// SwiftShader Software Renderer | |
// | |
// Copyright(c) 2005-2013 TransGaming Inc. | |
// | |
// All rights reserved. No part of this software may be copied, distributed, transmitted, | |
// transcribed, stored in a retrieval system, translated into any human or computer | |
// language by any means, or disclosed to third parties without the explicit written | |
// agreement of TransGaming Inc. Without such an agreement, no rights or licenses, express | |
// or implied, including but not limited to any patent rights, are granted to you. | |
// | |
// Context.cpp: Implements the es1::Context class, managing all GL state and performing | |
// rendering operations. It is the GLES2 specific implementation of EGLContext. | |
#include "Context.h" | |
#include "main.h" | |
#include "mathutil.h" | |
#include "utilities.h" | |
#include "ResourceManager.h" | |
#include "Buffer.h" | |
#include "Framebuffer.h" | |
#include "Renderbuffer.h" | |
#include "Texture.h" | |
#include "VertexDataManager.h" | |
#include "IndexDataManager.h" | |
#include "libEGL/Display.h" | |
#include "libEGL/Surface.h" | |
#include "Common/Half.hpp" | |
#include <EGL/eglext.h> | |
#include <algorithm> | |
#undef near | |
#undef far | |
namespace es1 | |
{ | |
Context::Context(const egl::Config *config, const Context *shareContext) | |
: modelViewStack(MAX_MODELVIEW_STACK_DEPTH), | |
projectionStack(MAX_PROJECTION_STACK_DEPTH), | |
textureStack0(MAX_TEXTURE_STACK_DEPTH), | |
textureStack1(MAX_TEXTURE_STACK_DEPTH) | |
{ | |
sw::Context *context = new sw::Context(); | |
device = new es1::Device(context); | |
mVertexDataManager = new VertexDataManager(this); | |
mIndexDataManager = new IndexDataManager(); | |
setClearColor(0.0f, 0.0f, 0.0f, 0.0f); | |
mState.depthClearValue = 1.0f; | |
mState.stencilClearValue = 0; | |
mState.cullFace = false; | |
mState.cullMode = GL_BACK; | |
mState.frontFace = GL_CCW; | |
mState.depthTest = false; | |
mState.depthFunc = GL_LESS; | |
mState.blend = false; | |
mState.sourceBlendRGB = GL_ONE; | |
mState.sourceBlendAlpha = GL_ONE; | |
mState.destBlendRGB = GL_ZERO; | |
mState.destBlendAlpha = GL_ZERO; | |
mState.blendEquationRGB = GL_FUNC_ADD_OES; | |
mState.blendEquationAlpha = GL_FUNC_ADD_OES; | |
mState.stencilTest = false; | |
mState.stencilFunc = GL_ALWAYS; | |
mState.stencilRef = 0; | |
mState.stencilMask = -1; | |
mState.stencilWritemask = -1; | |
mState.stencilFail = GL_KEEP; | |
mState.stencilPassDepthFail = GL_KEEP; | |
mState.stencilPassDepthPass = GL_KEEP; | |
mState.polygonOffsetFill = false; | |
mState.polygonOffsetFactor = 0.0f; | |
mState.polygonOffsetUnits = 0.0f; | |
mState.sampleAlphaToCoverage = false; | |
mState.sampleCoverage = false; | |
mState.sampleCoverageValue = 1.0f; | |
mState.sampleCoverageInvert = false; | |
mState.scissorTest = false; | |
mState.dither = true; | |
mState.shadeModel = GL_SMOOTH; | |
mState.generateMipmapHint = GL_DONT_CARE; | |
mState.perspectiveCorrectionHint = GL_DONT_CARE; | |
mState.lineWidth = 1.0f; | |
mState.viewportX = 0; | |
mState.viewportY = 0; | |
mState.viewportWidth = config->mDisplayMode.width; | |
mState.viewportHeight = config->mDisplayMode.height; | |
mState.zNear = 0.0f; | |
mState.zFar = 1.0f; | |
mState.scissorX = 0; | |
mState.scissorY = 0; | |
mState.scissorWidth = config->mDisplayMode.width; | |
mState.scissorHeight = config->mDisplayMode.height; | |
mState.colorMaskRed = true; | |
mState.colorMaskGreen = true; | |
mState.colorMaskBlue = true; | |
mState.colorMaskAlpha = true; | |
mState.depthMask = true; | |
for(int i = 0; i < MAX_TEXTURE_UNITS; i++) | |
{ | |
mState.textureUnit[i].environmentMode = GL_MODULATE; | |
mState.textureUnit[i].combineRGB = GL_MODULATE; | |
mState.textureUnit[i].combineAlpha = GL_MODULATE; | |
mState.textureUnit[i].src0RGB = GL_TEXTURE; | |
mState.textureUnit[i].src1RGB = GL_PREVIOUS; | |
mState.textureUnit[i].src2RGB = GL_CONSTANT; | |
mState.textureUnit[i].src0Alpha = GL_TEXTURE; | |
mState.textureUnit[i].src1Alpha = GL_PREVIOUS; | |
mState.textureUnit[i].src2Alpha = GL_CONSTANT; | |
mState.textureUnit[i].operand0RGB = GL_SRC_COLOR; | |
mState.textureUnit[i].operand1RGB = GL_SRC_COLOR; | |
mState.textureUnit[i].operand2RGB = GL_SRC_ALPHA; | |
mState.textureUnit[i].operand0Alpha = GL_SRC_ALPHA; | |
mState.textureUnit[i].operand1Alpha = GL_SRC_ALPHA; | |
mState.textureUnit[i].operand2Alpha = GL_SRC_ALPHA; | |
} | |
if(shareContext != NULL) | |
{ | |
mResourceManager = shareContext->mResourceManager; | |
mResourceManager->addRef(); | |
} | |
else | |
{ | |
