| //===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// |
| /// This file implements the OpenMPIRBuilder class, which is used as a |
| /// convenient way to create LLVM instructions for OpenMP directives. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/CodeExtractor.h" |
| #include "llvm/Transforms/Utils/LoopPeel.h" |
| #include "llvm/Transforms/Utils/UnrollLoop.h" |
| |
| #include <cstdint> |
| #include <optional> |
| |
| #define DEBUG_TYPE "openmp-ir-builder" |
| |
| using namespace llvm; |
| using namespace omp; |
| |
| static cl::opt<bool> |
| OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden, |
| cl::desc("Use optimistic attributes describing " |
| "'as-if' properties of runtime calls."), |
| cl::init(false)); |
| |
| static cl::opt<double> UnrollThresholdFactor( |
| "openmp-ir-builder-unroll-threshold-factor", cl::Hidden, |
| cl::desc("Factor for the unroll threshold to account for code " |
| "simplifications still taking place"), |
| cl::init(1.5)); |
| |
| #ifndef NDEBUG |
| /// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions |
| /// at position IP1 may change the meaning of IP2 or vice-versa. This is because |
| /// an InsertPoint stores the instruction before something is inserted. For |
| /// instance, if both point to the same instruction, two IRBuilders alternating |
| /// creating instruction will cause the instructions to be interleaved. |
| static bool isConflictIP(IRBuilder<>::InsertPoint IP1, |
| IRBuilder<>::InsertPoint IP2) { |
| if (!IP1.isSet() || !IP2.isSet()) |
| return false; |
| return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint(); |
| } |
| |
| static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) { |
| // Valid ordered/unordered and base algorithm combinations. |
| switch (SchedType & ~OMPScheduleType::MonotonicityMask) { |
| case OMPScheduleType::UnorderedStaticChunked: |
| case OMPScheduleType::UnorderedStatic: |
| case OMPScheduleType::UnorderedDynamicChunked: |
| case OMPScheduleType::UnorderedGuidedChunked: |
| case OMPScheduleType::UnorderedRuntime: |
| case OMPScheduleType::UnorderedAuto: |
| case OMPScheduleType::UnorderedTrapezoidal: |
| case OMPScheduleType::UnorderedGreedy: |
| case OMPScheduleType::UnorderedBalanced: |
| case OMPScheduleType::UnorderedGuidedIterativeChunked: |
| case OMPScheduleType::UnorderedGuidedAnalyticalChunked: |
| case OMPScheduleType::UnorderedSteal: |
| case OMPScheduleType::UnorderedStaticBalancedChunked: |
| case OMPScheduleType::UnorderedGuidedSimd: |
| case OMPScheduleType::UnorderedRuntimeSimd: |
| case OMPScheduleType::OrderedStaticChunked: |
| case OMPScheduleType::OrderedStatic: |
| case OMPScheduleType::OrderedDynamicChunked: |
| case OMPScheduleType::OrderedGuidedChunked: |
| case OMPScheduleType::OrderedRuntime: |
| case OMPScheduleType::OrderedAuto: |
| case OMPScheduleType::OrderdTrapezoidal: |
| case OMPScheduleType::NomergeUnorderedStaticChunked: |
| case OMPScheduleType::NomergeUnorderedStatic: |
| case OMPScheduleType::NomergeUnorderedDynamicChunked: |
| case OMPScheduleType::NomergeUnorderedGuidedChunked: |
| case OMPScheduleType::NomergeUnorderedRuntime: |
| case OMPScheduleType::NomergeUnorderedAuto: |
| case OMPScheduleType::NomergeUnorderedTrapezoidal: |
| case OMPScheduleType::NomergeUnorderedGreedy: |
| case OMPScheduleType::NomergeUnorderedBalanced: |
| case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked: |
| case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked: |
| case OMPScheduleType::NomergeUnorderedSteal: |
| case OMPScheduleType::NomergeOrderedStaticChunked: |
| case OMPScheduleType::NomergeOrderedStatic: |
| case OMPScheduleType::NomergeOrderedDynamicChunked: |
| case OMPScheduleType::NomergeOrderedGuidedChunked: |
| case OMPScheduleType::NomergeOrderedRuntime: |
| case OMPScheduleType::NomergeOrderedAuto: |
| case OMPScheduleType::NomergeOrderedTrapezoidal: |
| break; |
| default: |
| return false; |
| } |
| |
| // Must not set both monotonicity modifiers at the same time. |
| OMPScheduleType MonotonicityFlags = |
| SchedType & OMPScheduleType::MonotonicityMask; |
| if (MonotonicityFlags == OMPScheduleType::MonotonicityMask) |
| return false; |
| |
| return true; |
| } |
| #endif |
| |
| /// Determine which scheduling algorithm to use, determined from schedule clause |
| /// arguments. |
| static OMPScheduleType |
| getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks, |
| bool HasSimdModifier) { |
| // Currently, the default schedule it static. |
| switch (ClauseKind) { |
| case OMP_SCHEDULE_Default: |
| case OMP_SCHEDULE_Static: |
| return HasChunks ? OMPScheduleType::BaseStaticChunked |
| : OMPScheduleType::BaseStatic; |
| case OMP_SCHEDULE_Dynamic: |
| return OMPScheduleType::BaseDynamicChunked; |
| case OMP_SCHEDULE_Guided: |
| return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd |
| : OMPScheduleType::BaseGuidedChunked; |
| case OMP_SCHEDULE_Auto: |
| return llvm::omp::OMPScheduleType::BaseAuto; |
| case OMP_SCHEDULE_Runtime: |
| return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd |
| : OMPScheduleType::BaseRuntime; |
| } |
| llvm_unreachable("unhandled schedule clause argument"); |
| } |
| |
| /// Adds ordering modifier flags to schedule type. |
| static OMPScheduleType |
| getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType, |
| bool HasOrderedClause) { |
| assert((BaseScheduleType & OMPScheduleType::ModifierMask) == |
| OMPScheduleType::None && |
| "Must not have ordering nor monotonicity flags already set"); |
| |
| OMPScheduleType OrderingModifier = HasOrderedClause |
| ? OMPScheduleType::ModifierOrdered |
| : OMPScheduleType::ModifierUnordered; |
| OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier; |
| |
| // Unsupported combinations |
| if (OrderingScheduleType == |
| (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered)) |
| return OMPScheduleType::OrderedGuidedChunked; |
| else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd | |
| OMPScheduleType::ModifierOrdered)) |
| return OMPScheduleType::OrderedRuntime; |
| |
| return OrderingScheduleType; |
| } |
| |
| /// Adds monotonicity modifier flags to schedule type. |
| static OMPScheduleType |
| getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType, |
| bool HasSimdModifier, bool HasMonotonic, |
| bool HasNonmonotonic, bool HasOrderedClause) { |
| assert((ScheduleType & OMPScheduleType::MonotonicityMask) == |
| OMPScheduleType::None && |
| "Must not have monotonicity flags already set"); |
| assert((!HasMonotonic || !HasNonmonotonic) && |
| "Monotonic and Nonmonotonic are contradicting each other"); |
| |
| if (HasMonotonic) { |
| return ScheduleType | OMPScheduleType::ModifierMonotonic; |
| } else if (HasNonmonotonic) { |
| return ScheduleType | OMPScheduleType::ModifierNonmonotonic; |
| } else { |
| // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description. |
| // If the static schedule kind is specified or if the ordered clause is |
| // specified, and if the nonmonotonic modifier is not specified, the |
| // effect is as if the monotonic modifier is specified. Otherwise, unless |
| // the monotonic modifier is specified, the effect is as if the |
| // nonmonotonic modifier is specified. |
| OMPScheduleType BaseScheduleType = |
| ScheduleType & ~OMPScheduleType::ModifierMask; |
| if ((BaseScheduleType == OMPScheduleType::BaseStatic) || |
| (BaseScheduleType == OMPScheduleType::BaseStaticChunked) || |
| HasOrderedClause) { |
| // The monotonic is used by default in openmp runtime library, so no need |
| // to set it. |
| return ScheduleType; |
| } else { |
| return ScheduleType | OMPScheduleType::ModifierNonmonotonic; |
| } |
| } |
| } |
| |
| /// Determine the schedule type using schedule and ordering clause arguments. |
| static OMPScheduleType |
| computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks, |
| bool HasSimdModifier, bool HasMonotonicModifier, |
| bool HasNonmonotonicModifier, bool HasOrderedClause) { |
| OMPScheduleType BaseSchedule = |
| getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier); |
| OMPScheduleType OrderedSchedule = |
| getOpenMPOrderingScheduleType(BaseSchedule, HasOrderedClause); |
| OMPScheduleType Result = getOpenMPMonotonicityScheduleType( |
| OrderedSchedule, HasSimdModifier, HasMonotonicModifier, |
| HasNonmonotonicModifier, HasOrderedClause); |
| |
| assert(isValidWorkshareLoopScheduleType(Result)); |
| return Result; |
| } |
| |
| /// Make \p Source branch to \p Target. |
| /// |
| /// Handles two situations: |
| /// * \p Source already has an unconditional branch. |
| /// * \p Source is a degenerate block (no terminator because the BB is |
| /// the current head of the IR construction). |
| static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) { |
| if (Instruction *Term = Source->getTerminator()) { |
| auto *Br = cast<BranchInst>(Term); |
| assert(!Br->isConditional() && |
| "BB's terminator must be an unconditional branch (or degenerate)"); |
| BasicBlock *Succ = Br->getSuccessor(0); |
| Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true); |
| Br->setSuccessor(0, Target); |
| return; |
| } |
| |
| auto *NewBr = BranchInst::Create(Target, Source); |
| NewBr->setDebugLoc(DL); |
| } |
| |
| void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New, |
| bool CreateBranch) { |
| assert(New->getFirstInsertionPt() == New->begin() && |
| "Target BB must not have PHI nodes"); |
| |
| // Move instructions to new block. |
| BasicBlock *Old = IP.getBlock(); |
| New->splice(New->begin(), Old, IP.getPoint(), Old->end()); |
| |
| if (CreateBranch) |
| BranchInst::Create(New, Old); |
| } |
| |
| void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) { |
| DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); |
| BasicBlock *Old = Builder.GetInsertBlock(); |
| |
| spliceBB(Builder.saveIP(), New, CreateBranch); |
| if (CreateBranch) |
| Builder.SetInsertPoint(Old->getTerminator()); |
| else |
| Builder.SetInsertPoint(Old); |
| |
| // SetInsertPoint also updates the Builder's debug location, but we want to |
| // keep the one the Builder was configured to use. |
| Builder.SetCurrentDebugLocation(DebugLoc); |
| } |
| |
| BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch, |
| llvm::Twine Name) { |
| BasicBlock *Old = IP.getBlock(); |
| BasicBlock *New = BasicBlock::Create( |
| Old->getContext(), Name.isTriviallyEmpty() ? Old->getName() : Name, |
| Old->getParent(), Old->getNextNode()); |
| spliceBB(IP, New, CreateBranch); |
| New->replaceSuccessorsPhiUsesWith(Old, New); |
| return New; |
| } |
| |
| BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch, |
| llvm::Twine Name) { |
| DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); |
| BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name); |
| if (CreateBranch) |
| Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator()); |
| else |
| Builder.SetInsertPoint(Builder.GetInsertBlock()); |
| // SetInsertPoint also updates the Builder's debug location, but we want to |
| // keep the one the Builder was configured to use. |
| Builder.SetCurrentDebugLocation(DebugLoc); |
| return New; |
| } |
| |
| BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch, |
| llvm::Twine Name) { |
| DebugLoc DebugLoc = Builder.getCurrentDebugLocation(); |
| BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name); |
| if (CreateBranch) |
| Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator()); |
| else |
| Builder.SetInsertPoint(Builder.GetInsertBlock()); |
| // SetInsertPoint also updates the Builder's debug location, but we want to |
| // keep the one the Builder was configured to use. |
| Builder.SetCurrentDebugLocation(DebugLoc); |
| return New; |
| } |
| |
| BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch, |
| llvm::Twine Suffix) { |
| BasicBlock *Old = Builder.GetInsertBlock(); |
| return splitBB(Builder, CreateBranch, Old->getName() + Suffix); |
| } |
| |
| void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) { |
| LLVMContext &Ctx = Fn.getContext(); |
| Triple T(M.getTargetTriple()); |
| |
| // Get the function's current attributes. |
| auto Attrs = Fn.getAttributes(); |
| auto FnAttrs = Attrs.getFnAttrs(); |
| auto RetAttrs = Attrs.getRetAttrs(); |
| SmallVector<AttributeSet, 4> ArgAttrs; |
| for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo) |
| ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo)); |
| |
| // Add AS to FnAS while taking special care with integer extensions. |
| auto addAttrSet = [&](AttributeSet &FnAS, const AttributeSet &AS, |
| bool Param = true) -> void { |
| bool HasSignExt = AS.hasAttribute(Attribute::SExt); |
| bool HasZeroExt = AS.hasAttribute(Attribute::ZExt); |
| if (HasSignExt || HasZeroExt) { |
| assert(AS.getNumAttributes() == 1 && |
| "Currently not handling extension attr combined with others."); |
| if (Param) { |
| if (auto AK = TargetLibraryInfo::getExtAttrForI32Param(T, HasSignExt)) |
| FnAS = FnAS.addAttribute(Ctx, AK); |
| } else |
| if (auto AK = TargetLibraryInfo::getExtAttrForI32Return(T, HasSignExt)) |
| FnAS = FnAS.addAttribute(Ctx, AK); |
| } else { |
| FnAS = FnAS.addAttributes(Ctx, AS); |
| } |
| }; |
| |
| #define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| |
| // Add attributes to the function declaration. |
| switch (FnID) { |
| #define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \ |
| case Enum: \ |
| FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \ |
| addAttrSet(RetAttrs, RetAttrSet, /*Param*/false); \ |
| for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \ |
| addAttrSet(ArgAttrs[ArgNo], ArgAttrSets[ArgNo]); \ |
| Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \ |
| break; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| default: |
| // Attributes are optional. |
| break; |
| } |
| } |
| |
| FunctionCallee |
| OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) { |
| FunctionType *FnTy = nullptr; |
| Function *Fn = nullptr; |
| |
| // Try to find the declation in the module first. |
| switch (FnID) { |
| #define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \ |
| case Enum: \ |
| FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__}, \ |
| IsVarArg); \ |
| Fn = M.getFunction(Str); \ |
| break; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| } |
| |
| if (!Fn) { |
| // Create a new declaration if we need one. |
| switch (FnID) { |
| #define OMP_RTL(Enum, Str, ...) \ |
| case Enum: \ |
| Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \ |
| break; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| } |
| |
| // Add information if the runtime function takes a callback function |
| if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) { |
| if (!Fn->hasMetadata(LLVMContext::MD_callback)) { |
| LLVMContext &Ctx = Fn->getContext(); |
| MDBuilder MDB(Ctx); |
| // Annotate the callback behavior of the runtime function: |
| // - The callback callee is argument number 2 (microtask). |
| // - The first two arguments of the callback callee are unknown (-1). |
| // - All variadic arguments to the runtime function are passed to the |
| // callback callee. |
| Fn->addMetadata( |
| LLVMContext::MD_callback, |
| *MDNode::get(Ctx, {MDB.createCallbackEncoding( |
| 2, {-1, -1}, /* VarArgsArePassed */ true)})); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName() |
| << " with type " << *Fn->getFunctionType() << "\n"); |
| addAttributes(FnID, *Fn); |
| |
| } else { |
| LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName() |
| << " with type " << *Fn->getFunctionType() << "\n"); |
| } |
| |
| assert(Fn && "Failed to create OpenMP runtime function"); |
| |
| // Cast the function to the expected type if necessary |
| Constant *C = ConstantExpr::getBitCast(Fn, FnTy->getPointerTo()); |
| return {FnTy, C}; |
| } |
| |
| Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) { |
| FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID); |
| auto *Fn = dyn_cast<llvm::Function>(RTLFn.getCallee()); |
| assert(Fn && "Failed to create OpenMP runtime function pointer"); |
| return Fn; |
| } |
| |
| void OpenMPIRBuilder::initialize() { initializeTypes(M); } |
| |
| void OpenMPIRBuilder::finalize(Function *Fn) { |
| SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet; |
| SmallVector<BasicBlock *, 32> Blocks; |
| SmallVector<OutlineInfo, 16> DeferredOutlines; |
| for (OutlineInfo &OI : OutlineInfos) { |
| // Skip functions that have not finalized yet; may happen with nested |
| // function generation. |
| if (Fn && OI.getFunction() != Fn) { |
| DeferredOutlines.push_back(OI); |
| continue; |
| } |
| |
| ParallelRegionBlockSet.clear(); |
| Blocks.clear(); |
| OI.collectBlocks(ParallelRegionBlockSet, Blocks); |
| |
| Function *OuterFn = OI.getFunction(); |
| CodeExtractorAnalysisCache CEAC(*OuterFn); |
| CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, |
| /* AggregateArgs */ true, |
| /* BlockFrequencyInfo */ nullptr, |
| /* BranchProbabilityInfo */ nullptr, |
| /* AssumptionCache */ nullptr, |
| /* AllowVarArgs */ true, |
| /* AllowAlloca */ true, |
| /* AllocaBlock*/ OI.OuterAllocaBB, |
| /* Suffix */ ".omp_par"); |
| |
| LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n"); |
| LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName() |
| << " Exit: " << OI.ExitBB->getName() << "\n"); |
| assert(Extractor.isEligible() && |
| "Expected OpenMP outlining to be possible!"); |
| |
| for (auto *V : OI.ExcludeArgsFromAggregate) |
| Extractor.excludeArgFromAggregate(V); |
| |
| Function *OutlinedFn = Extractor.extractCodeRegion(CEAC); |
| |
| LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n"); |
| LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n"); |
| assert(OutlinedFn->getReturnType()->isVoidTy() && |
| "OpenMP outlined functions should not return a value!"); |
| |
| // For compability with the clang CG we move the outlined function after the |
| // one with the parallel region. |
| OutlinedFn->removeFromParent(); |
| M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn); |
| |
| // Remove the artificial entry introduced by the extractor right away, we |
| // made our own entry block after all. |
| { |
| BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock(); |
| assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB); |
| assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry); |
| // Move instructions from the to-be-deleted ArtificialEntry to the entry |
| // basic block of the parallel region. CodeExtractor generates |
| // instructions to unwrap the aggregate argument and may sink |
| // allocas/bitcasts for values that are solely used in the outlined region |
| // and do not escape. |
| assert(!ArtificialEntry.empty() && |
| "Expected instructions to add in the outlined region entry"); |
| for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(), |
| End = ArtificialEntry.rend(); |
| It != End;) { |
| Instruction &I = *It; |
| It++; |
| |
| if (I.isTerminator()) |
| continue; |
| |
| I.moveBefore(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt()); |
| } |
| |
| OI.EntryBB->moveBefore(&ArtificialEntry); |
| ArtificialEntry.eraseFromParent(); |
| } |
| assert(&OutlinedFn->getEntryBlock() == OI.EntryBB); |
| assert(OutlinedFn && OutlinedFn->getNumUses() == 1); |
| |
| // Run a user callback, e.g. to add attributes. |
| if (OI.PostOutlineCB) |
| OI.PostOutlineCB(*OutlinedFn); |
| } |
| |
| // Remove work items that have been completed. |
| OutlineInfos = std::move(DeferredOutlines); |
| } |
| |
| OpenMPIRBuilder::~OpenMPIRBuilder() { |
| assert(OutlineInfos.empty() && "There must be no outstanding outlinings"); |
| } |
| |
| GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) { |
| IntegerType *I32Ty = Type::getInt32Ty(M.getContext()); |
| auto *GV = |
| new GlobalVariable(M, I32Ty, |
| /* isConstant = */ true, GlobalValue::WeakODRLinkage, |
| ConstantInt::get(I32Ty, Value), Name); |
| GV->setVisibility(GlobalValue::HiddenVisibility); |
| |
| return GV; |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr, |
| uint32_t SrcLocStrSize, |
| IdentFlag LocFlags, |
| unsigned Reserve2Flags) { |
| // Enable "C-mode". |
| LocFlags |= OMP_IDENT_FLAG_KMPC; |
| |
| Constant *&Ident = |
| IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}]; |
| if (!Ident) { |
| Constant *I32Null = ConstantInt::getNullValue(Int32); |
| Constant *IdentData[] = {I32Null, |
| ConstantInt::get(Int32, uint32_t(LocFlags)), |
| ConstantInt::get(Int32, Reserve2Flags), |
| ConstantInt::get(Int32, SrcLocStrSize), SrcLocStr}; |
| Constant *Initializer = |
| ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData); |
| |
| // Look for existing encoding of the location + flags, not needed but |
| // minimizes the difference to the existing solution while we transition. |
| for (GlobalVariable &GV : M.getGlobalList()) |
| if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer()) |
| if (GV.getInitializer() == Initializer) |
| Ident = &GV; |
| |
| if (!Ident) { |
| auto *GV = new GlobalVariable( |
| M, OpenMPIRBuilder::Ident, |
| /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "", |
| nullptr, GlobalValue::NotThreadLocal, |
| M.getDataLayout().getDefaultGlobalsAddressSpace()); |
| GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); |
| GV->setAlignment(Align(8)); |
| Ident = GV; |
| } |
| } |
| |
| return ConstantExpr::getPointerBitCastOrAddrSpaceCast(Ident, IdentPtr); |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr, |
| uint32_t &SrcLocStrSize) { |
| SrcLocStrSize = LocStr.size(); |
| Constant *&SrcLocStr = SrcLocStrMap[LocStr]; |
| if (!SrcLocStr) { |
| Constant *Initializer = |
| ConstantDataArray::getString(M.getContext(), LocStr); |
| |
| // Look for existing encoding of the location, not needed but minimizes the |
| // difference to the existing solution while we transition. |
| for (GlobalVariable &GV : M.getGlobalList()) |
| if (GV.isConstant() && GV.hasInitializer() && |
| GV.getInitializer() == Initializer) |
| return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr); |
| |
| SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "", |
| /* AddressSpace */ 0, &M); |
| } |
| return SrcLocStr; |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName, |
| StringRef FileName, |
| unsigned Line, unsigned Column, |
| uint32_t &SrcLocStrSize) { |
| SmallString<128> Buffer; |
| Buffer.push_back(';'); |
| Buffer.append(FileName); |
| Buffer.push_back(';'); |
| Buffer.append(FunctionName); |
| Buffer.push_back(';'); |
| Buffer.append(std::to_string(Line)); |
| Buffer.push_back(';'); |
| Buffer.append(std::to_string(Column)); |
| Buffer.push_back(';'); |
| Buffer.push_back(';'); |
| return getOrCreateSrcLocStr(Buffer.str(), SrcLocStrSize); |
| } |
| |
| Constant * |
| OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) { |
| StringRef UnknownLoc = ";unknown;unknown;0;0;;"; |
| return getOrCreateSrcLocStr(UnknownLoc, SrcLocStrSize); |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL, |
| uint32_t &SrcLocStrSize, |
| Function *F) { |
| DILocation *DIL = DL.get(); |
| if (!DIL) |
| return getOrCreateDefaultSrcLocStr(SrcLocStrSize); |
| StringRef FileName = M.getName(); |
| if (DIFile *DIF = DIL->getFile()) |
| if (std::optional<StringRef> Source = DIF->getSource()) |
| FileName = *Source; |
| StringRef Function = DIL->getScope()->getSubprogram()->getName(); |
| if (Function.empty() && F) |
| Function = F->getName(); |
| return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(), |
| DIL->getColumn(), SrcLocStrSize); |
| } |
| |
| Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc, |
| uint32_t &SrcLocStrSize) { |
| return getOrCreateSrcLocStr(Loc.DL, SrcLocStrSize, |
| Loc.IP.getBlock()->getParent()); |
| } |
| |
| Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) { |
| return Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident, |
| "omp_global_thread_num"); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK, |
| bool ForceSimpleCall, bool CheckCancelFlag) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind, |
| bool ForceSimpleCall, bool CheckCancelFlag) { |
| // Build call __kmpc_cancel_barrier(loc, thread_id) or |
| // __kmpc_barrier(loc, thread_id); |
| |
| IdentFlag BarrierLocFlags; |
| switch (Kind) { |
| case OMPD_for: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR; |
| break; |
| case OMPD_sections: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS; |
| break; |
| case OMPD_single: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE; |
