| //===- subzero/src/IceBitVector.h - Inline bit vector. ----------*- C++ -*-===// | 
 | // | 
 | //                        The Subzero Code Generator | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// | 
 | /// \file | 
 | /// \brief Defines and implements a bit vector classes. | 
 | /// | 
 | /// SmallBitVector is a drop in replacement for llvm::SmallBitVector. It uses | 
 | /// inline storage, at the expense of limited, static size. | 
 | /// | 
 | /// BitVector is a allocator aware version of llvm::BitVector. Its | 
 | /// implementation was copied ipsis literis from llvm. | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef SUBZERO_SRC_ICEBITVECTOR_H | 
 | #define SUBZERO_SRC_ICEBITVECTOR_H | 
 |  | 
 | #include "IceMemory.h" | 
 | #include "IceOperand.h" | 
 |  | 
 | #include "llvm/Support/MathExtras.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <climits> | 
 | #include <memory> | 
 | #include <type_traits> | 
 | #include <utility> | 
 |  | 
 | namespace Ice { | 
 | class SmallBitVector { | 
 | public: | 
 |   using ElementType = uint64_t; | 
 |   static constexpr SizeT BitIndexSize = 6; // log2(NumBitsPerPos); | 
 |   static constexpr SizeT NumBitsPerPos = sizeof(ElementType) * CHAR_BIT; | 
 |   static_assert(1 << BitIndexSize == NumBitsPerPos, "Invalid BitIndexSize."); | 
 |  | 
 |   SmallBitVector(const SmallBitVector &BV) { *this = BV; } | 
 |  | 
 |   SmallBitVector &operator=(const SmallBitVector &BV) { | 
 |     if (&BV != this) { | 
 |       resize(BV.size()); | 
 |       memcpy(Bits, BV.Bits, sizeof(Bits)); | 
 |     } | 
 |     return *this; | 
 |   } | 
 |  | 
 |   SmallBitVector() { reset(); } | 
 |  | 
 |   explicit SmallBitVector(SizeT S) : SmallBitVector() { | 
 |     assert(S <= MaxBits); | 
 |     resize(S); | 
 |   } | 
 |  | 
 |   class Reference { | 
 |     Reference() = delete; | 
 |  | 
 |   public: | 
 |     Reference(const Reference &) = default; | 
 |     Reference &operator=(const Reference &Rhs) { return *this = (bool)Rhs; } | 
 |     Reference &operator=(bool t) { | 
 |       if (t) { | 
 |         *Data |= _1 << Bit; | 
 |       } else { | 
 |         *Data &= ~(_1 << Bit); | 
 |       } | 
 |       return *this; | 
 |     } | 
 |     operator bool() const { return (*Data & (_1 << Bit)) != 0; } | 
 |  | 
 |   private: | 
 |     friend class SmallBitVector; | 
 |     Reference(ElementType *D, SizeT B) : Data(D), Bit(B) { | 
 |       assert(B < NumBitsPerPos); | 
 |     } | 
 |  | 
 |     ElementType *const Data; | 
 |     const SizeT Bit; | 
 |   }; | 
 |  | 
 |   Reference operator[](unsigned Idx) { | 
 |     assert(Idx < size()); | 
 |     return Reference(Bits + (Idx >> BitIndexSize), | 
 |                      Idx & ((_1 << BitIndexSize) - 1)); | 
 |   } | 
 |  | 
 |   bool operator[](unsigned Idx) const { | 
 |     assert(Idx < size()); | 
 |     return Bits[Idx >> BitIndexSize] & | 
 |            (_1 << (Idx & ((_1 << BitIndexSize) - 1))); | 
 |   } | 
 |  | 
 |   int find_first() const { return find_first<0>(); } | 
 |  | 
 |   int find_next(unsigned Prev) const { return find_next<0>(Prev); } | 
 |  | 
 |   bool any() const { | 
 |     for (SizeT i = 0; i < BitsElements; ++i) { | 
 |       if (Bits[i]) { | 
 |         return true; | 
 |       } | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   SizeT size() const { return Size; } | 
 |  | 
 |   void resize(SizeT Size) { | 
 |     assert(Size <= MaxBits); | 
 |     this->Size = Size; | 
 |   } | 