mResourceManager = new ResourceManager(); | |
} | |
// [OpenGL ES 2.0.24] section 3.7 page 83: | |
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional | |
// and cube map texture state vectors respectively associated with them. | |
// In order that access to these initial textures not be lost, they are treated as texture | |
// objects all of whose names are 0. | |
mTexture2DZero = new Texture2D(0); | |
mTextureExternalZero = new TextureExternal(0); | |
mState.activeSampler = 0; | |
bindArrayBuffer(0); | |
bindElementArrayBuffer(0); | |
bindTexture2D(0); | |
bindFramebuffer(0); | |
bindRenderbuffer(0); | |
mState.packAlignment = 4; | |
mState.unpackAlignment = 4; | |
mInvalidEnum = false; | |
mInvalidValue = false; | |
mInvalidOperation = false; | |
mOutOfMemory = false; | |
mInvalidFramebufferOperation = false; | |
lighting = false; | |
for(int i = 0; i < MAX_LIGHTS; i++) | |
{ | |
light[i].enable = false; | |
light[i].ambient = {0.0f, 0.0f, 0.0f, 1.0f}; | |
light[i].diffuse = {0.0f, 0.0f, 0.0f, 1.0f}; | |
light[i].specular = {0.0f, 0.0f, 0.0f, 1.0f}; | |
light[i].position = {0.0f, 0.0f, 1.0f, 0.0f}; | |
light[i].direction = {0.0f, 0.0f, -1.0f}; | |
light[i].attenuation = {1.0f, 0.0f, 0.0f}; | |
} | |
light[0].diffuse = {1.0f, 1.0f, 1.0f, 1.0f}; | |
light[0].specular = {1.0f, 1.0f, 1.0f, 1.0f}; | |
globalAmbient = {0.2f, 0.2f, 0.2f, 1.0f}; | |
materialAmbient = {0.2f, 0.2f, 0.2f, 1.0f}; | |
materialDiffuse = {0.8f, 0.8f, 0.8f, 1.0f}; | |
materialSpecular = {0.0f, 0.0f, 0.0f, 1.0f}; | |
materialEmission = {0.0f, 0.0f, 0.0f, 1.0f}; | |
materialShininess = 0.0f; | |
matrixMode = GL_MODELVIEW; | |
for(int i = 0; i < MAX_TEXTURE_UNITS; i++) | |
{ | |
texture2Denabled[i] = false; | |
textureExternalEnabled[i] = false; | |
} | |
clientTexture = GL_TEXTURE0; | |
setVertexAttrib(sw::Color0, 1.0f, 1.0f, 1.0f, 1.0f); | |
for(int i = 0; i < MAX_TEXTURE_UNITS; i++) | |
{ | |
setVertexAttrib(sw::TexCoord0 + i, 0.0f, 0.0f, 0.0f, 1.0f); | |
} | |
setVertexAttrib(sw::Normal, 0.0f, 0.0f, 1.0f, 1.0f); | |
setVertexAttrib(sw::PointSize, 1.0f, 1.0f, 1.0f, 1.0f); | |
mHasBeenCurrent = false; | |
markAllStateDirty(); | |
} | |
Context::~Context() | |
{ | |
while(!mFramebufferMap.empty()) | |
{ | |
deleteFramebuffer(mFramebufferMap.begin()->first); | |
} | |
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) | |
{ | |
for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++) | |
{ | |
mState.samplerTexture[type][sampler] = NULL; | |
} | |
} | |
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) | |
{ | |
mState.vertexAttribute[i].mBoundBuffer = NULL; | |
} | |
mState.arrayBuffer = NULL; | |
mState.elementArrayBuffer = NULL; | |
mState.renderbuffer = NULL; | |
mTexture2DZero = NULL; | |
mTextureExternalZero = NULL; | |
delete mVertexDataManager; | |
delete mIndexDataManager; | |
mResourceManager->release(); | |
delete device; | |
} | |
void Context::makeCurrent(egl::Surface *surface) | |
{ | |
if(!mHasBeenCurrent) | |
{ | |
mState.viewportX = 0; | |
mState.viewportY = 0; | |
mState.viewportWidth = surface->getWidth(); | |
mState.viewportHeight = surface->getHeight(); | |
mState.scissorX = 0; | |
mState.scissorY = 0; | |
mState.scissorWidth = surface->getWidth(); | |
mState.scissorHeight = surface->getHeight(); | |
mHasBeenCurrent = true; | |
} | |
// Wrap the existing resources into GL objects and assign them to the '0' names | |
egl::Image *defaultRenderTarget = surface->getRenderTarget(); | |
egl::Image *depthStencil = surface->getDepthStencil(); | |
Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget); | |
DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(depthStencil); | |
Framebuffer *framebufferZero = new DefaultFramebuffer(colorbufferZero, depthStencilbufferZero); | |
setFramebufferZero(framebufferZero); | |
if(defaultRenderTarget) | |
{ | |
defaultRenderTarget->release(); | |
} | |
if(depthStencil) | |
{ | |
depthStencil->release(); | |
} | |
markAllStateDirty(); | |
} | |
int Context::getClientVersion() const | |
{ | |
return 1; | |
} | |
// This function will set all of the state-related dirty flags, so that all state is set during next pre-draw. | |
void Context::markAllStateDirty() | |
{ | |
mDepthStateDirty = true; | |
mMaskStateDirty = true; | |
mBlendStateDirty = true; | |
mStencilStateDirty = true; | |
mPolygonOffsetStateDirty = true; | |
mSampleStateDirty = true; | |
mDitherStateDirty = true; | |
mFrontFaceDirty = true; | |
} | |
void Context::setClearColor(float red, float green, float blue, float alpha) | |
{ | |
mState.colorClearValue.red = red; | |
