(); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), {IntPtrTy, IntPtrTy}, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("f", FTy)); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| |
| Value *X = &*F->arg_begin(); |
| Value *Y = &*std::next(F->arg_begin()); |
| |
| const int ValueDepth = 10; |
| for (int i = 0; i < ValueDepth; i++) { |
| X = new LoadInst(new IntToPtrInst(X, IntPtrPtrTy, "", EntryBB), "", |
| /*isVolatile*/ false, EntryBB); |
| Y = new LoadInst(new IntToPtrInst(Y, IntPtrPtrTy, "", EntryBB), "", |
| /*isVolatile*/ false, EntryBB); |
| } |
| |
| auto *MulA = BinaryOperator::CreateMul(X, Y, "", EntryBB); |
| auto *MulB = BinaryOperator::CreateMul(Y, X, "", EntryBB); |
| ReturnInst::Create(Context, nullptr, EntryBB); |
| |
| // This test isn't checking for correctness. Today making A and B resolve to |
| // the same SCEV would require deeper searching in CompareValueComplexity, |
| // which will slow down compilation. However, this test can fail (with LLVM's |
| // behavior still being correct) if we ever have a smarter |
| // CompareValueComplexity that is both fast and more accurate. |
| |
| ScalarEvolution SE = buildSE(*F); |
| auto *A = SE.getSCEV(MulA); |
| auto *B = SE.getSCEV(MulB); |
| EXPECT_NE(A, B); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVAddExpr) { |
| Type *Ty32 = Type::getInt32Ty(Context); |
| Type *ArgTys[] = {Type::getInt64Ty(Context), Ty32}; |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), ArgTys, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("f", FTy)); |
| |
| Argument *A1 = &*F->arg_begin(); |
| Argument *A2 = &*(std::next(F->arg_begin())); |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| |
| Instruction *Trunc = CastInst::CreateTruncOrBitCast(A1, Ty32, "", EntryBB); |
| Instruction *Mul1 = BinaryOperator::CreateMul(Trunc, A2, "", EntryBB); |
| Instruction *Add1 = BinaryOperator::CreateAdd(Mul1, Trunc, "", EntryBB); |
| Mul1 = BinaryOperator::CreateMul(Add1, Trunc, "", EntryBB); |
| Instruction *Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB); |
| // FIXME: The size of this is arbitrary and doesn't seem to change the |
| // result, but SCEV will do quadratic work for these so a large number here |
| // will be extremely slow. We should revisit what and how this is testing |
| // SCEV. |
| for (int i = 0; i < 10; i++) { |
| Mul1 = BinaryOperator::CreateMul(Add2, Add1, "", EntryBB); |
| Add1 = Add2; |
| Add2 = BinaryOperator::CreateAdd(Mul1, Add1, "", EntryBB); |
| } |
| |
| ReturnInst::Create(Context, nullptr, EntryBB); |
| ScalarEvolution SE = buildSE(*F); |
| EXPECT_NE(nullptr, SE.getSCEV(Mul1)); |
| } |
| |
| static Instruction &GetInstByName(Function &F, StringRef Name) { |
| for (auto &I : instructions(F)) |
| if (I.getName() == Name) |
| return I; |
| llvm_unreachable("Could not find instructions!"); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVNormalization) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| std::unique_ptr<Module> M = parseAssemblyString( |
| "target datalayout = \"e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128\" " |
| " " |
| "@var_0 = external global i32, align 4" |
| "@var_1 = external global i32, align 4" |
| "@var_2 = external global i32, align 4" |
| " " |
| "declare i32 @unknown(i32, i32, i32)" |
| " " |
| "define void @f_1(i8* nocapture %arr, i32 %n, i32* %A, i32* %B) " |
| " local_unnamed_addr { " |
| "entry: " |
| " br label %loop.ph " |
| " " |
| "loop.ph: " |
| " br label %loop " |
| " " |
| "loop: " |
| " %iv0 = phi i32 [ %iv0.inc, %loop ], [ 0, %loop.ph ] " |
| " %iv1 = phi i32 [ %iv1.inc, %loop ], [ -2147483648, %loop.ph ] " |
| " %iv0.inc = add i32 %iv0, 1 " |
| " %iv1.inc = add i32 %iv1, 3 " |
| " br i1 undef, label %for.end.loopexit, label %loop " |
| " " |
| "for.end.loopexit: " |
| " ret void " |
| "} " |
| " " |
| "define void @f_2(i32 %a, i32 %b, i32 %c, i32 %d) " |
| " local_unnamed_addr { " |
| "entry: " |
| " br label %loop_0 " |
| " " |
| "loop_0: " |
| " br i1 undef, label %loop_0, label %loop_1 " |
| " " |
| "loop_1: " |
| " br i1 undef, label %loop_2, label %loop_1 " |
| " " |
| " " |
| "loop_2: " |
| " br i1 undef, label %end, label %loop_2 " |
| " " |
| "end: " |
| " ret void " |
| "} " |
| , |
| Err, C); |
| |
| assert(M && "Could not parse module?"); |