 |  | 
 |   void reserve(SizeT Size) { | 
 |     assert(Size <= MaxBits); | 
 |     (void)Size; | 
 |   } | 
 |  | 
 |   void set(unsigned Idx) { (*this)[Idx] = true; } | 
 |  | 
 |   void set() { | 
 |     for (SizeT ii = 0; ii < size(); ++ii) { | 
 |       (*this)[ii] = true; | 
 |     } | 
 |   } | 
 |  | 
 |   SizeT count() const { | 
 |     SizeT Count = 0; | 
 |     for (SizeT i = 0; i < BitsElements; ++i) { | 
 |       Count += llvm::countPopulation(Bits[i]); | 
 |     } | 
 |     return Count; | 
 |   } | 
 |  | 
 |   SmallBitVector operator&(const SmallBitVector &Rhs) const { | 
 |     assert(size() == Rhs.size()); | 
 |     SmallBitVector Ret(std::max(size(), Rhs.size())); | 
 |     for (SizeT i = 0; i < BitsElements; ++i) { | 
 |       Ret.Bits[i] = Bits[i] & Rhs.Bits[i]; | 
 |     } | 
 |     return Ret; | 
 |   } | 
 |  | 
 |   SmallBitVector operator~() const { | 
 |     SmallBitVector Ret = *this; | 
 |     Ret.invert<0>(); | 
 |     return Ret; | 
 |   } | 
 |  | 
 |   SmallBitVector &operator|=(const SmallBitVector &Rhs) { | 
 |     assert(size() == Rhs.size()); | 
 |     resize(std::max(size(), Rhs.size())); | 
 |     for (SizeT i = 0; i < BitsElements; ++i) { | 
 |       Bits[i] |= Rhs.Bits[i]; | 
 |     } | 
 |     return *this; | 
 |   } | 
 |  | 
 |   SmallBitVector operator|(const SmallBitVector &Rhs) const { | 
 |     assert(size() == Rhs.size()); | 
 |     SmallBitVector Ret(std::max(size(), Rhs.size())); | 
 |     for (SizeT i = 0; i < BitsElements; ++i) { | 
 |       Ret.Bits[i] = Bits[i] | Rhs.Bits[i]; | 
 |     } | 
 |     return Ret; | 
 |   } | 
 |  | 
 |   void reset() { memset(Bits, 0, sizeof(Bits)); } | 
 |  | 
 |   void reset(const SmallBitVector &Mask) { | 
 |     for (const auto V : RegNumBVIter(Mask)) { | 
 |       (*this)[unsigned(V)] = false; | 
 |     } | 
 |   } | 
 |  | 
 | private: | 
 |   // _1 is the constant 1 of type ElementType. | 
 |   static constexpr ElementType _1 = ElementType(1); | 
 |  | 
 |   static constexpr SizeT BitsElements = 2; | 
 |   ElementType Bits[BitsElements]; | 
 |  | 
 |   // MaxBits is defined here because it needs Bits to be defined. | 
 |   static constexpr SizeT MaxBits = sizeof(SmallBitVector::Bits) * CHAR_BIT; | 
 |   static_assert(sizeof(SmallBitVector::Bits) == 16, | 
 |                 "Bits must be 16 bytes wide."); | 
 |   SizeT Size = 0; | 
 |  | 
 |   template <SizeT Pos> | 
 |   typename std::enable_if<Pos == BitsElements, int>::type find_first() const { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   template <SizeT Pos> | 
 |       typename std::enable_if < | 
 |       Pos<BitsElements, int>::type find_first() const { | 
 |     if (Bits[Pos] != 0) { | 
 |       return NumBitsPerPos * Pos + llvm::countTrailingZeros(Bits[Pos]); | 
 |     } | 
 |     return find_first<Pos + 1>(); | 
 |   } | 
 |  | 
 |   template <SizeT Pos> | 
 |   typename std::enable_if<Pos == BitsElements, int>::type | 
 |   find_next(unsigned) const { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   template <SizeT Pos> | 
 |       typename std::enable_if < | 
 |       Pos<BitsElements, int>::type find_next(unsigned Prev) const { | 
 |     if (Prev + 1 < (Pos + 1) * NumBitsPerPos) { | 
 |       const ElementType Mask = | 
 |           (ElementType(1) << ((Prev + 1) - Pos * NumBitsPerPos)) - 1; | 
 |       const ElementType B = Bits[Pos] & ~Mask; | 
 |       if (B != 0) { | 
 |         return NumBitsPerPos * Pos + llvm::countTrailingZeros(B); | 