| break; |
| case OMPD_barrier: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL; |
| break; |
| default: |
| BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL; |
| break; |
| } |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Args[] = { |
| getOrCreateIdent(SrcLocStr, SrcLocStrSize, BarrierLocFlags), |
| getOrCreateThreadID(getOrCreateIdent(SrcLocStr, SrcLocStrSize))}; |
| |
| // If we are in a cancellable parallel region, barriers are cancellation |
| // points. |
| // TODO: Check why we would force simple calls or to ignore the cancel flag. |
| bool UseCancelBarrier = |
| !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel); |
| |
| Value *Result = |
| Builder.CreateCall(getOrCreateRuntimeFunctionPtr( |
| UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier |
| : OMPRTL___kmpc_barrier), |
| Args); |
| |
| if (UseCancelBarrier && CheckCancelFlag) |
| emitCancelationCheckImpl(Result, OMPD_parallel); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createCancel(const LocationDescription &Loc, |
| Value *IfCondition, |
| omp::Directive CanceledDirective) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| // LLVM utilities like blocks with terminators. |
| auto *UI = Builder.CreateUnreachable(); |
| |
| Instruction *ThenTI = UI, *ElseTI = nullptr; |
| if (IfCondition) |
| SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI); |
| Builder.SetInsertPoint(ThenTI); |
| |
| Value *CancelKind = nullptr; |
| switch (CanceledDirective) { |
| #define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \ |
| case DirectiveEnum: \ |
| CancelKind = Builder.getInt32(Value); \ |
| break; |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| default: |
| llvm_unreachable("Unknown cancel kind!"); |
| } |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind}; |
| Value *Result = Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args); |
| auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) { |
| if (CanceledDirective == OMPD_parallel) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(IP); |
| createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), |
| omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, |
| /* CheckCancelFlag */ false); |
| } |
| }; |
| |
| // The actual cancel logic is shared with others, e.g., cancel_barriers. |
| emitCancelationCheckImpl(Result, CanceledDirective, ExitCB); |
| |
| // Update the insertion point and remove the terminator we introduced. |
| Builder.SetInsertPoint(UI->getParent()); |
| UI->eraseFromParent(); |
| |
| return Builder.saveIP(); |
| } |
| |
| void OpenMPIRBuilder::emitOffloadingEntry(Constant *Addr, StringRef Name, |
| uint64_t Size, int32_t Flags, |
| StringRef SectionName) { |
| Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); |
| Type *Int32Ty = Type::getInt32Ty(M.getContext()); |
| Type *SizeTy = M.getDataLayout().getIntPtrType(M.getContext()); |
| |
| Constant *AddrName = ConstantDataArray::getString(M.getContext(), Name); |
| |
| // Create the constant string used to look up the symbol in the device. |
| auto *Str = |
| new llvm::GlobalVariable(M, AddrName->getType(), /*isConstant=*/true, |
| llvm::GlobalValue::InternalLinkage, AddrName, |
| ".omp_offloading.entry_name"); |
| Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| |
| // Construct the offloading entry. |
| Constant *EntryData[] = { |
| ConstantExpr::getPointerBitCastOrAddrSpaceCast(Addr, Int8PtrTy), |
| ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, Int8PtrTy), |
| ConstantInt::get(SizeTy, Size), |
| ConstantInt::get(Int32Ty, Flags), |
| ConstantInt::get(Int32Ty, 0), |
| }; |
| Constant *EntryInitializer = |
| ConstantStruct::get(OpenMPIRBuilder::OffloadEntry, EntryData); |
| |
| auto *Entry = new GlobalVariable( |
| M, OpenMPIRBuilder::OffloadEntry, |
| /* isConstant = */ true, GlobalValue::WeakAnyLinkage, EntryInitializer, |
| ".omp_offloading.entry." + Name, nullptr, GlobalValue::NotThreadLocal, |
| M.getDataLayout().getDefaultGlobalsAddressSpace()); |
| |
| // The entry has to be created in the section the linker expects it to be. |
| Entry->setSection(SectionName); |
| Entry->setAlignment(Align(1)); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel( |
| const LocationDescription &Loc, Value *&Return, Value *Ident, |
| Value *DeviceID, Value *NumTeams, Value *NumThreads, Value *HostPtr, |
| ArrayRef<Value *> KernelArgs) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| auto *KernelArgsPtr = |
| Builder.CreateAlloca(OpenMPIRBuilder::KernelArgs, nullptr, "kernel_args"); |
| for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) { |
| llvm::Value *Arg = |
| Builder.CreateStructGEP(OpenMPIRBuilder::KernelArgs, KernelArgsPtr, I); |
| Builder.CreateAlignedStore( |
| KernelArgs[I], Arg, |
| M.getDataLayout().getPrefTypeAlign(KernelArgs[I]->getType())); |
| } |
| |
| SmallVector<Value *> OffloadingArgs{Ident, DeviceID, NumTeams, |
| NumThreads, HostPtr, KernelArgsPtr}; |
| |
| Return = Builder.CreateCall( |
| getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel), |
| OffloadingArgs); |
| |
| return Builder.saveIP(); |
| } |
| |
| void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag, |
| omp::Directive CanceledDirective, |
| FinalizeCallbackTy ExitCB) { |
| assert(isLastFinalizationInfoCancellable(CanceledDirective) && |
| "Unexpected cancellation!"); |
| |
| // For a cancel barrier we create two new blocks. |
| BasicBlock *BB = Builder.GetInsertBlock(); |
| BasicBlock *NonCancellationBlock; |
| if (Builder.GetInsertPoint() == BB->end()) { |
| // TODO: This branch will not be needed once we moved to the |
| // OpenMPIRBuilder codegen completely. |
| NonCancellationBlock = BasicBlock::Create( |
| BB->getContext(), BB->getName() + ".cont", BB->getParent()); |
| } else { |
| NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint()); |
| BB->getTerminator()->eraseFromParent(); |
| Builder.SetInsertPoint(BB); |
| } |
| BasicBlock *CancellationBlock = BasicBlock::Create( |
| BB->getContext(), BB->getName() + ".cncl", BB->getParent()); |
| |
| // Jump to them based on the return value. |
| Value *Cmp = Builder.CreateIsNull(CancelFlag); |
| Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock, |
| /* TODO weight */ nullptr, nullptr); |
| |
| // From the cancellation block we finalize all variables and go to the |
| // post finalization block that is known to the FiniCB callback. |
| Builder.SetInsertPoint(CancellationBlock); |
| if (ExitCB) |
| ExitCB(Builder.saveIP()); |
| auto &FI = FinalizationStack.back(); |
| FI.FiniCB(Builder.saveIP()); |
| |
| // The continuation block is where code generation continues. |
| Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin()); |
| } |
| |
| IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel( |
| const LocationDescription &Loc, InsertPointTy OuterAllocaIP, |
| BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB, |
| FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads, |
| omp::ProcBindKind ProcBind, bool IsCancellable) { |
| assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous"); |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadID = getOrCreateThreadID(Ident); |
| |
| if (NumThreads) { |
| // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads) |
| Value *Args[] = { |
| Ident, ThreadID, |
| Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)}; |
| Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args); |
| } |
| |
| if (ProcBind != OMP_PROC_BIND_default) { |
| // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind) |
| Value *Args[] = { |
| Ident, ThreadID, |
| ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)}; |
| Builder.CreateCall( |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args); |
| } |
| |
| BasicBlock *InsertBB = Builder.GetInsertBlock(); |
| Function *OuterFn = InsertBB->getParent(); |
| |
| // Save the outer alloca block because the insertion iterator may get |
| // invalidated and we still need this later. |
| BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock(); |
| |
| // Vector to remember instructions we used only during the modeling but which |
| // we want to delete at the end. |
| SmallVector<Instruction *, 4> ToBeDeleted; |
| |
| // Change the location to the outer alloca insertion point to create and |
| // initialize the allocas we pass into the parallel region. |
| Builder.restoreIP(OuterAllocaIP); |
| AllocaInst *TIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr"); |
| AllocaInst *ZeroAddr = Builder.CreateAlloca(Int32, nullptr, "zero.addr"); |
| |
| // We only need TIDAddr and ZeroAddr for modeling purposes to get the |
| // associated arguments in the outlined function, so we delete them later. |
| ToBeDeleted.push_back(TIDAddr); |
| ToBeDeleted.push_back(ZeroAddr); |
| |
| // Create an artificial insertion point that will also ensure the blocks we |
| // are about to split are not degenerated. |
| auto *UI = new UnreachableInst(Builder.getContext(), InsertBB); |
| |
| BasicBlock *EntryBB = UI->getParent(); |
| BasicBlock *PRegEntryBB = EntryBB->splitBasicBlock(UI, "omp.par.entry"); |
| BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(UI, "omp.par.region"); |
| BasicBlock *PRegPreFiniBB = |
| PRegBodyBB->splitBasicBlock(UI, "omp.par.pre_finalize"); |
| BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(UI, "omp.par.exit"); |
| |
| auto FiniCBWrapper = [&](InsertPointTy IP) { |
| // Hide "open-ended" blocks from the given FiniCB by setting the right jump |
| // target to the region exit block. |
| if (IP.getBlock()->end() == IP.getPoint()) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(IP); |
| Instruction *I = Builder.CreateBr(PRegExitBB); |
| IP = InsertPointTy(I->getParent(), I->getIterator()); |
| } |
| assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 && |
| IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB && |
| "Unexpected insertion point for finalization call!"); |
| return FiniCB(IP); |
| }; |
| |
| FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable}); |
| |
| // Generate the privatization allocas in the block that will become the entry |
| // of the outlined function. |
| Builder.SetInsertPoint(PRegEntryBB->getTerminator()); |
| InsertPointTy InnerAllocaIP = Builder.saveIP(); |
| |
| AllocaInst *PrivTIDAddr = |
| Builder.CreateAlloca(Int32, nullptr, "tid.addr.local"); |
| Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid"); |
| |
| // Add some fake uses for OpenMP provided arguments. |
| ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use")); |
| Instruction *ZeroAddrUse = |
| Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use"); |
| ToBeDeleted.push_back(ZeroAddrUse); |
| |
| // EntryBB |
| // | |
| // V |
| // PRegionEntryBB <- Privatization allocas are placed here. |
| // | |
| // V |
| // PRegionBodyBB <- BodeGen is invoked here. |
| // | |
| // V |
| // PRegPreFiniBB <- The block we will start finalization from. |
| // | |
| // V |
| // PRegionExitBB <- A common exit to simplify block collection. |
| // |
| |
| LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n"); |
| |
| // Let the caller create the body. |
| assert(BodyGenCB && "Expected body generation callback!"); |
| InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin()); |
| BodyGenCB(InnerAllocaIP, CodeGenIP); |
| |
| LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n"); |
| FunctionCallee RTLFn; |
| if (IfCondition) |
| RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call_if); |
| else |
| RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call); |
| |
| if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) { |
| if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) { |
| llvm::LLVMContext &Ctx = F->getContext(); |
| MDBuilder MDB(Ctx); |
| // Annotate the callback behavior of the __kmpc_fork_call: |
| // - The callback callee is argument number 2 (microtask). |
| // - The first two arguments of the callback callee are unknown (-1). |
| // - All variadic arguments to the __kmpc_fork_call are passed to the |
| // callback callee. |
| F->addMetadata( |
| llvm::LLVMContext::MD_callback, |
| *llvm::MDNode::get( |
| Ctx, {MDB.createCallbackEncoding(2, {-1, -1}, |
| /* VarArgsArePassed */ true)})); |
| } |
| } |
| |
| OutlineInfo OI; |
| OI.PostOutlineCB = [=](Function &OutlinedFn) { |
| // Add some known attributes. |
| OutlinedFn.addParamAttr(0, Attribute::NoAlias); |
| OutlinedFn.addParamAttr(1, Attribute::NoAlias); |
| OutlinedFn.addFnAttr(Attribute::NoUnwind); |
| OutlinedFn.addFnAttr(Attribute::NoRecurse); |
| |
| assert(OutlinedFn.arg_size() >= 2 && |
| "Expected at least tid and bounded tid as arguments"); |
| unsigned NumCapturedVars = |
| OutlinedFn.arg_size() - /* tid & bounded tid */ 2; |
| |
| CallInst *CI = cast<CallInst>(OutlinedFn.user_back()); |
| CI->getParent()->setName("omp_parallel"); |
| Builder.SetInsertPoint(CI); |
| |
| // Build call __kmpc_fork_call[_if](Ident, n, microtask, var1, .., varn); |
| Value *ForkCallArgs[] = { |
| Ident, Builder.getInt32(NumCapturedVars), |
| Builder.CreateBitCast(&OutlinedFn, ParallelTaskPtr)}; |
| |
| SmallVector<Value *, 16> RealArgs; |
| RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs)); |
| if (IfCondition) { |
| Value *Cond = Builder.CreateSExtOrTrunc(IfCondition, |
| Type::getInt32Ty(M.getContext())); |
| RealArgs.push_back(Cond); |
| } |
| RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end()); |
| |
| // __kmpc_fork_call_if always expects a void ptr as the last argument |
| // If there are no arguments, pass a null pointer. |
| auto PtrTy = Type::getInt8PtrTy(M.getContext()); |
| if (IfCondition && NumCapturedVars == 0) { |
| llvm::Value *Void = ConstantPointerNull::get(PtrTy); |
| RealArgs.push_back(Void); |
| } |
| if (IfCondition && RealArgs.back()->getType() != PtrTy) |
| RealArgs.back() = Builder.CreateBitCast(RealArgs.back(), PtrTy); |
| |
| Builder.CreateCall(RTLFn, RealArgs); |
| |
| LLVM_DEBUG(dbgs() << "With fork_call placed: " |
| << *Builder.GetInsertBlock()->getParent() << "\n"); |
| |
| InsertPointTy ExitIP(PRegExitBB, PRegExitBB->end()); |
| |
| // Initialize the local TID stack location with the argument value. |
| Builder.SetInsertPoint(PrivTID); |
| Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin(); |
| Builder.CreateStore(Builder.CreateLoad(Int32, OutlinedAI), PrivTIDAddr); |
| |
| CI->eraseFromParent(); |
| |
| for (Instruction *I : ToBeDeleted) |
| I->eraseFromParent(); |
| }; |
| |
| // Adjust the finalization stack, verify the adjustment, and call the |
| // finalize function a last time to finalize values between the pre-fini |
| // block and the exit block if we left the parallel "the normal way". |
| auto FiniInfo = FinalizationStack.pop_back_val(); |
| (void)FiniInfo; |
| assert(FiniInfo.DK == OMPD_parallel && |
| "Unexpected finalization stack state!"); |
| |
| Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator(); |
| |
| InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator()); |
| FiniCB(PreFiniIP); |
| |
| OI.OuterAllocaBB = OuterAllocaBlock; |
| OI.EntryBB = PRegEntryBB; |
| OI.ExitBB = PRegExitBB; |
| |
| SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet; |
| SmallVector<BasicBlock *, 32> Blocks; |
| OI.collectBlocks(ParallelRegionBlockSet, Blocks); |
| |
| // Ensure a single exit node for the outlined region by creating one. |
| // We might have multiple incoming edges to the exit now due to finalizations, |
| // e.g., cancel calls that cause the control flow to leave the region. |
| BasicBlock *PRegOutlinedExitBB = PRegExitBB; |
| PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt()); |
| PRegOutlinedExitBB->setName("omp.par.outlined.exit"); |
| Blocks.push_back(PRegOutlinedExitBB); |
| |
| CodeExtractorAnalysisCache CEAC(*OuterFn); |
| CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr, |
| /* AggregateArgs */ false, |
| /* BlockFrequencyInfo */ nullptr, |
| /* BranchProbabilityInfo */ nullptr, |
| /* AssumptionCache */ nullptr, |
| /* AllowVarArgs */ true, |
| /* AllowAlloca */ true, |
| /* AllocationBlock */ OuterAllocaBlock, |
| /* Suffix */ ".omp_par"); |
| |
| // Find inputs to, outputs from the code region. |
| BasicBlock *CommonExit = nullptr; |
| SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands; |
| Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); |
| Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands); |
| |
| LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n"); |
| |
| FunctionCallee TIDRTLFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num); |
| |
| auto PrivHelper = [&](Value &V) { |
| if (&V == TIDAddr || &V == ZeroAddr) { |
| OI.ExcludeArgsFromAggregate.push_back(&V); |
| return; |
| } |
| |
| SetVector<Use *> Uses; |
| for (Use &U : V.uses()) |
| if (auto *UserI = dyn_cast<Instruction>(U.getUser())) |
| if (ParallelRegionBlockSet.count(UserI->getParent())) |
| Uses.insert(&U); |
| |
| // __kmpc_fork_call expects extra arguments as pointers. If the input |
| // already has a pointer type, everything is fine. Otherwise, store the |
| // value onto stack and load it back inside the to-be-outlined region. This |
| // will ensure only the pointer will be passed to the function. |
| // FIXME: if there are more than 15 trailing arguments, they must be |
| // additionally packed in a struct. |
| Value *Inner = &V; |
| if (!V.getType()->isPointerTy()) { |
| IRBuilder<>::InsertPointGuard Guard(Builder); |
| LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n"); |
| |
| Builder.restoreIP(OuterAllocaIP); |
| Value *Ptr = |
| Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded"); |
| |
| // Store to stack at end of the block that currently branches to the entry |
| // block of the to-be-outlined region. |
| Builder.SetInsertPoint(InsertBB, |
| InsertBB->getTerminator()->getIterator()); |
| Builder.CreateStore(&V, Ptr); |
| |
| // Load back next to allocations in the to-be-outlined region. |
| Builder.restoreIP(InnerAllocaIP); |
| Inner = Builder.CreateLoad(V.getType(), Ptr); |
| } |
| |
| Value *ReplacementValue = nullptr; |
| CallInst *CI = dyn_cast<CallInst>(&V); |
| if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) { |
| ReplacementValue = PrivTID; |
| } else { |
| Builder.restoreIP( |
| PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue)); |
| assert(ReplacementValue && |
| "Expected copy/create callback to set replacement value!"); |
| if (ReplacementValue == &V) |
| return; |
| } |
| |
| for (Use *UPtr : Uses) |
| UPtr->set(ReplacementValue); |
| }; |
| |
| // Reset the inner alloca insertion as it will be used for loading the values |
| // wrapped into pointers before passing them into the to-be-outlined region. |
| // Configure it to insert immediately after the fake use of zero address so |
| // that they are available in the generated body and so that the |
| // OpenMP-related values (thread ID and zero address pointers) remain leading |
| // in the argument list. |
| InnerAllocaIP = IRBuilder<>::InsertPoint( |
| ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator()); |
| |
| // Reset the outer alloca insertion point to the entry of the relevant block |
| // in case it was invalidated. |
| OuterAllocaIP = IRBuilder<>::InsertPoint( |
| OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt()); |
| |
| for (Value *Input : Inputs) { |
| LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n"); |
| PrivHelper(*Input); |
| } |
| LLVM_DEBUG({ |
| for (Value *Output : Outputs) |
| LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n"); |
| }); |
| assert(Outputs.empty() && |
| "OpenMP outlining should not produce live-out values!"); |
| |
| LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n"); |
| LLVM_DEBUG({ |
| for (auto *BB : Blocks) |
| dbgs() << " PBR: " << BB->getName() << "\n"; |
| }); |
| |
| // Register the outlined info. |
| addOutlineInfo(std::move(OI)); |
| |
| InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end()); |
| UI->eraseFromParent(); |
| |
| return AfterIP; |
| } |
| |
| void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) { |
| // Build call void __kmpc_flush(ident_t *loc) |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)}; |
| |
| Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args); |
| } |
| |
| void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) { |
| if (!updateToLocation(Loc)) |
| return; |
| emitFlush(Loc); |
| } |
| |
| void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) { |
| // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 |
| // global_tid); |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *Args[] = {Ident, getOrCreateThreadID(Ident)}; |
| |
| // Ignore return result until untied tasks are supported. |
| Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait), |
| Args); |
| } |
| |
| void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) { |
| if (!updateToLocation(Loc)) |
| return; |
| emitTaskwaitImpl(Loc); |
| } |
| |
| void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) { |
| // Build call __kmpc_omp_taskyield(loc, thread_id, 0); |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Constant *I32Null = ConstantInt::getNullValue(Int32); |
| Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null}; |
| |
| Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield), |
| Args); |
| } |
| |
| void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) { |
| if (!updateToLocation(Loc)) |
| return; |
| emitTaskyieldImpl(Loc); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createTask(const LocationDescription &Loc, |
| InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB, |
| bool Tied, Value *Final, Value *IfCondition, |
| SmallVector<DependData> Dependencies) { |
| if (!updateToLocation(Loc)) |
| return InsertPointTy(); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| // The current basic block is split into four basic blocks. After outlining, |
| // they will be mapped as follows: |
| // ``` |
| // def current_fn() { |
| // current_basic_block: |
| // br label %task.exit |
| // task.exit: |
| // ; instructions after task |
| // } |
| // def outlined_fn() { |
| // task.alloca: |
| // br label %task.body |
| // task.body: |
| // ret void |
| // } |
| // ``` |
| BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, "task.exit"); |
| BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "task.body"); |
| BasicBlock *TaskAllocaBB = |
| splitBB(Builder, /*CreateBranch=*/true, "task.alloca"); |
| |
| OutlineInfo OI; |
| OI.EntryBB = TaskAllocaBB; |
| OI.OuterAllocaBB = AllocaIP.getBlock(); |
| OI.ExitBB = TaskExitBB; |
| OI.PostOutlineCB = [this, Ident, Tied, Final, IfCondition, |
| Dependencies](Function &OutlinedFn) { |
| // The input IR here looks like the following- |
| // ``` |
| // func @current_fn() { |
| // outlined_fn(%args) |
| // } |
| // func @outlined_fn(%args) { ... } |
| // ``` |
| // |
| // This is changed to the following- |
| // |
| // ``` |
| // func @current_fn() { |
| // runtime_call(..., wrapper_fn, ...) |
| // } |
| // func @wrapper_fn(..., %args) { |
| // outlined_fn(%args) |
| // } |
| // func @outlined_fn(%args) { ... } |
| // ``` |
| |
| // The stale call instruction will be replaced with a new call instruction |
| // for runtime call with a wrapper function. |
| assert(OutlinedFn.getNumUses() == 1 && |
| "there must be a single user for the outlined function"); |
| CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back()); |
| |
| // HasTaskData is true if any variables are captured in the outlined region, |
| // false otherwise. |
| bool HasTaskData = StaleCI->arg_size() > 0; |
| Builder.SetInsertPoint(StaleCI); |
| |
| // Gather the arguments for emitting the runtime call for |
| // @__kmpc_omp_task_alloc |
| Function *TaskAllocFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc); |
| |
| // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID) |
| // call. |
| Value *ThreadID = getOrCreateThreadID(Ident); |
| |
| // Argument - `flags` |
| // Task is tied iff (Flags & 1) == 1. |
| // Task is untied iff (Flags & 1) == 0. |
| // Task is final iff (Flags & 2) == 2. |
| // Task is not final iff (Flags & 2) == 0. |
| // TODO: Handle the other flags. |
| Value *Flags = Builder.getInt32(Tied); |
| if (Final) { |
| Value *FinalFlag = |
| Builder.CreateSelect(Final, Builder.getInt32(2), Builder.getInt32(0)); |
| Flags = Builder.CreateOr(FinalFlag, Flags); |
| } |
| |
| // Argument - `sizeof_kmp_task_t` (TaskSize) |