| assert(!verifyModule(*M) && "Must have been well formed!"); |
| |
| runWithSE(*M, "f_1", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto &I0 = GetInstByName(F, "iv0"); |
| auto &I1 = *I0.getNextNode(); |
| |
| auto *S0 = cast<SCEVAddRecExpr>(SE.getSCEV(&I0)); |
| PostIncLoopSet Loops; |
| Loops.insert(S0->getLoop()); |
| auto *N0 = normalizeForPostIncUse(S0, Loops, SE); |
| auto *D0 = denormalizeForPostIncUse(N0, Loops, SE); |
| EXPECT_EQ(S0, D0) << *S0 << " " << *D0; |
| |
| auto *S1 = cast<SCEVAddRecExpr>(SE.getSCEV(&I1)); |
| Loops.clear(); |
| Loops.insert(S1->getLoop()); |
| auto *N1 = normalizeForPostIncUse(S1, Loops, SE); |
| auto *D1 = denormalizeForPostIncUse(N1, Loops, SE); |
| EXPECT_EQ(S1, D1) << *S1 << " " << *D1; |
| }); |
| |
| runWithSE(*M, "f_2", [&](Function &F, LoopInfo &LI, ScalarEvolution &SE) { |
| auto *L2 = *LI.begin(); |
| auto *L1 = *std::next(LI.begin()); |
| auto *L0 = *std::next(LI.begin(), 2); |
| |
| auto GetAddRec = [&SE](const Loop *L, std::initializer_list<const SCEV *> Ops) { |
| SmallVector<const SCEV *, 4> OpsCopy(Ops); |
| return SE.getAddRecExpr(OpsCopy, L, SCEV::FlagAnyWrap); |
| }; |
| |
| auto GetAdd = [&SE](std::initializer_list<const SCEV *> Ops) { |
| SmallVector<const SCEV *, 4> OpsCopy(Ops); |
| return SE.getAddExpr(OpsCopy, SCEV::FlagAnyWrap); |
| }; |
| |
| // We first populate the AddRecs vector with a few "interesting" SCEV |
| // expressions, and then we go through the list and assert that each |
| // expression in it has an invertible normalization. |
| |
| std::vector<const SCEV *> Exprs; |
| { |
| const SCEV *V0 = SE.getSCEV(&*F.arg_begin()); |
| const SCEV *V1 = SE.getSCEV(&*std::next(F.arg_begin(), 1)); |
| const SCEV *V2 = SE.getSCEV(&*std::next(F.arg_begin(), 2)); |
| const SCEV *V3 = SE.getSCEV(&*std::next(F.arg_begin(), 3)); |
| |
| Exprs.push_back(GetAddRec(L0, {V0})); // 0 |
| Exprs.push_back(GetAddRec(L0, {V0, V1})); // 1 |
| Exprs.push_back(GetAddRec(L0, {V0, V1, V2})); // 2 |
| Exprs.push_back(GetAddRec(L0, {V0, V1, V2, V3})); // 3 |
| |
| Exprs.push_back( |
| GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[3], Exprs[0]})); // 4 |
| Exprs.push_back( |
| GetAddRec(L1, {Exprs[1], Exprs[2], Exprs[0], Exprs[3]})); // 5 |
| Exprs.push_back( |
| GetAddRec(L1, {Exprs[1], Exprs[3], Exprs[3], Exprs[1]})); // 6 |
| |
| Exprs.push_back(GetAdd({Exprs[6], Exprs[3], V2})); // 7 |
| |
| Exprs.push_back( |
| GetAddRec(L2, {Exprs[4], Exprs[3], Exprs[3], Exprs[5]})); // 8 |
| |
| Exprs.push_back( |
| GetAddRec(L2, {Exprs[4], Exprs[6], Exprs[7], Exprs[3], V0})); // 9 |
| } |
| |
| std::vector<PostIncLoopSet> LoopSets; |
| for (int i = 0; i < 8; i++) { |
| LoopSets.emplace_back(); |
| if (i & 1) |
| LoopSets.back().insert(L0); |
| if (i & 2) |
| LoopSets.back().insert(L1); |
| if (i & 4) |
| LoopSets.back().insert(L2); |
| } |
| |
| for (const auto &LoopSet : LoopSets) |
| for (auto *S : Exprs) { |
| { |
| auto *N = llvm::normalizeForPostIncUse(S, LoopSet, SE); |
| auto *D = llvm::denormalizeForPostIncUse(N, LoopSet, SE); |
| |
| // Normalization and then denormalizing better give us back the same |
| // value. |
| EXPECT_EQ(S, D) << "S = " << *S << " D = " << *D << " N = " << *N; |
| } |
| { |
| auto *D = llvm::denormalizeForPostIncUse(S, LoopSet, SE); |
| auto *N = llvm::normalizeForPostIncUse(D, LoopSet, SE); |
| |
| // Denormalization and then normalizing better give us back the same |
| // value. |
| EXPECT_EQ(S, N) << "S = " << *S << " N = " << *N; |
| } |
| } |
| }); |
| } |
| |
| // Expect the call of getZeroExtendExpr will not cost exponential time. |
| TEST_F(ScalarEvolutionsTest, SCEVZeroExtendExpr) { |
| LLVMContext C; |
| SMDiagnostic Err; |
| |
| // Generate a function like below: |
| // define void @foo() { |
| // entry: |
| // br label %for.cond |
| // |
| // for.cond: |
| // %0 = phi i64 [ 100, %entry ], [ %dec, %for.inc ] |
| // %cmp = icmp sgt i64 %0, 90 |
| // br i1 %cmp, label %for.inc, label %for.cond1 |
| // |
| // for.inc: |
| // %dec = add nsw i64 %0, -1 |
| // br label %for.cond |
| // |
| // for.cond1: |
| // %1 = phi i64 [ 100, %for.cond ], [ %dec5, %for.inc2 ] |
| // %cmp3 = icmp sgt i64 %1, 90 |
| // br i1 %cmp3, label %for.inc2, label %for.cond4 |
| // |
| // for.inc2: |
| // %dec5 = add nsw i64 %1, -1 |
| // br label %for.cond1 |
| // |