 |       } | 
 |       Prev = (1 + Pos) * NumBitsPerPos - 1; | 
 |     } | 
 |     return find_next<Pos + 1>(Prev); | 
 |   } | 
 |  | 
 |   template <SizeT Pos> | 
 |   typename std::enable_if<Pos == BitsElements, void>::type invert() {} | 
 |  | 
 |   template <SizeT Pos> | 
 |       typename std::enable_if < Pos<BitsElements, void>::type invert() { | 
 |     if (size() < Pos * NumBitsPerPos) { | 
 |       Bits[Pos] = 0; | 
 |     } else if ((Pos + 1) * NumBitsPerPos < size()) { | 
 |       Bits[Pos] ^= ~ElementType(0); | 
 |     } else { | 
 |       const ElementType Mask = | 
 |           (ElementType(1) << (size() - (Pos * NumBitsPerPos))) - 1; | 
 |       Bits[Pos] ^= Mask; | 
 |     } | 
 |     invert<Pos + 1>(); | 
 |   } | 
 | }; | 
 |  | 
 | template <template <typename> class AT> class BitVectorTmpl { | 
 |   typedef unsigned long BitWord; | 
 |   using Allocator = AT<BitWord>; | 
 |  | 
 |   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; | 
 |  | 
 |   static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, | 
 |                 "Unsupported word size"); | 
 |  | 
 |   BitWord *Bits;     // Actual bits. | 
 |   unsigned Size;     // Size of bitvector in bits. | 
 |   unsigned Capacity; // Size of allocated memory in BitWord. | 
 |   Allocator Alloc; | 
 |  | 
 |   uint64_t alignTo(uint64_t Value, uint64_t Align) { | 
 | #ifdef PNACL_LLVM | 
 |     return llvm::RoundUpToAlignment(Value, Align); | 
 | #else  // !PNACL_LLVM | 
 |     return llvm::alignTo(Value, Align); | 
 | #endif // !PNACL_LLVM | 
 |   } | 
 |  | 
 | public: | 
 |   typedef unsigned size_type; | 
 |   // Encapsulation of a single bit. | 
 |   class reference { | 
 |     friend class BitVectorTmpl; | 
 |  | 
 |     BitWord *WordRef; | 
 |     unsigned BitPos; | 
 |  | 
 |     reference(); // Undefined | 
 |  | 
 |   public: | 
 |     reference(BitVectorTmpl &b, unsigned Idx) { | 
 |       WordRef = &b.Bits[Idx / BITWORD_SIZE]; | 
 |       BitPos = Idx % BITWORD_SIZE; | 
 |     } | 
 |  | 
 |     reference(const reference &) = default; | 
 |  | 
 |     reference &operator=(reference t) { | 
 |       *this = bool(t); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     reference &operator=(bool t) { | 
 |       if (t) | 
 |         *WordRef |= BitWord(1) << BitPos; | 
 |       else | 
 |         *WordRef &= ~(BitWord(1) << BitPos); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     operator bool() const { | 
 |       return ((*WordRef) & (BitWord(1) << BitPos)) ? true : false; | 
 |     } | 
 |   }; | 
 |  | 
 |   /// BitVectorTmpl default ctor - Creates an empty bitvector. | 
 |   BitVectorTmpl(Allocator A = Allocator()) | 
 |       : Size(0), Capacity(0), Alloc(std::move(A)) { | 
 |     Bits = nullptr; | 
 |   } | 
 |  | 
 |   /// BitVectorTmpl ctor - Creates a bitvector of specified number of bits. All | 
 |   /// bits are initialized to the specified value. | 
 |   explicit BitVectorTmpl(unsigned s, bool t = false, Allocator A = Allocator()) | 
 |       : Size(s), Alloc(std::move(A)) { | 
 |     Capacity = NumBitWords(s); | 
 |     Bits = Alloc.allocate(Capacity); | 
 |     init_words(Bits, Capacity, t); | 
 |     if (t) | 
 |       clear_unused_bits(); | 
 |   } | 
 |  | 
 |   /// BitVectorTmpl copy ctor. | 
 |   BitVectorTmpl(const BitVectorTmpl &RHS) : Size(RHS.size()), Alloc(RHS.Alloc) { | 
 |     if (Size == 0) { | 
 |       Bits = nullptr; | 
 |       Capacity = 0; | 
 |       return; | 
 |     } | 
 |  | 
