| //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveDebugVariables analysis. |
| // |
| // Remove all DBG_VALUE instructions referencing virtual registers and replace |
| // them with a data structure tracking where live user variables are kept - in a |
| // virtual register or in a stack slot. |
| // |
| // Allow the data structure to be updated during register allocation when values |
| // are moved between registers and stack slots. Finally emit new DBG_VALUE |
| // instructions after register allocation is complete. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LiveDebugVariables.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IntervalMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/CodeGen/LexicalScopes.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <memory> |
| #include <optional> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "livedebugvars" |
| |
| static cl::opt<bool> |
| EnableLDV("live-debug-variables", cl::init(true), |
| cl::desc("Enable the live debug variables pass"), cl::Hidden); |
| |
| STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); |
| STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); |
| |
| char LiveDebugVariables::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, |
| "Debug Variable Analysis", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, |
| "Debug Variable Analysis", false, false) |
| |
| void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequiredTransitive<LiveIntervals>(); |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { |
| initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| enum : unsigned { UndefLocNo = ~0U }; |
| |
| namespace { |
| /// Describes a debug variable value by location number and expression along |
| /// with some flags about the original usage of the location. |
| class DbgVariableValue { |
| public: |
| DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, |
| const DIExpression &Expr) |
| : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { |
| assert(!(WasIndirect && WasList) && |
| "DBG_VALUE_LISTs should not be indirect."); |
| SmallVector<unsigned> LocNoVec; |
| for (unsigned LocNo : NewLocs) { |
| auto It = find(LocNoVec, LocNo); |
| if (It == LocNoVec.end()) |
| LocNoVec.push_back(LocNo); |
| else { |
| // Loc duplicates an element in LocNos; replace references to Op |
| // with references to the duplicating element. |
| unsigned OpIdx = LocNoVec.size(); |
| unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It); |
| Expression = |
| DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx); |
| } |
| } |
| // FIXME: Debug values referencing 64+ unique machine locations are rare and |
| // currently unsupported for performance reasons. If we can verify that |
| // performance is acceptable for such debug values, we can increase the |
| // bit-width of LocNoCount to 14 to enable up to 16384 unique machine |
| // locations. We will also need to verify that this does not cause issues |
| // with LiveDebugVariables' use of IntervalMap. |
| if (LocNoVec.size() < 64) { |
| LocNoCount = LocNoVec.size(); |
| if (LocNoCount > 0) { |
| LocNos = std::make_unique<unsigned[]>(LocNoCount); |
| std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); |
| } |
| } else { |
| LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " |
| "locations, dropping...\n"); |
| LocNoCount = 1; |
| // Turn this into an undef debug value list; right now, the simplest form |
| // of this is an expression with one arg, and an undef debug operand. |
| Expression = |
| DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0}); |
| if (auto FragmentInfoOpt = Expr.getFragmentInfo()) |
| Expression = *DIExpression::createFragmentExpression( |
| Expression, FragmentInfoOpt->OffsetInBits, |
| FragmentInfoOpt->SizeInBits); |
| LocNos = std::make_unique<unsigned[]>(LocNoCount); |
| LocNos[0] = UndefLocNo; |
| } |
| } |
| |
| DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} |
| DbgVariableValue(const DbgVariableValue &Other) |
| : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), |
| WasList(Other.getWasList()), Expression(Other.getExpression()) { |
| if (Other.getLocNoCount()) { |
| LocNos.reset(new unsigned[Other.getLocNoCount()]); |
| std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); |
| } |
| } |
| |
| DbgVariableValue &operator=(const DbgVariableValue &Other) { |
| if (this == &Other) |
| return *this; |
| if (Other.getLocNoCount()) { |
| LocNos.reset(new unsigned[Other.getLocNoCount()]); |
| std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); |
| } else { |
| LocNos.release(); |
| } |
| LocNoCount = Other.getLocNoCount(); |
| WasIndirect = Other.getWasIndirect(); |
| WasList = Other.getWasList(); |
| Expression = Other.getExpression(); |
| return *this; |
| } |
| |
| const DIExpression *getExpression() const { return Expression; } |
| uint8_t getLocNoCount() const { return LocNoCount; } |
| bool containsLocNo(unsigned LocNo) const { |
| return is_contained(loc_nos(), LocNo); |
| } |
| bool getWasIndirect() const { return WasIndirect; } |
| bool getWasList() const { return WasList; } |
| bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); } |
| |
| DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { |
| SmallVector<unsigned, 4> NewLocNos; |
| for (unsigned LocNo : loc_nos()) |
| NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 |
| : LocNo); |
| return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
| } |
| |
| DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { |
| SmallVector<unsigned> NewLocNos; |
| for (unsigned LocNo : loc_nos()) |
| // Undef values don't exist in locations (and thus not in LocNoMap |
| // either) so skip over them. See getLocationNo(). |
| NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); |
| return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
| } |
| |
| DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { |
| SmallVector<unsigned> NewLocNos; |
| NewLocNos.assign(loc_nos_begin(), loc_nos_end()); |
| auto OldLocIt = find(NewLocNos, OldLocNo); |
| assert(OldLocIt != NewLocNos.end() && "Old location must be present."); |
| *OldLocIt = NewLocNo; |
| return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
| } |
| |
| bool hasLocNoGreaterThan(unsigned LocNo) const { |
| return any_of(loc_nos(), |
| [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); |
| } |
| |
| void printLocNos(llvm::raw_ostream &OS) const { |
| for (const unsigned &Loc : loc_nos()) |
| OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc; |
| } |
| |
| friend inline bool operator==(const DbgVariableValue &LHS, |
| const DbgVariableValue &RHS) { |
| if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList, |
| LHS.Expression) != |
| std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression)) |
| return false; |
| return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), |
| RHS.loc_nos_begin()); |
| } |
| |
| friend inline bool operator!=(const DbgVariableValue &LHS, |
| const DbgVariableValue &RHS) { |
| return !(LHS == RHS); |
| } |
| |
| unsigned *loc_nos_begin() { return LocNos.get(); } |
| const unsigned *loc_nos_begin() const { return LocNos.get(); } |
| unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } |
| const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } |
| ArrayRef<unsigned> loc_nos() const { |
| return ArrayRef<unsigned>(LocNos.get(), LocNoCount); |
| } |
| |
| private: |
| // IntervalMap requires the value object to be very small, to the extent |
| // that we do not have enough room for an std::vector. Using a C-style array |
| // (with a unique_ptr wrapper for convenience) allows us to optimize for this |
| // specific case by packing the array size into only 6 bits (it is highly |
| // unlikely that any debug value will need 64+ locations). |
| std::unique_ptr<unsigned[]> LocNos; |
| uint8_t LocNoCount : 6; |
| bool WasIndirect : 1; |
| bool WasList : 1; |
| const DIExpression *Expression = nullptr; |
| }; |
| } // namespace |
| |
| /// Map of where a user value is live to that value. |
| using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; |
| |
| /// Map of stack slot offsets for spilled locations. |
| /// Non-spilled locations are not added to the map. |
| using SpillOffsetMap = DenseMap<unsigned, unsigned>; |
| |
| /// Cache to save the location where it can be used as the starting |
| /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. |
| /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from |
| /// repeatedly searching the same set of PHIs/Labels/Debug instructions |
| /// if it is called many times for the same block. |
| using BlockSkipInstsMap = |
| DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; |
| |
| namespace { |
| |
| class LDVImpl; |
| |