| // ...... |
| // |
| // for.cond89: |
| // %19 = phi i64 [ 100, %for.cond84 ], [ %dec94, %for.inc92 ] |
| // %cmp93 = icmp sgt i64 %19, 90 |
| // br i1 %cmp93, label %for.inc92, label %for.end |
| // |
| // for.inc92: |
| // %dec94 = add nsw i64 %19, -1 |
| // br label %for.cond89 |
| // |
| // for.end: |
| // %gep = getelementptr i8, i8* null, i64 %dec |
| // %gep6 = getelementptr i8, i8* %gep, i64 %dec5 |
| // ...... |
| // %gep95 = getelementptr i8, i8* %gep91, i64 %dec94 |
| // ret void |
| // } |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("foo", FTy)); |
| |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *CondBB = BasicBlock::Create(Context, "for.cond", F); |
| BasicBlock *EndBB = BasicBlock::Create(Context, "for.end", F); |
| BranchInst::Create(CondBB, EntryBB); |
| BasicBlock *PrevBB = EntryBB; |
| |
| Type *I64Ty = Type::getInt64Ty(Context); |
| Type *I8Ty = Type::getInt8Ty(Context); |
| Type *I8PtrTy = Type::getInt8PtrTy(Context); |
| Value *Accum = Constant::getNullValue(I8PtrTy); |
| int Iters = 20; |
| for (int i = 0; i < Iters; i++) { |
| BasicBlock *IncBB = BasicBlock::Create(Context, "for.inc", F, EndBB); |
| auto *PN = PHINode::Create(I64Ty, 2, "", CondBB); |
| PN->addIncoming(ConstantInt::get(Context, APInt(64, 100)), PrevBB); |
| auto *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_SGT, PN, |
| ConstantInt::get(Context, APInt(64, 90)), "cmp", |
| CondBB); |
| BasicBlock *NextBB; |
| if (i != Iters - 1) |
| NextBB = BasicBlock::Create(Context, "for.cond", F, EndBB); |
| else |
| NextBB = EndBB; |
| BranchInst::Create(IncBB, NextBB, Cmp, CondBB); |
| auto *Dec = BinaryOperator::CreateNSWAdd( |
| PN, ConstantInt::get(Context, APInt(64, -1)), "dec", IncBB); |
| PN->addIncoming(Dec, IncBB); |
| BranchInst::Create(CondBB, IncBB); |
| |
| Accum = GetElementPtrInst::Create(I8Ty, Accum, Dec, "gep", EndBB); |
| |
| PrevBB = CondBB; |
| CondBB = NextBB; |
| } |
| ReturnInst::Create(Context, nullptr, EndBB); |
| ScalarEvolution SE = buildSE(*F); |
| const SCEV *S = SE.getSCEV(Accum); |
| Type *I128Ty = Type::getInt128Ty(Context); |
| SE.getZeroExtendExpr(S, I128Ty); |
| } |
| |
| // Make sure that SCEV doesn't introduce illegal ptrtoint/inttoptr instructions |
| TEST_F(ScalarEvolutionsTest, SCEVZeroExtendExprNonIntegral) { |
| /* |
| * Create the following code: |
| * func(i64 addrspace(10)* %arg) |
| * top: |
| * br label %L.ph |
| * L.ph: |
| * br label %L |
| * L: |
| * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] |
| * %add = add i64 %phi2, 1 |
| * br i1 undef, label %post, label %L2 |
| * post: |
| * %gepbase = getelementptr i64 addrspace(10)* %arg, i64 1 |
| * #= %gep = getelementptr i64 addrspace(10)* %gepbase, i64 %add =# |
| * ret void |
| * |
| * We will create the appropriate SCEV expression for %gep and expand it, |
| * then check that no inttoptr/ptrtoint instructions got inserted. |
| */ |
| |
| // Create a module with non-integral pointers in it's datalayout |
| Module NIM("nonintegral", Context); |
| std::string DataLayout = M.getDataLayoutStr(); |
| if (!DataLayout.empty()) |
| DataLayout += "-"; |
| DataLayout += "ni:10"; |
| NIM.setDataLayout(DataLayout); |
| |
| Type *T_int1 = Type::getInt1Ty(Context); |
| Type *T_int64 = Type::getInt64Ty(Context); |
| Type *T_pint64 = T_int64->getPointerTo(10); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); |
| Function *F = cast<Function>(NIM.getOrInsertFunction("foo", FTy)); |
| |
| Argument *Arg = &*F->arg_begin(); |
| |
| BasicBlock *Top = BasicBlock::Create(Context, "top", F); |
| BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); |
| BasicBlock *L = BasicBlock::Create(Context, "L", F); |
| BasicBlock *Post = BasicBlock::Create(Context, "post", F); |
| |
| IRBuilder<> Builder(Top); |
| Builder.CreateBr(LPh); |
| |
| Builder.SetInsertPoint(LPh); |
| Builder.CreateBr(L); |
| |
| Builder.SetInsertPoint(L); |
| PHINode *Phi = Builder.CreatePHI(T_int64, 2); |
| Value *Add = Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add"); |
| Builder.CreateCondBr(UndefValue::get(T_int1), L, Post); |
| Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); |
| Phi->addIncoming(Add, L); |
| |
| Builder.SetInsertPoint(Post); |
| Value *GepBase = Builder.CreateGEP(Arg, ConstantInt::get(T_int64, 1)); |
| Instruction *Ret = Builder.CreateRetVoid(); |