 |     Capacity = NumBitWords(RHS.size()); | 
 |     Bits = Alloc.allocate(Capacity); | 
 |     std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord)); | 
 |   } | 
 |  | 
 |   BitVectorTmpl(BitVectorTmpl &&RHS) | 
 |       : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity), | 
 |         Alloc(std::move(RHS.Alloc)) { | 
 |     RHS.Bits = nullptr; | 
 |   } | 
 |  | 
 |   ~BitVectorTmpl() { | 
 |     if (Bits != nullptr) { | 
 |       Alloc.deallocate(Bits, Capacity); | 
 |     } | 
 |   } | 
 |  | 
 |   /// empty - Tests whether there are no bits in this bitvector. | 
 |   bool empty() const { return Size == 0; } | 
 |  | 
 |   /// size - Returns the number of bits in this bitvector. | 
 |   size_type size() const { return Size; } | 
 |  | 
 |   /// count - Returns the number of bits which are set. | 
 |   size_type count() const { | 
 |     unsigned NumBits = 0; | 
 |     for (unsigned i = 0; i < NumBitWords(size()); ++i) | 
 |       NumBits += llvm::countPopulation(Bits[i]); | 
 |     return NumBits; | 
 |   } | 
 |  | 
 |   /// any - Returns true if any bit is set. | 
 |   bool any() const { | 
 |     for (unsigned i = 0; i < NumBitWords(size()); ++i) | 
 |       if (Bits[i] != 0) | 
 |         return true; | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// all - Returns true if all bits are set. | 
 |   bool all() const { | 
 |     for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) | 
 |       if (Bits[i] != ~0UL) | 
 |         return false; | 
 |  | 
 |     // If bits remain check that they are ones. The unused bits are always zero. | 
 |     if (unsigned Remainder = Size % BITWORD_SIZE) | 
 |       return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// none - Returns true if none of the bits are set. | 
 |   bool none() const { return !any(); } | 
 |  | 
 |   /// find_first - Returns the index of the first set bit, -1 if none | 
 |   /// of the bits are set. | 
 |   int find_first() const { | 
 |     for (unsigned i = 0; i < NumBitWords(size()); ++i) | 
 |       if (Bits[i] != 0) | 
 |         return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); | 
 |     return -1; | 
 |   } | 
 |  | 
 |   /// find_next - Returns the index of the next set bit following the | 
 |   /// "Prev" bit. Returns -1 if the next set bit is not found. | 
 |   int find_next(unsigned Prev) const { | 
 |     ++Prev; | 
 |     if (Prev >= Size) | 
 |       return -1; | 
 |  | 
 |     unsigned WordPos = Prev / BITWORD_SIZE; | 
 |     unsigned BitPos = Prev % BITWORD_SIZE; | 
 |     BitWord Copy = Bits[WordPos]; | 
 |     // Mask off previous bits. | 
 |     Copy &= ~0UL << BitPos; | 
 |  | 
 |     if (Copy != 0) | 
 |       return WordPos * BITWORD_SIZE + llvm::countTrailingZeros(Copy); | 
 |  | 
 |     // Check subsequent words. | 
 |     for (unsigned i = WordPos + 1; i < NumBitWords(size()); ++i) | 
 |       if (Bits[i] != 0) | 
 |         return i * BITWORD_SIZE + llvm::countTrailingZeros(Bits[i]); | 
 |     return -1; | 
 |   } | 
 |  | 
 |   /// clear - Clear all bits. | 
 |   void clear() { Size = 0; } | 
 |  | 
 |   /// resize - Grow or shrink the bitvector. | 
 |   void resize(unsigned N, bool t = false) { | 
 |     if (N > Capacity * BITWORD_SIZE) { | 
 |       unsigned OldCapacity = Capacity; | 
 |       grow(N); | 
 |       init_words(&Bits[OldCapacity], (Capacity - OldCapacity), t); | 
 |     } | 
 |  | 
 |     // Set any old unused bits that are now included in the BitVectorTmpl. This | 