mState.colorClearValue.green = green; | |
mState.colorClearValue.blue = blue; | |
mState.colorClearValue.alpha = alpha; | |
} | |
void Context::setClearDepth(float depth) | |
{ | |
mState.depthClearValue = depth; | |
} | |
void Context::setClearStencil(int stencil) | |
{ | |
mState.stencilClearValue = stencil; | |
} | |
void Context::setCullFace(bool enabled) | |
{ | |
mState.cullFace = enabled; | |
} | |
bool Context::isCullFaceEnabled() const | |
{ | |
return mState.cullFace; | |
} | |
void Context::setCullMode(GLenum mode) | |
{ | |
mState.cullMode = mode; | |
} | |
void Context::setFrontFace(GLenum front) | |
{ | |
if(mState.frontFace != front) | |
{ | |
mState.frontFace = front; | |
mFrontFaceDirty = true; | |
} | |
} | |
void Context::setDepthTest(bool enabled) | |
{ | |
if(mState.depthTest != enabled) | |
{ | |
mState.depthTest = enabled; | |
mDepthStateDirty = true; | |
} | |
} | |
bool Context::isDepthTestEnabled() const | |
{ | |
return mState.depthTest; | |
} | |
void Context::setDepthFunc(GLenum depthFunc) | |
{ | |
if(mState.depthFunc != depthFunc) | |
{ | |
mState.depthFunc = depthFunc; | |
mDepthStateDirty = true; | |
} | |
} | |
void Context::setDepthRange(float zNear, float zFar) | |
{ | |
mState.zNear = zNear; | |
mState.zFar = zFar; | |
} | |
void Context::setBlend(bool enabled) | |
{ | |
if(mState.blend != enabled) | |
{ | |
mState.blend = enabled; | |
mBlendStateDirty = true; | |
} | |
} | |
bool Context::isBlendEnabled() const | |
{ | |
return mState.blend; | |
} | |
void Context::setBlendFactors(GLenum sourceRGB, GLenum destRGB, GLenum sourceAlpha, GLenum destAlpha) | |
{ | |
if(mState.sourceBlendRGB != sourceRGB || | |
mState.sourceBlendAlpha != sourceAlpha || | |
mState.destBlendRGB != destRGB || | |
mState.destBlendAlpha != destAlpha) | |
{ | |
mState.sourceBlendRGB = sourceRGB; | |
mState.destBlendRGB = destRGB; | |
mState.sourceBlendAlpha = sourceAlpha; | |
mState.destBlendAlpha = destAlpha; | |
mBlendStateDirty = true; | |
} | |
} | |
void Context::setBlendEquation(GLenum rgbEquation, GLenum alphaEquation) | |
{ | |
if(mState.blendEquationRGB != rgbEquation || | |
mState.blendEquationAlpha != alphaEquation) | |
{ | |
mState.blendEquationRGB = rgbEquation; | |
mState.blendEquationAlpha = alphaEquation; | |
mBlendStateDirty = true; | |
} | |
} | |
void Context::setStencilTest(bool enabled) | |
{ | |
if(mState.stencilTest != enabled) | |
{ | |
mState.stencilTest = enabled; | |
mStencilStateDirty = true; | |
} | |
} | |
bool Context::isStencilTestEnabled() const | |
{ | |
return mState.stencilTest; | |
} | |
void Context::setStencilParams(GLenum stencilFunc, GLint stencilRef, GLuint stencilMask) | |
{ | |
if(mState.stencilFunc != stencilFunc || | |
mState.stencilRef != stencilRef || | |
mState.stencilMask != stencilMask) | |
{ | |
mState.stencilFunc = stencilFunc; | |
mState.stencilRef = (stencilRef > 0) ? stencilRef : 0; | |
mState.stencilMask = stencilMask; | |
mStencilStateDirty = true; | |
} | |
} | |
void Context::setStencilWritemask(GLuint stencilWritemask) | |
{ | |
if(mState.stencilWritemask != stencilWritemask) | |
{ | |
mState.stencilWritemask = stencilWritemask; | |
mStencilStateDirty = true; | |
} | |
} | |
void Context::setStencilOperations(GLenum stencilFail, GLenum stencilPassDepthFail, GLenum stencilPassDepthPass) | |
{ | |
if(mState.stencilFail != stencilFail || | |
mState.stencilPassDepthFail != stencilPassDepthFail || | |
mState.stencilPassDepthPass != stencilPassDepthPass) | |
{ | |
mState.stencilFail = stencilFail; | |
mState.stencilPassDepthFail = stencilPassDepthFail; | |
mState.stencilPassDepthPass = stencilPassDepthPass; | |
mStencilStateDirty = true; | |
} | |
} | |
void Context::setPolygonOffsetFill(bool enabled) | |
{ | |
if(mState.polygonOffsetFill != enabled) | |
{ | |
mState.polygonOffsetFill = enabled; | |
mPolygonOffsetStateDirty = true; | |
} | |
} | |
bool Context::isPolygonOffsetFillEnabled() const | |
{ | |
return mState.polygonOffsetFill; | |
} | |
void Context::setPolygonOffsetParams(GLfloat factor, GLfloat units) | |
{ | |
if(mState.polygonOffsetFactor != factor || | |
mState.polygonOffsetUnits != units) | |
{ | |
mState.polygonOffsetFactor = factor; | |
mState.polygonOffsetUnits = units; | |
mPolygonOffsetStateDirty = true; | |
} | |
} | |
void Context::setSampleAlphaToCoverage(bool enabled) | |
{ | |
if(mState.sampleAlphaToCoverage != enabled) | |
{ | |
mState.sampleAlphaToCoverage = enabled; | |
mSampleStateDirty = true; | |
} | |
} | |
bool Context::isSampleAlphaToCoverageEnabled() const | |