| |
| ScalarEvolution SE = buildSE(*F); |
| auto *AddRec = |
| SE.getAddRecExpr(SE.getUnknown(GepBase), SE.getConstant(T_int64, 1), |
| LI->getLoopFor(L), SCEV::FlagNUW); |
| |
| SCEVExpander Exp(SE, NIM.getDataLayout(), "expander"); |
| Exp.disableCanonicalMode(); |
| Exp.expandCodeFor(AddRec, T_pint64, Ret); |
| |
| // Make sure none of the instructions inserted were inttoptr/ptrtoint. |
| // The verifier will check this. |
| EXPECT_FALSE(verifyFunction(*F, &errs())); |
| } |
| |
| // Make sure that SCEV invalidates exit limits after invalidating the values it |
| // depends on when we forget a loop. |
| TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetLoop) { |
| /* |
| * Create the following code: |
| * func(i64 addrspace(10)* %arg) |
| * top: |
| * br label %L.ph |
| * L.ph: |
| * br label %L |
| * L: |
| * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] |
| * %add = add i64 %phi2, 1 |
| * %cond = icmp slt i64 %add, 1000; then becomes 2000. |
| * br i1 %cond, label %post, label %L2 |
| * post: |
| * ret void |
| * |
| */ |
| |
| // Create a module with non-integral pointers in it's datalayout |
| Module NIM("nonintegral", Context); |
| std::string DataLayout = M.getDataLayoutStr(); |
| if (!DataLayout.empty()) |
| DataLayout += "-"; |
| DataLayout += "ni:10"; |
| NIM.setDataLayout(DataLayout); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| Type *T_pint64 = T_int64->getPointerTo(10); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); |
| Function *F = cast<Function>(NIM.getOrInsertFunction("foo", FTy)); |
| |
| BasicBlock *Top = BasicBlock::Create(Context, "top", F); |
| BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); |
| BasicBlock *L = BasicBlock::Create(Context, "L", F); |
| BasicBlock *Post = BasicBlock::Create(Context, "post", F); |
| |
| IRBuilder<> Builder(Top); |
| Builder.CreateBr(LPh); |
| |
| Builder.SetInsertPoint(LPh); |
| Builder.CreateBr(L); |
| |
| Builder.SetInsertPoint(L); |
| PHINode *Phi = Builder.CreatePHI(T_int64, 2); |
| auto *Add = cast<Instruction>( |
| Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); |
| auto *Limit = ConstantInt::get(T_int64, 1000); |
| auto *Cond = cast<Instruction>( |
| Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond")); |
| auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post)); |
| Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); |
| Phi->addIncoming(Add, L); |
| |
| Builder.SetInsertPoint(Post); |
| Builder.CreateRetVoid(); |
| |
| ScalarEvolution SE = buildSE(*F); |
| auto *Loop = LI->getLoopFor(L); |
| const SCEV *EC = SE.getBackedgeTakenCount(Loop); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC)); |
| EXPECT_TRUE(isa<SCEVConstant>(EC)); |
| EXPECT_EQ(cast<SCEVConstant>(EC)->getAPInt().getLimitedValue(), 999u); |
| |
| // The add recurrence {5,+,1} does not correspond to any PHI in the IR, and |
| // that is relevant to this test. |
| auto *Five = SE.getConstant(APInt(/*numBits=*/64, 5)); |
| auto *AR = |
| SE.getAddRecExpr(Five, SE.getOne(T_int64), Loop, SCEV::FlagAnyWrap); |
| const SCEV *ARAtLoopExit = SE.getSCEVAtScope(AR, nullptr); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(ARAtLoopExit)); |
| EXPECT_TRUE(isa<SCEVConstant>(ARAtLoopExit)); |
| EXPECT_EQ(cast<SCEVConstant>(ARAtLoopExit)->getAPInt().getLimitedValue(), |
| 1004u); |
| |
| SE.forgetLoop(Loop); |
| Br->eraseFromParent(); |
| Cond->eraseFromParent(); |
| |
| Builder.SetInsertPoint(L); |
| auto *NewCond = Builder.CreateICmp( |
| ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond"); |
| Builder.CreateCondBr(NewCond, L, Post); |
| const SCEV *NewEC = SE.getBackedgeTakenCount(Loop); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC)); |
| EXPECT_TRUE(isa<SCEVConstant>(NewEC)); |
| EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u); |
| const SCEV *NewARAtLoopExit = SE.getSCEVAtScope(AR, nullptr); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewARAtLoopExit)); |
| EXPECT_TRUE(isa<SCEVConstant>(NewARAtLoopExit)); |
| EXPECT_EQ(cast<SCEVConstant>(NewARAtLoopExit)->getAPInt().getLimitedValue(), |
| 2004u); |
| } |
| |
| // Make sure that SCEV invalidates exit limits after invalidating the values it |
| // depends on when we forget a value. |
| TEST_F(ScalarEvolutionsTest, SCEVExitLimitForgetValue) { |