| /// A user value is a part of a debug info user variable. |
| /// |
| /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register |
| /// holds part of a user variable. The part is identified by a byte offset. |
| /// |
| /// UserValues are grouped into equivalence classes for easier searching. Two |
| /// user values are related if they are held by the same virtual register. The |
| /// equivalence class is the transitive closure of that relation. |
| class UserValue { |
| const DILocalVariable *Variable; ///< The debug info variable we are part of. |
| /// The part of the variable we describe. |
| const std::optional<DIExpression::FragmentInfo> Fragment; |
| DebugLoc dl; ///< The debug location for the variable. This is |
| ///< used by dwarf writer to find lexical scope. |
| UserValue *leader; ///< Equivalence class leader. |
| UserValue *next = nullptr; ///< Next value in equivalence class, or null. |
| |
| /// Numbered locations referenced by locmap. |
| SmallVector<MachineOperand, 4> locations; |
| |
| /// Map of slot indices where this value is live. |
| LocMap locInts; |
| |
| /// Set of interval start indexes that have been trimmed to the |
| /// lexical scope. |
| SmallSet<SlotIndex, 2> trimmedDefs; |
| |
| /// Insert a DBG_VALUE into MBB at Idx for DbgValue. |
| void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, |
| SlotIndex StopIdx, DbgVariableValue DbgValue, |
| ArrayRef<bool> LocSpills, |
| ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, |
| const TargetInstrInfo &TII, |
| const TargetRegisterInfo &TRI, |
| BlockSkipInstsMap &BBSkipInstsMap); |
| |
| /// Replace OldLocNo ranges with NewRegs ranges where NewRegs |
| /// is live. Returns true if any changes were made. |
| bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, |
| LiveIntervals &LIS); |
| |
| public: |
| /// Create a new UserValue. |
| UserValue(const DILocalVariable *var, |
| std::optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, |
| LocMap::Allocator &alloc) |
| : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), |
| locInts(alloc) {} |
| |
| /// Get the leader of this value's equivalence class. |
| UserValue *getLeader() { |
| UserValue *l = leader; |
| while (l != l->leader) |
| l = l->leader; |
| return leader = l; |
| } |
| |
| /// Return the next UserValue in the equivalence class. |
| UserValue *getNext() const { return next; } |
| |
| /// Merge equivalence classes. |
| static UserValue *merge(UserValue *L1, UserValue *L2) { |
| L2 = L2->getLeader(); |
| if (!L1) |
| return L2; |
| L1 = L1->getLeader(); |
| if (L1 == L2) |
| return L1; |
| // Splice L2 before L1's members. |
| UserValue *End = L2; |
| while (End->next) { |
| End->leader = L1; |
| End = End->next; |
| } |
| End->leader = L1; |
| End->next = L1->next; |
| L1->next = L2; |
| return L1; |
| } |
| |
| /// Return the location number that matches Loc. |
| /// |
| /// For undef values we always return location number UndefLocNo without |
| /// inserting anything in locations. Since locations is a vector and the |
| /// location number is the position in the vector and UndefLocNo is ~0, |
| /// we would need a very big vector to put the value at the right position. |
| unsigned getLocationNo(const MachineOperand &LocMO) { |
| if (LocMO.isReg()) { |
| if (LocMO.getReg() == 0) |
| return UndefLocNo; |
| // For register locations we dont care about use/def and other flags. |
| for (unsigned i = 0, e = locations.size(); i != e; ++i) |
| if (locations[i].isReg() && |
| locations[i].getReg() == LocMO.getReg() && |
| locations[i].getSubReg() == LocMO.getSubReg()) |
| return i; |
| } else |
| for (unsigned i = 0, e = locations.size(); i != e; ++i) |
| if (LocMO.isIdenticalTo(locations[i])) |
| return i; |
| locations.push_back(LocMO); |
| // We are storing a MachineOperand outside a MachineInstr. |
| locations.back().clearParent(); |
| // Don't store def operands. |
| if (locations.back().isReg()) { |
| if (locations.back().isDef()) |
| locations.back().setIsDead(false); |
| locations.back().setIsUse(); |
| } |
| return locations.size() - 1; |
| } |
| |
| /// Remove (recycle) a location number. If \p LocNo still is used by the |
| /// locInts nothing is done. |
| void removeLocationIfUnused(unsigned LocNo) { |
| // Bail out if LocNo still is used. |
| for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { |
| const DbgVariableValue &DbgValue = I.value(); |
| if (DbgValue.containsLocNo(LocNo)) |
| return; |
| } |
| // Remove the entry in the locations vector, and adjust all references to |
| // location numbers above the removed entry. |
| locations.erase(locations.begin() + LocNo); |
| for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { |
| const DbgVariableValue &DbgValue = I.value(); |
| if (DbgValue.hasLocNoGreaterThan(LocNo)) |
| I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo)); |
| } |
| } |
| |
| /// Ensure that all virtual register locations are mapped. |
| void mapVirtRegs(LDVImpl *LDV); |
| |
| /// Add a definition point to this user value. |
| void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, |
| bool IsList, const DIExpression &Expr) { |
| SmallVector<unsigned> Locs; |
| for (const MachineOperand &Op : LocMOs) |
| Locs.push_back(getLocationNo(Op)); |
| DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); |
| // Add a singular (Idx,Idx) -> value mapping. |
| LocMap::iterator I = locInts.find(Idx); |
| if (!I.valid() || I.start() != Idx) |
| I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue)); |
| else |
| // A later DBG_VALUE at the same SlotIndex overrides the old location. |
| I.setValue(std::move(DbgValue)); |
| } |
| |
| /// Extend the current definition as far as possible down. |
| /// |
| /// Stop when meeting an existing def or when leaving the live |
| /// range of VNI. End points where VNI is no longer live are added to Kills. |
| /// |
| /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a |
| /// data-flow analysis to propagate them beyond basic block boundaries. |
| /// |
| /// \param Idx Starting point for the definition. |
| /// \param DbgValue value to propagate. |
| /// \param LiveIntervalInfo For each location number key in this map, |
| /// restricts liveness to where the LiveRange has the value equal to the\ |
| /// VNInfo. |
| /// \param [out] Kills Append end points of VNI's live range to Kills. |
| /// \param LIS Live intervals analysis. |
| void |
| extendDef(SlotIndex Idx, DbgVariableValue DbgValue, |
| SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> |
| &LiveIntervalInfo, |
| std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, |
| LiveIntervals &LIS); |
| |
| /// The value in LI may be copies to other registers. Determine if |
| /// any of the copies are available at the kill points, and add defs if |
| /// possible. |
| /// |
| /// \param DbgValue Location number of LI->reg, and DIExpression. |
| /// \param LocIntervals Scan for copies of the value for each location in the |
| /// corresponding LiveInterval->reg. |
| /// \param KilledAt The point where the range of DbgValue could be extended. |
| /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. |
| void addDefsFromCopies( |
| DbgVariableValue DbgValue, |
| SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, |
| SlotIndex KilledAt, |
| SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, |
| MachineRegisterInfo &MRI, LiveIntervals &LIS); |
| |
| /// Compute the live intervals of all locations after collecting all their |
| /// def points. |
| void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
| LiveIntervals &LIS, LexicalScopes &LS); |
| |
| /// Replace OldReg ranges with NewRegs ranges where NewRegs is |
| /// live. Returns true if any changes were made. |
| bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, |
| LiveIntervals &LIS); |
| |
| /// Rewrite virtual register locations according to the provided virtual |
| /// register map. Record the stack slot offsets for the locations that |
| /// were spilled. |
| void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, |
| const TargetInstrInfo &TII, |
| const TargetRegisterInfo &TRI, |
| SpillOffsetMap &SpillOffsets); |
| |
| /// Recreate DBG_VALUE instruction from data structures. |
| void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, |
| const TargetInstrInfo &TII, |
| const TargetRegisterInfo &TRI, |
| const SpillOffsetMap &SpillOffsets, |
| BlockSkipInstsMap &BBSkipInstsMap); |
| |
| /// Return DebugLoc of this UserValue. |
| const DebugLoc &getDebugLoc() { return dl; } |
| |
| void print(raw_ostream &, const TargetRegisterInfo *); |
| }; |
| |
| /// A user label is a part of a debug info user label. |
| class UserLabel { |
| const DILabel *Label; ///< The debug info label we are part of. |
| DebugLoc dl; ///< The debug location for the label. This is |