| // Tasksize refers to the size in bytes of kmp_task_t data structure |
| // including private vars accessed in task. |
| Value *TaskSize = Builder.getInt64(0); |
| if (HasTaskData) { |
| AllocaInst *ArgStructAlloca = |
| dyn_cast<AllocaInst>(StaleCI->getArgOperand(0)); |
| assert(ArgStructAlloca && |
| "Unable to find the alloca instruction corresponding to arguments " |
| "for extracted function"); |
| StructType *ArgStructType = |
| dyn_cast<StructType>(ArgStructAlloca->getAllocatedType()); |
| assert(ArgStructType && "Unable to find struct type corresponding to " |
| "arguments for extracted function"); |
| TaskSize = |
| Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType)); |
| } |
| |
| // TODO: Argument - sizeof_shareds |
| |
| // Argument - task_entry (the wrapper function) |
| // If the outlined function has some captured variables (i.e. HasTaskData is |
| // true), then the wrapper function will have an additional argument (the |
| // struct containing captured variables). Otherwise, no such argument will |
| // be present. |
| SmallVector<Type *> WrapperArgTys{Builder.getInt32Ty()}; |
| if (HasTaskData) |
| WrapperArgTys.push_back(OutlinedFn.getArg(0)->getType()); |
| FunctionCallee WrapperFuncVal = M.getOrInsertFunction( |
| (Twine(OutlinedFn.getName()) + ".wrapper").str(), |
| FunctionType::get(Builder.getInt32Ty(), WrapperArgTys, false)); |
| Function *WrapperFunc = dyn_cast<Function>(WrapperFuncVal.getCallee()); |
| PointerType *WrapperFuncBitcastType = |
| FunctionType::get(Builder.getInt32Ty(), |
| {Builder.getInt32Ty(), Builder.getInt8PtrTy()}, false) |
| ->getPointerTo(); |
| Value *WrapperFuncBitcast = |
| ConstantExpr::getBitCast(WrapperFunc, WrapperFuncBitcastType); |
| |
| // Emit the @__kmpc_omp_task_alloc runtime call |
| // The runtime call returns a pointer to an area where the task captured |
| // variables must be copied before the task is run (NewTaskData) |
| CallInst *NewTaskData = Builder.CreateCall( |
| TaskAllocFn, |
| {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags, |
| /*sizeof_task=*/TaskSize, /*sizeof_shared=*/Builder.getInt64(0), |
| /*task_func=*/WrapperFuncBitcast}); |
| |
| // Copy the arguments for outlined function |
| if (HasTaskData) { |
| Value *TaskData = StaleCI->getArgOperand(0); |
| Align Alignment = TaskData->getPointerAlignment(M.getDataLayout()); |
| Builder.CreateMemCpy(NewTaskData, Alignment, TaskData, Alignment, |
| TaskSize); |
| } |
| |
| Value *DepArrayPtr = nullptr; |
| if (Dependencies.size()) { |
| InsertPointTy OldIP = Builder.saveIP(); |
| Builder.SetInsertPoint( |
| &OldIP.getBlock()->getParent()->getEntryBlock().back()); |
| |
| Type *DepArrayTy = ArrayType::get(DependInfo, Dependencies.size()); |
| Value *DepArray = |
| Builder.CreateAlloca(DepArrayTy, nullptr, ".dep.arr.addr"); |
| |
| unsigned P = 0; |
| for (const DependData &Dep : Dependencies) { |
| Value *Base = |
| Builder.CreateConstInBoundsGEP2_64(DepArrayTy, DepArray, 0, P); |
| // Store the pointer to the variable |
| Value *Addr = Builder.CreateStructGEP( |
| DependInfo, Base, |
| static_cast<unsigned int>(RTLDependInfoFields::BaseAddr)); |
| Value *DepValPtr = |
| Builder.CreatePtrToInt(Dep.DepVal, Builder.getInt64Ty()); |
| Builder.CreateStore(DepValPtr, Addr); |
| // Store the size of the variable |
| Value *Size = Builder.CreateStructGEP( |
| DependInfo, Base, |
| static_cast<unsigned int>(RTLDependInfoFields::Len)); |
| Builder.CreateStore(Builder.getInt64(M.getDataLayout().getTypeStoreSize( |
| Dep.DepValueType)), |
| Size); |
| // Store the dependency kind |
| Value *Flags = Builder.CreateStructGEP( |
| DependInfo, Base, |
| static_cast<unsigned int>(RTLDependInfoFields::Flags)); |
| Builder.CreateStore( |
| ConstantInt::get(Builder.getInt8Ty(), |
| static_cast<unsigned int>(Dep.DepKind)), |
| Flags); |
| ++P; |
| } |
| |
| DepArrayPtr = Builder.CreateBitCast(DepArray, Builder.getInt8PtrTy()); |
| Builder.restoreIP(OldIP); |
| } |
| |
| // In the presence of the `if` clause, the following IR is generated: |
| // ... |
| // %data = call @__kmpc_omp_task_alloc(...) |
| // br i1 %if_condition, label %then, label %else |
| // then: |
| // call @__kmpc_omp_task(...) |
| // br label %exit |
| // else: |
| // call @__kmpc_omp_task_begin_if0(...) |
| // call @wrapper_fn(...) |
| // call @__kmpc_omp_task_complete_if0(...) |
| // br label %exit |
| // exit: |
| // ... |
| if (IfCondition) { |
| // `SplitBlockAndInsertIfThenElse` requires the block to have a |
| // terminator. |
| BasicBlock *NewBasicBlock = |
| splitBB(Builder, /*CreateBranch=*/true, "if.end"); |
| Instruction *IfTerminator = |
| NewBasicBlock->getSinglePredecessor()->getTerminator(); |
| Instruction *ThenTI = IfTerminator, *ElseTI = nullptr; |
| Builder.SetInsertPoint(IfTerminator); |
| SplitBlockAndInsertIfThenElse(IfCondition, IfTerminator, &ThenTI, |
| &ElseTI); |
| Builder.SetInsertPoint(ElseTI); |
| Function *TaskBeginFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0); |
| Function *TaskCompleteFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0); |
| Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, NewTaskData}); |
| if (HasTaskData) |
| Builder.CreateCall(WrapperFunc, {ThreadID, NewTaskData}); |
| else |
| Builder.CreateCall(WrapperFunc, {ThreadID}); |
| Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, NewTaskData}); |
| Builder.SetInsertPoint(ThenTI); |
| } |
| |
| if (Dependencies.size()) { |
| Function *TaskFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps); |
| Builder.CreateCall( |
| TaskFn, |
| {Ident, ThreadID, NewTaskData, Builder.getInt32(Dependencies.size()), |
| DepArrayPtr, ConstantInt::get(Builder.getInt32Ty(), 0), |
| ConstantPointerNull::get(Type::getInt8PtrTy(M.getContext()))}); |
| |
| } else { |
| // Emit the @__kmpc_omp_task runtime call to spawn the task |
| Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task); |
| Builder.CreateCall(TaskFn, {Ident, ThreadID, NewTaskData}); |
| } |
| |
| StaleCI->eraseFromParent(); |
| |
| // Emit the body for wrapper function |
| BasicBlock *WrapperEntryBB = |
| BasicBlock::Create(M.getContext(), "", WrapperFunc); |
| Builder.SetInsertPoint(WrapperEntryBB); |
| if (HasTaskData) |
| Builder.CreateCall(&OutlinedFn, {WrapperFunc->getArg(1)}); |
| else |
| Builder.CreateCall(&OutlinedFn); |
| Builder.CreateRet(Builder.getInt32(0)); |
| }; |
| |
| addOutlineInfo(std::move(OI)); |
| |
| InsertPointTy TaskAllocaIP = |
| InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin()); |
| InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin()); |
| BodyGenCB(TaskAllocaIP, TaskBodyIP); |
| Builder.SetInsertPoint(TaskExitBB, TaskExitBB->begin()); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc, |
| InsertPointTy AllocaIP, |
| BodyGenCallbackTy BodyGenCB) { |
| if (!updateToLocation(Loc)) |
| return InsertPointTy(); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadID = getOrCreateThreadID(Ident); |
| |
| // Emit the @__kmpc_taskgroup runtime call to start the taskgroup |
| Function *TaskgroupFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_taskgroup); |
| Builder.CreateCall(TaskgroupFn, {Ident, ThreadID}); |
| |
| BasicBlock *TaskgroupExitBB = splitBB(Builder, true, "taskgroup.exit"); |
| BodyGenCB(AllocaIP, Builder.saveIP()); |
| |
| Builder.SetInsertPoint(TaskgroupExitBB); |
| // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup |
| Function *EndTaskgroupFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_taskgroup); |
| Builder.CreateCall(EndTaskgroupFn, {Ident, ThreadID}); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections( |
| const LocationDescription &Loc, InsertPointTy AllocaIP, |
| ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB, |
| FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) { |
| assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required"); |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| auto FiniCBWrapper = [&](InsertPointTy IP) { |
| if (IP.getBlock()->end() != IP.getPoint()) |
| return FiniCB(IP); |
| // This must be done otherwise any nested constructs using FinalizeOMPRegion |
| // will fail because that function requires the Finalization Basic Block to |
| // have a terminator, which is already removed by EmitOMPRegionBody. |
| // IP is currently at cancelation block. |
| // We need to backtrack to the condition block to fetch |
| // the exit block and create a branch from cancelation |
| // to exit block. |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(IP); |
| auto *CaseBB = IP.getBlock()->getSinglePredecessor(); |
| auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); |
| auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); |
| Instruction *I = Builder.CreateBr(ExitBB); |
| IP = InsertPointTy(I->getParent(), I->getIterator()); |
| return FiniCB(IP); |
| }; |
| |
| FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable}); |
| |
| // Each section is emitted as a switch case |
| // Each finalization callback is handled from clang.EmitOMPSectionDirective() |
| // -> OMP.createSection() which generates the IR for each section |
| // Iterate through all sections and emit a switch construct: |
| // switch (IV) { |
| // case 0: |
| // <SectionStmt[0]>; |
| // break; |
| // ... |
| // case <NumSection> - 1: |
| // <SectionStmt[<NumSection> - 1]>; |
| // break; |
| // } |
| // ... |
| // section_loop.after: |
| // <FiniCB>; |
| auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) { |
| Builder.restoreIP(CodeGenIP); |
| BasicBlock *Continue = |
| splitBBWithSuffix(Builder, /*CreateBranch=*/false, ".sections.after"); |
| Function *CurFn = Continue->getParent(); |
| SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, Continue); |
| |
| unsigned CaseNumber = 0; |
| for (auto SectionCB : SectionCBs) { |
| BasicBlock *CaseBB = BasicBlock::Create( |
| M.getContext(), "omp_section_loop.body.case", CurFn, Continue); |
| SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB); |
| Builder.SetInsertPoint(CaseBB); |
| BranchInst *CaseEndBr = Builder.CreateBr(Continue); |
| SectionCB(InsertPointTy(), |
| {CaseEndBr->getParent(), CaseEndBr->getIterator()}); |
| CaseNumber++; |
| } |
| // remove the existing terminator from body BB since there can be no |
| // terminators after switch/case |
| }; |
| // Loop body ends here |
| // LowerBound, UpperBound, and STride for createCanonicalLoop |
| Type *I32Ty = Type::getInt32Ty(M.getContext()); |
| Value *LB = ConstantInt::get(I32Ty, 0); |
| Value *UB = ConstantInt::get(I32Ty, SectionCBs.size()); |
| Value *ST = ConstantInt::get(I32Ty, 1); |
| llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop( |
| Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop"); |
| InsertPointTy AfterIP = |
| applyStaticWorkshareLoop(Loc.DL, LoopInfo, AllocaIP, !IsNowait); |
| |
| // Apply the finalization callback in LoopAfterBB |
| auto FiniInfo = FinalizationStack.pop_back_val(); |
| assert(FiniInfo.DK == OMPD_sections && |
| "Unexpected finalization stack state!"); |
| if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) { |
| Builder.restoreIP(AfterIP); |
| BasicBlock *FiniBB = |
| splitBBWithSuffix(Builder, /*CreateBranch=*/true, "sections.fini"); |
| CB(Builder.saveIP()); |
| AfterIP = {FiniBB, FiniBB->begin()}; |
| } |
| |
| return AfterIP; |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createSection(const LocationDescription &Loc, |
| BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| auto FiniCBWrapper = [&](InsertPointTy IP) { |
| if (IP.getBlock()->end() != IP.getPoint()) |
| return FiniCB(IP); |
| // This must be done otherwise any nested constructs using FinalizeOMPRegion |
| // will fail because that function requires the Finalization Basic Block to |
| // have a terminator, which is already removed by EmitOMPRegionBody. |
| // IP is currently at cancelation block. |
| // We need to backtrack to the condition block to fetch |
| // the exit block and create a branch from cancelation |
| // to exit block. |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(IP); |
| auto *CaseBB = Loc.IP.getBlock(); |
| auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor(); |
| auto *ExitBB = CondBB->getTerminator()->getSuccessor(1); |
| Instruction *I = Builder.CreateBr(ExitBB); |
| IP = InsertPointTy(I->getParent(), I->getIterator()); |
| return FiniCB(IP); |
| }; |
| |
| Directive OMPD = Directive::OMPD_sections; |
| // Since we are using Finalization Callback here, HasFinalize |
| // and IsCancellable have to be true |
| return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper, |
| /*Conditional*/ false, /*hasFinalize*/ true, |
| /*IsCancellable*/ true); |
| } |
| |
| /// Create a function with a unique name and a "void (i8*, i8*)" signature in |
| /// the given module and return it. |
| Function *getFreshReductionFunc(Module &M) { |
| Type *VoidTy = Type::getVoidTy(M.getContext()); |
| Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); |
| auto *FuncTy = |
| FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false); |
| return Function::Create(FuncTy, GlobalVariable::InternalLinkage, |
| M.getDataLayout().getDefaultGlobalsAddressSpace(), |
| ".omp.reduction.func", &M); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductions( |
| const LocationDescription &Loc, InsertPointTy AllocaIP, |
| ArrayRef<ReductionInfo> ReductionInfos, bool IsNoWait) { |
| for (const ReductionInfo &RI : ReductionInfos) { |
| (void)RI; |
| assert(RI.Variable && "expected non-null variable"); |
| assert(RI.PrivateVariable && "expected non-null private variable"); |
| assert(RI.ReductionGen && "expected non-null reduction generator callback"); |
| assert(RI.Variable->getType() == RI.PrivateVariable->getType() && |
| "expected variables and their private equivalents to have the same " |
| "type"); |
| assert(RI.Variable->getType()->isPointerTy() && |
| "expected variables to be pointers"); |
| } |
| |
| if (!updateToLocation(Loc)) |
| return InsertPointTy(); |
| |
| BasicBlock *InsertBlock = Loc.IP.getBlock(); |
| BasicBlock *ContinuationBlock = |
| InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize"); |
| InsertBlock->getTerminator()->eraseFromParent(); |
| |
| // Create and populate array of type-erased pointers to private reduction |
| // values. |
| unsigned NumReductions = ReductionInfos.size(); |
| Type *RedArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumReductions); |
| Builder.restoreIP(AllocaIP); |
| Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array"); |
| |
| Builder.SetInsertPoint(InsertBlock, InsertBlock->end()); |
| |
| for (auto En : enumerate(ReductionInfos)) { |
| unsigned Index = En.index(); |
| const ReductionInfo &RI = En.value(); |
| Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64( |
| RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index)); |
| Value *Casted = |
| Builder.CreateBitCast(RI.PrivateVariable, Builder.getInt8PtrTy(), |
| "private.red.var." + Twine(Index) + ".casted"); |
| Builder.CreateStore(Casted, RedArrayElemPtr); |
| } |
| |
| // Emit a call to the runtime function that orchestrates the reduction. |
| // Declare the reduction function in the process. |
| Function *Func = Builder.GetInsertBlock()->getParent(); |
| Module *Module = Func->getParent(); |
| Value *RedArrayPtr = |
| Builder.CreateBitCast(RedArray, Builder.getInt8PtrTy(), "red.array.ptr"); |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| bool CanGenerateAtomic = |
| llvm::all_of(ReductionInfos, [](const ReductionInfo &RI) { |
| return RI.AtomicReductionGen; |
| }); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize, |
| CanGenerateAtomic |
| ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE |
| : IdentFlag(0)); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Constant *NumVariables = Builder.getInt32(NumReductions); |
| const DataLayout &DL = Module->getDataLayout(); |
| unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy); |
| Constant *RedArraySize = Builder.getInt64(RedArrayByteSize); |
| Function *ReductionFunc = getFreshReductionFunc(*Module); |
| Value *Lock = getOMPCriticalRegionLock(".reduction"); |
| Function *ReduceFunc = getOrCreateRuntimeFunctionPtr( |
| IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait |
| : RuntimeFunction::OMPRTL___kmpc_reduce); |
| CallInst *ReduceCall = |
| Builder.CreateCall(ReduceFunc, |
| {Ident, ThreadId, NumVariables, RedArraySize, |
| RedArrayPtr, ReductionFunc, Lock}, |
| "reduce"); |
| |
| // Create final reduction entry blocks for the atomic and non-atomic case. |
| // Emit IR that dispatches control flow to one of the blocks based on the |
| // reduction supporting the atomic mode. |
| BasicBlock *NonAtomicRedBlock = |
| BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func); |
| BasicBlock *AtomicRedBlock = |
| BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func); |
| SwitchInst *Switch = |
| Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2); |
| Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock); |
| Switch->addCase(Builder.getInt32(2), AtomicRedBlock); |
| |
| // Populate the non-atomic reduction using the elementwise reduction function. |
| // This loads the elements from the global and private variables and reduces |
| // them before storing back the result to the global variable. |
| Builder.SetInsertPoint(NonAtomicRedBlock); |
| for (auto En : enumerate(ReductionInfos)) { |
| const ReductionInfo &RI = En.value(); |
| Type *ValueType = RI.ElementType; |
| Value *RedValue = Builder.CreateLoad(ValueType, RI.Variable, |
| "red.value." + Twine(En.index())); |
| Value *PrivateRedValue = |
| Builder.CreateLoad(ValueType, RI.PrivateVariable, |
| "red.private.value." + Twine(En.index())); |
| Value *Reduced; |
| Builder.restoreIP( |
| RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced)); |
| if (!Builder.GetInsertBlock()) |
| return InsertPointTy(); |
| Builder.CreateStore(Reduced, RI.Variable); |
| } |
| Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr( |
| IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait |
| : RuntimeFunction::OMPRTL___kmpc_end_reduce); |
| Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock}); |
| Builder.CreateBr(ContinuationBlock); |
| |
| // Populate the atomic reduction using the atomic elementwise reduction |
| // function. There are no loads/stores here because they will be happening |
| // inside the atomic elementwise reduction. |
| Builder.SetInsertPoint(AtomicRedBlock); |
| if (CanGenerateAtomic) { |
| for (const ReductionInfo &RI : ReductionInfos) { |
| Builder.restoreIP(RI.AtomicReductionGen(Builder.saveIP(), RI.ElementType, |
| RI.Variable, RI.PrivateVariable)); |
| if (!Builder.GetInsertBlock()) |
| return InsertPointTy(); |
| } |
| Builder.CreateBr(ContinuationBlock); |
| } else { |
| Builder.CreateUnreachable(); |
| } |
| |
| // Populate the outlined reduction function using the elementwise reduction |
| // function. Partial values are extracted from the type-erased array of |
| // pointers to private variables. |
| BasicBlock *ReductionFuncBlock = |
| BasicBlock::Create(Module->getContext(), "", ReductionFunc); |
| Builder.SetInsertPoint(ReductionFuncBlock); |
| Value *LHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(0), |
| RedArrayTy->getPointerTo()); |
| Value *RHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(1), |
| RedArrayTy->getPointerTo()); |
| for (auto En : enumerate(ReductionInfos)) { |
| const ReductionInfo &RI = En.value(); |
| Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( |
| RedArrayTy, LHSArrayPtr, 0, En.index()); |
| Value *LHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), LHSI8PtrPtr); |
| Value *LHSPtr = Builder.CreateBitCast(LHSI8Ptr, RI.Variable->getType()); |
| Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr); |
| Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64( |
| RedArrayTy, RHSArrayPtr, 0, En.index()); |
| Value *RHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), RHSI8PtrPtr); |
| Value *RHSPtr = |
| Builder.CreateBitCast(RHSI8Ptr, RI.PrivateVariable->getType()); |
| Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr); |
| Value *Reduced; |
| Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced)); |
| if (!Builder.GetInsertBlock()) |
| return InsertPointTy(); |
| Builder.CreateStore(Reduced, LHSPtr); |
| } |
| Builder.CreateRetVoid(); |
| |
| Builder.SetInsertPoint(ContinuationBlock); |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createMaster(const LocationDescription &Loc, |
| BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB) { |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Directive OMPD = Directive::OMPD_master; |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId}; |
| |
| Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master); |
| Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); |
| |
| Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master); |
| Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ true, /*hasFinalize*/ true); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createMasked(const LocationDescription &Loc, |
| BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB, Value *Filter) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Directive OMPD = Directive::OMPD_masked; |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId, Filter}; |
| Value *ArgsEnd[] = {Ident, ThreadId}; |
| |
| Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked); |
| Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); |
| |
| Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked); |
| Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd); |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ true, /*hasFinalize*/ true); |
| } |
| |
| CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton( |
| DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore, |
| BasicBlock *PostInsertBefore, const Twine &Name) { |
| Module *M = F->getParent(); |
| LLVMContext &Ctx = M->getContext(); |
| Type *IndVarTy = TripCount->getType(); |
| |
| // Create the basic block structure. |
| BasicBlock *Preheader = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore); |
| BasicBlock *Header = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore); |
| BasicBlock *Cond = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore); |
| BasicBlock *Body = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore); |
| BasicBlock *Latch = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore); |
| BasicBlock *Exit = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore); |
| BasicBlock *After = |
| BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore); |
| |
| // Use specified DebugLoc for new instructions. |
| Builder.SetCurrentDebugLocation(DL); |
| |
| Builder.SetInsertPoint(Preheader); |
| Builder.CreateBr(Header); |
| |
| Builder.SetInsertPoint(Header); |
| PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv"); |
| IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader); |
| Builder.CreateBr(Cond); |
| |
| Builder.SetInsertPoint(Cond); |
| Value *Cmp = |
| Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp"); |
| Builder.CreateCondBr(Cmp, Body, Exit); |
| |
| Builder.SetInsertPoint(Body); |
| Builder.CreateBr(Latch); |
| |
| Builder.SetInsertPoint(Latch); |
| Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1), |
| "omp_" + Name + ".next", /*HasNUW=*/true); |
| Builder.CreateBr(Header); |
| IndVarPHI->addIncoming(Next, Latch); |
| |
| Builder.SetInsertPoint(Exit); |
| Builder.CreateBr(After); |
| |
| // Remember and return the canonical control flow. |
| LoopInfos.emplace_front(); |
| CanonicalLoopInfo *CL = &LoopInfos.front(); |
| |
| CL->Header = Header; |
| CL->Cond = Cond; |
| CL->Latch = Latch; |
| CL->Exit = Exit; |
| |
| #ifndef NDEBUG |
| CL->assertOK(); |
| #endif |
| return CL; |
| } |
| |
| CanonicalLoopInfo * |
| OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc, |
| LoopBodyGenCallbackTy BodyGenCB, |
| Value *TripCount, const Twine &Name) { |
| BasicBlock *BB = Loc.IP.getBlock(); |
| BasicBlock *NextBB = BB->getNextNode(); |
| |
| CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(), |
| NextBB, NextBB, Name); |
| BasicBlock *After = CL->getAfter(); |
| |
| // If location is not set, don't connect the loop. |
| if (updateToLocation(Loc)) { |
| // Split the loop at the insertion point: Branch to the preheader and move |
| // every following instruction to after the loop (the After BB). Also, the |
| // new successor is the loop's after block. |