| /* |
| * Create the following code: |
| * func(i64 addrspace(10)* %arg) |
| * top: |
| * br label %L.ph |
| * L.ph: |
| * %load = load i64 addrspace(10)* %arg |
| * br label %L |
| * L: |
| * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] |
| * %add = add i64 %phi2, 1 |
| * %cond = icmp slt i64 %add, %load ; then becomes 2000. |
| * br i1 %cond, label %post, label %L2 |
| * post: |
| * ret void |
| * |
| */ |
| |
| // Create a module with non-integral pointers in it's datalayout |
| Module NIM("nonintegral", Context); |
| std::string DataLayout = M.getDataLayoutStr(); |
| if (!DataLayout.empty()) |
| DataLayout += "-"; |
| DataLayout += "ni:10"; |
| NIM.setDataLayout(DataLayout); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| Type *T_pint64 = T_int64->getPointerTo(10); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); |
| Function *F = cast<Function>(NIM.getOrInsertFunction("foo", FTy)); |
| |
| Argument *Arg = &*F->arg_begin(); |
| |
| BasicBlock *Top = BasicBlock::Create(Context, "top", F); |
| BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); |
| BasicBlock *L = BasicBlock::Create(Context, "L", F); |
| BasicBlock *Post = BasicBlock::Create(Context, "post", F); |
| |
| IRBuilder<> Builder(Top); |
| Builder.CreateBr(LPh); |
| |
| Builder.SetInsertPoint(LPh); |
| auto *Load = cast<Instruction>(Builder.CreateLoad(T_int64, Arg, "load")); |
| Builder.CreateBr(L); |
| |
| Builder.SetInsertPoint(L); |
| PHINode *Phi = Builder.CreatePHI(T_int64, 2); |
| auto *Add = cast<Instruction>( |
| Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); |
| auto *Cond = cast<Instruction>( |
| Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Load, "cond")); |
| auto *Br = cast<Instruction>(Builder.CreateCondBr(Cond, L, Post)); |
| Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); |
| Phi->addIncoming(Add, L); |
| |
| Builder.SetInsertPoint(Post); |
| Builder.CreateRetVoid(); |
| |
| ScalarEvolution SE = buildSE(*F); |
| auto *Loop = LI->getLoopFor(L); |
| const SCEV *EC = SE.getBackedgeTakenCount(Loop); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(EC)); |
| EXPECT_FALSE(isa<SCEVConstant>(EC)); |
| |
| SE.forgetValue(Load); |
| Br->eraseFromParent(); |
| Cond->eraseFromParent(); |
| Load->eraseFromParent(); |
| |
| Builder.SetInsertPoint(L); |
| auto *NewCond = Builder.CreateICmp( |
| ICmpInst::ICMP_SLT, Add, ConstantInt::get(T_int64, 2000), "new.cond"); |
| Builder.CreateCondBr(NewCond, L, Post); |
| const SCEV *NewEC = SE.getBackedgeTakenCount(Loop); |
| EXPECT_FALSE(isa<SCEVCouldNotCompute>(NewEC)); |
| EXPECT_TRUE(isa<SCEVConstant>(NewEC)); |
| EXPECT_EQ(cast<SCEVConstant>(NewEC)->getAPInt().getLimitedValue(), 1999u); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstants) { |
| // Reference: https://reviews.llvm.org/D37265 |
| // Make sure that SCEV does not blow up when constructing an AddRec |
| // with predicates for a phi with the update pattern: |
| // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum |
| // when either the initial value of the Phi or the InvariantAccum are |
| // constants that are too large to fit in an ix but are zero when truncated to |
| // ix. |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), std::vector<Type *>(), false); |
| Function *F = cast<Function>(M.getOrInsertFunction("addrecphitest", FTy)); |
| |
| /* |
| Create IR: |
| entry: |
| br label %loop |
| loop: |
| %0 = phi i64 [-9223372036854775808, %entry], [%3, %loop] |
| %1 = shl i64 %0, 32 |
| %2 = ashr exact i64 %1, 32 |
| %3 = add i64 %2, -9223372036854775808 |
| br i1 undef, label %exit, label %loop |
| exit: |
| ret void |
| */ |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); |
| |
| // entry: |
| BranchInst::Create(LoopBB, EntryBB); |
| // loop: |
| auto *MinInt64 = |
| ConstantInt::get(Context, APInt(64, 0x8000000000000000U, true)); |
| auto *Int64_32 = ConstantInt::get(Context, APInt(64, 32)); |
| auto *Br = BranchInst::Create( |
| LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); |
| auto *Phi = PHINode::Create(Type::getInt64Ty(Context), 2, "", Br); |
| auto *Shl = BinaryOperator::CreateShl(Phi, Int64_32, "", Br); |
| auto *AShr = BinaryOperator::CreateExactAShr(Shl, Int64_32, "", Br); |
| auto *Add = BinaryOperator::CreateAdd(AShr, MinInt64, "", Br); |