| ///< used by dwarf writer to find lexical scope. |
| SlotIndex loc; ///< Slot used by the debug label. |
| |
| /// Insert a DBG_LABEL into MBB at Idx. |
| void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, |
| LiveIntervals &LIS, const TargetInstrInfo &TII, |
| BlockSkipInstsMap &BBSkipInstsMap); |
| |
| public: |
| /// Create a new UserLabel. |
| UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) |
| : Label(label), dl(std::move(L)), loc(Idx) {} |
| |
| /// Does this UserLabel match the parameters? |
| bool matches(const DILabel *L, const DILocation *IA, |
| const SlotIndex Index) const { |
| return Label == L && dl->getInlinedAt() == IA && loc == Index; |
| } |
| |
| /// Recreate DBG_LABEL instruction from data structures. |
| void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, |
| BlockSkipInstsMap &BBSkipInstsMap); |
| |
| /// Return DebugLoc of this UserLabel. |
| const DebugLoc &getDebugLoc() { return dl; } |
| |
| void print(raw_ostream &, const TargetRegisterInfo *); |
| }; |
| |
| /// Implementation of the LiveDebugVariables pass. |
| class LDVImpl { |
| LiveDebugVariables &pass; |
| LocMap::Allocator allocator; |
| MachineFunction *MF = nullptr; |
| LiveIntervals *LIS; |
| const TargetRegisterInfo *TRI; |
| |
| /// Position and VReg of a PHI instruction during register allocation. |
| struct PHIValPos { |
| SlotIndex SI; /// Slot where this PHI occurs. |
| Register Reg; /// VReg this PHI occurs in. |
| unsigned SubReg; /// Qualifiying subregister for Reg. |
| }; |
| |
| /// Map from debug instruction number to PHI position during allocation. |
| std::map<unsigned, PHIValPos> PHIValToPos; |
| /// Index of, for each VReg, which debug instruction numbers and corresponding |
| /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, |
| /// at different positions. |
| DenseMap<Register, std::vector<unsigned>> RegToPHIIdx; |
| |
| /// Record for any debug instructions unlinked from their blocks during |
| /// regalloc. Stores the instr and it's location, so that they can be |
| /// re-inserted after regalloc is over. |
| struct InstrPos { |
| MachineInstr *MI; ///< Debug instruction, unlinked from it's block. |
| SlotIndex Idx; ///< Slot position where MI should be re-inserted. |
| MachineBasicBlock *MBB; ///< Block that MI was in. |
| }; |
| |
| /// Collection of stored debug instructions, preserved until after regalloc. |
| SmallVector<InstrPos, 32> StashedDebugInstrs; |
| |
| /// Whether emitDebugValues is called. |
| bool EmitDone = false; |
| |
| /// Whether the machine function is modified during the pass. |
| bool ModifiedMF = false; |
| |
| /// All allocated UserValue instances. |
| SmallVector<std::unique_ptr<UserValue>, 8> userValues; |
| |
| /// All allocated UserLabel instances. |
| SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; |
| |
| /// Map virtual register to eq class leader. |
| using VRMap = DenseMap<unsigned, UserValue *>; |
| VRMap virtRegToEqClass; |
| |
| /// Map to find existing UserValue instances. |
| using UVMap = DenseMap<DebugVariable, UserValue *>; |
| UVMap userVarMap; |
| |
| /// Find or create a UserValue. |
| UserValue *getUserValue(const DILocalVariable *Var, |
| std::optional<DIExpression::FragmentInfo> Fragment, |
| const DebugLoc &DL); |
| |
| /// Find the EC leader for VirtReg or null. |
| UserValue *lookupVirtReg(Register VirtReg); |
| |
| /// Add DBG_VALUE instruction to our maps. |
| /// |
| /// \param MI DBG_VALUE instruction |
| /// \param Idx Last valid SLotIndex before instruction. |
| /// |
| /// \returns True if the DBG_VALUE instruction should be deleted. |
| bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); |
| |
| /// Track variable location debug instructions while using the instruction |
| /// referencing implementation. Such debug instructions do not need to be |
| /// updated during regalloc because they identify instructions rather than |
| /// register locations. However, they needs to be removed from the |
| /// MachineFunction during regalloc, then re-inserted later, to avoid |
| /// disrupting the allocator. |
| /// |
| /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction |
| /// \param Idx Last valid SlotIndex before instruction |
| /// |
| /// \returns Iterator to continue processing from after unlinking. |
| MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); |
| |
| /// Add DBG_LABEL instruction to UserLabel. |
| /// |
| /// \param MI DBG_LABEL instruction |
| /// \param Idx Last valid SlotIndex before instruction. |
| /// |
| /// \returns True if the DBG_LABEL instruction should be deleted. |
| bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); |
| |
| /// Collect and erase all DBG_VALUE instructions, adding a UserValue def |
| /// for each instruction. |
| /// |
| /// \param mf MachineFunction to be scanned. |
| /// \param InstrRef Whether to operate in instruction referencing mode. If |
| /// true, most of LiveDebugVariables doesn't run. |
| /// |
| /// \returns True if any debug values were found. |
| bool collectDebugValues(MachineFunction &mf, bool InstrRef); |
| |
| /// Compute the live intervals of all user values after collecting all |
| /// their def points. |
| void computeIntervals(); |
| |
| public: |
| LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} |
| |
| bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); |
| |
| /// Release all memory. |
| void clear() { |
| MF = nullptr; |
| PHIValToPos.clear(); |
| RegToPHIIdx.clear(); |
| StashedDebugInstrs.clear(); |
| userValues.clear(); |
| userLabels.clear(); |
| virtRegToEqClass.clear(); |
| userVarMap.clear(); |
| // Make sure we call emitDebugValues if the machine function was modified. |
| assert((!ModifiedMF || EmitDone) && |
| "Dbg values are not emitted in LDV"); |
| EmitDone = false; |
| ModifiedMF = false; |
| } |
| |
| /// Map virtual register to an equivalence class. |
| void mapVirtReg(Register VirtReg, UserValue *EC); |
| |
| /// Replace any PHI referring to OldReg with its corresponding NewReg, if |
| /// present. |
| void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs); |
| |
| /// Replace all references to OldReg with NewRegs. |
| void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); |
| |
| /// Recreate DBG_VALUE instruction from data structures. |
| void emitDebugValues(VirtRegMap *VRM); |
| |
| void print(raw_ostream&); |
| }; |
| |
| } // end anonymous namespace |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, |
| const LLVMContext &Ctx) { |
| if (!DL) |
| return; |
| |
| auto *Scope = cast<DIScope>(DL.getScope()); |
| // Omit the directory, because it's likely to be long and uninteresting. |
| CommentOS << Scope->getFilename(); |
| CommentOS << ':' << DL.getLine(); |
| if (DL.getCol() != 0) |
| CommentOS << ':' << DL.getCol(); |
| |
| DebugLoc InlinedAtDL = DL.getInlinedAt(); |
| if (!InlinedAtDL) |
| return; |
| |
| CommentOS << " @[ "; |
| printDebugLoc(InlinedAtDL, CommentOS, Ctx); |
| CommentOS << " ]"; |
| } |
| |
| static void printExtendedName(raw_ostream &OS, const DINode *Node, |
| const DILocation *DL) { |
| const LLVMContext &Ctx = Node->getContext(); |
| StringRef Res; |
| unsigned Line = 0; |
| if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { |
| Res = V->getName(); |
| Line = V->getLine(); |
| } else if (const auto *L = dyn_cast<const DILabel>(Node)) { |
| Res = L->getName(); |
| Line = L->getLine(); |
| } |
| |
| if (!Res.empty()) |
| OS << Res << "," << Line; |
| auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; |
| if (InlinedAt) { |
| if (DebugLoc InlinedAtDL = InlinedAt) { |
| OS << " @["; |
| printDebugLoc(InlinedAtDL, OS, Ctx); |
| OS << "]"; |
| } |
| } |
| } |
| |
| void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { |
| OS << "!\""; |
| printExtendedName(OS, Variable, dl); |
| |
| OS << "\"\t"; |
| for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { |
| OS << " [" << I.start() << ';' << I.stop() << "):"; |
| if (I.value().isUndef()) |
| OS << " undef"; |
| else { |
| I.value().printLocNos(OS); |
| if (I.value().getWasIndirect()) |
| OS << " ind"; |
| else if (I.value().getWasList()) |
| OS << " list"; |
| } |
| } |
| for (unsigned i = 0, e = locations.size(); i != e; ++i) { |
| OS << " Loc" << i << '='; |
| locations[i].print(OS, TRI); |
| } |
| OS << '\n'; |
| } |
| |
| void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { |
| OS << "!\""; |
| printExtendedName(OS, Label, dl); |
| |
| OS << "\"\t"; |
| OS << loc; |
| OS << '\n'; |
| } |
| |
| void LDVImpl::print(raw_ostream &OS) { |
| OS << "********** DEBUG VARIABLES **********\n"; |
| for (auto &userValue : userValues) |
| userValue->print(OS, TRI); |
| OS << "********** DEBUG LABELS **********\n"; |
| for (auto &userLabel : userLabels) |
| userLabel->print(OS, TRI); |
| } |