| spliceBB(Builder, After, /*CreateBranch=*/false); |
| Builder.CreateBr(CL->getPreheader()); |
| } |
| |
| // Emit the body content. We do it after connecting the loop to the CFG to |
| // avoid that the callback encounters degenerate BBs. |
| BodyGenCB(CL->getBodyIP(), CL->getIndVar()); |
| |
| #ifndef NDEBUG |
| CL->assertOK(); |
| #endif |
| return CL; |
| } |
| |
| CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop( |
| const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB, |
| Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop, |
| InsertPointTy ComputeIP, const Twine &Name) { |
| |
| // Consider the following difficulties (assuming 8-bit signed integers): |
| // * Adding \p Step to the loop counter which passes \p Stop may overflow: |
| // DO I = 1, 100, 50 |
| /// * A \p Step of INT_MIN cannot not be normalized to a positive direction: |
| // DO I = 100, 0, -128 |
| |
| // Start, Stop and Step must be of the same integer type. |
| auto *IndVarTy = cast<IntegerType>(Start->getType()); |
| assert(IndVarTy == Stop->getType() && "Stop type mismatch"); |
| assert(IndVarTy == Step->getType() && "Step type mismatch"); |
| |
| LocationDescription ComputeLoc = |
| ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc; |
| updateToLocation(ComputeLoc); |
| |
| ConstantInt *Zero = ConstantInt::get(IndVarTy, 0); |
| ConstantInt *One = ConstantInt::get(IndVarTy, 1); |
| |
| // Like Step, but always positive. |
| Value *Incr = Step; |
| |
| // Distance between Start and Stop; always positive. |
| Value *Span; |
| |
| // Condition whether there are no iterations are executed at all, e.g. because |
| // UB < LB. |
| Value *ZeroCmp; |
| |
| if (IsSigned) { |
| // Ensure that increment is positive. If not, negate and invert LB and UB. |
| Value *IsNeg = Builder.CreateICmpSLT(Step, Zero); |
| Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step); |
| Value *LB = Builder.CreateSelect(IsNeg, Stop, Start); |
| Value *UB = Builder.CreateSelect(IsNeg, Start, Stop); |
| Span = Builder.CreateSub(UB, LB, "", false, true); |
| ZeroCmp = Builder.CreateICmp( |
| InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB); |
| } else { |
| Span = Builder.CreateSub(Stop, Start, "", true); |
| ZeroCmp = Builder.CreateICmp( |
| InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start); |
| } |
| |
| Value *CountIfLooping; |
| if (InclusiveStop) { |
| CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One); |
| } else { |
| // Avoid incrementing past stop since it could overflow. |
| Value *CountIfTwo = Builder.CreateAdd( |
| Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One); |
| Value *OneCmp = Builder.CreateICmp( |
| InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Span, Incr); |
| CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo); |
| } |
| Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping, |
| "omp_" + Name + ".tripcount"); |
| |
| auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) { |
| Builder.restoreIP(CodeGenIP); |
| Value *Span = Builder.CreateMul(IV, Step); |
| Value *IndVar = Builder.CreateAdd(Span, Start); |
| BodyGenCB(Builder.saveIP(), IndVar); |
| }; |
| LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP(); |
| return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name); |
| } |
| |
| // Returns an LLVM function to call for initializing loop bounds using OpenMP |
| // static scheduling depending on `type`. Only i32 and i64 are supported by the |
| // runtime. Always interpret integers as unsigned similarly to |
| // CanonicalLoopInfo. |
| static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M, |
| OpenMPIRBuilder &OMPBuilder) { |
| unsigned Bitwidth = Ty->getIntegerBitWidth(); |
| if (Bitwidth == 32) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u); |
| if (Bitwidth == 64) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u); |
| llvm_unreachable("unknown OpenMP loop iterator bitwidth"); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI, |
| InsertPointTy AllocaIP, |
| bool NeedsBarrier) { |
| assert(CLI->isValid() && "Requires a valid canonical loop"); |
| assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && |
| "Require dedicated allocate IP"); |
| |
| // Set up the source location value for OpenMP runtime. |
| Builder.restoreIP(CLI->getPreheaderIP()); |
| Builder.SetCurrentDebugLocation(DL); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); |
| Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| |
| // Declare useful OpenMP runtime functions. |
| Value *IV = CLI->getIndVar(); |
| Type *IVTy = IV->getType(); |
| FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this); |
| FunctionCallee StaticFini = |
| getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); |
| |
| // Allocate space for computed loop bounds as expected by the "init" function. |
| Builder.restoreIP(AllocaIP); |
| Type *I32Type = Type::getInt32Ty(M.getContext()); |
| Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); |
| Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); |
| Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); |
| Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); |
| |
| // At the end of the preheader, prepare for calling the "init" function by |
| // storing the current loop bounds into the allocated space. A canonical loop |
| // always iterates from 0 to trip-count with step 1. Note that "init" expects |
| // and produces an inclusive upper bound. |
| Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); |
| Constant *Zero = ConstantInt::get(IVTy, 0); |
| Constant *One = ConstantInt::get(IVTy, 1); |
| Builder.CreateStore(Zero, PLowerBound); |
| Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One); |
| Builder.CreateStore(UpperBound, PUpperBound); |
| Builder.CreateStore(One, PStride); |
| |
| Value *ThreadNum = getOrCreateThreadID(SrcLoc); |
| |
| Constant *SchedulingType = ConstantInt::get( |
| I32Type, static_cast<int>(OMPScheduleType::UnorderedStatic)); |
| |
| // Call the "init" function and update the trip count of the loop with the |
| // value it produced. |
| Builder.CreateCall(StaticInit, |
| {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound, |
| PUpperBound, PStride, One, Zero}); |
| Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound); |
| Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound); |
| Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound); |
| Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One); |
| CLI->setTripCount(TripCount); |
| |
| // Update all uses of the induction variable except the one in the condition |
| // block that compares it with the actual upper bound, and the increment in |
| // the latch block. |
| |
| CLI->mapIndVar([&](Instruction *OldIV) -> Value * { |
| Builder.SetInsertPoint(CLI->getBody(), |
| CLI->getBody()->getFirstInsertionPt()); |
| Builder.SetCurrentDebugLocation(DL); |
| return Builder.CreateAdd(OldIV, LowerBound); |
| }); |
| |
| // In the "exit" block, call the "fini" function. |
| Builder.SetInsertPoint(CLI->getExit(), |
| CLI->getExit()->getTerminator()->getIterator()); |
| Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); |
| |
| // Add the barrier if requested. |
| if (NeedsBarrier) |
| createBarrier(LocationDescription(Builder.saveIP(), DL), |
| omp::Directive::OMPD_for, /* ForceSimpleCall */ false, |
| /* CheckCancelFlag */ false); |
| |
| InsertPointTy AfterIP = CLI->getAfterIP(); |
| CLI->invalidate(); |
| |
| return AfterIP; |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop( |
| DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, |
| bool NeedsBarrier, Value *ChunkSize) { |
| assert(CLI->isValid() && "Requires a valid canonical loop"); |
| assert(ChunkSize && "Chunk size is required"); |
| |
| LLVMContext &Ctx = CLI->getFunction()->getContext(); |
| Value *IV = CLI->getIndVar(); |
| Value *OrigTripCount = CLI->getTripCount(); |
| Type *IVTy = IV->getType(); |
| assert(IVTy->getIntegerBitWidth() <= 64 && |
| "Max supported tripcount bitwidth is 64 bits"); |
| Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(Ctx) |
| : Type::getInt64Ty(Ctx); |
| Type *I32Type = Type::getInt32Ty(M.getContext()); |
| Constant *Zero = ConstantInt::get(InternalIVTy, 0); |
| Constant *One = ConstantInt::get(InternalIVTy, 1); |
| |
| // Declare useful OpenMP runtime functions. |
| FunctionCallee StaticInit = |
| getKmpcForStaticInitForType(InternalIVTy, M, *this); |
| FunctionCallee StaticFini = |
| getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini); |
| |
| // Allocate space for computed loop bounds as expected by the "init" function. |
| Builder.restoreIP(AllocaIP); |
| Builder.SetCurrentDebugLocation(DL); |
| Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); |
| Value *PLowerBound = |
| Builder.CreateAlloca(InternalIVTy, nullptr, "p.lowerbound"); |
| Value *PUpperBound = |
| Builder.CreateAlloca(InternalIVTy, nullptr, "p.upperbound"); |
| Value *PStride = Builder.CreateAlloca(InternalIVTy, nullptr, "p.stride"); |
| |
| // Set up the source location value for the OpenMP runtime. |
| Builder.restoreIP(CLI->getPreheaderIP()); |
| Builder.SetCurrentDebugLocation(DL); |
| |
| // TODO: Detect overflow in ubsan or max-out with current tripcount. |
| Value *CastedChunkSize = |
| Builder.CreateZExtOrTrunc(ChunkSize, InternalIVTy, "chunksize"); |
| Value *CastedTripCount = |
| Builder.CreateZExt(OrigTripCount, InternalIVTy, "tripcount"); |
| |
| Constant *SchedulingType = ConstantInt::get( |
| I32Type, static_cast<int>(OMPScheduleType::UnorderedStaticChunked)); |
| Builder.CreateStore(Zero, PLowerBound); |
| Value *OrigUpperBound = Builder.CreateSub(CastedTripCount, One); |
| Builder.CreateStore(OrigUpperBound, PUpperBound); |
| Builder.CreateStore(One, PStride); |
| |
| // Call the "init" function and update the trip count of the loop with the |
| // value it produced. |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); |
| Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadNum = getOrCreateThreadID(SrcLoc); |
| Builder.CreateCall(StaticInit, |
| {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum, |
| /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter, |
| /*plower=*/PLowerBound, /*pupper=*/PUpperBound, |
| /*pstride=*/PStride, /*incr=*/One, |
| /*chunk=*/CastedChunkSize}); |
| |
| // Load values written by the "init" function. |
| Value *FirstChunkStart = |
| Builder.CreateLoad(InternalIVTy, PLowerBound, "omp_firstchunk.lb"); |
| Value *FirstChunkStop = |
| Builder.CreateLoad(InternalIVTy, PUpperBound, "omp_firstchunk.ub"); |
| Value *FirstChunkEnd = Builder.CreateAdd(FirstChunkStop, One); |
| Value *ChunkRange = |
| Builder.CreateSub(FirstChunkEnd, FirstChunkStart, "omp_chunk.range"); |
| Value *NextChunkStride = |
| Builder.CreateLoad(InternalIVTy, PStride, "omp_dispatch.stride"); |
| |
| // Create outer "dispatch" loop for enumerating the chunks. |
| BasicBlock *DispatchEnter = splitBB(Builder, true); |
| Value *DispatchCounter; |
| CanonicalLoopInfo *DispatchCLI = createCanonicalLoop( |
| {Builder.saveIP(), DL}, |
| [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; }, |
| FirstChunkStart, CastedTripCount, NextChunkStride, |
| /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{}, |
| "dispatch"); |
| |
| // Remember the BasicBlocks of the dispatch loop we need, then invalidate to |
| // not have to preserve the canonical invariant. |
| BasicBlock *DispatchBody = DispatchCLI->getBody(); |
| BasicBlock *DispatchLatch = DispatchCLI->getLatch(); |
| BasicBlock *DispatchExit = DispatchCLI->getExit(); |
| BasicBlock *DispatchAfter = DispatchCLI->getAfter(); |
| DispatchCLI->invalidate(); |
| |
| // Rewire the original loop to become the chunk loop inside the dispatch loop. |
| redirectTo(DispatchAfter, CLI->getAfter(), DL); |
| redirectTo(CLI->getExit(), DispatchLatch, DL); |
| redirectTo(DispatchBody, DispatchEnter, DL); |
| |
| // Prepare the prolog of the chunk loop. |
| Builder.restoreIP(CLI->getPreheaderIP()); |
| Builder.SetCurrentDebugLocation(DL); |
| |
| // Compute the number of iterations of the chunk loop. |
| Builder.SetInsertPoint(CLI->getPreheader()->getTerminator()); |
| Value *ChunkEnd = Builder.CreateAdd(DispatchCounter, ChunkRange); |
| Value *IsLastChunk = |
| Builder.CreateICmpUGE(ChunkEnd, CastedTripCount, "omp_chunk.is_last"); |
| Value *CountUntilOrigTripCount = |
| Builder.CreateSub(CastedTripCount, DispatchCounter); |
| Value *ChunkTripCount = Builder.CreateSelect( |
| IsLastChunk, CountUntilOrigTripCount, ChunkRange, "omp_chunk.tripcount"); |
| Value *BackcastedChunkTC = |
| Builder.CreateTrunc(ChunkTripCount, IVTy, "omp_chunk.tripcount.trunc"); |
| CLI->setTripCount(BackcastedChunkTC); |
| |
| // Update all uses of the induction variable except the one in the condition |
| // block that compares it with the actual upper bound, and the increment in |
| // the latch block. |
| Value *BackcastedDispatchCounter = |
| Builder.CreateTrunc(DispatchCounter, IVTy, "omp_dispatch.iv.trunc"); |
| CLI->mapIndVar([&](Instruction *) -> Value * { |
| Builder.restoreIP(CLI->getBodyIP()); |
| return Builder.CreateAdd(IV, BackcastedDispatchCounter); |
| }); |
| |
| // In the "exit" block, call the "fini" function. |
| Builder.SetInsertPoint(DispatchExit, DispatchExit->getFirstInsertionPt()); |
| Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum}); |
| |
| // Add the barrier if requested. |
| if (NeedsBarrier) |
| createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for, |
| /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false); |
| |
| #ifndef NDEBUG |
| // Even though we currently do not support applying additional methods to it, |
| // the chunk loop should remain a canonical loop. |
| CLI->assertOK(); |
| #endif |
| |
| return {DispatchAfter, DispatchAfter->getFirstInsertionPt()}; |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoop( |
| DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, |
| bool NeedsBarrier, llvm::omp::ScheduleKind SchedKind, |
| llvm::Value *ChunkSize, bool HasSimdModifier, bool HasMonotonicModifier, |
| bool HasNonmonotonicModifier, bool HasOrderedClause) { |
| OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType( |
| SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier, |
| HasNonmonotonicModifier, HasOrderedClause); |
| |
| bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) == |
| OMPScheduleType::ModifierOrdered; |
| switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) { |
| case OMPScheduleType::BaseStatic: |
| assert(!ChunkSize && "No chunk size with static-chunked schedule"); |
| if (IsOrdered) |
| return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, |
| NeedsBarrier, ChunkSize); |
| // FIXME: Monotonicity ignored? |
| return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier); |
| |
| case OMPScheduleType::BaseStaticChunked: |
| if (IsOrdered) |
| return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, |
| NeedsBarrier, ChunkSize); |
| // FIXME: Monotonicity ignored? |
| return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier, |
| ChunkSize); |
| |
| case OMPScheduleType::BaseRuntime: |
| case OMPScheduleType::BaseAuto: |
| case OMPScheduleType::BaseGreedy: |
| case OMPScheduleType::BaseBalanced: |
| case OMPScheduleType::BaseSteal: |
| case OMPScheduleType::BaseGuidedSimd: |
| case OMPScheduleType::BaseRuntimeSimd: |
| assert(!ChunkSize && |
| "schedule type does not support user-defined chunk sizes"); |
| LLVM_FALLTHROUGH; |
| case OMPScheduleType::BaseDynamicChunked: |
| case OMPScheduleType::BaseGuidedChunked: |
| case OMPScheduleType::BaseGuidedIterativeChunked: |
| case OMPScheduleType::BaseGuidedAnalyticalChunked: |
| case OMPScheduleType::BaseStaticBalancedChunked: |
| return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType, |
| NeedsBarrier, ChunkSize); |
| |
| default: |
| llvm_unreachable("Unknown/unimplemented schedule kind"); |
| } |
| } |
| |
| /// Returns an LLVM function to call for initializing loop bounds using OpenMP |
| /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by |
| /// the runtime. Always interpret integers as unsigned similarly to |
| /// CanonicalLoopInfo. |
| static FunctionCallee |
| getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { |
| unsigned Bitwidth = Ty->getIntegerBitWidth(); |
| if (Bitwidth == 32) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u); |
| if (Bitwidth == 64) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u); |
| llvm_unreachable("unknown OpenMP loop iterator bitwidth"); |
| } |
| |
| /// Returns an LLVM function to call for updating the next loop using OpenMP |
| /// dynamic scheduling depending on `type`. Only i32 and i64 are supported by |
| /// the runtime. Always interpret integers as unsigned similarly to |
| /// CanonicalLoopInfo. |
| static FunctionCallee |
| getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { |
| unsigned Bitwidth = Ty->getIntegerBitWidth(); |
| if (Bitwidth == 32) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u); |
| if (Bitwidth == 64) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u); |
| llvm_unreachable("unknown OpenMP loop iterator bitwidth"); |
| } |
| |
| /// Returns an LLVM function to call for finalizing the dynamic loop using |
| /// depending on `type`. Only i32 and i64 are supported by the runtime. Always |
| /// interpret integers as unsigned similarly to CanonicalLoopInfo. |
| static FunctionCallee |
| getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) { |
| unsigned Bitwidth = Ty->getIntegerBitWidth(); |
| if (Bitwidth == 32) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u); |
| if (Bitwidth == 64) |
| return OMPBuilder.getOrCreateRuntimeFunction( |
| M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u); |
| llvm_unreachable("unknown OpenMP loop iterator bitwidth"); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop( |
| DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP, |
| OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) { |
| assert(CLI->isValid() && "Requires a valid canonical loop"); |
| assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && |
| "Require dedicated allocate IP"); |
| assert(isValidWorkshareLoopScheduleType(SchedType) && |
| "Require valid schedule type"); |
| |
| bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) == |
| OMPScheduleType::ModifierOrdered; |
| |
| // Set up the source location value for OpenMP runtime. |
| Builder.SetCurrentDebugLocation(DL); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize); |
| Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| |
| // Declare useful OpenMP runtime functions. |
| Value *IV = CLI->getIndVar(); |
| Type *IVTy = IV->getType(); |
| FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this); |
| FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this); |
| |
| // Allocate space for computed loop bounds as expected by the "init" function. |
| Builder.restoreIP(AllocaIP); |
| Type *I32Type = Type::getInt32Ty(M.getContext()); |
| Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter"); |
| Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound"); |
| Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound"); |
| Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride"); |
| |
| // At the end of the preheader, prepare for calling the "init" function by |
| // storing the current loop bounds into the allocated space. A canonical loop |
| // always iterates from 0 to trip-count with step 1. Note that "init" expects |
| // and produces an inclusive upper bound. |
| BasicBlock *PreHeader = CLI->getPreheader(); |
| Builder.SetInsertPoint(PreHeader->getTerminator()); |
| Constant *One = ConstantInt::get(IVTy, 1); |
| Builder.CreateStore(One, PLowerBound); |
| Value *UpperBound = CLI->getTripCount(); |
| Builder.CreateStore(UpperBound, PUpperBound); |
| Builder.CreateStore(One, PStride); |
| |
| BasicBlock *Header = CLI->getHeader(); |
| BasicBlock *Exit = CLI->getExit(); |
| BasicBlock *Cond = CLI->getCond(); |
| BasicBlock *Latch = CLI->getLatch(); |
| InsertPointTy AfterIP = CLI->getAfterIP(); |
| |
| // The CLI will be "broken" in the code below, as the loop is no longer |
| // a valid canonical loop. |
| |
| if (!Chunk) |
| Chunk = One; |
| |
| Value *ThreadNum = getOrCreateThreadID(SrcLoc); |
| |
| Constant *SchedulingType = |
| ConstantInt::get(I32Type, static_cast<int>(SchedType)); |
| |
| // Call the "init" function. |
| Builder.CreateCall(DynamicInit, |
| {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One, |
| UpperBound, /* step */ One, Chunk}); |
| |
| // An outer loop around the existing one. |
| BasicBlock *OuterCond = BasicBlock::Create( |
| PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond", |
| PreHeader->getParent()); |
| // This needs to be 32-bit always, so can't use the IVTy Zero above. |
| Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt()); |
| Value *Res = |
| Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter, |
| PLowerBound, PUpperBound, PStride}); |
| Constant *Zero32 = ConstantInt::get(I32Type, 0); |
| Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32); |
| Value *LowerBound = |
| Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb"); |
| Builder.CreateCondBr(MoreWork, Header, Exit); |
| |
| // Change PHI-node in loop header to use outer cond rather than preheader, |
| // and set IV to the LowerBound. |
| Instruction *Phi = &Header->front(); |
| auto *PI = cast<PHINode>(Phi); |
| PI->setIncomingBlock(0, OuterCond); |
| PI->setIncomingValue(0, LowerBound); |
| |
| // Then set the pre-header to jump to the OuterCond |
| Instruction *Term = PreHeader->getTerminator(); |
| auto *Br = cast<BranchInst>(Term); |
| Br->setSuccessor(0, OuterCond); |
| |
| // Modify the inner condition: |
| // * Use the UpperBound returned from the DynamicNext call. |
| // * jump to the loop outer loop when done with one of the inner loops. |
| Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt()); |
| UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub"); |
| Instruction *Comp = &*Builder.GetInsertPoint(); |
| auto *CI = cast<CmpInst>(Comp); |
| CI->setOperand(1, UpperBound); |
| // Redirect the inner exit to branch to outer condition. |
| Instruction *Branch = &Cond->back(); |
| auto *BI = cast<BranchInst>(Branch); |
| assert(BI->getSuccessor(1) == Exit); |
| BI->setSuccessor(1, OuterCond); |
| |
| // Call the "fini" function if "ordered" is present in wsloop directive. |
| if (Ordered) { |
| Builder.SetInsertPoint(&Latch->back()); |
| FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(IVTy, M, *this); |
| Builder.CreateCall(DynamicFini, {SrcLoc, ThreadNum}); |
| } |
| |
| // Add the barrier if requested. |
| if (NeedsBarrier) { |
| Builder.SetInsertPoint(&Exit->back()); |
| createBarrier(LocationDescription(Builder.saveIP(), DL), |
| omp::Directive::OMPD_for, /* ForceSimpleCall */ false, |
| /* CheckCancelFlag */ false); |
| } |
| |
| CLI->invalidate(); |
| return AfterIP; |
| } |
| |
| /// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is, |
| /// after this \p OldTarget will be orphaned. |
| static void redirectAllPredecessorsTo(BasicBlock *OldTarget, |
| BasicBlock *NewTarget, DebugLoc DL) { |
| for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget))) |
| redirectTo(Pred, NewTarget, DL); |
| } |
| |
| /// Determine which blocks in \p BBs are reachable from outside and remove the |
| /// ones that are not reachable from the function. |
| static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) { |
| SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()}; |
| auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) { |
| for (Use &U : BB->uses()) { |
| auto *UseInst = dyn_cast<Instruction>(U.getUser()); |
| if (!UseInst) |
| continue; |
| if (BBsToErase.count(UseInst->getParent())) |
| continue; |
| return true; |
| } |
| return false; |
| }; |
| |
| while (true) { |
| bool Changed = false; |
| for (BasicBlock *BB : make_early_inc_range(BBsToErase)) { |
| if (HasRemainingUses(BB)) { |
| BBsToErase.erase(BB); |
| Changed = true; |
| } |
| } |
| if (!Changed) |
| break; |
| } |
| |
| SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end()); |
| DeleteDeadBlocks(BBVec); |
| } |
| |
| CanonicalLoopInfo * |
| OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops, |
| InsertPointTy ComputeIP) { |
| assert(Loops.size() >= 1 && "At least one loop required"); |
| size_t NumLoops = Loops.size(); |
| |