| Phi->addIncoming(MinInt64, EntryBB); |
| Phi->addIncoming(Add, LoopBB); |
| // exit: |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| |
| // Make sure that SCEV doesn't blow up |
| ScalarEvolution SE = buildSE(*F); |
| SCEVUnionPredicate Preds; |
| const SCEV *Expr = SE.getSCEV(Phi); |
| EXPECT_NE(nullptr, Expr); |
| EXPECT_TRUE(isa<SCEVUnknown>(Expr)); |
| auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr)); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVAddRecFromPHIwithLargeConstantAccum) { |
| // Make sure that SCEV does not blow up when constructing an AddRec |
| // with predicates for a phi with the update pattern: |
| // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum |
| // when the InvariantAccum is a constant that is too large to fit in an |
| // ix but are zero when truncated to ix, and the initial value of the |
| // phi is not a constant. |
| Type *Int32Ty = Type::getInt32Ty(Context); |
| SmallVector<Type *, 1> Types; |
| Types.push_back(Int32Ty); |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("addrecphitest", FTy)); |
| |
| /* |
| Create IR: |
| define @addrecphitest(i32) |
| entry: |
| br label %loop |
| loop: |
| %1 = phi i32 [%0, %entry], [%4, %loop] |
| %2 = shl i32 %1, 16 |
| %3 = ashr exact i32 %2, 16 |
| %4 = add i32 %3, -2147483648 |
| br i1 undef, label %exit, label %loop |
| exit: |
| ret void |
| */ |
| BasicBlock *EntryBB = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *LoopBB = BasicBlock::Create(Context, "loop", F); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "exit", F); |
| |
| // entry: |
| BranchInst::Create(LoopBB, EntryBB); |
| // loop: |
| auto *MinInt32 = ConstantInt::get(Context, APInt(32, 0x80000000U, true)); |
| auto *Int32_16 = ConstantInt::get(Context, APInt(32, 16)); |
| auto *Br = BranchInst::Create( |
| LoopBB, ExitBB, UndefValue::get(Type::getInt1Ty(Context)), LoopBB); |
| auto *Phi = PHINode::Create(Int32Ty, 2, "", Br); |
| auto *Shl = BinaryOperator::CreateShl(Phi, Int32_16, "", Br); |
| auto *AShr = BinaryOperator::CreateExactAShr(Shl, Int32_16, "", Br); |
| auto *Add = BinaryOperator::CreateAdd(AShr, MinInt32, "", Br); |
| auto *Arg = &*(F->arg_begin()); |
| Phi->addIncoming(Arg, EntryBB); |
| Phi->addIncoming(Add, LoopBB); |
| // exit: |
| ReturnInst::Create(Context, nullptr, ExitBB); |
| |
| // Make sure that SCEV doesn't blow up |
| ScalarEvolution SE = buildSE(*F); |
| SCEVUnionPredicate Preds; |
| const SCEV *Expr = SE.getSCEV(Phi); |
| EXPECT_NE(nullptr, Expr); |
| EXPECT_TRUE(isa<SCEVUnknown>(Expr)); |
| auto Result = SE.createAddRecFromPHIWithCasts(cast<SCEVUnknown>(Expr)); |
| } |
| |
| TEST_F(ScalarEvolutionsTest, SCEVFoldSumOfTruncs) { |
| // Verify that the following SCEV gets folded to a zero: |
| // (-1 * (trunc i64 (-1 * %0) to i32)) + (-1 * (trunc i64 %0 to i32) |
| Type *ArgTy = Type::getInt64Ty(Context); |
| Type *Int32Ty = Type::getInt32Ty(Context); |
| SmallVector<Type *, 1> Types; |
| Types.push_back(ArgTy); |
| FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), Types, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("f", FTy)); |
| BasicBlock *BB = BasicBlock::Create(Context, "entry", F); |
| ReturnInst::Create(Context, nullptr, BB); |
| |
| ScalarEvolution SE = buildSE(*F); |
| |
| auto *Arg = &*(F->arg_begin()); |
| const auto *ArgSCEV = SE.getSCEV(Arg); |
| |
| // Build the SCEV |
| const auto *A0 = SE.getNegativeSCEV(ArgSCEV); |
| const auto *A1 = SE.getTruncateExpr(A0, Int32Ty); |
| const auto *A = SE.getNegativeSCEV(A1); |
| |
| const auto *B0 = SE.getTruncateExpr(ArgSCEV, Int32Ty); |
| const auto *B = SE.getNegativeSCEV(B0); |
| |
| const auto *Expr = SE.getAddExpr(A, B); |
| // Verify that the SCEV was folded to 0 |
| const auto *ZeroConst = SE.getConstant(Int32Ty, 0); |
| EXPECT_EQ(Expr, ZeroConst); |
| } |
| |
| // Check that we can correctly identify the points at which the SCEV of the |
| // AddRec can be expanded. |
| TEST_F(ScalarEvolutionsTest, SCEVExpanderIsSafeToExpandAt) { |
| /* |
| * Create the following code: |
| * func(i64 addrspace(10)* %arg) |
| * top: |
| * br label %L.ph |
| * L.ph: |
| * br label %L |
| * L: |
| * %phi = phi i64 [i64 0, %L.ph], [ %add, %L2 ] |
| * %add = add i64 %phi2, 1 |
| * %cond = icmp slt i64 %add, 1000; then becomes 2000. |
| * br i1 %cond, label %post, label %L2 |