{ | |
return mState.sampleAlphaToCoverage; | |
} | |
void Context::setSampleCoverage(bool enabled) | |
{ | |
if(mState.sampleCoverage != enabled) | |
{ | |
mState.sampleCoverage = enabled; | |
mSampleStateDirty = true; | |
} | |
} | |
bool Context::isSampleCoverageEnabled() const | |
{ | |
return mState.sampleCoverage; | |
} | |
void Context::setSampleCoverageParams(GLclampf value, bool invert) | |
{ | |
if(mState.sampleCoverageValue != value || | |
mState.sampleCoverageInvert != invert) | |
{ | |
mState.sampleCoverageValue = value; | |
mState.sampleCoverageInvert = invert; | |
mSampleStateDirty = true; | |
} | |
} | |
void Context::setScissorTest(bool enabled) | |
{ | |
mState.scissorTest = enabled; | |
} | |
bool Context::isScissorTestEnabled() const | |
{ | |
return mState.scissorTest; | |
} | |
void Context::setShadeModel(GLenum mode) | |
{ | |
mState.shadeModel = mode; | |
} | |
void Context::setDither(bool enabled) | |
{ | |
if(mState.dither != enabled) | |
{ | |
mState.dither = enabled; | |
mDitherStateDirty = true; | |
} | |
} | |
bool Context::isDitherEnabled() const | |
{ | |
return mState.dither; | |
} | |
void Context::setLighting(bool enable) | |
{ | |
lighting = enable; | |
} | |
void Context::setLight(int index, bool enable) | |
{ | |
light[index].enable = enable; | |
} | |
void Context::setLightAmbient(int index, float r, float g, float b, float a) | |
{ | |
light[index].ambient = {r, g, b, a}; | |
} | |
void Context::setLightDiffuse(int index, float r, float g, float b, float a) | |
{ | |
light[index].diffuse = {r, g, b, a}; | |
} | |
void Context::setLightSpecular(int index, float r, float g, float b, float a) | |
{ | |
light[index].specular = {r, g, b, a}; | |
} | |
void Context::setLightPosition(int index, float x, float y, float z, float w) | |
{ | |
light[index].position = {x, y, z, w}; | |
} | |
void Context::setLightDirection(int index, float x, float y, float z) | |
{ | |
light[index].direction = {x, y, z}; | |
} | |
void Context::setLightAttenuationConstant(int index, float constant) | |
{ | |
light[index].attenuation.constant = constant; | |
} | |
void Context::setLightAttenuationLinear(int index, float linear) | |
{ | |
light[index].attenuation.linear = linear; | |
} | |
void Context::setLightAttenuationQuadratic(int index, float quadratic) | |
{ | |
light[index].attenuation.quadratic = quadratic; | |
} | |
void Context::setGlobalAmbient(float red, float green, float blue, float alpha) | |
{ | |
globalAmbient.red = red; | |
globalAmbient.green = green; | |
globalAmbient.blue = blue; | |
globalAmbient.alpha = alpha; | |
} | |
void Context::setMaterialAmbient(float red, float green, float blue, float alpha) | |
{ | |
materialAmbient.red = red; | |
materialAmbient.green = green; | |
materialAmbient.blue = blue; | |
materialAmbient.alpha = alpha; | |
} | |
void Context::setMaterialDiffuse(float red, float green, float blue, float alpha) | |
{ | |
materialDiffuse.red = red; | |
materialDiffuse.green = green; | |
materialDiffuse.blue = blue; | |
materialDiffuse.alpha = alpha; | |
} | |
void Context::setMaterialSpecular(float red, float green, float blue, float alpha) | |
{ | |
materialSpecular.red = red; | |
materialSpecular.green = green; | |
materialSpecular.blue = blue; | |
materialSpecular.alpha = alpha; | |
} | |
void Context::setMaterialEmission(float red, float green, float blue, float alpha) | |
{ | |
materialEmission.red = red; | |
materialEmission.green = green; | |
materialEmission.blue = blue; | |
materialEmission.alpha = alpha; | |
} | |
void Context::setMaterialShininess(float shininess) | |
{ | |
materialShininess = shininess; | |
} | |
void Context::setFog(bool enable) | |
{ | |
device->setFogEnable(enable); | |
} | |
void Context::setFogMode(GLenum mode) | |
{ | |
switch(mode) | |
{ | |
case GL_LINEAR: | |
device->setPixelFogMode(sw::FOG_LINEAR); | |
break; | |
case GL_EXP: | |
device->setPixelFogMode(sw::FOG_EXP); | |
break; | |
case GL_EXP2: | |
device->setPixelFogMode(sw::FOG_EXP2); | |
break; | |
default: | |
UNREACHABLE(mode); | |
} | |
} | |
void Context::setFogDensity(float fogDensity) | |
{ | |
device->setFogDensity(fogDensity); | |
} | |
void Context::setFogStart(float fogStart) | |
{ | |
device->setFogStart(fogStart); | |
} | |
void Context::setFogEnd(float fogEnd) | |
{ | |
device->setFogEnd(fogEnd); | |
} | |
void Context::setFogColor(float r, float g, float b, float a) | |
{ | |
device->setFogColor(sw::Color<float>(r, g, b, a)); | |
} | |
void Context::setTexture2Denabled(bool enable) | |