| // Nothing to do if there is already just one loop. |
| if (NumLoops == 1) |
| return Loops.front(); |
| |
| CanonicalLoopInfo *Outermost = Loops.front(); |
| CanonicalLoopInfo *Innermost = Loops.back(); |
| BasicBlock *OrigPreheader = Outermost->getPreheader(); |
| BasicBlock *OrigAfter = Outermost->getAfter(); |
| Function *F = OrigPreheader->getParent(); |
| |
| // Loop control blocks that may become orphaned later. |
| SmallVector<BasicBlock *, 12> OldControlBBs; |
| OldControlBBs.reserve(6 * Loops.size()); |
| for (CanonicalLoopInfo *Loop : Loops) |
| Loop->collectControlBlocks(OldControlBBs); |
| |
| // Setup the IRBuilder for inserting the trip count computation. |
| Builder.SetCurrentDebugLocation(DL); |
| if (ComputeIP.isSet()) |
| Builder.restoreIP(ComputeIP); |
| else |
| Builder.restoreIP(Outermost->getPreheaderIP()); |
| |
| // Derive the collapsed' loop trip count. |
| // TODO: Find common/largest indvar type. |
| Value *CollapsedTripCount = nullptr; |
| for (CanonicalLoopInfo *L : Loops) { |
| assert(L->isValid() && |
| "All loops to collapse must be valid canonical loops"); |
| Value *OrigTripCount = L->getTripCount(); |
| if (!CollapsedTripCount) { |
| CollapsedTripCount = OrigTripCount; |
| continue; |
| } |
| |
| // TODO: Enable UndefinedSanitizer to diagnose an overflow here. |
| CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount, |
| {}, /*HasNUW=*/true); |
| } |
| |
| // Create the collapsed loop control flow. |
| CanonicalLoopInfo *Result = |
| createLoopSkeleton(DL, CollapsedTripCount, F, |
| OrigPreheader->getNextNode(), OrigAfter, "collapsed"); |
| |
| // Build the collapsed loop body code. |
| // Start with deriving the input loop induction variables from the collapsed |
| // one, using a divmod scheme. To preserve the original loops' order, the |
| // innermost loop use the least significant bits. |
| Builder.restoreIP(Result->getBodyIP()); |
| |
| Value *Leftover = Result->getIndVar(); |
| SmallVector<Value *> NewIndVars; |
| NewIndVars.resize(NumLoops); |
| for (int i = NumLoops - 1; i >= 1; --i) { |
| Value *OrigTripCount = Loops[i]->getTripCount(); |
| |
| Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount); |
| NewIndVars[i] = NewIndVar; |
| |
| Leftover = Builder.CreateUDiv(Leftover, OrigTripCount); |
| } |
| // Outermost loop gets all the remaining bits. |
| NewIndVars[0] = Leftover; |
| |
| // Construct the loop body control flow. |
| // We progressively construct the branch structure following in direction of |
| // the control flow, from the leading in-between code, the loop nest body, the |
| // trailing in-between code, and rejoining the collapsed loop's latch. |
| // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If |
| // the ContinueBlock is set, continue with that block. If ContinuePred, use |
| // its predecessors as sources. |
| BasicBlock *ContinueBlock = Result->getBody(); |
| BasicBlock *ContinuePred = nullptr; |
| auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest, |
| BasicBlock *NextSrc) { |
| if (ContinueBlock) |
| redirectTo(ContinueBlock, Dest, DL); |
| else |
| redirectAllPredecessorsTo(ContinuePred, Dest, DL); |
| |
| ContinueBlock = nullptr; |
| ContinuePred = NextSrc; |
| }; |
| |
| // The code before the nested loop of each level. |
| // Because we are sinking it into the nest, it will be executed more often |
| // that the original loop. More sophisticated schemes could keep track of what |
| // the in-between code is and instantiate it only once per thread. |
| for (size_t i = 0; i < NumLoops - 1; ++i) |
| ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader()); |
| |
| // Connect the loop nest body. |
| ContinueWith(Innermost->getBody(), Innermost->getLatch()); |
| |
| // The code after the nested loop at each level. |
| for (size_t i = NumLoops - 1; i > 0; --i) |
| ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch()); |
| |
| // Connect the finished loop to the collapsed loop latch. |
| ContinueWith(Result->getLatch(), nullptr); |
| |
| // Replace the input loops with the new collapsed loop. |
| redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL); |
| redirectTo(Result->getAfter(), Outermost->getAfter(), DL); |
| |
| // Replace the input loop indvars with the derived ones. |
| for (size_t i = 0; i < NumLoops; ++i) |
| Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]); |
| |
| // Remove unused parts of the input loops. |
| removeUnusedBlocksFromParent(OldControlBBs); |
| |
| for (CanonicalLoopInfo *L : Loops) |
| L->invalidate(); |
| |
| #ifndef NDEBUG |
| Result->assertOK(); |
| #endif |
| return Result; |
| } |
| |
| std::vector<CanonicalLoopInfo *> |
| OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops, |
| ArrayRef<Value *> TileSizes) { |
| assert(TileSizes.size() == Loops.size() && |
| "Must pass as many tile sizes as there are loops"); |
| int NumLoops = Loops.size(); |
| assert(NumLoops >= 1 && "At least one loop to tile required"); |
| |
| CanonicalLoopInfo *OutermostLoop = Loops.front(); |
| CanonicalLoopInfo *InnermostLoop = Loops.back(); |
| Function *F = OutermostLoop->getBody()->getParent(); |
| BasicBlock *InnerEnter = InnermostLoop->getBody(); |
| BasicBlock *InnerLatch = InnermostLoop->getLatch(); |
| |
| // Loop control blocks that may become orphaned later. |
| SmallVector<BasicBlock *, 12> OldControlBBs; |
| OldControlBBs.reserve(6 * Loops.size()); |
| for (CanonicalLoopInfo *Loop : Loops) |
| Loop->collectControlBlocks(OldControlBBs); |
| |
| // Collect original trip counts and induction variable to be accessible by |
| // index. Also, the structure of the original loops is not preserved during |
| // the construction of the tiled loops, so do it before we scavenge the BBs of |
| // any original CanonicalLoopInfo. |
| SmallVector<Value *, 4> OrigTripCounts, OrigIndVars; |
| for (CanonicalLoopInfo *L : Loops) { |
| assert(L->isValid() && "All input loops must be valid canonical loops"); |
| OrigTripCounts.push_back(L->getTripCount()); |
| OrigIndVars.push_back(L->getIndVar()); |
| } |
| |
| // Collect the code between loop headers. These may contain SSA definitions |
| // that are used in the loop nest body. To be usable with in the innermost |
| // body, these BasicBlocks will be sunk into the loop nest body. That is, |
| // these instructions may be executed more often than before the tiling. |
| // TODO: It would be sufficient to only sink them into body of the |
| // corresponding tile loop. |
| SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode; |
| for (int i = 0; i < NumLoops - 1; ++i) { |
| CanonicalLoopInfo *Surrounding = Loops[i]; |
| CanonicalLoopInfo *Nested = Loops[i + 1]; |
| |
| BasicBlock *EnterBB = Surrounding->getBody(); |
| BasicBlock *ExitBB = Nested->getHeader(); |
| InbetweenCode.emplace_back(EnterBB, ExitBB); |
| } |
| |
| // Compute the trip counts of the floor loops. |
| Builder.SetCurrentDebugLocation(DL); |
| Builder.restoreIP(OutermostLoop->getPreheaderIP()); |
| SmallVector<Value *, 4> FloorCount, FloorRems; |
| for (int i = 0; i < NumLoops; ++i) { |
| Value *TileSize = TileSizes[i]; |
| Value *OrigTripCount = OrigTripCounts[i]; |
| Type *IVType = OrigTripCount->getType(); |
| |
| Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize); |
| Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize); |
| |
| // 0 if tripcount divides the tilesize, 1 otherwise. |
| // 1 means we need an additional iteration for a partial tile. |
| // |
| // Unfortunately we cannot just use the roundup-formula |
| // (tripcount + tilesize - 1)/tilesize |
| // because the summation might overflow. We do not want introduce undefined |
| // behavior when the untiled loop nest did not. |
| Value *FloorTripOverflow = |
| Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0)); |
| |
| FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType); |
| FloorTripCount = |
| Builder.CreateAdd(FloorTripCount, FloorTripOverflow, |
| "omp_floor" + Twine(i) + ".tripcount", true); |
| |
| // Remember some values for later use. |
| FloorCount.push_back(FloorTripCount); |
| FloorRems.push_back(FloorTripRem); |
| } |
| |
| // Generate the new loop nest, from the outermost to the innermost. |
| std::vector<CanonicalLoopInfo *> Result; |
| Result.reserve(NumLoops * 2); |
| |
| // The basic block of the surrounding loop that enters the nest generated |
| // loop. |
| BasicBlock *Enter = OutermostLoop->getPreheader(); |
| |
| // The basic block of the surrounding loop where the inner code should |
| // continue. |
| BasicBlock *Continue = OutermostLoop->getAfter(); |
| |
| // Where the next loop basic block should be inserted. |
| BasicBlock *OutroInsertBefore = InnermostLoop->getExit(); |
| |
| auto EmbeddNewLoop = |
| [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore]( |
| Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * { |
| CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton( |
| DL, TripCount, F, InnerEnter, OutroInsertBefore, Name); |
| redirectTo(Enter, EmbeddedLoop->getPreheader(), DL); |
| redirectTo(EmbeddedLoop->getAfter(), Continue, DL); |
| |
| // Setup the position where the next embedded loop connects to this loop. |
| Enter = EmbeddedLoop->getBody(); |
| Continue = EmbeddedLoop->getLatch(); |
| OutroInsertBefore = EmbeddedLoop->getLatch(); |
| return EmbeddedLoop; |
| }; |
| |
| auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts, |
| const Twine &NameBase) { |
| for (auto P : enumerate(TripCounts)) { |
| CanonicalLoopInfo *EmbeddedLoop = |
| EmbeddNewLoop(P.value(), NameBase + Twine(P.index())); |
| Result.push_back(EmbeddedLoop); |
| } |
| }; |
| |
| EmbeddNewLoops(FloorCount, "floor"); |
| |
| // Within the innermost floor loop, emit the code that computes the tile |
| // sizes. |
| Builder.SetInsertPoint(Enter->getTerminator()); |
| SmallVector<Value *, 4> TileCounts; |
| for (int i = 0; i < NumLoops; ++i) { |
| CanonicalLoopInfo *FloorLoop = Result[i]; |
| Value *TileSize = TileSizes[i]; |
| |
| Value *FloorIsEpilogue = |
| Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]); |
| Value *TileTripCount = |
| Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize); |
| |
| TileCounts.push_back(TileTripCount); |
| } |
| |
| // Create the tile loops. |
| EmbeddNewLoops(TileCounts, "tile"); |
| |
| // Insert the inbetween code into the body. |
| BasicBlock *BodyEnter = Enter; |
| BasicBlock *BodyEntered = nullptr; |
| for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) { |
| BasicBlock *EnterBB = P.first; |
| BasicBlock *ExitBB = P.second; |
| |
| if (BodyEnter) |
| redirectTo(BodyEnter, EnterBB, DL); |
| else |
| redirectAllPredecessorsTo(BodyEntered, EnterBB, DL); |
| |
| BodyEnter = nullptr; |
| BodyEntered = ExitBB; |
| } |
| |
| // Append the original loop nest body into the generated loop nest body. |
| if (BodyEnter) |
| redirectTo(BodyEnter, InnerEnter, DL); |
| else |
| redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL); |
| redirectAllPredecessorsTo(InnerLatch, Continue, DL); |
| |
| // Replace the original induction variable with an induction variable computed |
| // from the tile and floor induction variables. |
| Builder.restoreIP(Result.back()->getBodyIP()); |
| for (int i = 0; i < NumLoops; ++i) { |
| CanonicalLoopInfo *FloorLoop = Result[i]; |
| CanonicalLoopInfo *TileLoop = Result[NumLoops + i]; |
| Value *OrigIndVar = OrigIndVars[i]; |
| Value *Size = TileSizes[i]; |
| |
| Value *Scale = |
| Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true); |
| Value *Shift = |
| Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true); |
| OrigIndVar->replaceAllUsesWith(Shift); |
| } |
| |
| // Remove unused parts of the original loops. |
| removeUnusedBlocksFromParent(OldControlBBs); |
| |
| for (CanonicalLoopInfo *L : Loops) |
| L->invalidate(); |
| |
| #ifndef NDEBUG |
| for (CanonicalLoopInfo *GenL : Result) |
| GenL->assertOK(); |
| #endif |
| return Result; |
| } |
| |
| /// Attach metadata \p Properties to the basic block described by \p BB. If the |
| /// basic block already has metadata, the basic block properties are appended. |
| static void addBasicBlockMetadata(BasicBlock *BB, |
| ArrayRef<Metadata *> Properties) { |
| // Nothing to do if no property to attach. |
| if (Properties.empty()) |
| return; |
| |
| LLVMContext &Ctx = BB->getContext(); |
| SmallVector<Metadata *> NewProperties; |
| NewProperties.push_back(nullptr); |
| |
| // If the basic block already has metadata, prepend it to the new metadata. |
| MDNode *Existing = BB->getTerminator()->getMetadata(LLVMContext::MD_loop); |
| if (Existing) |
| append_range(NewProperties, drop_begin(Existing->operands(), 1)); |
| |
| append_range(NewProperties, Properties); |
| MDNode *BasicBlockID = MDNode::getDistinct(Ctx, NewProperties); |
| BasicBlockID->replaceOperandWith(0, BasicBlockID); |
| |
| BB->getTerminator()->setMetadata(LLVMContext::MD_loop, BasicBlockID); |
| } |
| |
| /// Attach loop metadata \p Properties to the loop described by \p Loop. If the |
| /// loop already has metadata, the loop properties are appended. |
| static void addLoopMetadata(CanonicalLoopInfo *Loop, |
| ArrayRef<Metadata *> Properties) { |
| assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo"); |
| |
| // Attach metadata to the loop's latch |
| BasicBlock *Latch = Loop->getLatch(); |
| assert(Latch && "A valid CanonicalLoopInfo must have a unique latch"); |
| addBasicBlockMetadata(Latch, Properties); |
| } |
| |
| /// Attach llvm.access.group metadata to the memref instructions of \p Block |
| static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup, |
| LoopInfo &LI) { |
| for (Instruction &I : *Block) { |
| if (I.mayReadOrWriteMemory()) { |
| // TODO: This instruction may already have access group from |
| // other pragmas e.g. #pragma clang loop vectorize. Append |
| // so that the existing metadata is not overwritten. |
| I.setMetadata(LLVMContext::MD_access_group, AccessGroup); |
| } |
| } |
| } |
| |
| void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) { |
| LLVMContext &Ctx = Builder.getContext(); |
| addLoopMetadata( |
| Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), |
| MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))}); |
| } |
| |
| void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) { |
| LLVMContext &Ctx = Builder.getContext(); |
| addLoopMetadata( |
| Loop, { |
| MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), |
| }); |
| } |
| |
| void OpenMPIRBuilder::createIfVersion(CanonicalLoopInfo *CanonicalLoop, |
| Value *IfCond, ValueToValueMapTy &VMap, |
| const Twine &NamePrefix) { |
| Function *F = CanonicalLoop->getFunction(); |
| |
| // Define where if branch should be inserted |
| Instruction *SplitBefore; |
| if (Instruction::classof(IfCond)) { |
| SplitBefore = dyn_cast<Instruction>(IfCond); |
| } else { |
| SplitBefore = CanonicalLoop->getPreheader()->getTerminator(); |
| } |
| |
| // TODO: We should not rely on pass manager. Currently we use pass manager |
| // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo |
| // object. We should have a method which returns all blocks between |
| // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter() |
| FunctionAnalysisManager FAM; |
| FAM.registerPass([]() { return DominatorTreeAnalysis(); }); |
| FAM.registerPass([]() { return LoopAnalysis(); }); |
| FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); |
| |
| // Get the loop which needs to be cloned |
| LoopAnalysis LIA; |
| LoopInfo &&LI = LIA.run(*F, FAM); |
| Loop *L = LI.getLoopFor(CanonicalLoop->getHeader()); |
| |
| // Create additional blocks for the if statement |
| BasicBlock *Head = SplitBefore->getParent(); |
| Instruction *HeadOldTerm = Head->getTerminator(); |
| llvm::LLVMContext &C = Head->getContext(); |
| llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create( |
| C, NamePrefix + ".if.then", Head->getParent(), Head->getNextNode()); |
| llvm::BasicBlock *ElseBlock = llvm::BasicBlock::Create( |
| C, NamePrefix + ".if.else", Head->getParent(), CanonicalLoop->getExit()); |
| |
| // Create if condition branch. |
| Builder.SetInsertPoint(HeadOldTerm); |
| Instruction *BrInstr = |
| Builder.CreateCondBr(IfCond, ThenBlock, /*ifFalse*/ ElseBlock); |
| InsertPointTy IP{BrInstr->getParent(), ++BrInstr->getIterator()}; |
| // Then block contains branch to omp loop which needs to be vectorized |
| spliceBB(IP, ThenBlock, false); |
| ThenBlock->replaceSuccessorsPhiUsesWith(Head, ThenBlock); |
| |
| Builder.SetInsertPoint(ElseBlock); |
| |
| // Clone loop for the else branch |
| SmallVector<BasicBlock *, 8> NewBlocks; |
| |
| VMap[CanonicalLoop->getPreheader()] = ElseBlock; |
| for (BasicBlock *Block : L->getBlocks()) { |
| BasicBlock *NewBB = CloneBasicBlock(Block, VMap, "", F); |
| NewBB->moveBefore(CanonicalLoop->getExit()); |
| VMap[Block] = NewBB; |
| NewBlocks.push_back(NewBB); |
| } |
| remapInstructionsInBlocks(NewBlocks, VMap); |
| Builder.CreateBr(NewBlocks.front()); |
| } |
| |
| void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop, |
| MapVector<Value *, Value *> AlignedVars, |
| Value *IfCond, OrderKind Order, |
| ConstantInt *Simdlen, ConstantInt *Safelen) { |
| LLVMContext &Ctx = Builder.getContext(); |
| |
| Function *F = CanonicalLoop->getFunction(); |
| |
| // TODO: We should not rely on pass manager. Currently we use pass manager |
| // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo |
| // object. We should have a method which returns all blocks between |
| // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter() |
| FunctionAnalysisManager FAM; |
| FAM.registerPass([]() { return DominatorTreeAnalysis(); }); |
| FAM.registerPass([]() { return LoopAnalysis(); }); |
| FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); |
| |
| LoopAnalysis LIA; |
| LoopInfo &&LI = LIA.run(*F, FAM); |
| |
| Loop *L = LI.getLoopFor(CanonicalLoop->getHeader()); |
| if (AlignedVars.size()) { |
| InsertPointTy IP = Builder.saveIP(); |
| Builder.SetInsertPoint(CanonicalLoop->getPreheader()->getTerminator()); |
| for (auto &AlignedItem : AlignedVars) { |
| Value *AlignedPtr = AlignedItem.first; |
| Value *Alignment = AlignedItem.second; |
| Builder.CreateAlignmentAssumption(F->getParent()->getDataLayout(), |
| AlignedPtr, Alignment); |
| } |
| Builder.restoreIP(IP); |
| } |
| |
| if (IfCond) { |
| ValueToValueMapTy VMap; |
| createIfVersion(CanonicalLoop, IfCond, VMap, "simd"); |
| // Add metadata to the cloned loop which disables vectorization |
| Value *MappedLatch = VMap.lookup(CanonicalLoop->getLatch()); |
| assert(MappedLatch && |
| "Cannot find value which corresponds to original loop latch"); |
| assert(isa<BasicBlock>(MappedLatch) && |
| "Cannot cast mapped latch block value to BasicBlock"); |
| BasicBlock *NewLatchBlock = dyn_cast<BasicBlock>(MappedLatch); |
| ConstantAsMetadata *BoolConst = |
| ConstantAsMetadata::get(ConstantInt::getFalse(Type::getInt1Ty(Ctx))); |
| addBasicBlockMetadata( |
| NewLatchBlock, |
| {MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), |
| BoolConst})}); |
| } |
| |
| SmallSet<BasicBlock *, 8> Reachable; |
| |
| // Get the basic blocks from the loop in which memref instructions |
| // can be found. |
| // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo, |
| // preferably without running any passes. |
| for (BasicBlock *Block : L->getBlocks()) { |
| if (Block == CanonicalLoop->getCond() || |
| Block == CanonicalLoop->getHeader()) |
| continue; |
| Reachable.insert(Block); |
| } |
| |
| SmallVector<Metadata *> LoopMDList; |
| |
| // In presence of finite 'safelen', it may be unsafe to mark all |
| // the memory instructions parallel, because loop-carried |
| // dependences of 'safelen' iterations are possible. |
| // If clause order(concurrent) is specified then the memory instructions |
| // are marked parallel even if 'safelen' is finite. |
| if ((Safelen == nullptr) || (Order == OrderKind::OMP_ORDER_concurrent)) { |
| // Add access group metadata to memory-access instructions. |
| MDNode *AccessGroup = MDNode::getDistinct(Ctx, {}); |
| for (BasicBlock *BB : Reachable) |
| addSimdMetadata(BB, AccessGroup, LI); |
| // TODO: If the loop has existing parallel access metadata, have |
| // to combine two lists. |
| LoopMDList.push_back(MDNode::get( |
| Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccessGroup})); |
| } |
| |
| // Use the above access group metadata to create loop level |
| // metadata, which should be distinct for each loop. |
| ConstantAsMetadata *BoolConst = |
| ConstantAsMetadata::get(ConstantInt::getTrue(Type::getInt1Ty(Ctx))); |
| LoopMDList.push_back(MDNode::get( |
| Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), BoolConst})); |
| |
| if (Simdlen || Safelen) { |
| // If both simdlen and safelen clauses are specified, the value of the |
| // simdlen parameter must be less than or equal to the value of the safelen |
| // parameter. Therefore, use safelen only in the absence of simdlen. |
| ConstantInt *VectorizeWidth = Simdlen == nullptr ? Safelen : Simdlen; |
| LoopMDList.push_back( |
| MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.width"), |
| ConstantAsMetadata::get(VectorizeWidth)})); |
| } |
| |
| addLoopMetadata(CanonicalLoop, LoopMDList); |
| } |
| |
| /// Create the TargetMachine object to query the backend for optimization |
| /// preferences. |
| /// |
| /// Ideally, this would be passed from the front-end to the OpenMPBuilder, but |
| /// e.g. Clang does not pass it to its CodeGen layer and creates it only when |
| /// needed for the LLVM pass pipline. We use some default options to avoid |
| /// having to pass too many settings from the frontend that probably do not |
| /// matter. |
| /// |
| /// Currently, TargetMachine is only used sometimes by the unrollLoopPartial |
| /// method. If we are going to use TargetMachine for more purposes, especially |
| /// those that are sensitive to TargetOptions, RelocModel and CodeModel, it |
| /// might become be worth requiring front-ends to pass on their TargetMachine, |
| /// or at least cache it between methods. Note that while fontends such as Clang |
| /// have just a single main TargetMachine per translation unit, "target-cpu" and |
| /// "target-features" that determine the TargetMachine are per-function and can |
| /// be overrided using __attribute__((target("OPTIONS"))). |
| static std::unique_ptr<TargetMachine> |
| createTargetMachine(Function *F, CodeGenOpt::Level OptLevel) { |
| Module *M = F->getParent(); |
| |
| StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString(); |
| StringRef Features = F->getFnAttribute("target-features").getValueAsString(); |
| const std::string &Triple = M->getTargetTriple(); |
| |
| std::string Error; |
| const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); |
| if (!TheTarget) |
| return {}; |
| |
| llvm::TargetOptions Options; |
| return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine( |
| Triple, CPU, Features, Options, /*RelocModel=*/std::nullopt, |
| /*CodeModel=*/std::nullopt, OptLevel)); |
| } |
| |
| /// Heuristically determine the best-performant unroll factor for \p CLI. This |
| /// depends on the target processor. We are re-using the same heuristics as the |
| /// LoopUnrollPass. |
| static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) { |
| Function *F = CLI->getFunction(); |
| |
| // Assume the user requests the most aggressive unrolling, even if the rest of |
| // the code is optimized using a lower setting. |
| CodeGenOpt::Level OptLevel = CodeGenOpt::Aggressive; |
| std::unique_ptr<TargetMachine> TM = createTargetMachine(F, OptLevel); |
| |
| FunctionAnalysisManager FAM; |
| FAM.registerPass([]() { return TargetLibraryAnalysis(); }); |
| FAM.registerPass([]() { return AssumptionAnalysis(); }); |
| FAM.registerPass([]() { return DominatorTreeAnalysis(); }); |
| FAM.registerPass([]() { return LoopAnalysis(); }); |
| FAM.registerPass([]() { return ScalarEvolutionAnalysis(); }); |
| FAM.registerPass([]() { return PassInstrumentationAnalysis(); }); |
| TargetIRAnalysis TIRA; |
| if (TM) |
| TIRA = TargetIRAnalysis( |
| [&](const Function &F) { return TM->getTargetTransformInfo(F); }); |
| FAM.registerPass([&]() { return TIRA; }); |
| |
| TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM); |
| ScalarEvolutionAnalysis SEA; |
| ScalarEvolution &&SE = SEA.run(*F, FAM); |
| DominatorTreeAnalysis DTA; |
| DominatorTree &&DT = DTA.run(*F, FAM); |
| LoopAnalysis LIA; |
| LoopInfo &&LI = LIA.run(*F, FAM); |
| AssumptionAnalysis ACT; |
