| //===- subzero/src/IceCfg.h - Control flow graph ----------------*- C++ -*-===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the Cfg class, which represents the control flow |
| // graph and the overall per-function compilation context. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ICECFG_H |
| #define SUBZERO_SRC_ICECFG_H |
| |
| #include "IceDefs.h" |
| #include "IceTypes.h" |
| #include "IceGlobalContext.h" |
| |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/Support/Allocator.h" |
| |
| namespace Ice { |
| |
| class Cfg { |
| public: |
| Cfg(GlobalContext *Ctx); |
| ~Cfg(); |
| |
| GlobalContext *getContext() const { return Ctx; } |
| |
| // Manage the name and return type of the function being translated. |
| void setFunctionName(const IceString &Name) { FunctionName = Name; } |
| IceString getFunctionName() const { return FunctionName; } |
| void setReturnType(Type Ty) { ReturnType = Ty; } |
| |
| // Manage the "internal" attribute of the function. |
| void setInternal(bool Internal) { IsInternalLinkage = Internal; } |
| bool getInternal() const { return IsInternalLinkage; } |
| |
| // Translation error flagging. If support for some construct is |
| // known to be missing, instead of an assertion failure, setError() |
| // should be called and the error should be propagated back up. |
| // This way, we can gracefully fail to translate and let a fallback |
| // translator handle the function. |
| void setError(const IceString &Message); |
| bool hasError() const { return HasError; } |
| IceString getError() const { return ErrorMessage; } |
| |
| // Manage nodes (a.k.a. basic blocks, CfgNodes). |
| void setEntryNode(CfgNode *EntryNode) { Entry = EntryNode; } |
| CfgNode *getEntryNode() const { return Entry; } |
| // Create a node and append it to the end of the linearized list. |
| CfgNode *makeNode(const IceString &Name = ""); |
| SizeT getNumNodes() const { return Nodes.size(); } |
| const NodeList &getNodes() const { return Nodes; } |
| |
| // Manage instruction numbering. |
| int newInstNumber() { return NextInstNumber++; } |
| |
| // Manage Variables. |
| Variable *makeVariable(Type Ty, const CfgNode *Node, |
| const IceString &Name = ""); |
| SizeT getNumVariables() const { return Variables.size(); } |
| const VarList &getVariables() const { return Variables; } |
| |
| // Manage arguments to the function. |
| void addArg(Variable *Arg); |
| const VarList &getArgs() const { return Args; } |
| |
| // After the CFG is fully constructed, iterate over the nodes and |
| // compute the predecessor edges, in the form of |
| // CfgNode::InEdges[]. |
| void computePredecessors(); |
| |
| // Manage the CurrentNode field, which is used for validating the |
| // Variable::DefNode field during dumping/emitting. |
| void setCurrentNode(const CfgNode *Node) { CurrentNode = Node; } |
| const CfgNode *getCurrentNode() const { return CurrentNode; } |
| |
| void dump(); |
| |
| // Allocate data of type T using the per-Cfg allocator. |
| template <typename T> T *allocate() { return Allocator.Allocate<T>(); } |
| |
| // Allocate an instruction of type T using the per-Cfg instruction allocator. |
| template <typename T> T *allocateInst() { return Allocator.Allocate<T>(); } |
| |
| // Allocate an array of data of type T using the per-Cfg allocator. |
| template <typename T> T *allocateArrayOf(size_t NumElems) { |
| return Allocator.Allocate<T>(NumElems); |
| } |
| |
| // Deallocate data that was allocated via allocate<T>(). |
| template <typename T> void deallocate(T *Object) { |
| Allocator.Deallocate(Object); |
| } |
| |
| // Deallocate data that was allocated via allocateInst<T>(). |
| template <typename T> void deallocateInst(T *Instr) { |
| Allocator.Deallocate(Instr); |
| } |
| |
| // Deallocate data that was allocated via allocateArrayOf<T>(). |
| template <typename T> void deallocateArrayOf(T *Array) { |
| Allocator.Deallocate(Array); |
| } |
| |
| private: |
| // TODO: for now, everything is allocated from the same allocator. In the |
| // future we may want to split this to several allocators, for example in |
| // order to use a "Recycler" to preserve memory. If we keep all allocation |
| // requests from the Cfg exposed via methods, we can always switch the |
| // implementation over at a later point. |
| llvm::BumpPtrAllocator Allocator; |
| |
| GlobalContext *Ctx; |
| IceString FunctionName; |
| Type ReturnType; |
| bool IsInternalLinkage; |
| bool HasError; |
| IceString ErrorMessage; |
| CfgNode *Entry; // entry basic block |
| NodeList Nodes; // linearized node list; Entry should be first |
| int NextInstNumber; |
| VarList Variables; |
| VarList Args; // subset of Variables, in argument order |
| |
| // CurrentNode is maintained during dumping/emitting just for |
| // validating Variable::DefNode. Normally, a traversal over |
| // CfgNodes maintains this, but before global operations like |
| // register allocation, setCurrentNode(NULL) should be called to |
| // avoid spurious validation failures. |
| const CfgNode *CurrentNode; |
| |
| Cfg(const Cfg &) LLVM_DELETED_FUNCTION; |
| Cfg &operator=(const Cfg &) LLVM_DELETED_FUNCTION; |
| }; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ICECFG_H |