{ | |
texture2Denabled[mState.activeSampler] = enable; | |
} | |
void Context::setTextureExternalEnabled(bool enable) | |
{ | |
textureExternalEnabled[mState.activeSampler] = enable; | |
} | |
void Context::setLineWidth(GLfloat width) | |
{ | |
mState.lineWidth = width; | |
device->setLineWidth(clamp(width, ALIASED_LINE_WIDTH_RANGE_MIN, ALIASED_LINE_WIDTH_RANGE_MAX)); | |
} | |
void Context::setGenerateMipmapHint(GLenum hint) | |
{ | |
mState.generateMipmapHint = hint; | |
} | |
void Context::setPerspectiveCorrectionHint(GLenum hint) | |
{ | |
mState.perspectiveCorrectionHint = hint; | |
} | |
void Context::setViewportParams(GLint x, GLint y, GLsizei width, GLsizei height) | |
{ | |
mState.viewportX = x; | |
mState.viewportY = y; | |
mState.viewportWidth = width; | |
mState.viewportHeight = height; | |
} | |
void Context::setScissorParams(GLint x, GLint y, GLsizei width, GLsizei height) | |
{ | |
mState.scissorX = x; | |
mState.scissorY = y; | |
mState.scissorWidth = width; | |
mState.scissorHeight = height; | |
} | |
void Context::setColorMask(bool red, bool green, bool blue, bool alpha) | |
{ | |
if(mState.colorMaskRed != red || mState.colorMaskGreen != green || | |
mState.colorMaskBlue != blue || mState.colorMaskAlpha != alpha) | |
{ | |
mState.colorMaskRed = red; | |
mState.colorMaskGreen = green; | |
mState.colorMaskBlue = blue; | |
mState.colorMaskAlpha = alpha; | |
mMaskStateDirty = true; | |
} | |
} | |
void Context::setDepthMask(bool mask) | |
{ | |
if(mState.depthMask != mask) | |
{ | |
mState.depthMask = mask; | |
mMaskStateDirty = true; | |
} | |
} | |
void Context::setActiveSampler(unsigned int active) | |
{ | |
mState.activeSampler = active; | |
} | |
GLuint Context::getFramebufferName() const | |
{ | |
return mState.framebuffer; | |
} | |
GLuint Context::getRenderbufferName() const | |
{ | |
return mState.renderbuffer.name(); | |
} | |
GLuint Context::getArrayBufferName() const | |
{ | |
return mState.arrayBuffer.name(); | |
} | |
void Context::setEnableVertexAttribArray(unsigned int attribNum, bool enabled) | |
{ | |
mState.vertexAttribute[attribNum].mArrayEnabled = enabled; | |
} | |
const VertexAttribute &Context::getVertexAttribState(unsigned int attribNum) | |
{ | |
return mState.vertexAttribute[attribNum]; | |
} | |
void Context::setVertexAttribState(unsigned int attribNum, Buffer *boundBuffer, GLint size, GLenum type, bool normalized, | |
GLsizei stride, const void *pointer) | |
{ | |
mState.vertexAttribute[attribNum].mBoundBuffer = boundBuffer; | |
mState.vertexAttribute[attribNum].mSize = size; | |
mState.vertexAttribute[attribNum].mType = type; | |
mState.vertexAttribute[attribNum].mNormalized = normalized; | |
mState.vertexAttribute[attribNum].mStride = stride; | |
mState.vertexAttribute[attribNum].mPointer = pointer; | |
} | |
const void *Context::getVertexAttribPointer(unsigned int attribNum) const | |
{ | |
return mState.vertexAttribute[attribNum].mPointer; | |
} | |
const VertexAttributeArray &Context::getVertexAttributes() | |
{ | |
return mState.vertexAttribute; | |
} | |
void Context::setPackAlignment(GLint alignment) | |
{ | |
mState.packAlignment = alignment; | |
} | |
GLint Context::getPackAlignment() const | |
{ | |
return mState.packAlignment; | |
} | |
void Context::setUnpackAlignment(GLint alignment) | |
{ | |
mState.unpackAlignment = alignment; | |
} | |
GLint Context::getUnpackAlignment() const | |
{ | |
return mState.unpackAlignment; | |
} | |
GLuint Context::createBuffer() | |
{ | |
return mResourceManager->createBuffer(); | |
} | |
GLuint Context::createTexture() | |
{ | |
return mResourceManager->createTexture(); | |
} | |
GLuint Context::createRenderbuffer() | |
{ | |
return mResourceManager->createRenderbuffer(); | |
} | |
// Returns an unused framebuffer name | |
GLuint Context::createFramebuffer() | |
{ | |
GLuint handle = mFramebufferNameSpace.allocate(); | |
mFramebufferMap[handle] = NULL; | |
return handle; | |
} | |
void Context::deleteBuffer(GLuint buffer) | |
{ | |
if(mResourceManager->getBuffer(buffer)) | |
{ | |
detachBuffer(buffer); | |
} | |
mResourceManager->deleteBuffer(buffer); | |
} | |
void Context::deleteTexture(GLuint texture) | |
{ | |
if(mResourceManager->getTexture(texture)) | |
{ | |
detachTexture(texture); | |
} | |
mResourceManager->deleteTexture(texture); | |
} | |
void Context::deleteRenderbuffer(GLuint renderbuffer) | |
{ | |
if(mResourceManager->getRenderbuffer(renderbuffer)) | |
{ | |
detachRenderbuffer(renderbuffer); | |
} | |
mResourceManager->deleteRenderbuffer(renderbuffer); | |