| AssumptionCache &&AC = ACT.run(*F, FAM); |
| OptimizationRemarkEmitter ORE{F}; |
| |
| Loop *L = LI.getLoopFor(CLI->getHeader()); |
| assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop"); |
| |
| TargetTransformInfo::UnrollingPreferences UP = |
| gatherUnrollingPreferences(L, SE, TTI, |
| /*BlockFrequencyInfo=*/nullptr, |
| /*ProfileSummaryInfo=*/nullptr, ORE, OptLevel, |
| /*UserThreshold=*/std::nullopt, |
| /*UserCount=*/std::nullopt, |
| /*UserAllowPartial=*/true, |
| /*UserAllowRuntime=*/true, |
| /*UserUpperBound=*/std::nullopt, |
| /*UserFullUnrollMaxCount=*/std::nullopt); |
| |
| UP.Force = true; |
| |
| // Account for additional optimizations taking place before the LoopUnrollPass |
| // would unroll the loop. |
| UP.Threshold *= UnrollThresholdFactor; |
| UP.PartialThreshold *= UnrollThresholdFactor; |
| |
| // Use normal unroll factors even if the rest of the code is optimized for |
| // size. |
| UP.OptSizeThreshold = UP.Threshold; |
| UP.PartialOptSizeThreshold = UP.PartialThreshold; |
| |
| LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n" |
| << " Threshold=" << UP.Threshold << "\n" |
| << " PartialThreshold=" << UP.PartialThreshold << "\n" |
| << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n" |
| << " PartialOptSizeThreshold=" |
| << UP.PartialOptSizeThreshold << "\n"); |
| |
| // Disable peeling. |
| TargetTransformInfo::PeelingPreferences PP = |
| gatherPeelingPreferences(L, SE, TTI, |
| /*UserAllowPeeling=*/false, |
| /*UserAllowProfileBasedPeeling=*/false, |
| /*UnrollingSpecficValues=*/false); |
| |
| SmallPtrSet<const Value *, 32> EphValues; |
| CodeMetrics::collectEphemeralValues(L, &AC, EphValues); |
| |
| // Assume that reads and writes to stack variables can be eliminated by |
| // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's |
| // size. |
| for (BasicBlock *BB : L->blocks()) { |
| for (Instruction &I : *BB) { |
| Value *Ptr; |
| if (auto *Load = dyn_cast<LoadInst>(&I)) { |
| Ptr = Load->getPointerOperand(); |
| } else if (auto *Store = dyn_cast<StoreInst>(&I)) { |
| Ptr = Store->getPointerOperand(); |
| } else |
| continue; |
| |
| Ptr = Ptr->stripPointerCasts(); |
| |
| if (auto *Alloca = dyn_cast<AllocaInst>(Ptr)) { |
| if (Alloca->getParent() == &F->getEntryBlock()) |
| EphValues.insert(&I); |
| } |
| } |
| } |
| |
| unsigned NumInlineCandidates; |
| bool NotDuplicatable; |
| bool Convergent; |
| InstructionCost LoopSizeIC = |
| ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent, |
| TTI, EphValues, UP.BEInsns); |
| LLVM_DEBUG(dbgs() << "Estimated loop size is " << LoopSizeIC << "\n"); |
| |
| // Loop is not unrollable if the loop contains certain instructions. |
| if (NotDuplicatable || Convergent || !LoopSizeIC.isValid()) { |
| LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n"); |
| return 1; |
| } |
| unsigned LoopSize = *LoopSizeIC.getValue(); |
| |
| // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might |
| // be able to use it. |
| int TripCount = 0; |
| int MaxTripCount = 0; |
| bool MaxOrZero = false; |
| unsigned TripMultiple = 0; |
| |
| bool UseUpperBound = false; |
| computeUnrollCount(L, TTI, DT, &LI, &AC, SE, EphValues, &ORE, TripCount, |
| MaxTripCount, MaxOrZero, TripMultiple, LoopSize, UP, PP, |
| UseUpperBound); |
| unsigned Factor = UP.Count; |
| LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n"); |
| |
| // This function returns 1 to signal to not unroll a loop. |
| if (Factor == 0) |
| return 1; |
| return Factor; |
| } |
| |
| void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop, |
| int32_t Factor, |
| CanonicalLoopInfo **UnrolledCLI) { |
| assert(Factor >= 0 && "Unroll factor must not be negative"); |
| |
| Function *F = Loop->getFunction(); |
| LLVMContext &Ctx = F->getContext(); |
| |
| // If the unrolled loop is not used for another loop-associated directive, it |
| // is sufficient to add metadata for the LoopUnrollPass. |
| if (!UnrolledCLI) { |
| SmallVector<Metadata *, 2> LoopMetadata; |
| LoopMetadata.push_back( |
| MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable"))); |
| |
| if (Factor >= 1) { |
| ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( |
| ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); |
| LoopMetadata.push_back(MDNode::get( |
| Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})); |
| } |
| |
| addLoopMetadata(Loop, LoopMetadata); |
| return; |
| } |
| |
| // Heuristically determine the unroll factor. |
| if (Factor == 0) |
| Factor = computeHeuristicUnrollFactor(Loop); |
| |
| // No change required with unroll factor 1. |
| if (Factor == 1) { |
| *UnrolledCLI = Loop; |
| return; |
| } |
| |
| assert(Factor >= 2 && |
| "unrolling only makes sense with a factor of 2 or larger"); |
| |
| Type *IndVarTy = Loop->getIndVarType(); |
| |
| // Apply partial unrolling by tiling the loop by the unroll-factor, then fully |
| // unroll the inner loop. |
| Value *FactorVal = |
| ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor, |
| /*isSigned=*/false)); |
| std::vector<CanonicalLoopInfo *> LoopNest = |
| tileLoops(DL, {Loop}, {FactorVal}); |
| assert(LoopNest.size() == 2 && "Expect 2 loops after tiling"); |
| *UnrolledCLI = LoopNest[0]; |
| CanonicalLoopInfo *InnerLoop = LoopNest[1]; |
| |
| // LoopUnrollPass can only fully unroll loops with constant trip count. |
| // Unroll by the unroll factor with a fallback epilog for the remainder |
| // iterations if necessary. |
| ConstantAsMetadata *FactorConst = ConstantAsMetadata::get( |
| ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor))); |
| addLoopMetadata( |
| InnerLoop, |
| {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")), |
| MDNode::get( |
| Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})}); |
| |
| #ifndef NDEBUG |
| (*UnrolledCLI)->assertOK(); |
| #endif |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc, |
| llvm::Value *BufSize, llvm::Value *CpyBuf, |
| llvm::Value *CpyFn, llvm::Value *DidIt) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| |
| llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt); |
| |
| Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD}; |
| |
| Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate); |
| Builder.CreateCall(Fn, Args); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSingle( |
| const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB, bool IsNowait, llvm::Value *DidIt) { |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| // If needed (i.e. not null), initialize `DidIt` with 0 |
| if (DidIt) { |
| Builder.CreateStore(Builder.getInt32(0), DidIt); |
| } |
| |
| Directive OMPD = Directive::OMPD_single; |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId}; |
| |
| Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single); |
| Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args); |
| |
| Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single); |
| Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); |
| |
| // generates the following: |
| // if (__kmpc_single()) { |
| // .... single region ... |
| // __kmpc_end_single |
| // } |
| // __kmpc_barrier |
| |
| EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ true, |
| /*hasFinalize*/ true); |
| if (!IsNowait) |
| createBarrier(LocationDescription(Builder.saveIP(), Loc.DL), |
| omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false, |
| /* CheckCancelFlag */ false); |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical( |
| const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) { |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Directive OMPD = Directive::OMPD_critical; |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *LockVar = getOMPCriticalRegionLock(CriticalName); |
| Value *Args[] = {Ident, ThreadId, LockVar}; |
| |
| SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), std::end(Args)); |
| Function *RTFn = nullptr; |
| if (HintInst) { |
| // Add Hint to entry Args and create call |
| EnterArgs.push_back(HintInst); |
| RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint); |
| } else { |
| RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical); |
| } |
| Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs); |
| |
| Function *ExitRTLFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical); |
| Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args); |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ false, /*hasFinalize*/ true); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc, |
| InsertPointTy AllocaIP, unsigned NumLoops, |
| ArrayRef<llvm::Value *> StoreValues, |
| const Twine &Name, bool IsDependSource) { |
| assert( |
| llvm::all_of(StoreValues, |
| [](Value *SV) { return SV->getType()->isIntegerTy(64); }) && |
| "OpenMP runtime requires depend vec with i64 type"); |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| // Allocate space for vector and generate alloc instruction. |
| auto *ArrI64Ty = ArrayType::get(Int64, NumLoops); |
| Builder.restoreIP(AllocaIP); |
| AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name); |
| ArgsBase->setAlignment(Align(8)); |
| Builder.restoreIP(Loc.IP); |
| |
| // Store the index value with offset in depend vector. |
| for (unsigned I = 0; I < NumLoops; ++I) { |
| Value *DependAddrGEPIter = Builder.CreateInBoundsGEP( |
| ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)}); |
| StoreInst *STInst = Builder.CreateStore(StoreValues[I], DependAddrGEPIter); |
| STInst->setAlignment(Align(8)); |
| } |
| |
| Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP( |
| ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)}); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP}; |
| |
| Function *RTLFn = nullptr; |
| if (IsDependSource) |
| RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post); |
| else |
| RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait); |
| Builder.CreateCall(RTLFn, Args); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd( |
| const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB, |
| FinalizeCallbackTy FiniCB, bool IsThreads) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Directive OMPD = Directive::OMPD_ordered; |
| Instruction *EntryCall = nullptr; |
| Instruction *ExitCall = nullptr; |
| |
| if (IsThreads) { |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {Ident, ThreadId}; |
| |
| Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered); |
| EntryCall = Builder.CreateCall(EntryRTLFn, Args); |
| |
| Function *ExitRTLFn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered); |
| ExitCall = Builder.CreateCall(ExitRTLFn, Args); |
| } |
| |
| return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB, |
| /*Conditional*/ false, /*hasFinalize*/ true); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion( |
| Directive OMPD, Instruction *EntryCall, Instruction *ExitCall, |
| BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional, |
| bool HasFinalize, bool IsCancellable) { |
| |
| if (HasFinalize) |
| FinalizationStack.push_back({FiniCB, OMPD, IsCancellable}); |
| |
| // Create inlined region's entry and body blocks, in preparation |
| // for conditional creation |
| BasicBlock *EntryBB = Builder.GetInsertBlock(); |
| Instruction *SplitPos = EntryBB->getTerminator(); |
| if (!isa_and_nonnull<BranchInst>(SplitPos)) |
| SplitPos = new UnreachableInst(Builder.getContext(), EntryBB); |
| BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end"); |
| BasicBlock *FiniBB = |
| EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize"); |
| |
| Builder.SetInsertPoint(EntryBB->getTerminator()); |
| emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional); |
| |
| // generate body |
| BodyGenCB(/* AllocaIP */ InsertPointTy(), |
| /* CodeGenIP */ Builder.saveIP()); |
| |
| // emit exit call and do any needed finalization. |
| auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt()); |
| assert(FiniBB->getTerminator()->getNumSuccessors() == 1 && |
| FiniBB->getTerminator()->getSuccessor(0) == ExitBB && |
| "Unexpected control flow graph state!!"); |
| emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize); |
| assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB && |
| "Unexpected Control Flow State!"); |
| MergeBlockIntoPredecessor(FiniBB); |
| |
| // If we are skipping the region of a non conditional, remove the exit |
| // block, and clear the builder's insertion point. |
| assert(SplitPos->getParent() == ExitBB && |
| "Unexpected Insertion point location!"); |
| auto merged = MergeBlockIntoPredecessor(ExitBB); |
| BasicBlock *ExitPredBB = SplitPos->getParent(); |
| auto InsertBB = merged ? ExitPredBB : ExitBB; |
| if (!isa_and_nonnull<BranchInst>(SplitPos)) |
| SplitPos->eraseFromParent(); |
| Builder.SetInsertPoint(InsertBB); |
| |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry( |
| Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) { |
| // if nothing to do, Return current insertion point. |
| if (!Conditional || !EntryCall) |
| return Builder.saveIP(); |
| |
| BasicBlock *EntryBB = Builder.GetInsertBlock(); |
| Value *CallBool = Builder.CreateIsNotNull(EntryCall); |
| auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body"); |
| auto *UI = new UnreachableInst(Builder.getContext(), ThenBB); |
| |
| // Emit thenBB and set the Builder's insertion point there for |
| // body generation next. Place the block after the current block. |
| Function *CurFn = EntryBB->getParent(); |
| CurFn->insert(std::next(EntryBB->getIterator()), ThenBB); |
| |
| // Move Entry branch to end of ThenBB, and replace with conditional |
| // branch (If-stmt) |
| Instruction *EntryBBTI = EntryBB->getTerminator(); |
| Builder.CreateCondBr(CallBool, ThenBB, ExitBB); |
| EntryBBTI->removeFromParent(); |
| Builder.SetInsertPoint(UI); |
| Builder.Insert(EntryBBTI); |
| UI->eraseFromParent(); |
| Builder.SetInsertPoint(ThenBB->getTerminator()); |
| |
| // return an insertion point to ExitBB. |
| return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt()); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit( |
| omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall, |
| bool HasFinalize) { |
| |
| Builder.restoreIP(FinIP); |
| |
| // If there is finalization to do, emit it before the exit call |
| if (HasFinalize) { |
| assert(!FinalizationStack.empty() && |
| "Unexpected finalization stack state!"); |
| |
| FinalizationInfo Fi = FinalizationStack.pop_back_val(); |
| assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!"); |
| |
| Fi.FiniCB(FinIP); |
| |
| BasicBlock *FiniBB = FinIP.getBlock(); |
| Instruction *FiniBBTI = FiniBB->getTerminator(); |
| |
| // set Builder IP for call creation |
| Builder.SetInsertPoint(FiniBBTI); |
| } |
| |
| if (!ExitCall) |
| return Builder.saveIP(); |
| |
| // place the Exitcall as last instruction before Finalization block terminator |
| ExitCall->removeFromParent(); |
| Builder.Insert(ExitCall); |
| |
| return IRBuilder<>::InsertPoint(ExitCall->getParent(), |
| ExitCall->getIterator()); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks( |
| InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr, |
| llvm::IntegerType *IntPtrTy, bool BranchtoEnd) { |
| if (!IP.isSet()) |
| return IP; |
| |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| |
| // creates the following CFG structure |
| // OMP_Entry : (MasterAddr != PrivateAddr)? |
| // F T |
| // | \ |
| // | copin.not.master |
| // | / |
| // v / |
| // copyin.not.master.end |
| // | |
| // v |
| // OMP.Entry.Next |
| |
| BasicBlock *OMP_Entry = IP.getBlock(); |
| Function *CurFn = OMP_Entry->getParent(); |
| BasicBlock *CopyBegin = |
| BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn); |
| BasicBlock *CopyEnd = nullptr; |
| |
| // If entry block is terminated, split to preserve the branch to following |
| // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is. |
| if (isa_and_nonnull<BranchInst>(OMP_Entry->getTerminator())) { |
| CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(), |
| "copyin.not.master.end"); |
| OMP_Entry->getTerminator()->eraseFromParent(); |
| } else { |
| CopyEnd = |
| BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn); |
| } |
| |
| Builder.SetInsertPoint(OMP_Entry); |
| Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy); |
| Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy); |
| Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr); |
| Builder.CreateCondBr(cmp, CopyBegin, CopyEnd); |
| |
| Builder.SetInsertPoint(CopyBegin); |
| if (BranchtoEnd) |
| Builder.SetInsertPoint(Builder.CreateBr(CopyEnd)); |
| |
| return Builder.saveIP(); |
| } |
| |
| CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc, |
| Value *Size, Value *Allocator, |
| std::string Name) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(Loc.IP); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {ThreadId, Size, Allocator}; |
| |
| Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc); |
| |
| return Builder.CreateCall(Fn, Args, Name); |
| } |
| |
| CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc, |
| Value *Addr, Value *Allocator, |
| std::string Name) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(Loc.IP); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Value *Args[] = {ThreadId, Addr, Allocator}; |
| Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free); |
| return Builder.CreateCall(Fn, Args, Name); |
| } |
| |
| CallInst *OpenMPIRBuilder::createOMPInteropInit( |
| const LocationDescription &Loc, Value *InteropVar, |
| omp::OMPInteropType InteropType, Value *Device, Value *NumDependences, |
| Value *DependenceAddress, bool HaveNowaitClause) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(Loc.IP); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| if (Device == nullptr) |
| Device = ConstantInt::get(Int32, -1); |
| Constant *InteropTypeVal = ConstantInt::get(Int32, (int)InteropType); |
| if (NumDependences == nullptr) { |
| NumDependences = ConstantInt::get(Int64, 0); |
| PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); |
| DependenceAddress = ConstantPointerNull::get(PointerTypeVar); |
| } |
| Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); |
| Value *Args[] = { |
| Ident, ThreadId, InteropVar, InteropTypeVal, |
| Device, NumDependences, DependenceAddress, HaveNowaitClauseVal}; |
| |
| Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_init); |
| |
| return Builder.CreateCall(Fn, Args); |
| } |
| |
| CallInst *OpenMPIRBuilder::createOMPInteropDestroy( |
| const LocationDescription &Loc, Value *InteropVar, Value *Device, |
| Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(Loc.IP); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| if (Device == nullptr) |
| Device = ConstantInt::get(Int32, -1); |
| if (NumDependences == nullptr) { |
| NumDependences = ConstantInt::get(Int32, 0); |
| PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); |
| DependenceAddress = ConstantPointerNull::get(PointerTypeVar); |
| } |
| Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); |
| Value *Args[] = { |
| Ident, ThreadId, InteropVar, Device, |
| NumDependences, DependenceAddress, HaveNowaitClauseVal}; |
| |
| Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_destroy); |
| |
| return Builder.CreateCall(Fn, Args); |
| } |
| |
| CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc, |
| Value *InteropVar, Value *Device, |
| Value *NumDependences, |
| Value *DependenceAddress, |
| bool HaveNowaitClause) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(Loc.IP); |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| if (Device == nullptr) |
| Device = ConstantInt::get(Int32, -1); |
| if (NumDependences == nullptr) { |
| NumDependences = ConstantInt::get(Int32, 0); |
| PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext()); |
| DependenceAddress = ConstantPointerNull::get(PointerTypeVar); |
| } |
| Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause); |
| Value *Args[] = { |
| Ident, ThreadId, InteropVar, Device, |
| NumDependences, DependenceAddress, HaveNowaitClauseVal}; |
| |
| Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_use); |
| |
| return Builder.CreateCall(Fn, Args); |
| } |
| |
| CallInst *OpenMPIRBuilder::createCachedThreadPrivate( |
| const LocationDescription &Loc, llvm::Value *Pointer, |
| llvm::ConstantInt *Size, const llvm::Twine &Name) { |
| IRBuilder<>::InsertPointGuard IPG(Builder); |
| Builder.restoreIP(Loc.IP); |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| Value *ThreadId = getOrCreateThreadID(Ident); |
| Constant *ThreadPrivateCache = |
| getOrCreateInternalVariable(Int8PtrPtr, Name.str()); |
| llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache}; |
| |
| Function *Fn = |
| getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached); |
| |
| return Builder.CreateCall(Fn, Args); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createTargetInit(const LocationDescription &Loc, bool IsSPMD) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| ConstantInt *IsSPMDVal = ConstantInt::getSigned( |
| IntegerType::getInt8Ty(Int8->getContext()), |
| IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC); |
| ConstantInt *UseGenericStateMachine = |
| ConstantInt::getBool(Int32->getContext(), !IsSPMD); |
| |
| Function *Fn = getOrCreateRuntimeFunctionPtr( |
| omp::RuntimeFunction::OMPRTL___kmpc_target_init); |
| |
| CallInst *ThreadKind = Builder.CreateCall( |
| Fn, {Ident, IsSPMDVal, UseGenericStateMachine}); |
| |
| Value *ExecUserCode = Builder.CreateICmpEQ( |
| ThreadKind, ConstantInt::get(ThreadKind->getType(), -1), |
| "exec_user_code"); |
| |
| // ThreadKind = __kmpc_target_init(...) |
| // if (ThreadKind == -1) |
| // user_code |
| // else |
| // return; |
| |
| auto *UI = Builder.CreateUnreachable(); |
| BasicBlock *CheckBB = UI->getParent(); |
| BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(UI, "user_code.entry"); |
| |
| BasicBlock *WorkerExitBB = BasicBlock::Create( |
| CheckBB->getContext(), "worker.exit", CheckBB->getParent()); |
| Builder.SetInsertPoint(WorkerExitBB); |
| Builder.CreateRetVoid(); |
| |
| auto *CheckBBTI = CheckBB->getTerminator(); |
| Builder.SetInsertPoint(CheckBBTI); |
| Builder.CreateCondBr(ExecUserCode, UI->getParent(), WorkerExitBB); |
| |
| CheckBBTI->eraseFromParent(); |
| UI->eraseFromParent(); |
| |
| // Continue in the "user_code" block, see diagram above and in |
| // openmp/libomptarget/deviceRTLs/common/include/target.h . |
| return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt()); |
| } |
| |
| void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc, |
| bool IsSPMD) { |
| if (!updateToLocation(Loc)) |
| return; |
| |
| uint32_t SrcLocStrSize; |
| Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize); |
| Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize); |
| ConstantInt *IsSPMDVal = ConstantInt::getSigned( |
| IntegerType::getInt8Ty(Int8->getContext()), |
| IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC); |
| |
| Function *Fn = getOrCreateRuntimeFunctionPtr( |
| omp::RuntimeFunction::OMPRTL___kmpc_target_deinit); |
| |
| Builder.CreateCall(Fn, {Ident, IsSPMDVal}); |
| } |
| |
| void OpenMPIRBuilder::setOutlinedTargetRegionFunctionAttributes( |
| Function *OutlinedFn, int32_t NumTeams, int32_t NumThreads) { |
| if (Config.isEmbedded()) { |
| OutlinedFn->setLinkage(GlobalValue::WeakODRLinkage); |
| // TODO: Determine if DSO local can be set to true. |
| OutlinedFn->setDSOLocal(false); |
| OutlinedFn->setVisibility(GlobalValue::ProtectedVisibility); |
| if (Triple(M.getTargetTriple()).isAMDGCN()) |
| OutlinedFn->setCallingConv(CallingConv::AMDGPU_KERNEL); |
| } |
| |
| if (NumTeams > 0) |
| OutlinedFn->addFnAttr("omp_target_num_teams", std::to_string(NumTeams)); |
| if (NumThreads > 0) |
| OutlinedFn->addFnAttr("omp_target_thread_limit", |
| std::to_string(NumThreads)); |
| } |
| |
| Constant *OpenMPIRBuilder::createOutlinedFunctionID(Function *OutlinedFn, |
| StringRef EntryFnIDName) { |
| if (Config.isEmbedded()) { |
| assert(OutlinedFn && "The outlined function must exist if embedded"); |
| return ConstantExpr::getBitCast(OutlinedFn, Builder.getInt8PtrTy()); |
| } |
| |
| return new GlobalVariable( |
| M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::WeakAnyLinkage, |
| Constant::getNullValue(Builder.getInt8Ty()), EntryFnIDName); |
| } |
| |
| Constant *OpenMPIRBuilder::createTargetRegionEntryAddr(Function *OutlinedFn, |
| StringRef EntryFnName) { |
| if (OutlinedFn) |
| return OutlinedFn; |
| |