 |     // may set bits that are not included in the new vector, but we will clear | 
 |     // them back out below. | 
 |     if (N > Size) | 
 |       set_unused_bits(t); | 
 |  | 
 |     // Update the size, and clear out any bits that are now unused | 
 |     unsigned OldSize = Size; | 
 |     Size = N; | 
 |     if (t || N < OldSize) | 
 |       clear_unused_bits(); | 
 |   } | 
 |  | 
 |   void reserve(unsigned N) { | 
 |     if (N > Capacity * BITWORD_SIZE) | 
 |       grow(N); | 
 |   } | 
 |  | 
 |   // Set, reset, flip | 
 |   BitVectorTmpl &set() { | 
 |     init_words(Bits, Capacity, true); | 
 |     clear_unused_bits(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   BitVectorTmpl &set(unsigned Idx) { | 
 |     assert(Bits && "Bits never allocated"); | 
 |     Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /// set - Efficiently set a range of bits in [I, E) | 
 |   BitVectorTmpl &set(unsigned I, unsigned E) { | 
 |     assert(I <= E && "Attempted to set backwards range!"); | 
 |     assert(E <= size() && "Attempted to set out-of-bounds range!"); | 
 |  | 
 |     if (I == E) | 
 |       return *this; | 
 |  | 
 |     if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | 
 |       BitWord EMask = 1UL << (E % BITWORD_SIZE); | 
 |       BitWord IMask = 1UL << (I % BITWORD_SIZE); | 
 |       BitWord Mask = EMask - IMask; | 
 |       Bits[I / BITWORD_SIZE] |= Mask; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | 
 |     Bits[I / BITWORD_SIZE] |= PrefixMask; | 
 |     I = alignTo(I, BITWORD_SIZE); | 
 |  | 
 |     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | 
 |       Bits[I / BITWORD_SIZE] = ~0UL; | 
 |  | 
 |     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | 
 |     if (I < E) | 
 |       Bits[I / BITWORD_SIZE] |= PostfixMask; | 
 |  | 
 |     return *this; | 
 |   } | 
 |  | 
 |   BitVectorTmpl &reset() { | 
 |     init_words(Bits, Capacity, false); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   BitVectorTmpl &reset(unsigned Idx) { | 
 |     Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /// reset - Efficiently reset a range of bits in [I, E) | 
 |   BitVectorTmpl &reset(unsigned I, unsigned E) { | 
 |     assert(I <= E && "Attempted to reset backwards range!"); | 
 |     assert(E <= size() && "Attempted to reset out-of-bounds range!"); | 
 |  | 
 |     if (I == E) | 
 |       return *this; | 
 |  | 
 |     if (I / BITWORD_SIZE == E / BITWORD_SIZE) { | 
 |       BitWord EMask = 1UL << (E % BITWORD_SIZE); | 
 |       BitWord IMask = 1UL << (I % BITWORD_SIZE); | 
 |       BitWord Mask = EMask - IMask; | 
 |       Bits[I / BITWORD_SIZE] &= ~Mask; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE); | 
 |     Bits[I / BITWORD_SIZE] &= ~PrefixMask; | 
 |     I = alignTo(I, BITWORD_SIZE); | 
 |  | 
 |     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) | 
 |       Bits[I / BITWORD_SIZE] = 0UL; | 
 |  | 
 |     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1; | 
 |     if (I < E) | 
 |       Bits[I / BITWORD_SIZE] &= ~PostfixMask; | 
 |  | 
 |     return *this; | 
 |   } | 
 |  | 
 |   BitVectorTmpl &flip() { | 
 |     for (unsigned i = 0; i < NumBitWords(size()); ++i) | 
 |       Bits[i] = ~Bits[i]; | 
 |     clear_unused_bits(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   BitVectorTmpl &flip(unsigned Idx) { | 
 |     Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Indexing. | 
 |   reference operator[](unsigned Idx) { | 