} | |
void Context::deleteFramebuffer(GLuint framebuffer) | |
{ | |
FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer); | |
if(framebufferObject != mFramebufferMap.end()) | |
{ | |
detachFramebuffer(framebuffer); | |
mFramebufferNameSpace.release(framebufferObject->first); | |
delete framebufferObject->second; | |
mFramebufferMap.erase(framebufferObject); | |
} | |
} | |
Buffer *Context::getBuffer(GLuint handle) | |
{ | |
return mResourceManager->getBuffer(handle); | |
} | |
Texture *Context::getTexture(GLuint handle) | |
{ | |
return mResourceManager->getTexture(handle); | |
} | |
Renderbuffer *Context::getRenderbuffer(GLuint handle) | |
{ | |
return mResourceManager->getRenderbuffer(handle); | |
} | |
Framebuffer *Context::getFramebuffer() | |
{ | |
return getFramebuffer(mState.framebuffer); | |
} | |
void Context::bindArrayBuffer(unsigned int buffer) | |
{ | |
mResourceManager->checkBufferAllocation(buffer); | |
mState.arrayBuffer = getBuffer(buffer); | |
} | |
void Context::bindElementArrayBuffer(unsigned int buffer) | |
{ | |
mResourceManager->checkBufferAllocation(buffer); | |
mState.elementArrayBuffer = getBuffer(buffer); | |
} | |
void Context::bindTexture2D(GLuint texture) | |
{ | |
mResourceManager->checkTextureAllocation(texture, TEXTURE_2D); | |
mState.samplerTexture[TEXTURE_2D][mState.activeSampler] = getTexture(texture); | |
} | |
void Context::bindTextureExternal(GLuint texture) | |
{ | |
mResourceManager->checkTextureAllocation(texture, TEXTURE_EXTERNAL); | |
mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler] = getTexture(texture); | |
} | |
void Context::bindFramebuffer(GLuint framebuffer) | |
{ | |
if(!getFramebuffer(framebuffer)) | |
{ | |
mFramebufferMap[framebuffer] = new Framebuffer(); | |
} | |
mState.framebuffer = framebuffer; | |
} | |
void Context::bindRenderbuffer(GLuint renderbuffer) | |
{ | |
mState.renderbuffer = getRenderbuffer(renderbuffer); | |
} | |
void Context::setFramebufferZero(Framebuffer *buffer) | |
{ | |
delete mFramebufferMap[0]; | |
mFramebufferMap[0] = buffer; | |
} | |
void Context::setRenderbufferStorage(RenderbufferStorage *renderbuffer) | |
{ | |
Renderbuffer *renderbufferObject = mState.renderbuffer; | |
renderbufferObject->setStorage(renderbuffer); | |
} | |
Framebuffer *Context::getFramebuffer(unsigned int handle) | |
{ | |
FramebufferMap::iterator framebuffer = mFramebufferMap.find(handle); | |
if(framebuffer == mFramebufferMap.end()) | |
{ | |
return NULL; | |
} | |
else | |
{ | |
return framebuffer->second; | |
} | |
} | |
Buffer *Context::getArrayBuffer() | |
{ | |
return mState.arrayBuffer; | |
} | |
Buffer *Context::getElementArrayBuffer() | |
{ | |
return mState.elementArrayBuffer; | |
} | |
Texture2D *Context::getTexture2D() | |
{ | |
return static_cast<Texture2D*>(getSamplerTexture(mState.activeSampler, TEXTURE_2D)); | |
} | |
TextureExternal *Context::getTextureExternal() | |
{ | |
return static_cast<TextureExternal*>(getSamplerTexture(mState.activeSampler, TEXTURE_EXTERNAL)); | |
} | |
Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) | |
{ | |
GLuint texid = mState.samplerTexture[type][sampler].name(); | |
if(texid == 0) // Special case: 0 refers to different initial textures based on the target | |
{ | |
switch (type) | |
{ | |
case TEXTURE_2D: return mTexture2DZero; | |
case TEXTURE_EXTERNAL: return mTextureExternalZero; | |
default: UNREACHABLE(type); | |
} | |
} | |
return mState.samplerTexture[type][sampler]; | |
} | |
bool Context::getBooleanv(GLenum pname, GLboolean *params) | |
{ | |
switch (pname) | |
{ | |
case GL_SAMPLE_COVERAGE_INVERT: *params = mState.sampleCoverageInvert; break; | |
case GL_DEPTH_WRITEMASK: *params = mState.depthMask; break; | |
case GL_COLOR_WRITEMASK: | |
params[0] = mState.colorMaskRed; | |
params[1] = mState.colorMaskGreen; | |
params[2] = mState.colorMaskBlue; | |
params[3] = mState.colorMaskAlpha; | |
break; | |
case GL_CULL_FACE: *params = mState.cullFace; break; | |
case GL_POLYGON_OFFSET_FILL: *params = mState.polygonOffsetFill; break; | |
case GL_SAMPLE_ALPHA_TO_COVERAGE: *params = mState.sampleAlphaToCoverage; break; | |
case GL_SAMPLE_COVERAGE: *params = mState.sampleCoverage; break; | |
case GL_SCISSOR_TEST: *params = mState.scissorTest; break; | |
case GL_STENCIL_TEST: *params = mState.stencilTest; break; | |
case GL_DEPTH_TEST: *params = mState.depthTest; break; | |
case GL_BLEND: *params = mState.blend; break; | |
case GL_DITHER: *params = mState.dither; break; | |
default: | |
return false; | |
} | |