| assert(!M.getGlobalVariable(EntryFnName, true) && |
| "Named kernel already exists?"); |
| return new GlobalVariable( |
| M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::InternalLinkage, |
| Constant::getNullValue(Builder.getInt8Ty()), EntryFnName); |
| } |
| |
| void OpenMPIRBuilder::emitTargetRegionFunction( |
| OffloadEntriesInfoManager &InfoManager, TargetRegionEntryInfo &EntryInfo, |
| FunctionGenCallback &GenerateFunctionCallback, int32_t NumTeams, |
| int32_t NumThreads, bool IsOffloadEntry, Function *&OutlinedFn, |
| Constant *&OutlinedFnID) { |
| |
| SmallString<64> EntryFnName; |
| InfoManager.getTargetRegionEntryFnName(EntryFnName, EntryInfo); |
| |
| OutlinedFn = Config.isEmbedded() || !Config.openMPOffloadMandatory() |
| ? GenerateFunctionCallback(EntryFnName) |
| : nullptr; |
| |
| // If this target outline function is not an offload entry, we don't need to |
| // register it. This may be in the case of a false if clause, or if there are |
| // no OpenMP targets. |
| if (!IsOffloadEntry) |
| return; |
| |
| std::string EntryFnIDName = |
| Config.isEmbedded() |
| ? std::string(EntryFnName) |
| : createPlatformSpecificName({EntryFnName, "region_id"}); |
| |
| OutlinedFnID = registerTargetRegionFunction( |
| InfoManager, EntryInfo, OutlinedFn, EntryFnName, EntryFnIDName, NumTeams, |
| NumThreads); |
| } |
| |
| Constant *OpenMPIRBuilder::registerTargetRegionFunction( |
| OffloadEntriesInfoManager &InfoManager, TargetRegionEntryInfo &EntryInfo, |
| Function *OutlinedFn, StringRef EntryFnName, StringRef EntryFnIDName, |
| int32_t NumTeams, int32_t NumThreads) { |
| if (OutlinedFn) |
| setOutlinedTargetRegionFunctionAttributes(OutlinedFn, NumTeams, NumThreads); |
| auto OutlinedFnID = createOutlinedFunctionID(OutlinedFn, EntryFnIDName); |
| auto EntryAddr = createTargetRegionEntryAddr(OutlinedFn, EntryFnName); |
| InfoManager.registerTargetRegionEntryInfo( |
| EntryInfo, EntryAddr, OutlinedFnID, |
| OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion); |
| return OutlinedFnID; |
| } |
| |
| std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef<StringRef> Parts, |
| StringRef FirstSeparator, |
| StringRef Separator) { |
| SmallString<128> Buffer; |
| llvm::raw_svector_ostream OS(Buffer); |
| StringRef Sep = FirstSeparator; |
| for (StringRef Part : Parts) { |
| OS << Sep << Part; |
| Sep = Separator; |
| } |
| return OS.str().str(); |
| } |
| |
| std::string |
| OpenMPIRBuilder::createPlatformSpecificName(ArrayRef<StringRef> Parts) const { |
| return OpenMPIRBuilder::getNameWithSeparators(Parts, Config.firstSeparator(), |
| Config.separator()); |
| } |
| |
| GlobalVariable * |
| OpenMPIRBuilder::getOrCreateInternalVariable(Type *Ty, const StringRef &Name, |
| unsigned AddressSpace) { |
| auto &Elem = *InternalVars.try_emplace(Name, nullptr).first; |
| if (Elem.second) { |
| assert(cast<PointerType>(Elem.second->getType()) |
| ->isOpaqueOrPointeeTypeMatches(Ty) && |
| "OMP internal variable has different type than requested"); |
| } else { |
| // TODO: investigate the appropriate linkage type used for the global |
| // variable for possibly changing that to internal or private, or maybe |
| // create different versions of the function for different OMP internal |
| // variables. |
| Elem.second = new GlobalVariable( |
| M, Ty, /*IsConstant=*/false, GlobalValue::CommonLinkage, |
| Constant::getNullValue(Ty), Elem.first(), |
| /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal, AddressSpace); |
| } |
| |
| return cast<GlobalVariable>(&*Elem.second); |
| } |
| |
| Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) { |
| std::string Prefix = Twine("gomp_critical_user_", CriticalName).str(); |
| std::string Name = getNameWithSeparators({Prefix, "var"}, ".", "."); |
| return getOrCreateInternalVariable(KmpCriticalNameTy, Name); |
| } |
| |
| GlobalVariable * |
| OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl<uint64_t> &Mappings, |
| std::string VarName) { |
| llvm::Constant *MaptypesArrayInit = |
| llvm::ConstantDataArray::get(M.getContext(), Mappings); |
| auto *MaptypesArrayGlobal = new llvm::GlobalVariable( |
| M, MaptypesArrayInit->getType(), |
| /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit, |
| VarName); |
| MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
| return MaptypesArrayGlobal; |
| } |
| |
| void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc, |
| InsertPointTy AllocaIP, |
| unsigned NumOperands, |
| struct MapperAllocas &MapperAllocas) { |
| if (!updateToLocation(Loc)) |
| return; |
| |
| auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands); |
| auto *ArrI64Ty = ArrayType::get(Int64, NumOperands); |
| Builder.restoreIP(AllocaIP); |
| AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI8PtrTy); |
| AllocaInst *Args = Builder.CreateAlloca(ArrI8PtrTy); |
| AllocaInst *ArgSizes = Builder.CreateAlloca(ArrI64Ty); |
| Builder.restoreIP(Loc.IP); |
| MapperAllocas.ArgsBase = ArgsBase; |
| MapperAllocas.Args = Args; |
| MapperAllocas.ArgSizes = ArgSizes; |
| } |
| |
| void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc, |
| Function *MapperFunc, Value *SrcLocInfo, |
| Value *MaptypesArg, Value *MapnamesArg, |
| struct MapperAllocas &MapperAllocas, |
| int64_t DeviceID, unsigned NumOperands) { |
| if (!updateToLocation(Loc)) |
| return; |
| |
| auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands); |
| auto *ArrI64Ty = ArrayType::get(Int64, NumOperands); |
| Value *ArgsBaseGEP = |
| Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.ArgsBase, |
| {Builder.getInt32(0), Builder.getInt32(0)}); |
| Value *ArgsGEP = |
| Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.Args, |
| {Builder.getInt32(0), Builder.getInt32(0)}); |
| Value *ArgSizesGEP = |
| Builder.CreateInBoundsGEP(ArrI64Ty, MapperAllocas.ArgSizes, |
| {Builder.getInt32(0), Builder.getInt32(0)}); |
| Value *NullPtr = Constant::getNullValue(Int8Ptr->getPointerTo()); |
| Builder.CreateCall(MapperFunc, |
| {SrcLocInfo, Builder.getInt64(DeviceID), |
| Builder.getInt32(NumOperands), ArgsBaseGEP, ArgsGEP, |
| ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr}); |
| } |
| |
| void OpenMPIRBuilder::emitOffloadingArraysArgument(IRBuilderBase &Builder, |
| TargetDataRTArgs &RTArgs, |
| TargetDataInfo &Info, |
| bool EmitDebug, |
| bool ForEndCall) { |
| assert((!ForEndCall || Info.separateBeginEndCalls()) && |
| "expected region end call to runtime only when end call is separate"); |
| auto VoidPtrTy = Type::getInt8PtrTy(M.getContext()); |
| auto VoidPtrPtrTy = VoidPtrTy->getPointerTo(0); |
| auto Int64Ty = Type::getInt64Ty(M.getContext()); |
| auto Int64PtrTy = Type::getInt64PtrTy(M.getContext()); |
| |
| if (!Info.NumberOfPtrs) { |
| RTArgs.BasePointersArray = ConstantPointerNull::get(VoidPtrPtrTy); |
| RTArgs.PointersArray = ConstantPointerNull::get(VoidPtrPtrTy); |
| RTArgs.SizesArray = ConstantPointerNull::get(Int64PtrTy); |
| RTArgs.MapTypesArray = ConstantPointerNull::get(Int64PtrTy); |
| RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy); |
| RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy); |
| return; |
| } |
| |
| RTArgs.BasePointersArray = Builder.CreateConstInBoundsGEP2_32( |
| ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), |
| Info.RTArgs.BasePointersArray, |
| /*Idx0=*/0, /*Idx1=*/0); |
| RTArgs.PointersArray = Builder.CreateConstInBoundsGEP2_32( |
| ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray, |
| /*Idx0=*/0, |
| /*Idx1=*/0); |
| RTArgs.SizesArray = Builder.CreateConstInBoundsGEP2_32( |
| ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray, |
| /*Idx0=*/0, /*Idx1=*/0); |
| RTArgs.MapTypesArray = Builder.CreateConstInBoundsGEP2_32( |
| ArrayType::get(Int64Ty, Info.NumberOfPtrs), |
| ForEndCall && Info.RTArgs.MapTypesArrayEnd ? Info.RTArgs.MapTypesArrayEnd |
| : Info.RTArgs.MapTypesArray, |
| /*Idx0=*/0, |
| /*Idx1=*/0); |
| |
| // Only emit the mapper information arrays if debug information is |
| // requested. |
| if (!EmitDebug) |
| RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy); |
| else |
| RTArgs.MapNamesArray = Builder.CreateConstInBoundsGEP2_32( |
| ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.MapNamesArray, |
| /*Idx0=*/0, |
| /*Idx1=*/0); |
| // If there is no user-defined mapper, set the mapper array to nullptr to |
| // avoid an unnecessary data privatization |
| if (!Info.HasMapper) |
| RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy); |
| else |
| RTArgs.MappersArray = |
| Builder.CreatePointerCast(Info.RTArgs.MappersArray, VoidPtrPtrTy); |
| } |
| |
| bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic( |
| const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) { |
| assert(!(AO == AtomicOrdering::NotAtomic || |
| AO == llvm::AtomicOrdering::Unordered) && |
| "Unexpected Atomic Ordering."); |
| |
| bool Flush = false; |
| llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic; |
| |
| switch (AK) { |
| case Read: |
| if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease || |
| AO == AtomicOrdering::SequentiallyConsistent) { |
| FlushAO = AtomicOrdering::Acquire; |
| Flush = true; |
| } |
| break; |
| case Write: |
| case Compare: |
| case Update: |
| if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease || |
| AO == AtomicOrdering::SequentiallyConsistent) { |
| FlushAO = AtomicOrdering::Release; |
| Flush = true; |
| } |
| break; |
| case Capture: |
| switch (AO) { |
| case AtomicOrdering::Acquire: |
| FlushAO = AtomicOrdering::Acquire; |
| Flush = true; |
| break; |
| case AtomicOrdering::Release: |
| FlushAO = AtomicOrdering::Release; |
| Flush = true; |
| break; |
| case AtomicOrdering::AcquireRelease: |
| case AtomicOrdering::SequentiallyConsistent: |
| FlushAO = AtomicOrdering::AcquireRelease; |
| Flush = true; |
| break; |
| default: |
| // do nothing - leave silently. |
| break; |
| } |
| } |
| |
| if (Flush) { |
| // Currently Flush RT call still doesn't take memory_ordering, so for when |
| // that happens, this tries to do the resolution of which atomic ordering |
| // to use with but issue the flush call |
| // TODO: pass `FlushAO` after memory ordering support is added |
| (void)FlushAO; |
| emitFlush(Loc); |
| } |
| |
| // for AO == AtomicOrdering::Monotonic and all other case combinations |
| // do nothing |
| return Flush; |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc, |
| AtomicOpValue &X, AtomicOpValue &V, |
| AtomicOrdering AO) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Type *XTy = X.Var->getType(); |
| assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); |
| Type *XElemTy = X.ElemTy; |
| assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || |
| XElemTy->isPointerTy()) && |
| "OMP atomic read expected a scalar type"); |
| |
| Value *XRead = nullptr; |
| |
| if (XElemTy->isIntegerTy()) { |
| LoadInst *XLD = |
| Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read"); |
| XLD->setAtomic(AO); |
| XRead = cast<Value>(XLD); |
| } else { |
| // We need to bitcast and perform atomic op as integer |
| unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace(); |
| IntegerType *IntCastTy = |
| IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); |
| Value *XBCast = Builder.CreateBitCast( |
| X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.src.int.cast"); |
| LoadInst *XLoad = |
| Builder.CreateLoad(IntCastTy, XBCast, X.IsVolatile, "omp.atomic.load"); |
| XLoad->setAtomic(AO); |
| if (XElemTy->isFloatingPointTy()) { |
| XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast"); |
| } else { |
| XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast"); |
| } |
| } |
| checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read); |
| Builder.CreateStore(XRead, V.Var, V.IsVolatile); |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy |
| OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc, |
| AtomicOpValue &X, Value *Expr, |
| AtomicOrdering AO) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| Type *XTy = X.Var->getType(); |
| assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"); |
| Type *XElemTy = X.ElemTy; |
| assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || |
| XElemTy->isPointerTy()) && |
| "OMP atomic write expected a scalar type"); |
| |
| if (XElemTy->isIntegerTy()) { |
| StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile); |
| XSt->setAtomic(AO); |
| } else { |
| // We need to bitcast and perform atomic op as integers |
| unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace(); |
| IntegerType *IntCastTy = |
| IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); |
| Value *XBCast = Builder.CreateBitCast( |
| X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.dst.int.cast"); |
| Value *ExprCast = |
| Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast"); |
| StoreInst *XSt = Builder.CreateStore(ExprCast, XBCast, X.IsVolatile); |
| XSt->setAtomic(AO); |
| } |
| |
| checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write); |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate( |
| const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X, |
| Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, |
| AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) { |
| assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous"); |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| LLVM_DEBUG({ |
| Type *XTy = X.Var->getType(); |
| assert(XTy->isPointerTy() && |
| "OMP Atomic expects a pointer to target memory"); |
| Type *XElemTy = X.ElemTy; |
| assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || |
| XElemTy->isPointerTy()) && |
| "OMP atomic update expected a scalar type"); |
| assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && |
| (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && |
| "OpenMP atomic does not support LT or GT operations"); |
| }); |
| |
| emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, RMWOp, UpdateOp, |
| X.IsVolatile, IsXBinopExpr); |
| checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update); |
| return Builder.saveIP(); |
| } |
| |
| // FIXME: Duplicating AtomicExpand |
| Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2, |
| AtomicRMWInst::BinOp RMWOp) { |
| switch (RMWOp) { |
| case AtomicRMWInst::Add: |
| return Builder.CreateAdd(Src1, Src2); |
| case AtomicRMWInst::Sub: |
| return Builder.CreateSub(Src1, Src2); |
| case AtomicRMWInst::And: |
| return Builder.CreateAnd(Src1, Src2); |
| case AtomicRMWInst::Nand: |
| return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2)); |
| case AtomicRMWInst::Or: |
| return Builder.CreateOr(Src1, Src2); |
| case AtomicRMWInst::Xor: |
| return Builder.CreateXor(Src1, Src2); |
| case AtomicRMWInst::Xchg: |
| case AtomicRMWInst::FAdd: |
| case AtomicRMWInst::FSub: |
| case AtomicRMWInst::BAD_BINOP: |
| case AtomicRMWInst::Max: |
| case AtomicRMWInst::Min: |
| case AtomicRMWInst::UMax: |
| case AtomicRMWInst::UMin: |
| case AtomicRMWInst::FMax: |
| case AtomicRMWInst::FMin: |
| case AtomicRMWInst::UIncWrap: |
| case AtomicRMWInst::UDecWrap: |
| llvm_unreachable("Unsupported atomic update operation"); |
| } |
| llvm_unreachable("Unsupported atomic update operation"); |
| } |
| |
| std::pair<Value *, Value *> OpenMPIRBuilder::emitAtomicUpdate( |
| InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr, |
| AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp, |
| AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) { |
| // TODO: handle the case where XElemTy is not byte-sized or not a power of 2 |
| // or a complex datatype. |
| bool emitRMWOp = false; |
| switch (RMWOp) { |
| case AtomicRMWInst::Add: |
| case AtomicRMWInst::And: |
| case AtomicRMWInst::Nand: |
| case AtomicRMWInst::Or: |
| case AtomicRMWInst::Xor: |
| case AtomicRMWInst::Xchg: |
| emitRMWOp = XElemTy; |
| break; |
| case AtomicRMWInst::Sub: |
| emitRMWOp = (IsXBinopExpr && XElemTy); |
| break; |
| default: |
| emitRMWOp = false; |
| } |
| emitRMWOp &= XElemTy->isIntegerTy(); |
| |
| std::pair<Value *, Value *> Res; |
| if (emitRMWOp) { |
| Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO); |
| // not needed except in case of postfix captures. Generate anyway for |
| // consistency with the else part. Will be removed with any DCE pass. |
| // AtomicRMWInst::Xchg does not have a coressponding instruction. |
| if (RMWOp == AtomicRMWInst::Xchg) |
| Res.second = Res.first; |
| else |
| Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp); |
| } else { |
| unsigned Addrspace = cast<PointerType>(X->getType())->getAddressSpace(); |
| IntegerType *IntCastTy = |
| IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); |
| Value *XBCast = |
| Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace)); |
| LoadInst *OldVal = |
| Builder.CreateLoad(IntCastTy, XBCast, X->getName() + ".atomic.load"); |
| OldVal->setAtomic(AO); |
| // CurBB |
| // | /---\ |
| // ContBB | |
| // | \---/ |
| // ExitBB |
| BasicBlock *CurBB = Builder.GetInsertBlock(); |
| Instruction *CurBBTI = CurBB->getTerminator(); |
| CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); |
| BasicBlock *ExitBB = |
| CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit"); |
| BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(), |
| X->getName() + ".atomic.cont"); |
| ContBB->getTerminator()->eraseFromParent(); |
| Builder.restoreIP(AllocaIP); |
| AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy); |
| NewAtomicAddr->setName(X->getName() + "x.new.val"); |
| Builder.SetInsertPoint(ContBB); |
| llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2); |
| PHI->addIncoming(OldVal, CurBB); |
| IntegerType *NewAtomicCastTy = |
| IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits()); |
| bool IsIntTy = XElemTy->isIntegerTy(); |
| Value *NewAtomicIntAddr = |
| (IsIntTy) |
| ? NewAtomicAddr |
| : Builder.CreateBitCast(NewAtomicAddr, |
| NewAtomicCastTy->getPointerTo(Addrspace)); |
| Value *OldExprVal = PHI; |
| if (!IsIntTy) { |
| if (XElemTy->isFloatingPointTy()) { |
| OldExprVal = Builder.CreateBitCast(PHI, XElemTy, |
| X->getName() + ".atomic.fltCast"); |
| } else { |
| OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy, |
| X->getName() + ".atomic.ptrCast"); |
| } |
| } |
| |
| Value *Upd = UpdateOp(OldExprVal, Builder); |
| Builder.CreateStore(Upd, NewAtomicAddr); |
| LoadInst *DesiredVal = Builder.CreateLoad(IntCastTy, NewAtomicIntAddr); |
| Value *XAddr = |
| (IsIntTy) |
| ? X |
| : Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace)); |
| AtomicOrdering Failure = |
| llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); |
| AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg( |
| XAddr, PHI, DesiredVal, llvm::MaybeAlign(), AO, Failure); |
| Result->setVolatile(VolatileX); |
| Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0); |
| Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1); |
| PHI->addIncoming(PreviousVal, Builder.GetInsertBlock()); |
| Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB); |
| |
| Res.first = OldExprVal; |
| Res.second = Upd; |
| |
| // set Insertion point in exit block |
| if (UnreachableInst *ExitTI = |
| dyn_cast<UnreachableInst>(ExitBB->getTerminator())) { |
| CurBBTI->eraseFromParent(); |
| Builder.SetInsertPoint(ExitBB); |
| } else { |
| Builder.SetInsertPoint(ExitTI); |
| } |
| } |
| |
| return Res; |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture( |
| const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X, |
| AtomicOpValue &V, Value *Expr, AtomicOrdering AO, |
| AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp, |
| bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) { |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| LLVM_DEBUG({ |
| Type *XTy = X.Var->getType(); |
| assert(XTy->isPointerTy() && |
| "OMP Atomic expects a pointer to target memory"); |
| Type *XElemTy = X.ElemTy; |
| assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || |
| XElemTy->isPointerTy()) && |
| "OMP atomic capture expected a scalar type"); |
| assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && |
| "OpenMP atomic does not support LT or GT operations"); |
| }); |
| |
| // If UpdateExpr is 'x' updated with some `expr` not based on 'x', |
| // 'x' is simply atomically rewritten with 'expr'. |
| AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg); |
| std::pair<Value *, Value *> Result = |
| emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, AtomicOp, UpdateOp, |
| X.IsVolatile, IsXBinopExpr); |
| |
| Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second); |
| Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile); |
| |
| checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture); |
| return Builder.saveIP(); |
| } |
| |
| OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare( |
| const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V, |
| AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO, |
| omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate, |
| bool IsFailOnly) { |
| |
| if (!updateToLocation(Loc)) |
| return Loc.IP; |
| |
| assert(X.Var->getType()->isPointerTy() && |
| "OMP atomic expects a pointer to target memory"); |
| // compare capture |
| if (V.Var) { |
| assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type"); |
| assert(V.ElemTy == X.ElemTy && "x and v must be of same type"); |
| } |
| |
| bool IsInteger = E->getType()->isIntegerTy(); |
| |
| if (Op == OMPAtomicCompareOp::EQ) { |
| AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(AO); |
| AtomicCmpXchgInst *Result = nullptr; |
| if (!IsInteger) { |
| unsigned Addrspace = |
| cast<PointerType>(X.Var->getType())->getAddressSpace(); |
| IntegerType *IntCastTy = |
| IntegerType::get(M.getContext(), X.ElemTy->getScalarSizeInBits()); |
| Value *XBCast = |
| Builder.CreateBitCast(X.Var, IntCastTy->getPointerTo(Addrspace)); |
| Value *EBCast = Builder.CreateBitCast(E, IntCastTy); |
| Value *DBCast = Builder.CreateBitCast(D, IntCastTy); |
| Result = Builder.CreateAtomicCmpXchg(XBCast, EBCast, DBCast, MaybeAlign(), |
| AO, Failure); |
| } else { |
| Result = |
| Builder.CreateAtomicCmpXchg(X.Var, E, D, MaybeAlign(), AO, Failure); |
| } |
| |
| if (V.Var) { |
| Value *OldValue = Builder.CreateExtractValue(Result, /*Idxs=*/0); |
| if (!IsInteger) |
| OldValue = Builder.CreateBitCast(OldValue, X.ElemTy); |
| assert(OldValue->getType() == V.ElemTy && |
| "OldValue and V must be of same type"); |
| if (IsPostfixUpdate) { |
| Builder.CreateStore(OldValue, V.Var, V.IsVolatile); |
| } else { |
| Value *SuccessOrFail = Builder.CreateExtractValue(Result, /*Idxs=*/1); |
| if (IsFailOnly) { |
| // CurBB---- |
| // | | |
| // v | |
| // ContBB | |
| // | | |
| // v | |
| // ExitBB <- |
| // |
| // where ContBB only contains the store of old value to 'v'. |
| BasicBlock *CurBB = Builder.GetInsertBlock(); |
| Instruction *CurBBTI = CurBB->getTerminator(); |
| CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable(); |
| BasicBlock *ExitBB = CurBB->splitBasicBlock( |
| CurBBTI, X.Var->getName() + ".atomic.exit"); |
| BasicBlock *ContBB = CurBB->splitBasicBlock( |
| CurBB->getTerminator(), X.Var->getName() + ".atomic.cont"); |
| ContBB->getTerminator()->eraseFromParent(); |
| CurBB->getTerminator()->eraseFromParent(); |
| |
| Builder.CreateCondBr(SuccessOrFail, ExitBB, ContBB); |
| |
| Builder.SetInsertPoint(ContBB); |
| Builder.CreateStore(OldValue, V.Var); |
| Builder.CreateBr(ExitBB); |
| |
| if (UnreachableInst *ExitTI = |
| dyn_cast<UnreachableInst>(ExitBB->getTerminator())) { |
| CurBBTI->eraseFromParent(); |
| Builder.SetInsertPoint(ExitBB); |
| } else { |
| Builder.SetInsertPoint(ExitTI); |
| } |
| } else { |
| Value *CapturedValue = |
| Builder.CreateSelect(SuccessOrFail, E, OldValue); |
| Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile); |
| } |
| } |
| } |
| // The comparison result has to be stored. |
| if (R.Var) { |
| assert(R.Var->getType()->isPointerTy() && |
| "r.var must be of pointer type"); |
| assert(R.ElemTy->isIntegerTy() && "r must be of integral type"); |
| |
| Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1); |
| Value *ResultCast = R.IsSigned |
| ? Builder.CreateSExt(SuccessFailureVal, R.ElemTy) |
| : Builder.CreateZExt(SuccessFailureVal, R.ElemTy); |
| Builder.CreateStore(ResultCast, R.Var, R.IsVolatile); |
| } |
| } else { |
| assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) && |
| "Op should be either max or min at this point"); |
| assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is =="); |
| |