| #endif |
| |
| void UserValue::mapVirtRegs(LDVImpl *LDV) { |
| for (unsigned i = 0, e = locations.size(); i != e; ++i) |
| if (locations[i].isReg() && locations[i].getReg().isVirtual()) |
| LDV->mapVirtReg(locations[i].getReg(), this); |
| } |
| |
| UserValue * |
| LDVImpl::getUserValue(const DILocalVariable *Var, |
| std::optional<DIExpression::FragmentInfo> Fragment, |
| const DebugLoc &DL) { |
| // FIXME: Handle partially overlapping fragments. See |
| // https://reviews.llvm.org/D70121#1849741. |
| DebugVariable ID(Var, Fragment, DL->getInlinedAt()); |
| UserValue *&UV = userVarMap[ID]; |
| if (!UV) { |
| userValues.push_back( |
| std::make_unique<UserValue>(Var, Fragment, DL, allocator)); |
| UV = userValues.back().get(); |
| } |
| return UV; |
| } |
| |
| void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { |
| assert(VirtReg.isVirtual() && "Only map VirtRegs"); |
| UserValue *&Leader = virtRegToEqClass[VirtReg]; |
| Leader = UserValue::merge(Leader, EC); |
| } |
| |
| UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { |
| if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) |
| return UV->getLeader(); |
| return nullptr; |
| } |
| |
| bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { |
| // DBG_VALUE loc, offset, variable, expr |
| // DBG_VALUE_LIST variable, expr, locs... |
| if (!MI.isDebugValue()) { |
| LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); |
| return false; |
| } |
| if (!MI.getDebugVariableOp().isMetadata()) { |
| LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " |
| << MI); |
| return false; |
| } |
| if (MI.isNonListDebugValue() && |
| (MI.getNumOperands() != 4 || |
| !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { |
| LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); |
| return false; |
| } |
| |
| // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual |
| // register that hasn't been defined yet. If we do not remove those here, then |
| // the re-insertion of the DBG_VALUE instruction after register allocation |
| // will be incorrect. |
| bool Discard = false; |
| for (const MachineOperand &Op : MI.debug_operands()) { |
| if (Op.isReg() && Op.getReg().isVirtual()) { |
| const Register Reg = Op.getReg(); |
| if (!LIS->hasInterval(Reg)) { |
| // The DBG_VALUE is described by a virtual register that does not have a |
| // live interval. Discard the DBG_VALUE. |
| Discard = true; |
| LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx |
| << " " << MI); |
| } else { |
| // The DBG_VALUE is only valid if either Reg is live out from Idx, or |
| // Reg is defined dead at Idx (where Idx is the slot index for the |
| // instruction preceding the DBG_VALUE). |
| const LiveInterval &LI = LIS->getInterval(Reg); |
| LiveQueryResult LRQ = LI.Query(Idx); |
| if (!LRQ.valueOutOrDead()) { |
| // We have found a DBG_VALUE with the value in a virtual register that |
| // is not live. Discard the DBG_VALUE. |
| Discard = true; |
| LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx |
| << " " << MI); |
| } |
| } |
| } |
| } |
| |
| // Get or create the UserValue for (variable,offset) here. |
| bool IsIndirect = MI.isDebugOffsetImm(); |
| if (IsIndirect) |
| assert(MI.getDebugOffset().getImm() == 0 && |
| "DBG_VALUE with nonzero offset"); |
| bool IsList = MI.isDebugValueList(); |
| const DILocalVariable *Var = MI.getDebugVariable(); |
| const DIExpression *Expr = MI.getDebugExpression(); |
| UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); |
| if (!Discard) |
| UV->addDef(Idx, |
| ArrayRef<MachineOperand>(MI.debug_operands().begin(), |
| MI.debug_operands().end()), |
| IsIndirect, IsList, *Expr); |
| else { |
| MachineOperand MO = MachineOperand::CreateReg(0U, false); |
| MO.setIsDebug(); |
| // We should still pass a list the same size as MI.debug_operands() even if |
| // all MOs are undef, so that DbgVariableValue can correctly adjust the |
| // expression while removing the duplicated undefs. |
| SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); |
| UV->addDef(Idx, UndefMOs, false, IsList, *Expr); |
| } |
| return true; |
| } |
| |
| MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI, |
| SlotIndex Idx) { |
| assert(MI.isDebugValueLike() || MI.isDebugPHI()); |
| |
| // In instruction referencing mode, there should be no DBG_VALUE instructions |
| // that refer to virtual registers. They might still refer to constants. |
| if (MI.isDebugValueLike()) |
| assert(none_of(MI.debug_operands(), |
| [](const MachineOperand &MO) { |
| return MO.isReg() && MO.getReg().isVirtual(); |
| }) && |
| "MIs should not refer to Virtual Registers in InstrRef mode."); |
| |
| // Unlink the instruction, store it in the debug instructions collection. |
| auto NextInst = std::next(MI.getIterator()); |
| auto *MBB = MI.getParent(); |
| MI.removeFromParent(); |
| StashedDebugInstrs.push_back({&MI, Idx, MBB}); |
| return NextInst; |
| } |
| |
| bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { |
| // DBG_LABEL label |
| if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { |
| LLVM_DEBUG(dbgs() << "Can't handle " << MI); |
| return false; |
| } |
| |
| // Get or create the UserLabel for label here. |
| const DILabel *Label = MI.getDebugLabel(); |
| const DebugLoc &DL = MI.getDebugLoc(); |
| bool Found = false; |
| for (auto const &L : userLabels) { |
| if (L->matches(Label, DL->getInlinedAt(), Idx)) { |
| Found = true; |
| break; |
| } |
| } |
| if (!Found) |
| userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); |
| |
| return true; |
| } |
| |
| bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) { |
| bool Changed = false; |
| for (MachineBasicBlock &MBB : mf) { |
| for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); |
| MBBI != MBBE;) { |
| // Use the first debug instruction in the sequence to get a SlotIndex |
| // for following consecutive debug instructions. |
| if (!MBBI->isDebugOrPseudoInstr()) { |
| ++MBBI; |
| continue; |
| } |
| // Debug instructions has no slot index. Use the previous |
| // non-debug instruction's SlotIndex as its SlotIndex. |
| SlotIndex Idx = |
| MBBI == MBB.begin() |
| ? LIS->getMBBStartIdx(&MBB) |
| : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); |
| // Handle consecutive debug instructions with the same slot index. |
| do { |
| // In instruction referencing mode, pass each instr to handleDebugInstr |
| // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and |
| // need to go through the normal live interval splitting process. |
| if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || |
| MBBI->isDebugRef())) { |
| MBBI = handleDebugInstr(*MBBI, Idx); |
| Changed = true; |
| // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler |
| // to track things through register allocation, and erase the instr. |
| } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || |
| (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { |
| MBBI = MBB.erase(MBBI); |
| Changed = true; |
| } else |
| ++MBBI; |
| } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); |
| } |
| } |
| return Changed; |
| } |
| |
| void UserValue::extendDef( |
| SlotIndex Idx, DbgVariableValue DbgValue, |
| SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> |
| &LiveIntervalInfo, |
| std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, |
| LiveIntervals &LIS) { |
| SlotIndex Start = Idx; |
| MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); |
| SlotIndex Stop = LIS.getMBBEndIdx(MBB); |
| LocMap::iterator I = locInts.find(Start); |
| |
| // Limit to the intersection of the VNIs' live ranges. |
| for (auto &LII : LiveIntervalInfo) { |
| LiveRange *LR = LII.second.first; |
| assert(LR && LII.second.second && "Missing range info for Idx."); |
| LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); |
| assert(Segment && Segment->valno == LII.second.second && |
| "Invalid VNInfo for Idx given?"); |
| if (Segment->end < Stop) { |
| Stop = Segment->end; |
| Kills = {Stop, {LII.first}}; |
| } else if (Segment->end == Stop && Kills) { |
| // If multiple locations end at the same place, track all of them in |
| // Kills. |
| Kills->second.push_back(LII.first); |
| } |
| } |
| |
| // There could already be a short def at Start. |
| if (I.valid() && I.start() <= Start) { |
| // Stop when meeting a different location or an already extended interval. |
| Start = Start.getNextSlot(); |
| if (I.value() != DbgValue || I.stop() != Start) { |
| // Clear `Kills`, as we have a new def available. |
| Kills = std::nullopt; |
| return; |
| } |
| // This is a one-slot placeholder. Just skip it. |
| ++I; |
| } |
| |
| // Limited by the next def. |
| if (I.valid() && I.start() < Stop) { |
| Stop = I.start(); |
| // Clear `Kills`, as we have a new def available. |
| Kills = std::nullopt; |
| } |
| |
| if (Start < Stop) { |