 |     assert(Idx < Size && "Out-of-bounds Bit access."); | 
 |     return reference(*this, Idx); | 
 |   } | 
 |  | 
 |   bool operator[](unsigned Idx) const { | 
 |     assert(Idx < Size && "Out-of-bounds Bit access."); | 
 |     BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); | 
 |     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; | 
 |   } | 
 |  | 
 |   bool test(unsigned Idx) const { return (*this)[Idx]; } | 
 |  | 
 |   /// Test if any common bits are set. | 
 |   bool anyCommon(const BitVectorTmpl &RHS) const { | 
 |     unsigned ThisWords = NumBitWords(size()); | 
 |     unsigned RHSWords = NumBitWords(RHS.size()); | 
 |     for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) | 
 |       if (Bits[i] & RHS.Bits[i]) | 
 |         return true; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Comparison operators. | 
 |   bool operator==(const BitVectorTmpl &RHS) const { | 
 |     unsigned ThisWords = NumBitWords(size()); | 
 |     unsigned RHSWords = NumBitWords(RHS.size()); | 
 |     unsigned i; | 
 |     for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 
 |       if (Bits[i] != RHS.Bits[i]) | 
 |         return false; | 
 |  | 
 |     // Verify that any extra words are all zeros. | 
 |     if (i != ThisWords) { | 
 |       for (; i != ThisWords; ++i) | 
 |         if (Bits[i]) | 
 |           return false; | 
 |     } else if (i != RHSWords) { | 
 |       for (; i != RHSWords; ++i) | 
 |         if (RHS.Bits[i]) | 
 |           return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   bool operator!=(const BitVectorTmpl &RHS) const { return !(*this == RHS); } | 
 |  | 
 |   /// Intersection, union, disjoint union. | 
 |   BitVectorTmpl &operator&=(const BitVectorTmpl &RHS) { | 
 |     unsigned ThisWords = NumBitWords(size()); | 
 |     unsigned RHSWords = NumBitWords(RHS.size()); | 
 |     unsigned i; | 
 |     for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 
 |       Bits[i] &= RHS.Bits[i]; | 
 |  | 
 |     // Any bits that are just in this bitvector become zero, because they aren't | 
 |     // in the RHS bit vector.  Any words only in RHS are ignored because they | 
 |     // are already zero in the LHS. | 
 |     for (; i != ThisWords; ++i) | 
 |       Bits[i] = 0; | 
 |  | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. | 
 |   BitVectorTmpl &reset(const BitVectorTmpl &RHS) { | 
 |     unsigned ThisWords = NumBitWords(size()); | 
 |     unsigned RHSWords = NumBitWords(RHS.size()); | 
 |     unsigned i; | 
 |     for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 
 |       Bits[i] &= ~RHS.Bits[i]; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /// test - Check if (This - RHS) is zero. | 
 |   /// This is the same as reset(RHS) and any(). | 
 |   bool test(const BitVectorTmpl &RHS) const { | 
 |     unsigned ThisWords = NumBitWords(size()); | 
 |     unsigned RHSWords = NumBitWords(RHS.size()); | 
 |     unsigned i; | 
 |     for (i = 0; i != std::min(ThisWords, RHSWords); ++i) | 
 |       if ((Bits[i] & ~RHS.Bits[i]) != 0) | 
 |         return true; | 
 |  | 
 |     for (; i != ThisWords; ++i) | 
 |       if (Bits[i] != 0) | 
 |         return true; | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   BitVectorTmpl &operator|=(const BitVectorTmpl &RHS) { | 
 |     if (size() < RHS.size()) | 
 |       resize(RHS.size()); | 
 |     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | 