| // Reverse the ordop as the OpenMP forms are different from LLVM forms. |
| // Let's take max as example. |
| // OpenMP form: |
| // x = x > expr ? expr : x; |
| // LLVM form: |
| // *ptr = *ptr > val ? *ptr : val; |
| // We need to transform to LLVM form. |
| // x = x <= expr ? x : expr; |
| AtomicRMWInst::BinOp NewOp; |
| if (IsXBinopExpr) { |
| if (IsInteger) { |
| if (X.IsSigned) |
| NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min |
| : AtomicRMWInst::Max; |
| else |
| NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin |
| : AtomicRMWInst::UMax; |
| } else { |
| NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin |
| : AtomicRMWInst::FMax; |
| } |
| } else { |
| if (IsInteger) { |
| if (X.IsSigned) |
| NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max |
| : AtomicRMWInst::Min; |
| else |
| NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax |
| : AtomicRMWInst::UMin; |
| } else { |
| NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax |
| : AtomicRMWInst::FMin; |
| } |
| } |
| |
| AtomicRMWInst *OldValue = |
| Builder.CreateAtomicRMW(NewOp, X.Var, E, MaybeAlign(), AO); |
| if (V.Var) { |
| Value *CapturedValue = nullptr; |
| if (IsPostfixUpdate) { |
| CapturedValue = OldValue; |
| } else { |
| CmpInst::Predicate Pred; |
| switch (NewOp) { |
| case AtomicRMWInst::Max: |
| Pred = CmpInst::ICMP_SGT; |
| break; |
| case AtomicRMWInst::UMax: |
| Pred = CmpInst::ICMP_UGT; |
| break; |
| case AtomicRMWInst::FMax: |
| Pred = CmpInst::FCMP_OGT; |
| break; |
| case AtomicRMWInst::Min: |
| Pred = CmpInst::ICMP_SLT; |
| break; |
| case AtomicRMWInst::UMin: |
| Pred = CmpInst::ICMP_ULT; |
| break; |
| case AtomicRMWInst::FMin: |
| Pred = CmpInst::FCMP_OLT; |
| break; |
| default: |
| llvm_unreachable("unexpected comparison op"); |
| } |
| Value *NonAtomicCmp = Builder.CreateCmp(Pred, OldValue, E); |
| CapturedValue = Builder.CreateSelect(NonAtomicCmp, E, OldValue); |
| } |
| Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile); |
| } |
| } |
| |
| checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Compare); |
| |
| return Builder.saveIP(); |
| } |
| |
| GlobalVariable * |
| OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl<llvm::Constant *> &Names, |
| std::string VarName) { |
| llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get( |
| llvm::ArrayType::get( |
| llvm::Type::getInt8Ty(M.getContext())->getPointerTo(), Names.size()), |
| Names); |
| auto *MapNamesArrayGlobal = new llvm::GlobalVariable( |
| M, MapNamesArrayInit->getType(), |
| /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit, |
| VarName); |
| return MapNamesArrayGlobal; |
| } |
| |
| // Create all simple and struct types exposed by the runtime and remember |
| // the llvm::PointerTypes of them for easy access later. |
| void OpenMPIRBuilder::initializeTypes(Module &M) { |
| LLVMContext &Ctx = M.getContext(); |
| StructType *T; |
| #define OMP_TYPE(VarName, InitValue) VarName = InitValue; |
| #define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize) \ |
| VarName##Ty = ArrayType::get(ElemTy, ArraySize); \ |
| VarName##PtrTy = PointerType::getUnqual(VarName##Ty); |
| #define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...) \ |
| VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg); \ |
| VarName##Ptr = PointerType::getUnqual(VarName); |
| #define OMP_STRUCT_TYPE(VarName, StructName, Packed, ...) \ |
| T = StructType::getTypeByName(Ctx, StructName); \ |
| if (!T) \ |
| T = StructType::create(Ctx, {__VA_ARGS__}, StructName, Packed); \ |
| VarName = T; \ |
| VarName##Ptr = PointerType::getUnqual(T); |
| #include "llvm/Frontend/OpenMP/OMPKinds.def" |
| } |
| |
| void OpenMPIRBuilder::OutlineInfo::collectBlocks( |
| SmallPtrSetImpl<BasicBlock *> &BlockSet, |
| SmallVectorImpl<BasicBlock *> &BlockVector) { |
| SmallVector<BasicBlock *, 32> Worklist; |
| BlockSet.insert(EntryBB); |
| BlockSet.insert(ExitBB); |
| |
| Worklist.push_back(EntryBB); |
| while (!Worklist.empty()) { |
| BasicBlock *BB = Worklist.pop_back_val(); |
| BlockVector.push_back(BB); |
| for (BasicBlock *SuccBB : successors(BB)) |
| if (BlockSet.insert(SuccBB).second) |
| Worklist.push_back(SuccBB); |
| } |
| } |
| |
| void OpenMPIRBuilder::createOffloadEntry(Constant *ID, Constant *Addr, |
| uint64_t Size, int32_t Flags, |
| GlobalValue::LinkageTypes) { |
| if (!Config.isTargetCodegen()) { |
| emitOffloadingEntry(ID, Addr->getName(), Size, Flags); |
| return; |
| } |
| // TODO: Add support for global variables on the device after declare target |
| // support. |
| Function *Fn = dyn_cast<Function>(Addr); |
| if (!Fn) |
| return; |
| |
| Module &M = *(Fn->getParent()); |
| LLVMContext &Ctx = M.getContext(); |
| |
| // Get "nvvm.annotations" metadata node. |
| NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); |
| |
| Metadata *MDVals[] = { |
| ConstantAsMetadata::get(Fn), MDString::get(Ctx, "kernel"), |
| ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Ctx), 1))}; |
| // Append metadata to nvvm.annotations. |
| MD->addOperand(MDNode::get(Ctx, MDVals)); |
| |
| // Add a function attribute for the kernel. |
| Fn->addFnAttr(Attribute::get(Ctx, "kernel")); |
| } |
| |
| // We only generate metadata for function that contain target regions. |
| void OpenMPIRBuilder::createOffloadEntriesAndInfoMetadata( |
| OffloadEntriesInfoManager &OffloadEntriesInfoManager, |
| EmitMetadataErrorReportFunctionTy &ErrorFn) { |
| |
| // If there are no entries, we don't need to do anything. |
| if (OffloadEntriesInfoManager.empty()) |
| return; |
| |
| LLVMContext &C = M.getContext(); |
| SmallVector<std::pair<const OffloadEntriesInfoManager::OffloadEntryInfo *, |
| TargetRegionEntryInfo>, |
| 16> |
| OrderedEntries(OffloadEntriesInfoManager.size()); |
| |
| // Auxiliary methods to create metadata values and strings. |
| auto &&GetMDInt = [this](unsigned V) { |
| return ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), V)); |
| }; |
| |
| auto &&GetMDString = [&C](StringRef V) { return MDString::get(C, V); }; |
| |
| // Create the offloading info metadata node. |
| NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); |
| auto &&TargetRegionMetadataEmitter = |
| [&C, MD, &OrderedEntries, &GetMDInt, &GetMDString]( |
| const TargetRegionEntryInfo &EntryInfo, |
| const OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion &E) { |
| // Generate metadata for target regions. Each entry of this metadata |
| // contains: |
| // - Entry 0 -> Kind of this type of metadata (0). |
| // - Entry 1 -> Device ID of the file where the entry was identified. |
| // - Entry 2 -> File ID of the file where the entry was identified. |
| // - Entry 3 -> Mangled name of the function where the entry was |
| // identified. |
| // - Entry 4 -> Line in the file where the entry was identified. |
| // - Entry 5 -> Count of regions at this DeviceID/FilesID/Line. |
| // - Entry 6 -> Order the entry was created. |
| // The first element of the metadata node is the kind. |
| Metadata *Ops[] = { |
| GetMDInt(E.getKind()), GetMDInt(EntryInfo.DeviceID), |
| GetMDInt(EntryInfo.FileID), GetMDString(EntryInfo.ParentName), |
| GetMDInt(EntryInfo.Line), GetMDInt(EntryInfo.Count), |
| GetMDInt(E.getOrder())}; |
| |
| // Save this entry in the right position of the ordered entries array. |
| OrderedEntries[E.getOrder()] = std::make_pair(&E, EntryInfo); |
| |
| // Add metadata to the named metadata node. |
| MD->addOperand(MDNode::get(C, Ops)); |
| }; |
| |
| OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo( |
| TargetRegionMetadataEmitter); |
| |
| // Create function that emits metadata for each device global variable entry; |
| auto &&DeviceGlobalVarMetadataEmitter = |
| [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD]( |
| StringRef MangledName, |
| const OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar &E) { |
| // Generate metadata for global variables. Each entry of this metadata |
| // contains: |
| // - Entry 0 -> Kind of this type of metadata (1). |
| // - Entry 1 -> Mangled name of the variable. |
| // - Entry 2 -> Declare target kind. |
| // - Entry 3 -> Order the entry was created. |
| // The first element of the metadata node is the kind. |
| Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDString(MangledName), |
| GetMDInt(E.getFlags()), GetMDInt(E.getOrder())}; |
| |
| // Save this entry in the right position of the ordered entries array. |
| TargetRegionEntryInfo varInfo(MangledName, 0, 0, 0); |
| OrderedEntries[E.getOrder()] = std::make_pair(&E, varInfo); |
| |
| // Add metadata to the named metadata node. |
| MD->addOperand(MDNode::get(C, Ops)); |
| }; |
| |
| OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo( |
| DeviceGlobalVarMetadataEmitter); |
| |
| for (const auto &E : OrderedEntries) { |
| assert(E.first && "All ordered entries must exist!"); |
| if (const auto *CE = |
| dyn_cast<OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion>( |
| E.first)) { |
| if (!CE->getID() || !CE->getAddress()) { |
| // Do not blame the entry if the parent funtion is not emitted. |
| TargetRegionEntryInfo EntryInfo = E.second; |
| StringRef FnName = EntryInfo.ParentName; |
| if (!M.getNamedValue(FnName)) |
| continue; |
| ErrorFn(EMIT_MD_TARGET_REGION_ERROR, EntryInfo); |
| continue; |
| } |
| createOffloadEntry(CE->getID(), CE->getAddress(), |
| /*Size=*/0, CE->getFlags(), |
| GlobalValue::WeakAnyLinkage); |
| } else if (const auto *CE = dyn_cast< |
| OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar>( |
| E.first)) { |
| OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags = |
| static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>( |
| CE->getFlags()); |
| switch (Flags) { |
| case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo: { |
| if (Config.isEmbedded() && Config.hasRequiresUnifiedSharedMemory()) |
| continue; |
| if (!CE->getAddress()) { |
| ErrorFn(EMIT_MD_DECLARE_TARGET_ERROR, E.second); |
| continue; |
| } |
| // The vaiable has no definition - no need to add the entry. |
| if (CE->getVarSize() == 0) |
| continue; |
| break; |
| } |
| case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink: |
| assert(((Config.isEmbedded() && !CE->getAddress()) || |
| (!Config.isEmbedded() && CE->getAddress())) && |
| "Declaret target link address is set."); |
| if (Config.isEmbedded()) |
| continue; |
| if (!CE->getAddress()) { |
| ErrorFn(EMIT_MD_GLOBAL_VAR_LINK_ERROR, TargetRegionEntryInfo()); |
| continue; |
| } |
| break; |
| } |
| |
| // Hidden or internal symbols on the device are not externally visible. |
| // We should not attempt to register them by creating an offloading |
| // entry. |
| if (auto *GV = dyn_cast<GlobalValue>(CE->getAddress())) |
| if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) |
| continue; |
| |
| createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(), |
| Flags, CE->getLinkage()); |
| |
| } else { |
| llvm_unreachable("Unsupported entry kind."); |
| } |
| } |
| } |
| |
| void TargetRegionEntryInfo::getTargetRegionEntryFnName( |
| SmallVectorImpl<char> &Name, StringRef ParentName, unsigned DeviceID, |
| unsigned FileID, unsigned Line, unsigned Count) { |
| raw_svector_ostream OS(Name); |
| OS << "__omp_offloading" << llvm::format("_%x", DeviceID) |
| << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; |
| if (Count) |
| OS << "_" << Count; |
| } |
| |
| void OffloadEntriesInfoManager::getTargetRegionEntryFnName( |
| SmallVectorImpl<char> &Name, const TargetRegionEntryInfo &EntryInfo) { |
| unsigned NewCount = getTargetRegionEntryInfoCount(EntryInfo); |
| TargetRegionEntryInfo::getTargetRegionEntryFnName( |
| Name, EntryInfo.ParentName, EntryInfo.DeviceID, EntryInfo.FileID, |
| EntryInfo.Line, NewCount); |
| } |
| |
| /// Loads all the offload entries information from the host IR |
| /// metadata. |
| void OpenMPIRBuilder::loadOffloadInfoMetadata( |
| Module &M, OffloadEntriesInfoManager &OffloadEntriesInfoManager) { |
| // If we are in target mode, load the metadata from the host IR. This code has |
| // to match the metadata creation in createOffloadEntriesAndInfoMetadata(). |
| |
| NamedMDNode *MD = M.getNamedMetadata(ompOffloadInfoName); |
| if (!MD) |
| return; |
| |
| for (MDNode *MN : MD->operands()) { |
| auto &&GetMDInt = [MN](unsigned Idx) { |
| auto *V = cast<ConstantAsMetadata>(MN->getOperand(Idx)); |
| return cast<ConstantInt>(V->getValue())->getZExtValue(); |
| }; |
| |
| auto &&GetMDString = [MN](unsigned Idx) { |
| auto *V = cast<MDString>(MN->getOperand(Idx)); |
| return V->getString(); |
| }; |
| |
| switch (GetMDInt(0)) { |
| default: |
| llvm_unreachable("Unexpected metadata!"); |
| break; |
| case OffloadEntriesInfoManager::OffloadEntryInfo:: |
| OffloadingEntryInfoTargetRegion: { |
| TargetRegionEntryInfo EntryInfo(/*ParentName=*/GetMDString(3), |
| /*DeviceID=*/GetMDInt(1), |
| /*FileID=*/GetMDInt(2), |
| /*Line=*/GetMDInt(4), |
| /*Count=*/GetMDInt(5)); |
| OffloadEntriesInfoManager.initializeTargetRegionEntryInfo( |
| EntryInfo, /*Order=*/GetMDInt(6)); |
| break; |
| } |
| case OffloadEntriesInfoManager::OffloadEntryInfo:: |
| OffloadingEntryInfoDeviceGlobalVar: |
| OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo( |
| /*MangledName=*/GetMDString(1), |
| static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>( |
| /*Flags=*/GetMDInt(2)), |
| /*Order=*/GetMDInt(3)); |
| break; |
| } |
| } |
| } |
| |
| bool OffloadEntriesInfoManager::empty() const { |
| return OffloadEntriesTargetRegion.empty() && |
| OffloadEntriesDeviceGlobalVar.empty(); |
| } |
| |
| unsigned OffloadEntriesInfoManager::getTargetRegionEntryInfoCount( |
| const TargetRegionEntryInfo &EntryInfo) const { |
| auto It = OffloadEntriesTargetRegionCount.find( |
| getTargetRegionEntryCountKey(EntryInfo)); |
| if (It == OffloadEntriesTargetRegionCount.end()) |
| return 0; |
| return It->second; |
| } |
| |
| void OffloadEntriesInfoManager::incrementTargetRegionEntryInfoCount( |
| const TargetRegionEntryInfo &EntryInfo) { |
| OffloadEntriesTargetRegionCount[getTargetRegionEntryCountKey(EntryInfo)] = |
| EntryInfo.Count + 1; |
| } |
| |
| /// Initialize target region entry. |
| void OffloadEntriesInfoManager::initializeTargetRegionEntryInfo( |
| const TargetRegionEntryInfo &EntryInfo, unsigned Order) { |
| OffloadEntriesTargetRegion[EntryInfo] = |
| OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, |
| OMPTargetRegionEntryTargetRegion); |
| ++OffloadingEntriesNum; |
| } |
| |
| void OffloadEntriesInfoManager::registerTargetRegionEntryInfo( |
| TargetRegionEntryInfo EntryInfo, Constant *Addr, Constant *ID, |
| OMPTargetRegionEntryKind Flags) { |
| assert(EntryInfo.Count == 0 && "expected default EntryInfo"); |
| |
| // Update the EntryInfo with the next available count for this location. |
| EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo); |
| |
| // If we are emitting code for a target, the entry is already initialized, |
| // only has to be registered. |
| if (Config.isEmbedded()) { |
| // This could happen if the device compilation is invoked standalone. |
| if (!hasTargetRegionEntryInfo(EntryInfo)) { |
| return; |
| } |
| auto &Entry = OffloadEntriesTargetRegion[EntryInfo]; |
| Entry.setAddress(Addr); |
| Entry.setID(ID); |
| Entry.setFlags(Flags); |
| } else { |
| if (Flags == OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion && |
| hasTargetRegionEntryInfo(EntryInfo, /*IgnoreAddressId*/ true)) |
| return; |
| assert(!hasTargetRegionEntryInfo(EntryInfo) && |
| "Target region entry already registered!"); |
| OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags); |
| OffloadEntriesTargetRegion[EntryInfo] = Entry; |
| ++OffloadingEntriesNum; |
| } |
| incrementTargetRegionEntryInfoCount(EntryInfo); |
| } |
| |
| bool OffloadEntriesInfoManager::hasTargetRegionEntryInfo( |
| TargetRegionEntryInfo EntryInfo, bool IgnoreAddressId) const { |
| |
| // Update the EntryInfo with the next available count for this location. |
| EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo); |
| |
| auto It = OffloadEntriesTargetRegion.find(EntryInfo); |
| if (It == OffloadEntriesTargetRegion.end()) { |
| return false; |
| } |
| // Fail if this entry is already registered. |
| if (!IgnoreAddressId && (It->second.getAddress() || It->second.getID())) |
| return false; |
| return true; |
| } |
| |
| void OffloadEntriesInfoManager::actOnTargetRegionEntriesInfo( |
| const OffloadTargetRegionEntryInfoActTy &Action) { |
| // Scan all target region entries and perform the provided action. |
| for (const auto &It : OffloadEntriesTargetRegion) { |
| Action(It.first, It.second); |
| } |
| } |
| |
| void OffloadEntriesInfoManager::initializeDeviceGlobalVarEntryInfo( |
| StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) { |
| OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags); |
| ++OffloadingEntriesNum; |
| } |
| |
| void OffloadEntriesInfoManager::registerDeviceGlobalVarEntryInfo( |
| StringRef VarName, Constant *Addr, int64_t VarSize, |
| OMPTargetGlobalVarEntryKind Flags, GlobalValue::LinkageTypes Linkage) { |
| if (Config.isEmbedded()) { |
| // This could happen if the device compilation is invoked standalone. |
| if (!hasDeviceGlobalVarEntryInfo(VarName)) |
| return; |
| auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; |
| if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) { |
| if (Entry.getVarSize() == 0) { |
| Entry.setVarSize(VarSize); |
| Entry.setLinkage(Linkage); |
| } |
| return; |
| } |
| Entry.setVarSize(VarSize); |
| Entry.setLinkage(Linkage); |
| Entry.setAddress(Addr); |
| } else { |
| if (hasDeviceGlobalVarEntryInfo(VarName)) { |
| auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; |
| assert(Entry.isValid() && Entry.getFlags() == Flags && |
| "Entry not initialized!"); |
| if (Entry.getVarSize() == 0) { |
| Entry.setVarSize(VarSize); |
| Entry.setLinkage(Linkage); |
| } |
| return; |
| } |
| OffloadEntriesDeviceGlobalVar.try_emplace(VarName, OffloadingEntriesNum, |
| Addr, VarSize, Flags, Linkage); |
| ++OffloadingEntriesNum; |
| } |
| } |
| |
| void OffloadEntriesInfoManager::actOnDeviceGlobalVarEntriesInfo( |
| const OffloadDeviceGlobalVarEntryInfoActTy &Action) { |
| // Scan all target region entries and perform the provided action. |
| for (const auto &E : OffloadEntriesDeviceGlobalVar) |
| Action(E.getKey(), E.getValue()); |
| } |
| |
| void CanonicalLoopInfo::collectControlBlocks( |
| SmallVectorImpl<BasicBlock *> &BBs) { |
| // We only count those BBs as control block for which we do not need to |
| // reverse the CFG, i.e. not the loop body which can contain arbitrary control |
| // flow. For consistency, this also means we do not add the Body block, which |
| // is just the entry to the body code. |
| BBs.reserve(BBs.size() + 6); |
| BBs.append({getPreheader(), Header, Cond, Latch, Exit, getAfter()}); |
| } |
| |
| BasicBlock *CanonicalLoopInfo::getPreheader() const { |
| assert(isValid() && "Requires a valid canonical loop"); |
| for (BasicBlock *Pred : predecessors(Header)) { |
| if (Pred != Latch) |
| return Pred; |
| } |
| llvm_unreachable("Missing preheader"); |
| } |
| |
| void CanonicalLoopInfo::setTripCount(Value *TripCount) { |
| assert(isValid() && "Requires a valid canonical loop"); |
| |
| Instruction *CmpI = &getCond()->front(); |
| assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount"); |
| CmpI->setOperand(1, TripCount); |
| |
| #ifndef NDEBUG |
| assertOK(); |
| #endif |
| } |
| |
| void CanonicalLoopInfo::mapIndVar( |
| llvm::function_ref<Value *(Instruction *)> Updater) { |
| assert(isValid() && "Requires a valid canonical loop"); |
| |
| Instruction *OldIV = getIndVar(); |
| |
| // Record all uses excluding those introduced by the updater. Uses by the |
| // CanonicalLoopInfo itself to keep track of the number of iterations are |
| // excluded. |
| SmallVector<Use *> ReplacableUses; |
| for (Use &U : OldIV->uses()) { |
| auto *User = dyn_cast<Instruction>(U.getUser()); |
| if (!User) |
| continue; |
| if (User->getParent() == getCond()) |
| continue; |
| if (User->getParent() == getLatch()) |
| continue; |
| ReplacableUses.push_back(&U); |
| } |
| |
| // Run the updater that may introduce new uses |
| Value *NewIV = Updater(OldIV); |
| |
| // Replace the old uses with the value returned by the updater. |
| for (Use *U : ReplacableUses) |
| U->set(NewIV); |
| |
| #ifndef NDEBUG |
| assertOK(); |
| #endif |
| } |
| |
| void CanonicalLoopInfo::assertOK() const { |
| #ifndef NDEBUG |
| // No constraints if this object currently does not describe a loop. |
| if (!isValid()) |
| return; |
| |
| BasicBlock *Preheader = getPreheader(); |
| BasicBlock *Body = getBody(); |
| BasicBlock *After = getAfter(); |
| |
| // Verify standard control-flow we use for OpenMP loops. |
| assert(Preheader); |
| assert(isa<BranchInst>(Preheader->getTerminator()) && |
| "Preheader must terminate with unconditional branch"); |
| assert(Preheader->getSingleSuccessor() == Header && |
| "Preheader must jump to header"); |
| |
| assert(Header); |
| assert(isa<BranchInst>(Header->getTerminator()) && |
| "Header must terminate with unconditional branch"); |
| assert(Header->getSingleSuccessor() == Cond && |
| "Header must jump to exiting block"); |
| |
| assert(Cond); |
| assert(Cond->getSinglePredecessor() == Header && |
| "Exiting block only reachable from header"); |
| |
| assert(isa<BranchInst>(Cond->getTerminator()) && |
| "Exiting block must terminate with conditional branch"); |
| assert(size(successors(Cond)) == 2 && |
| "Exiting block must have two successors"); |
| assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body && |
| "Exiting block's first successor jump to the body"); |
| assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit && |
| "Exiting block's second successor must exit the loop"); |
| |
| assert(Body); |
| assert(Body->getSinglePredecessor() == Cond && |
| "Body only reachable from exiting block"); |
| assert(!isa<PHINode>(Body->front())); |
| |
| assert(Latch); |
| assert(isa<BranchInst>(Latch->getTerminator()) && |
| "Latch must terminate with unconditional branch"); |
| assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header"); |
| // TODO: To support simple redirecting of the end of the body code that has |
| // multiple; introduce another auxiliary basic block like preheader and after. |
| assert(Latch->getSinglePredecessor() != nullptr); |
| assert(!isa<PHINode>(Latch->front())); |
| |
| assert(Exit); |
| assert(isa<BranchInst>(Exit->getTerminator()) && |
| "Exit block must terminate with unconditional branch"); |
| assert(Exit->getSingleSuccessor() == After && |
| "Exit block must jump to after block"); |
| |
| assert(After); |
| assert(After->getSinglePredecessor() == Exit && |
| "After block only reachable from exit block"); |
| assert(After->empty() || !isa<PHINode>(After->front())); |
| |
| Instruction *IndVar = getIndVar(); |
| assert(IndVar && "Canonical induction variable not found?"); |
| assert(isa<IntegerType>(IndVar->getType()) && |
| "Induction variable must be an integer"); |
| assert(cast<PHINode>(IndVar)->getParent() == Header && |
| "Induction variable must be a PHI in the loop header"); |
| assert(cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader); |
| assert( |
| cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero()); |
| assert(cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch); |
| |
| auto *NextIndVar = cast<PHINode>(IndVar)->getIncomingValue(1); |
| assert(cast<Instruction>(NextIndVar)->getParent() == Latch); |
| assert(cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add); |
| assert(cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar); |
| assert(cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1)) |
| ->isOne()); |
| |
| Value *TripCount = getTripCount(); |
| assert(TripCount && "Loop trip count not found?"); |
| assert(IndVar->getType() == TripCount->getType() && |
| "Trip count and induction variable must have the same type"); |
| |
| auto *CmpI = cast<CmpInst>(&Cond->front()); |
| assert(CmpI->getPredicate() == CmpInst::ICMP_ULT && |
| "Exit condition must be a signed less-than comparison"); |
| assert(CmpI->getOperand(0) == IndVar && |
| "Exit condition must compare the induction variable"); |
| assert(CmpI->getOperand(1) == TripCount && |
| "Exit condition must compare with the trip count"); |
| #endif |
| } |
| |
| void CanonicalLoopInfo::invalidate() { |
| Header = nullptr; |
| Cond = nullptr; |
| Latch = nullptr; |
| Exit = nullptr; |
| } |