| DbgVariableValue ExtDbgValue(DbgValue); |
| I.insert(Start, Stop, std::move(ExtDbgValue)); |
| } |
| } |
| |
| void UserValue::addDefsFromCopies( |
| DbgVariableValue DbgValue, |
| SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, |
| SlotIndex KilledAt, |
| SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, |
| MachineRegisterInfo &MRI, LiveIntervals &LIS) { |
| // Don't track copies from physregs, there are too many uses. |
| if (any_of(LocIntervals, |
| [](auto LocI) { return !LocI.second->reg().isVirtual(); })) |
| return; |
| |
| // Collect all the (vreg, valno) pairs that are copies of LI. |
| SmallDenseMap<unsigned, |
| SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> |
| CopyValues; |
| for (auto &LocInterval : LocIntervals) { |
| unsigned LocNo = LocInterval.first; |
| LiveInterval *LI = LocInterval.second; |
| for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { |
| MachineInstr *MI = MO.getParent(); |
| // Copies of the full value. |
| if (MO.getSubReg() || !MI->isCopy()) |
| continue; |
| Register DstReg = MI->getOperand(0).getReg(); |
| |
| // Don't follow copies to physregs. These are usually setting up call |
| // arguments, and the argument registers are always call clobbered. We are |
| // better off in the source register which could be a callee-saved |
| // register, or it could be spilled. |
| if (!DstReg.isVirtual()) |
| continue; |
| |
| // Is the value extended to reach this copy? If not, another def may be |
| // blocking it, or we are looking at a wrong value of LI. |
| SlotIndex Idx = LIS.getInstructionIndex(*MI); |
| LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); |
| if (!I.valid() || I.value() != DbgValue) |
| continue; |
| |
| if (!LIS.hasInterval(DstReg)) |
| continue; |
| LiveInterval *DstLI = &LIS.getInterval(DstReg); |
| const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); |
| assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); |
| CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI)); |
| } |
| } |
| |
| if (CopyValues.empty()) |
| return; |
| |
| #if !defined(NDEBUG) |
| for (auto &LocInterval : LocIntervals) |
| LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() |
| << " copies of " << *LocInterval.second << '\n'); |
| #endif |
| |
| // Try to add defs of the copied values for the kill point. Check that there |
| // isn't already a def at Idx. |
| LocMap::iterator I = locInts.find(KilledAt); |
| if (I.valid() && I.start() <= KilledAt) |
| return; |
| DbgVariableValue NewValue(DbgValue); |
| for (auto &LocInterval : LocIntervals) { |
| unsigned LocNo = LocInterval.first; |
| bool FoundCopy = false; |
| for (auto &LIAndVNI : CopyValues[LocNo]) { |
| LiveInterval *DstLI = LIAndVNI.first; |
| const VNInfo *DstVNI = LIAndVNI.second; |
| if (DstLI->getVNInfoAt(KilledAt) != DstVNI) |
| continue; |
| LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" |
| << DstVNI->id << " in " << *DstLI << '\n'); |
| MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); |
| assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); |
| unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0)); |
| NewValue = NewValue.changeLocNo(LocNo, NewLocNo); |
| FoundCopy = true; |
| break; |
| } |
| // If there are any killed locations we can't find a copy for, we can't |
| // extend the variable value. |
| if (!FoundCopy) |
| return; |
| } |
| I.insert(KilledAt, KilledAt.getNextSlot(), NewValue); |
| NewDefs.push_back(std::make_pair(KilledAt, NewValue)); |
| } |
| |
| void UserValue::computeIntervals(MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| LiveIntervals &LIS, LexicalScopes &LS) { |
| SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; |
| |
| // Collect all defs to be extended (Skipping undefs). |
| for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) |
| if (!I.value().isUndef()) |
| Defs.push_back(std::make_pair(I.start(), I.value())); |
| |
| // Extend all defs, and possibly add new ones along the way. |
| for (unsigned i = 0; i != Defs.size(); ++i) { |
| SlotIndex Idx = Defs[i].first; |
| DbgVariableValue DbgValue = Defs[i].second; |
| SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; |
| SmallVector<const VNInfo *, 4> VNIs; |
| bool ShouldExtendDef = false; |
| for (unsigned LocNo : DbgValue.loc_nos()) { |
| const MachineOperand &LocMO = locations[LocNo]; |
| if (!LocMO.isReg() || !LocMO.getReg().isVirtual()) { |
| ShouldExtendDef |= !LocMO.isReg(); |
| continue; |
| } |
| ShouldExtendDef = true; |
| LiveInterval *LI = nullptr; |
| const VNInfo *VNI = nullptr; |
| if (LIS.hasInterval(LocMO.getReg())) { |
| LI = &LIS.getInterval(LocMO.getReg()); |
| VNI = LI->getVNInfoAt(Idx); |
| } |
| if (LI && VNI) |
| LIs[LocNo] = {LI, VNI}; |
| } |
| if (ShouldExtendDef) { |
| std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; |
| extendDef(Idx, DbgValue, LIs, Kills, LIS); |
| |
| if (Kills) { |
| SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; |
| bool AnySubreg = false; |
| for (unsigned LocNo : Kills->second) { |
| const MachineOperand &LocMO = this->locations[LocNo]; |
| if (LocMO.getSubReg()) { |
| AnySubreg = true; |
| break; |
| } |
| LiveInterval *LI = &LIS.getInterval(LocMO.getReg()); |
| KilledLocIntervals.push_back({LocNo, LI}); |
| } |
| |
| // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that |
| // if the original location for example is %vreg0:sub_hi, and we find a |
| // full register copy in addDefsFromCopies (at the moment it only |
| // handles full register copies), then we must add the sub1 sub-register |
| // index to the new location. However, that is only possible if the new |
| // virtual register is of the same regclass (or if there is an |
| // equivalent sub-register in that regclass). For now, simply skip |
| // handling copies if a sub-register is involved. |
| if (!AnySubreg) |
| addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs, |
| MRI, LIS); |
| } |
| } |
| |
| // For physregs, we only mark the start slot idx. DwarfDebug will see it |
| // as if the DBG_VALUE is valid up until the end of the basic block, or |
| // the next def of the physical register. So we do not need to extend the |
| // range. It might actually happen that the DBG_VALUE is the last use of |
| // the physical register (e.g. if this is an unused input argument to a |
| // function). |
| } |
| |
| // The computed intervals may extend beyond the range of the debug |
| // location's lexical scope. In this case, splitting of an interval |
| // can result in an interval outside of the scope being created, |
| // causing extra unnecessary DBG_VALUEs to be emitted. To prevent |
| // this, trim the intervals to the lexical scope in the case of inlined |
| // variables, since heavy inlining may cause production of dramatically big |
| // number of DBG_VALUEs to be generated. |
| if (!dl.getInlinedAt()) |
| return; |
| |
| LexicalScope *Scope = LS.findLexicalScope(dl); |
| if (!Scope) |
| return; |
| |
| SlotIndex PrevEnd; |
| LocMap::iterator I = locInts.begin(); |
| |
| // Iterate over the lexical scope ranges. Each time round the loop |
| // we check the intervals for overlap with the end of the previous |
| // range and the start of the next. The first range is handled as |
| // a special case where there is no PrevEnd. |
| for (const InsnRange &Range : Scope->getRanges()) { |
| SlotIndex RStart = LIS.getInstructionIndex(*Range.first); |
| SlotIndex REnd = LIS.getInstructionIndex(*Range.second); |
| |
| // Variable locations at the first instruction of a block should be |
| // based on the block's SlotIndex, not the first instruction's index. |
| if (Range.first == Range.first->getParent()->begin()) |
| RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); |
| |
| // At the start of each iteration I has been advanced so that |
| // I.stop() >= PrevEnd. Check for overlap. |
| if (PrevEnd && I.start() < PrevEnd) { |
| SlotIndex IStop = I.stop(); |
| DbgVariableValue DbgValue = I.value(); |
| |
| // Stop overlaps previous end - trim the end of the interval to |
| // the scope range. |
| I.setStopUnchecked(PrevEnd); |
| ++I; |
| |
| // If the interval also overlaps the start of the "next" (i.e. |
| // current) range create a new interval for the remainder (which |
| // may be further trimmed). |
| if (RStart < IStop) |
| I.insert(RStart, IStop, DbgValue); |
| } |
| |
| // Advance I so that I.stop() >= RStart, and check for overlap. |
| I.advanceTo(RStart); |
| if (!I.valid()) |
| return; |
| |
| if (I.start() < RStart) { |
| // Interval start overlaps range - trim to the scope range. |
| I.setStartUnchecked(RStart); |
| // Remember that this interval was trimmed. |
| trimmedDefs.insert(RStart); |
| } |
| |
| // The end of a lexical scope range is the last instruction in the |