| * post: |
| * ret void |
| * |
| */ |
| |
| // Create a module with non-integral pointers in it's datalayout |
| Module NIM("nonintegral", Context); |
| std::string DataLayout = M.getDataLayoutStr(); |
| if (!DataLayout.empty()) |
| DataLayout += "-"; |
| DataLayout += "ni:10"; |
| NIM.setDataLayout(DataLayout); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| Type *T_pint64 = T_int64->getPointerTo(10); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), {T_pint64}, false); |
| Function *F = cast<Function>(NIM.getOrInsertFunction("foo", FTy)); |
| |
| BasicBlock *Top = BasicBlock::Create(Context, "top", F); |
| BasicBlock *LPh = BasicBlock::Create(Context, "L.ph", F); |
| BasicBlock *L = BasicBlock::Create(Context, "L", F); |
| BasicBlock *Post = BasicBlock::Create(Context, "post", F); |
| |
| IRBuilder<> Builder(Top); |
| Builder.CreateBr(LPh); |
| |
| Builder.SetInsertPoint(LPh); |
| Builder.CreateBr(L); |
| |
| Builder.SetInsertPoint(L); |
| PHINode *Phi = Builder.CreatePHI(T_int64, 2); |
| auto *Add = cast<Instruction>( |
| Builder.CreateAdd(Phi, ConstantInt::get(T_int64, 1), "add")); |
| auto *Limit = ConstantInt::get(T_int64, 1000); |
| auto *Cond = cast<Instruction>( |
| Builder.CreateICmp(ICmpInst::ICMP_SLT, Add, Limit, "cond")); |
| Builder.CreateCondBr(Cond, L, Post); |
| Phi->addIncoming(ConstantInt::get(T_int64, 0), LPh); |
| Phi->addIncoming(Add, L); |
| |
| Builder.SetInsertPoint(Post); |
| Builder.CreateRetVoid(); |
| |
| ScalarEvolution SE = buildSE(*F); |
| const SCEV *S = SE.getSCEV(Phi); |
| EXPECT_TRUE(isa<SCEVAddRecExpr>(S)); |
| const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); |
| EXPECT_TRUE(AR->isAffine()); |
| EXPECT_FALSE(isSafeToExpandAt(AR, Top->getTerminator(), SE)); |
| EXPECT_FALSE(isSafeToExpandAt(AR, LPh->getTerminator(), SE)); |
| EXPECT_TRUE(isSafeToExpandAt(AR, L->getTerminator(), SE)); |
| EXPECT_TRUE(isSafeToExpandAt(AR, Post->getTerminator(), SE)); |
| } |
| |
| // Check that SCEV expander does not use the nuw instruction |
| // for expansion. |
| TEST_F(ScalarEvolutionsTest, SCEVExpanderNUW) { |
| /* |
| * Create the following code: |
| * func(i64 %a) |
| * entry: |
| * br false, label %exit, label %body |
| * body: |
| * %s1 = add i64 %a, -1 |
| * br label %exit |
| * exit: |
| * %s = add nuw i64 %a, -1 |
| * ret %s |
| */ |
| |
| // Create a module. |
| Module M("SCEVExpanderNUW", Context); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), { T_int64 }, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("func", FTy)); |
| Argument *Arg = &*F->arg_begin(); |
| ConstantInt *C = ConstantInt::get(Context, APInt(64, -1)); |
| |
| BasicBlock *Entry = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *Body = BasicBlock::Create(Context, "body", F); |
| BasicBlock *Exit = BasicBlock::Create(Context, "exit", F); |
| |
| IRBuilder<> Builder(Entry); |
| ConstantInt *Cond = ConstantInt::get(Context, APInt(1, 0)); |
| Builder.CreateCondBr(Cond, Exit, Body); |
| |
| Builder.SetInsertPoint(Body); |
| auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add")); |
| Builder.CreateBr(Exit); |
| |
| Builder.SetInsertPoint(Exit); |
| auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add")); |
| S2->setHasNoUnsignedWrap(true); |
| auto *R = cast<Instruction>(Builder.CreateRetVoid()); |
| |
| ScalarEvolution SE = buildSE(*F); |
| const SCEV *S = SE.getSCEV(S1); |
| EXPECT_TRUE(isa<SCEVAddExpr>(S)); |
| SCEVExpander Exp(SE, M.getDataLayout(), "expander"); |
| auto *I = cast<Instruction>(Exp.expandCodeFor(S, nullptr, R)); |
| EXPECT_FALSE(I->hasNoUnsignedWrap()); |
| } |
| |
| // Check that SCEV expander does not use the nsw instruction |
| // for expansion. |
| TEST_F(ScalarEvolutionsTest, SCEVExpanderNSW) { |
| /* |
| * Create the following code: |
| * func(i64 %a) |
| * entry: |
| * br false, label %exit, label %body |
| * body: |
| * %s1 = add i64 %a, -1 |
| * br label %exit |
| * exit: |
| * %s = add nsw i64 %a, -1 |
| * ret %s |
| */ |
| |
| // Create a module. |
| Module M("SCEVExpanderNSW", Context); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), { T_int64 }, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("func", FTy)); |
| Argument *Arg = &*F->arg_begin(); |
| ConstantInt *C = ConstantInt::get(Context, APInt(64, -1)); |
| |