return true; | |
} | |
bool Context::getFloatv(GLenum pname, GLfloat *params) | |
{ | |
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation | |
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names | |
// GetIntegerv as its native query function. As it would require conversion in any | |
// case, this should make no difference to the calling application. | |
switch(pname) | |
{ | |
case GL_LINE_WIDTH: *params = mState.lineWidth; break; | |
case GL_SAMPLE_COVERAGE_VALUE: *params = mState.sampleCoverageValue; break; | |
case GL_DEPTH_CLEAR_VALUE: *params = mState.depthClearValue; break; | |
case GL_POLYGON_OFFSET_FACTOR: *params = mState.polygonOffsetFactor; break; | |
case GL_POLYGON_OFFSET_UNITS: *params = mState.polygonOffsetUnits; break; | |
case GL_ALIASED_LINE_WIDTH_RANGE: | |
params[0] = ALIASED_LINE_WIDTH_RANGE_MIN; | |
params[1] = ALIASED_LINE_WIDTH_RANGE_MAX; | |
break; | |
case GL_ALIASED_POINT_SIZE_RANGE: | |
params[0] = ALIASED_POINT_SIZE_RANGE_MIN; | |
params[1] = ALIASED_POINT_SIZE_RANGE_MAX; | |
break; | |
case GL_DEPTH_RANGE: | |
params[0] = mState.zNear; | |
params[1] = mState.zFar; | |
break; | |
case GL_COLOR_CLEAR_VALUE: | |
params[0] = mState.colorClearValue.red; | |
params[1] = mState.colorClearValue.green; | |
params[2] = mState.colorClearValue.blue; | |
params[3] = mState.colorClearValue.alpha; | |
break; | |
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: | |
*params = MAX_TEXTURE_MAX_ANISOTROPY; | |
break; | |
case GL_MODELVIEW_MATRIX: | |
for(int i = 0; i < 16; i++) | |
{ | |
params[i] = modelViewStack.current()[i % 4][i / 4]; | |
} | |
break; | |
case GL_PROJECTION_MATRIX: | |
for(int i = 0; i < 16; i++) | |
{ | |
params[i] = projectionStack.current()[i % 4][i / 4]; | |
} | |
break; | |
default: | |
return false; | |
} | |
return true; | |
} | |
bool Context::getIntegerv(GLenum pname, GLint *params) | |
{ | |
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation | |
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names | |
// GetIntegerv as its native query function. As it would require conversion in any | |
// case, this should make no difference to the calling application. You may find it in | |
// Context::getFloatv. | |
switch (pname) | |
{ | |
case GL_ARRAY_BUFFER_BINDING: *params = mState.arrayBuffer.name(); break; | |
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = mState.elementArrayBuffer.name(); break; | |
case GL_FRAMEBUFFER_BINDING_OES: *params = mState.framebuffer; break; | |
case GL_RENDERBUFFER_BINDING_OES: *params = mState.renderbuffer.name(); break; | |
case GL_PACK_ALIGNMENT: *params = mState.packAlignment; break; | |
case GL_UNPACK_ALIGNMENT: *params = mState.unpackAlignment; break; | |
case GL_GENERATE_MIPMAP_HINT: *params = mState.generateMipmapHint; break; | |
case GL_PERSPECTIVE_CORRECTION_HINT: *params = mState.perspectiveCorrectionHint; break; | |
case GL_ACTIVE_TEXTURE: *params = (mState.activeSampler + GL_TEXTURE0); break; | |
case GL_STENCIL_FUNC: *params = mState.stencilFunc; break; | |
case GL_STENCIL_REF: *params = mState.stencilRef; break; | |
case GL_STENCIL_VALUE_MASK: *params = mState.stencilMask; break; | |
case GL_STENCIL_FAIL: *params = mState.stencilFail; break; | |
case GL_STENCIL_PASS_DEPTH_FAIL: *params = mState.stencilPassDepthFail; break; | |
case GL_STENCIL_PASS_DEPTH_PASS: *params = mState.stencilPassDepthPass; break; | |
case GL_DEPTH_FUNC: *params = mState.depthFunc; break; | |
case GL_BLEND_SRC_RGB_OES: *params = mState.sourceBlendRGB; break; | |
case GL_BLEND_SRC_ALPHA_OES: *params = mState.sourceBlendAlpha; break; | |
case GL_BLEND_DST_RGB_OES: *params = mState.destBlendRGB; break; | |
case GL_BLEND_DST_ALPHA_OES: *params = mState.destBlendAlpha; break; | |
case GL_BLEND_EQUATION_RGB_OES: *params = mState.blendEquationRGB; break; | |
case GL_BLEND_EQUATION_ALPHA_OES: *params = mState.blendEquationAlpha; break; | |
case GL_STENCIL_WRITEMASK: *params = mState.stencilWritemask; break; | |
case GL_STENCIL_CLEAR_VALUE: *params = mState.stencilClearValue; break; | |
case GL_SUBPIXEL_BITS: *params = 4; break; | |
case GL_MAX_TEXTURE_SIZE: *params = IMPLEMENTATION_MAX_TEXTURE_SIZE; break; | |
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = NUM_COMPRESSED_TEXTURE_FORMATS; break; | |
case GL_SAMPLE_BUFFERS: | |
case GL_SAMPLES: | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
int width, height, samples; | |
if(framebuffer->completeness(width, height, samples) == GL_FRAMEBUFFER_COMPLETE_OES) | |
{ | |
switch(pname) | |
{ | |
case GL_SAMPLE_BUFFERS: | |