| // range. To convert to an interval we need the index of the |
| // instruction after it. |
| REnd = REnd.getNextIndex(); |
| |
| // Advance I to first interval outside current range. |
| I.advanceTo(REnd); |
| if (!I.valid()) |
| return; |
| |
| PrevEnd = REnd; |
| } |
| |
| // Check for overlap with end of final range. |
| if (PrevEnd && I.start() < PrevEnd) |
| I.setStopUnchecked(PrevEnd); |
| } |
| |
| void LDVImpl::computeIntervals() { |
| LexicalScopes LS; |
| LS.initialize(*MF); |
| |
| for (unsigned i = 0, e = userValues.size(); i != e; ++i) { |
| userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); |
| userValues[i]->mapVirtRegs(this); |
| } |
| } |
| |
| bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) { |
| clear(); |
| MF = &mf; |
| LIS = &pass.getAnalysis<LiveIntervals>(); |
| TRI = mf.getSubtarget().getRegisterInfo(); |
| LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " |
| << mf.getName() << " **********\n"); |
| |
| bool Changed = collectDebugValues(mf, InstrRef); |
| computeIntervals(); |
| LLVM_DEBUG(print(dbgs())); |
| |
| // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive |
| // VRegs too, for when we're notified of a range split. |
| SlotIndexes *Slots = LIS->getSlotIndexes(); |
| for (const auto &PHIIt : MF->DebugPHIPositions) { |
| const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; |
| MachineBasicBlock *MBB = Position.MBB; |
| Register Reg = Position.Reg; |
| unsigned SubReg = Position.SubReg; |
| SlotIndex SI = Slots->getMBBStartIdx(MBB); |
| PHIValPos VP = {SI, Reg, SubReg}; |
| PHIValToPos.insert(std::make_pair(PHIIt.first, VP)); |
| RegToPHIIdx[Reg].push_back(PHIIt.first); |
| } |
| |
| ModifiedMF = Changed; |
| return Changed; |
| } |
| |
| static void removeDebugInstrs(MachineFunction &mf) { |
| for (MachineBasicBlock &MBB : mf) { |
| for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) |
| if (MI.isDebugInstr()) |
| MBB.erase(&MI); |
| } |
| } |
| |
| bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { |
| if (!EnableLDV) |
| return false; |
| if (!mf.getFunction().getSubprogram()) { |
| removeDebugInstrs(mf); |
| return false; |
| } |
| |
| // Have we been asked to track variable locations using instruction |
| // referencing? |
| bool InstrRef = mf.useDebugInstrRef(); |
| |
| if (!pImpl) |
| pImpl = new LDVImpl(this); |
| return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef); |
| } |
| |
| void LiveDebugVariables::releaseMemory() { |
| if (pImpl) |
| static_cast<LDVImpl*>(pImpl)->clear(); |
| } |
| |
| LiveDebugVariables::~LiveDebugVariables() { |
| if (pImpl) |
| delete static_cast<LDVImpl*>(pImpl); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Live Range Splitting |
| //===----------------------------------------------------------------------===// |
| |
| bool |
| UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, |
| LiveIntervals& LIS) { |
| LLVM_DEBUG({ |
| dbgs() << "Splitting Loc" << OldLocNo << '\t'; |
| print(dbgs(), nullptr); |
| }); |
| bool DidChange = false; |
| LocMap::iterator LocMapI; |
| LocMapI.setMap(locInts); |
| for (Register NewReg : NewRegs) { |
| LiveInterval *LI = &LIS.getInterval(NewReg); |
| if (LI->empty()) |
| continue; |
| |
| // Don't allocate the new LocNo until it is needed. |
| unsigned NewLocNo = UndefLocNo; |
| |
| // Iterate over the overlaps between locInts and LI. |
| LocMapI.find(LI->beginIndex()); |
| if (!LocMapI.valid()) |
| continue; |
| LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); |
| LiveInterval::iterator LIE = LI->end(); |
| while (LocMapI.valid() && LII != LIE) { |
| // At this point, we know that LocMapI.stop() > LII->start. |
| LII = LI->advanceTo(LII, LocMapI.start()); |
| if (LII == LIE) |
| break; |
| |
| // Now LII->end > LocMapI.start(). Do we have an overlap? |
| if (LocMapI.value().containsLocNo(OldLocNo) && |
| LII->start < LocMapI.stop()) { |
| // Overlapping correct location. Allocate NewLocNo now. |
| if (NewLocNo == UndefLocNo) { |
| MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); |
| MO.setSubReg(locations[OldLocNo].getSubReg()); |
| NewLocNo = getLocationNo(MO); |
| DidChange = true; |
| } |
| |
| SlotIndex LStart = LocMapI.start(); |
| SlotIndex LStop = LocMapI.stop(); |
| DbgVariableValue OldDbgValue = LocMapI.value(); |
| |
| // Trim LocMapI down to the LII overlap. |
| if (LStart < LII->start) |
| LocMapI.setStartUnchecked(LII->start); |
| if (LStop > LII->end) |
| LocMapI.setStopUnchecked(LII->end); |
| |
| // Change the value in the overlap. This may trigger coalescing. |
| LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); |
| |
| // Re-insert any removed OldDbgValue ranges. |
| if (LStart < LocMapI.start()) { |
| LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); |
| ++LocMapI; |
| assert(LocMapI.valid() && "Unexpected coalescing"); |
| } |
| if (LStop > LocMapI.stop()) { |
| ++LocMapI; |
| LocMapI.insert(LII->end, LStop, OldDbgValue); |
| --LocMapI; |
| } |
| } |
| |
| // Advance to the next overlap. |
| if (LII->end < LocMapI.stop()) { |
| if (++LII == LIE) |
| break; |
| LocMapI.advanceTo(LII->start); |
| } else { |
| ++LocMapI; |
| if (!LocMapI.valid()) |
| break; |
| LII = LI->advanceTo(LII, LocMapI.start()); |
| } |
| } |
| } |
| |
| // Finally, remove OldLocNo unless it is still used by some interval in the |
| // locInts map. One case when OldLocNo still is in use is when the register |
| // has been spilled. In such situations the spilled register is kept as a |
| // location until rewriteLocations is called (VirtRegMap is mapping the old |
| // register to the spill slot). So for a while we can have locations that map |
| // to virtual registers that have been removed from both the MachineFunction |
| // and from LiveIntervals. |
| // |
| // We may also just be using the location for a value with a different |
| // expression. |
| removeLocationIfUnused(OldLocNo); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Split result: \t"; |
| print(dbgs(), nullptr); |
| }); |
| return DidChange; |
| } |
| |
| bool |
| UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, |
| LiveIntervals &LIS) { |
| bool DidChange = false; |
| // Split locations referring to OldReg. Iterate backwards so splitLocation can |
| // safely erase unused locations. |
| for (unsigned i = locations.size(); i ; --i) { |
| unsigned LocNo = i-1; |
| const MachineOperand *Loc = &locations[LocNo]; |
| if (!Loc->isReg() || Loc->getReg() != OldReg) |
| continue; |
| DidChange |= splitLocation(LocNo, NewRegs, LIS); |
| } |
| return DidChange; |
| } |
| |
| void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) { |
| auto RegIt = RegToPHIIdx.find(OldReg); |
| if (RegIt == RegToPHIIdx.end()) |
| return; |
| |
| std::vector<std::pair<Register, unsigned>> NewRegIdxes; |
| // Iterate over all the debug instruction numbers affected by this split. |
| for (unsigned InstrID : RegIt->second) { |
| auto PHIIt = PHIValToPos.find(InstrID); |
| assert(PHIIt != PHIValToPos.end()); |
| const SlotIndex &Slot = PHIIt->second.SI; |
| assert(OldReg == PHIIt->second.Reg); |
| |
| // Find the new register that covers this position. |
| for (auto NewReg : NewRegs) { |
| const LiveInterval &LI = LIS->getInterval(NewReg); |
| auto LII = LI.find(Slot); |
| if (LII != LI.end() && LII->start <= Slot) { |
| // This new register covers this PHI position, record this for indexing. |
| NewRegIdxes.push_back(std::make_pair(NewReg, InstrID)); |
| // Record that this value lives in a different VReg now. |
| PHIIt->second.Reg = NewReg; |
| break; |
| } |
| } |
| |
| // If we do not find a new register covering this PHI, then register |
| // allocation has dropped its location, for example because it's not live. |
| // The old VReg will not be mapped to a physreg, and the instruction |
| // number will have been optimized out. |
| } |
| |
| // Re-create register index using the new register numbers. |
| RegToPHIIdx.erase(RegIt); |
| for (auto &RegAndInstr : NewRegIdxes) |
| RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second); |
| } |
| |
| void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { |
| // Consider whether this split range affects any PHI locations. |
| splitPHIRegister(OldReg, NewRegs); |
| |
| // Check whether any intervals mapped by a DBG_VALUE were split and need |
| // updating. |
| bool DidChange = false; |
| for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) |
| DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); |
| |
| if (!DidChange) |
| return; |
| |
| // Map all of the new virtual registers. |
| UserValue *UV = lookupVirtReg(OldReg); |
| for (Register NewReg : NewRegs) |
| mapVirtReg(NewReg, UV); |
| } |
| |
| void LiveDebugVariables:: |
| splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { |
| if (pImpl) |