| BasicBlock *Entry = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *Body = BasicBlock::Create(Context, "body", F); |
| BasicBlock *Exit = BasicBlock::Create(Context, "exit", F); |
| |
| IRBuilder<> Builder(Entry); |
| ConstantInt *Cond = ConstantInt::get(Context, APInt(1, 0)); |
| Builder.CreateCondBr(Cond, Exit, Body); |
| |
| Builder.SetInsertPoint(Body); |
| auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add")); |
| Builder.CreateBr(Exit); |
| |
| Builder.SetInsertPoint(Exit); |
| auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add")); |
| S2->setHasNoSignedWrap(true); |
| auto *R = cast<Instruction>(Builder.CreateRetVoid()); |
| |
| ScalarEvolution SE = buildSE(*F); |
| const SCEV *S = SE.getSCEV(S1); |
| EXPECT_TRUE(isa<SCEVAddExpr>(S)); |
| SCEVExpander Exp(SE, M.getDataLayout(), "expander"); |
| auto *I = cast<Instruction>(Exp.expandCodeFor(S, nullptr, R)); |
| EXPECT_FALSE(I->hasNoSignedWrap()); |
| } |
| |
| // Check that SCEV does not save the SCEV -> V |
| // mapping of SCEV differ from V in NUW flag. |
| TEST_F(ScalarEvolutionsTest, SCEVCacheNUW) { |
| /* |
| * Create the following code: |
| * func(i64 %a) |
| * entry: |
| * %s1 = add i64 %a, -1 |
| * %s2 = add nuw i64 %a, -1 |
| * br label %exit |
| * exit: |
| * ret %s |
| */ |
| |
| // Create a module. |
| Module M("SCEVCacheNUW", Context); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), { T_int64 }, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("func", FTy)); |
| Argument *Arg = &*F->arg_begin(); |
| ConstantInt *C = ConstantInt::get(Context, APInt(64, -1)); |
| |
| BasicBlock *Entry = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *Exit = BasicBlock::Create(Context, "exit", F); |
| |
| IRBuilder<> Builder(Entry); |
| auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add")); |
| auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add")); |
| S2->setHasNoUnsignedWrap(true); |
| Builder.CreateBr(Exit); |
| |
| Builder.SetInsertPoint(Exit); |
| auto *R = cast<Instruction>(Builder.CreateRetVoid()); |
| |
| ScalarEvolution SE = buildSE(*F); |
| // Get S2 first to move it to cache. |
| const SCEV *SC2 = SE.getSCEV(S2); |
| EXPECT_TRUE(isa<SCEVAddExpr>(SC2)); |
| // Now get S1. |
| const SCEV *SC1 = SE.getSCEV(S1); |
| EXPECT_TRUE(isa<SCEVAddExpr>(SC1)); |
| // Expand for S1, it should use S1 not S2 in spite S2 |
| // first in the cache. |
| SCEVExpander Exp(SE, M.getDataLayout(), "expander"); |
| auto *I = cast<Instruction>(Exp.expandCodeFor(SC1, nullptr, R)); |
| EXPECT_FALSE(I->hasNoUnsignedWrap()); |
| } |
| |
| // Check that SCEV does not save the SCEV -> V |
| // mapping of SCEV differ from V in NSW flag. |
| TEST_F(ScalarEvolutionsTest, SCEVCacheNSW) { |
| /* |
| * Create the following code: |
| * func(i64 %a) |
| * entry: |
| * %s1 = add i64 %a, -1 |
| * %s2 = add nsw i64 %a, -1 |
| * br label %exit |
| * exit: |
| * ret %s |
| */ |
| |
| // Create a module. |
| Module M("SCEVCacheNUW", Context); |
| |
| Type *T_int64 = Type::getInt64Ty(Context); |
| |
| FunctionType *FTy = |
| FunctionType::get(Type::getVoidTy(Context), { T_int64 }, false); |
| Function *F = cast<Function>(M.getOrInsertFunction("func", FTy)); |
| Argument *Arg = &*F->arg_begin(); |
| ConstantInt *C = ConstantInt::get(Context, APInt(64, -1)); |
| |
| BasicBlock *Entry = BasicBlock::Create(Context, "entry", F); |
| BasicBlock *Exit = BasicBlock::Create(Context, "exit", F); |
| |
| IRBuilder<> Builder(Entry); |
| auto *S1 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add")); |
| auto *S2 = cast<Instruction>(Builder.CreateAdd(Arg, C, "add")); |
| S2->setHasNoSignedWrap(true); |
| Builder.CreateBr(Exit); |
| |
| Builder.SetInsertPoint(Exit); |
| auto *R = cast<Instruction>(Builder.CreateRetVoid()); |
| |
| ScalarEvolution SE = buildSE(*F); |
| // Get S2 first to move it to cache. |
| const SCEV *SC2 = SE.getSCEV(S2); |
| EXPECT_TRUE(isa<SCEVAddExpr>(SC2)); |
| // Now get S1. |
| const SCEV *SC1 = SE.getSCEV(S1); |
| EXPECT_TRUE(isa<SCEVAddExpr>(SC1)); |
| // Expand for S1, it should use S1 not S2 in spite S2 |
| // first in the cache. |
| SCEVExpander Exp(SE, M.getDataLayout(), "expander"); |
| auto *I = cast<Instruction>(Exp.expandCodeFor(SC1, nullptr, R)); |
| EXPECT_FALSE(I->hasNoSignedWrap()); |
| } |
| |
| } // end anonymous namespace |
| } // end namespace llvm |