 |       Bits[i] |= RHS.Bits[i]; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   BitVectorTmpl &operator^=(const BitVectorTmpl &RHS) { | 
 |     if (size() < RHS.size()) | 
 |       resize(RHS.size()); | 
 |     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i) | 
 |       Bits[i] ^= RHS.Bits[i]; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Assignment operator. | 
 |   const BitVectorTmpl &operator=(const BitVectorTmpl &RHS) { | 
 |     if (this == &RHS) | 
 |       return *this; | 
 |  | 
 |     Size = RHS.size(); | 
 |     unsigned RHSWords = NumBitWords(Size); | 
 |     if (Size <= Capacity * BITWORD_SIZE) { | 
 |       if (Size) | 
 |         std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord)); | 
 |       clear_unused_bits(); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     // Currently, BitVectorTmpl is only used by liveness analysis.  With the | 
 |     // following assert, we make sure BitVectorTmpls grow in a single step from | 
 |     // 0 to their final capacity, rather than growing slowly and "leaking" | 
 |     // memory in the process. | 
 |     assert(Capacity == 0); | 
 |  | 
 |     // Grow the bitvector to have enough elements. | 
 |     const auto OldCapacity = Capacity; | 
 |     Capacity = RHSWords; | 
 |     assert(Capacity > 0 && "negative capacity?"); | 
 |     BitWord *NewBits = Alloc.allocate(Capacity); | 
 |     std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord)); | 
 |  | 
 |     // Destroy the old bits. | 
 |     Alloc.deallocate(Bits, OldCapacity); | 
 |     Bits = NewBits; | 
 |  | 
 |     return *this; | 
 |   } | 
 |  | 
 |   const BitVectorTmpl &operator=(BitVectorTmpl &&RHS) { | 
 |     if (this == &RHS) | 
 |       return *this; | 
 |  | 
 |     Alloc.deallocate(Bits, Capacity); | 
 |     Bits = RHS.Bits; | 
 |     Size = RHS.Size; | 
 |     Capacity = RHS.Capacity; | 
 |  | 
 |     RHS.Bits = nullptr; | 
 |  | 
 |     return *this; | 
 |   } | 
 |  | 
 |   void swap(BitVectorTmpl &RHS) { | 
 |     std::swap(Bits, RHS.Bits); | 
 |     std::swap(Size, RHS.Size); | 
 |     std::swap(Capacity, RHS.Capacity); | 
 |   } | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   // Portable bit mask operations. | 
 |   //===--------------------------------------------------------------------===// | 
 |   // | 
 |   // These methods all operate on arrays of uint32_t, each holding 32 bits. The | 
 |   // fixed word size makes it easier to work with literal bit vector constants | 
 |   // in portable code. | 
 |   // | 
 |   // The LSB in each word is the lowest numbered bit.  The size of a portable | 
 |   // bit mask is always a whole multiple of 32 bits.  If no bit mask size is | 
 |   // given, the bit mask is assumed to cover the entire BitVectorTmpl. | 
 |  | 
 |   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. | 
 |   /// This computes "*this |= Mask". | 
 |   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 
 |     applyMask<true, false>(Mask, MaskWords); | 
 |   } | 
 |  | 
 |   /// clearBitsInMask - Clear any bits in this vector that are set in Mask. | 
 |   /// Don't resize. This computes "*this &= ~Mask". | 
 |   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 
 |     applyMask<false, false>(Mask, MaskWords); | 
 |   } | 
 |  | 
 |   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. | 
 |   /// Don't resize.  This computes "*this |= ~Mask". | 
 |   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 
 |     applyMask<true, true>(Mask, MaskWords); | 