| static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); |
| } |
| |
| void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, |
| const TargetInstrInfo &TII, |
| const TargetRegisterInfo &TRI, |
| SpillOffsetMap &SpillOffsets) { |
| // Build a set of new locations with new numbers so we can coalesce our |
| // IntervalMap if two vreg intervals collapse to the same physical location. |
| // Use MapVector instead of SetVector because MapVector::insert returns the |
| // position of the previously or newly inserted element. The boolean value |
| // tracks if the location was produced by a spill. |
| // FIXME: This will be problematic if we ever support direct and indirect |
| // frame index locations, i.e. expressing both variables in memory and |
| // 'int x, *px = &x'. The "spilled" bit must become part of the location. |
| MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; |
| SmallVector<unsigned, 4> LocNoMap(locations.size()); |
| for (unsigned I = 0, E = locations.size(); I != E; ++I) { |
| bool Spilled = false; |
| unsigned SpillOffset = 0; |
| MachineOperand Loc = locations[I]; |
| // Only virtual registers are rewritten. |
| if (Loc.isReg() && Loc.getReg() && Loc.getReg().isVirtual()) { |
| Register VirtReg = Loc.getReg(); |
| if (VRM.isAssignedReg(VirtReg) && |
| Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { |
| // This can create a %noreg operand in rare cases when the sub-register |
| // index is no longer available. That means the user value is in a |
| // non-existent sub-register, and %noreg is exactly what we want. |
| Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); |
| } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { |
| // Retrieve the stack slot offset. |
| unsigned SpillSize; |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); |
| bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, |
| SpillOffset, MF); |
| |
| // FIXME: Invalidate the location if the offset couldn't be calculated. |
| (void)Success; |
| |
| Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); |
| Spilled = true; |
| } else { |
| Loc.setReg(0); |
| Loc.setSubReg(0); |
| } |
| } |
| |
| // Insert this location if it doesn't already exist and record a mapping |
| // from the old number to the new number. |
| auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); |
| unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); |
| LocNoMap[I] = NewLocNo; |
| } |
| |
| // Rewrite the locations and record the stack slot offsets for spills. |
| locations.clear(); |
| SpillOffsets.clear(); |
| for (auto &Pair : NewLocations) { |
| bool Spilled; |
| unsigned SpillOffset; |
| std::tie(Spilled, SpillOffset) = Pair.second; |
| locations.push_back(Pair.first); |
| if (Spilled) { |
| unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); |
| SpillOffsets[NewLocNo] = SpillOffset; |
| } |
| } |
| |
| // Update the interval map, but only coalesce left, since intervals to the |
| // right use the old location numbers. This should merge two contiguous |
| // DBG_VALUE intervals with different vregs that were allocated to the same |
| // physical register. |
| for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { |
| I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); |
| I.setStart(I.start()); |
| } |
| } |
| |
| /// Find an iterator for inserting a DBG_VALUE instruction. |
| static MachineBasicBlock::iterator |
| findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, |
| BlockSkipInstsMap &BBSkipInstsMap) { |
| SlotIndex Start = LIS.getMBBStartIdx(MBB); |
| Idx = Idx.getBaseIndex(); |
| |
| // Try to find an insert location by going backwards from Idx. |
| MachineInstr *MI; |
| while (!(MI = LIS.getInstructionFromIndex(Idx))) { |
| // We've reached the beginning of MBB. |
| if (Idx == Start) { |
| // Retrieve the last PHI/Label/Debug location found when calling |
| // SkipPHIsLabelsAndDebug last time. Start searching from there. |
| // |
| // Note the iterator kept in BBSkipInstsMap is one step back based |
| // on the iterator returned by SkipPHIsLabelsAndDebug last time. |
| // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), |
| // BBSkipInstsMap won't save it. This is to consider the case that |
| // new instructions may be inserted at the beginning of MBB after |
| // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in |
| // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions |
| // are inserted at the beginning of the MBB, the iterator in |
| // BBSkipInstsMap won't point to the beginning of the MBB anymore. |
| // Therefore The next search in SkipPHIsLabelsAndDebug will skip those |
| // newly added instructions and that is unwanted. |
| MachineBasicBlock::iterator BeginIt; |
| auto MapIt = BBSkipInstsMap.find(MBB); |
| if (MapIt == BBSkipInstsMap.end()) |
| BeginIt = MBB->begin(); |
| else |
| BeginIt = std::next(MapIt->second); |
| auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); |
| if (I != BeginIt) |
| BBSkipInstsMap[MBB] = std::prev(I); |
| return I; |
| } |
| Idx = Idx.getPrevIndex(); |
| } |
| |
| // Don't insert anything after the first terminator, though. |
| return MI->isTerminator() ? MBB->getFirstTerminator() : |
| std::next(MachineBasicBlock::iterator(MI)); |
| } |
| |
| /// Find an iterator for inserting the next DBG_VALUE instruction |
| /// (or end if no more insert locations found). |
| static MachineBasicBlock::iterator |
| findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, |
| SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, |
| LiveIntervals &LIS, const TargetRegisterInfo &TRI) { |
| SmallVector<Register, 4> Regs; |
| for (const MachineOperand &LocMO : LocMOs) |
| if (LocMO.isReg()) |
| Regs.push_back(LocMO.getReg()); |
| if (Regs.empty()) |
| return MBB->instr_end(); |
| |
| // Find the next instruction in the MBB that define the register Reg. |
| while (I != MBB->end() && !I->isTerminator()) { |
| if (!LIS.isNotInMIMap(*I) && |
| SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) |
| break; |
| if (any_of(Regs, [&I, &TRI](Register &Reg) { |
| return I->definesRegister(Reg, &TRI); |
| })) |
| // The insert location is directly after the instruction/bundle. |
| return std::next(I); |
| ++I; |
| } |
| return MBB->end(); |
| } |
| |
| void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, |
| SlotIndex StopIdx, DbgVariableValue DbgValue, |
| ArrayRef<bool> LocSpills, |
| ArrayRef<unsigned> SpillOffsets, |
| LiveIntervals &LIS, const TargetInstrInfo &TII, |
| const TargetRegisterInfo &TRI, |
| BlockSkipInstsMap &BBSkipInstsMap) { |
| SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); |
| // Only search within the current MBB. |
| StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; |
| MachineBasicBlock::iterator I = |
| findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); |
| // Undef values don't exist in locations so create new "noreg" register MOs |
| // for them. See getLocationNo(). |
| SmallVector<MachineOperand, 8> MOs; |
| if (DbgValue.isUndef()) { |
| MOs.assign(DbgValue.loc_nos().size(), |
| MachineOperand::CreateReg( |
| /* Reg */ 0, /* isDef */ false, /* isImp */ false, |
| /* isKill */ false, /* isDead */ false, |
| /* isUndef */ false, /* isEarlyClobber */ false, |
| /* SubReg */ 0, /* isDebug */ true)); |
| } else { |
| for (unsigned LocNo : DbgValue.loc_nos()) |
| MOs.push_back(locations[LocNo]); |
| } |
| |
| ++NumInsertedDebugValues; |
| |
| assert(cast<DILocalVariable>(Variable) |
| ->isValidLocationForIntrinsic(getDebugLoc()) && |
| "Expected inlined-at fields to agree"); |
| |
| // If the location was spilled, the new DBG_VALUE will be indirect. If the |
| // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate |
| // that the original virtual register was a pointer. Also, add the stack slot |
| // offset for the spilled register to the expression. |
| const DIExpression *Expr = DbgValue.getExpression(); |
| bool IsIndirect = DbgValue.getWasIndirect(); |
| bool IsList = DbgValue.getWasList(); |
| for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { |
| if (LocSpills[I]) { |
| if (!IsList) { |
| uint8_t DIExprFlags = DIExpression::ApplyOffset; |
| if (IsIndirect) |
| DIExprFlags |= DIExpression::DerefAfter; |
| Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]); |
| IsIndirect = true; |
| } else { |
| SmallVector<uint64_t, 4> Ops; |
| DIExpression::appendOffset(Ops, SpillOffsets[I]); |
| Ops.push_back(dwarf::DW_OP_deref); |
| Expr = DIExpression::appendOpsToArg(Expr, Ops, I); |
| } |
| } |
| |
| assert((!LocSpills[I] || MOs[I].isFI()) && |
| "a spilled location must be a frame index"); |
| } |
| |
| unsigned DbgValueOpcode = |
| IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; |
| do { |
| BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs, |
| Variable, Expr); |
| |