 |   } | 
 |  | 
 |   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. | 
 |   /// Don't resize.  This computes "*this &= Mask". | 
 |   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { | 
 |     applyMask<false, true>(Mask, MaskWords); | 
 |   } | 
 |  | 
 | private: | 
 |   unsigned NumBitWords(unsigned S) const { | 
 |     return (S + BITWORD_SIZE - 1) / BITWORD_SIZE; | 
 |   } | 
 |  | 
 |   // Set the unused bits in the high words. | 
 |   void set_unused_bits(bool t = true) { | 
 |     //  Set high words first. | 
 |     unsigned UsedWords = NumBitWords(Size); | 
 |     if (Capacity > UsedWords) | 
 |       init_words(&Bits[UsedWords], (Capacity - UsedWords), t); | 
 |  | 
 |     //  Then set any stray high bits of the last used word. | 
 |     unsigned ExtraBits = Size % BITWORD_SIZE; | 
 |     if (ExtraBits) { | 
 |       BitWord ExtraBitMask = ~0UL << ExtraBits; | 
 |       if (t) | 
 |         Bits[UsedWords - 1] |= ExtraBitMask; | 
 |       else | 
 |         Bits[UsedWords - 1] &= ~ExtraBitMask; | 
 |     } | 
 |   } | 
 |  | 
 |   // Clear the unused bits in the high words. | 
 |   void clear_unused_bits() { set_unused_bits(false); } | 
 |  | 
 |   void grow(unsigned NewSize) { | 
 |     const auto OldCapacity = Capacity; | 
 |     Capacity = std::max(NumBitWords(NewSize), Capacity * 2); | 
 |     assert(Capacity > 0 && "realloc-ing zero space"); | 
 |     auto *NewBits = Alloc.allocate(Capacity); | 
 |     if (Bits) { | 
 |       std::memcpy(NewBits, Bits, OldCapacity * sizeof(BitWord)); | 
 |       Alloc.deallocate(Bits, OldCapacity); | 
 |     } | 
 |     Bits = NewBits; | 
 |  | 
 |     clear_unused_bits(); | 
 |   } | 
 |  | 
 |   void init_words(BitWord *B, unsigned NumWords, bool t) { | 
 |     memset(B, 0 - (int)t, NumWords * sizeof(BitWord)); | 
 |   } | 
 |  | 
 |   template <bool AddBits, bool InvertMask> | 
 |   void applyMask(const uint32_t *Mask, unsigned MaskWords) { | 
 |     static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); | 
 |     MaskWords = std::min(MaskWords, (size() + 31) / 32); | 
 |     const unsigned Scale = BITWORD_SIZE / 32; | 
 |     unsigned i; | 
 |     for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { | 
 |       BitWord BW = Bits[i]; | 
 |       // This inner loop should unroll completely when BITWORD_SIZE > 32. | 
 |       for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { | 
 |         uint32_t M = *Mask++; | 
 |         if (InvertMask) | 
 |           M = ~M; | 
 |         if (AddBits) | 
 |           BW |= BitWord(M) << b; | 
 |         else | 
 |           BW &= ~(BitWord(M) << b); | 
 |       } | 
 |       Bits[i] = BW; | 
 |     } | 
 |     for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { | 
 |       uint32_t M = *Mask++; | 
 |       if (InvertMask) | 
 |         M = ~M; | 
 |       if (AddBits) | 
 |         Bits[i] |= BitWord(M) << b; | 
 |       else | 
 |         Bits[i] &= ~(BitWord(M) << b); | 
 |     } | 
 |     if (AddBits) | 
 |       clear_unused_bits(); | 
 |   } | 
 | }; | 
 |  | 
 | using BitVector = BitVectorTmpl<CfgLocalAllocator>; | 
 |  | 
 | } // end of namespace Ice | 
 |  | 
 | namespace std { | 
 | /// Implement std::swap in terms of BitVectorTmpl swap. | 
 | template <template <typename> class AT> | 
 | inline void swap(Ice::BitVectorTmpl<AT> &LHS, Ice::BitVectorTmpl<AT> &RHS) { | 
 |   LHS.swap(RHS); | 
 | } | 
 | } // namespace std | 
 |  | 
 | #endif // SUBZERO_SRC_ICEBITVECTOR_H |