| // Continue and insert DBG_VALUES after every redefinition of a register |
| // associated with the debug value within the range |
| I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI); |
| } while (I != MBB->end()); |
| } |
| |
| void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, |
| LiveIntervals &LIS, const TargetInstrInfo &TII, |
| BlockSkipInstsMap &BBSkipInstsMap) { |
| MachineBasicBlock::iterator I = |
| findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); |
| ++NumInsertedDebugLabels; |
| BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) |
| .addMetadata(Label); |
| } |
| |
| void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, |
| const TargetInstrInfo &TII, |
| const TargetRegisterInfo &TRI, |
| const SpillOffsetMap &SpillOffsets, |
| BlockSkipInstsMap &BBSkipInstsMap) { |
| MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); |
| |
| for (LocMap::const_iterator I = locInts.begin(); I.valid();) { |
| SlotIndex Start = I.start(); |
| SlotIndex Stop = I.stop(); |
| DbgVariableValue DbgValue = I.value(); |
| |
| SmallVector<bool> SpilledLocs; |
| SmallVector<unsigned> LocSpillOffsets; |
| for (unsigned LocNo : DbgValue.loc_nos()) { |
| auto SpillIt = |
| !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end(); |
| bool Spilled = SpillIt != SpillOffsets.end(); |
| SpilledLocs.push_back(Spilled); |
| LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0); |
| } |
| |
| // If the interval start was trimmed to the lexical scope insert the |
| // DBG_VALUE at the previous index (otherwise it appears after the |
| // first instruction in the range). |
| if (trimmedDefs.count(Start)) |
| Start = Start.getPrevIndex(); |
| |
| LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):"; |
| DbgValue.printLocNos(dbg)); |
| MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); |
| SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); |
| |
| LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); |
| insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, |
| LIS, TII, TRI, BBSkipInstsMap); |
| // This interval may span multiple basic blocks. |
| // Insert a DBG_VALUE into each one. |
| while (Stop > MBBEnd) { |
| // Move to the next block. |
| Start = MBBEnd; |
| if (++MBB == MFEnd) |
| break; |
| MBBEnd = LIS.getMBBEndIdx(&*MBB); |
| LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); |
| insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, |
| LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); |
| } |
| LLVM_DEBUG(dbgs() << '\n'); |
| if (MBB == MFEnd) |
| break; |
| |
| ++I; |
| } |
| } |
| |
| void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, |
| BlockSkipInstsMap &BBSkipInstsMap) { |
| LLVM_DEBUG(dbgs() << "\t" << loc); |
| MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); |
| |
| LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); |
| insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); |
| |
| LLVM_DEBUG(dbgs() << '\n'); |
| } |
| |
| void LDVImpl::emitDebugValues(VirtRegMap *VRM) { |
| LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); |
| if (!MF) |
| return; |
| |
| BlockSkipInstsMap BBSkipInstsMap; |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| SpillOffsetMap SpillOffsets; |
| for (auto &userValue : userValues) { |
| LLVM_DEBUG(userValue->print(dbgs(), TRI)); |
| userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); |
| userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, |
| BBSkipInstsMap); |
| } |
| LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); |
| for (auto &userLabel : userLabels) { |
| LLVM_DEBUG(userLabel->print(dbgs(), TRI)); |
| userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); |
| } |
| |
| LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n"); |
| |
| auto Slots = LIS->getSlotIndexes(); |
| for (auto &It : PHIValToPos) { |
| // For each ex-PHI, identify its physreg location or stack slot, and emit |
| // a DBG_PHI for it. |
| unsigned InstNum = It.first; |
| auto Slot = It.second.SI; |
| Register Reg = It.second.Reg; |
| unsigned SubReg = It.second.SubReg; |
| |
| MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot); |
| if (VRM->isAssignedReg(Reg) && |
| Register::isPhysicalRegister(VRM->getPhys(Reg))) { |
| unsigned PhysReg = VRM->getPhys(Reg); |
| if (SubReg != 0) |
| PhysReg = TRI->getSubReg(PhysReg, SubReg); |
| |
| auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), |
| TII->get(TargetOpcode::DBG_PHI)); |
| Builder.addReg(PhysReg); |
| Builder.addImm(InstNum); |
| } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) { |
| const MachineRegisterInfo &MRI = MF->getRegInfo(); |
| const TargetRegisterClass *TRC = MRI.getRegClass(Reg); |
| unsigned SpillSize, SpillOffset; |
| |
| unsigned regSizeInBits = TRI->getRegSizeInBits(*TRC); |
| if (SubReg) |
| regSizeInBits = TRI->getSubRegIdxSize(SubReg); |
| |
| // Test whether this location is legal with the given subreg. If the |
| // subregister has a nonzero offset, drop this location, it's too complex |
| // to describe. (TODO: future work). |
| bool Success = |
| TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF); |
| |
| if (Success && SpillOffset == 0) { |
| auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), |
| TII->get(TargetOpcode::DBG_PHI)); |
| Builder.addFrameIndex(VRM->getStackSlot(Reg)); |
| Builder.addImm(InstNum); |
| // Record how large the original value is. The stack slot might be |
| // merged and altered during optimisation, but we will want to know how |
| // large the value is, at this DBG_PHI. |
| Builder.addImm(regSizeInBits); |
| } |
| |
| LLVM_DEBUG( |
| if (SpillOffset != 0) { |
| dbgs() << "DBG_PHI for Vreg " << Reg << " subreg " << SubReg << |
| " has nonzero offset\n"; |
| } |
| ); |
| } |
| // If there was no mapping for a value ID, it's optimized out. Create no |
| // DBG_PHI, and any variables using this value will become optimized out. |
| } |
| MF->DebugPHIPositions.clear(); |
| |
| LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); |
| |
| // Re-insert any debug instrs back in the position they were. We must |
| // re-insert in the same order to ensure that debug instructions don't swap, |
| // which could re-order assignments. Do so in a batch -- once we find the |
| // insert position, insert all instructions at the same SlotIdx. They are |
| // guaranteed to appear in-sequence in StashedDebugInstrs because we insert |
| // them in order. |
| for (auto *StashIt = StashedDebugInstrs.begin(); |
| StashIt != StashedDebugInstrs.end(); ++StashIt) { |
| SlotIndex Idx = StashIt->Idx; |
| MachineBasicBlock *MBB = StashIt->MBB; |
| MachineInstr *MI = StashIt->MI; |
| |
| auto EmitInstsHere = [this, &StashIt, MBB, Idx, |
| MI](MachineBasicBlock::iterator InsertPos) { |
| // Insert this debug instruction. |
| MBB->insert(InsertPos, MI); |
| |
| // Look at subsequent stashed debug instructions: if they're at the same |
| // index, insert those too. |
| auto NextItem = std::next(StashIt); |
| while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { |
| assert(NextItem->MBB == MBB && "Instrs with same slot index should be" |
| "in the same block"); |
| MBB->insert(InsertPos, NextItem->MI); |
| StashIt = NextItem; |
| NextItem = std::next(StashIt); |
| }; |
| }; |
| |
| // Start block index: find the first non-debug instr in the block, and |
| // insert before it. |
| if (Idx == Slots->getMBBStartIdx(MBB)) { |
| MachineBasicBlock::iterator InsertPos = |
| findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); |
| EmitInstsHere(InsertPos); |
| continue; |
| } |
| |
| if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) { |
| // Insert at the end of any debug instructions. |
| auto PostDebug = std::next(Pos->getIterator()); |
| PostDebug = skipDebugInstructionsForward(PostDebug, MBB->instr_end()); |
| EmitInstsHere(PostDebug); |
| } else { |
| // Insert position disappeared; walk forwards through slots until we |
| // find a new one. |
| SlotIndex End = Slots->getMBBEndIdx(MBB); |
| for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) { |
| Pos = Slots->getInstructionFromIndex(Idx); |
| if (Pos) { |
| EmitInstsHere(Pos->getIterator()); |
| break; |
| } |
| } |
| |
| // We have reached the end of the block and didn't find anywhere to |
| // insert! It's not safe to discard any debug instructions; place them |
| // in front of the first terminator, or in front of end(). |
| if (Idx >= End) { |
| auto TermIt = MBB->getFirstTerminator(); |
| EmitInstsHere(TermIt); |
| } |
| } |
| } |
| |
| EmitDone = true; |
| BBSkipInstsMap.clear(); |
| } |
| |
| void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { |
| if (pImpl) |
| static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { |
| if (pImpl) |
| static_cast<LDVImpl*>(pImpl)->print(dbgs()); |
| } |
| #endif |