if(samples > 1) | |
{ | |
*params = 1; | |
} | |
else | |
{ | |
*params = 0; | |
} | |
break; | |
case GL_SAMPLES: | |
*params = samples & ~1; | |
break; | |
} | |
} | |
else | |
{ | |
*params = 0; | |
} | |
} | |
break; | |
case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES: | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
*params = framebuffer->getImplementationColorReadType(); | |
} | |
break; | |
case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES: | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
*params = framebuffer->getImplementationColorReadFormat(); | |
} | |
break; | |
case GL_MAX_VIEWPORT_DIMS: | |
{ | |
int maxDimension = IMPLEMENTATION_MAX_RENDERBUFFER_SIZE; | |
params[0] = maxDimension; | |
params[1] = maxDimension; | |
} | |
break; | |
case GL_COMPRESSED_TEXTURE_FORMATS: | |
{ | |
for(int i = 0; i < NUM_COMPRESSED_TEXTURE_FORMATS; i++) | |
{ | |
params[i] = compressedTextureFormats[i]; | |
} | |
} | |
break; | |
case GL_VIEWPORT: | |
params[0] = mState.viewportX; | |
params[1] = mState.viewportY; | |
params[2] = mState.viewportWidth; | |
params[3] = mState.viewportHeight; | |
break; | |
case GL_SCISSOR_BOX: | |
params[0] = mState.scissorX; | |
params[1] = mState.scissorY; | |
params[2] = mState.scissorWidth; | |
params[3] = mState.scissorHeight; | |
break; | |
case GL_CULL_FACE_MODE: *params = mState.cullMode; break; | |
case GL_FRONT_FACE: *params = mState.frontFace; break; | |
case GL_RED_BITS: | |
case GL_GREEN_BITS: | |
case GL_BLUE_BITS: | |
case GL_ALPHA_BITS: | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
Renderbuffer *colorbuffer = framebuffer->getColorbuffer(); | |
if(colorbuffer) | |
{ | |
switch (pname) | |
{ | |
case GL_RED_BITS: *params = colorbuffer->getRedSize(); break; | |
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break; | |
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break; | |
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break; | |
} | |
} | |
else | |
{ | |
*params = 0; | |
} | |
} | |
break; | |
case GL_DEPTH_BITS: | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); | |
if(depthbuffer) | |
{ | |
*params = depthbuffer->getDepthSize(); | |
} | |
else | |
{ | |
*params = 0; | |
} | |
} | |
break; | |
case GL_STENCIL_BITS: | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); | |
if(stencilbuffer) | |
{ | |
*params = stencilbuffer->getStencilSize(); | |
} | |
else | |
{ | |
*params = 0; | |
} | |
} | |
break; | |
case GL_TEXTURE_BINDING_2D: | |
{ | |
if(mState.activeSampler < 0 || mState.activeSampler > MAX_TEXTURE_UNITS - 1) | |
{ | |
error(GL_INVALID_OPERATION); | |
return false; | |
} | |
*params = mState.samplerTexture[TEXTURE_2D][mState.activeSampler].name(); | |
} | |
break; | |
case GL_TEXTURE_BINDING_CUBE_MAP_OES: | |
{ | |
if(mState.activeSampler < 0 || mState.activeSampler > MAX_TEXTURE_UNITS - 1) | |
{ | |
error(GL_INVALID_OPERATION); | |
return false; | |
} | |
*params = mState.samplerTexture[TEXTURE_CUBE][mState.activeSampler].name(); | |
} | |
break; | |
case GL_TEXTURE_BINDING_EXTERNAL_OES: | |
{ | |
if(mState.activeSampler < 0 || mState.activeSampler > MAX_TEXTURE_UNITS - 1) | |
{ | |
error(GL_INVALID_OPERATION); | |
return false; | |
} | |
*params = mState.samplerTexture[TEXTURE_EXTERNAL][mState.activeSampler].name(); | |
} | |
break; | |
case GL_MAX_LIGHTS: *params = MAX_LIGHTS; break; | |
case GL_MAX_MODELVIEW_STACK_DEPTH: *params = MAX_MODELVIEW_STACK_DEPTH; break; | |
case GL_MAX_PROJECTION_STACK_DEPTH: *params = MAX_PROJECTION_STACK_DEPTH; break; | |
case GL_MAX_TEXTURE_STACK_DEPTH: *params = MAX_TEXTURE_STACK_DEPTH; break; | |
case GL_MAX_TEXTURE_UNITS: *params = MAX_TEXTURE_UNITS; break; | |
default: | |
return false; | |
} | |
return true; | |
} | |
int Context::getQueryParameterNum(GLenum pname) | |
{ | |
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation | |
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due | |
// to the fact that it is stored internally as a float, and so would require conversion | |
// if returned from Context::getIntegerv. Since this conversion is already implemented | |
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we | |
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling | |
// application. | |
switch (pname) | |
{ | |
case GL_COMPRESSED_TEXTURE_FORMATS: | |
return NUM_COMPRESSED_TEXTURE_FORMATS; | |
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: | |
case GL_ARRAY_BUFFER_BINDING: | |
case GL_FRAMEBUFFER_BINDING_OES: | |
case GL_RENDERBUFFER_BINDING_OES: | |
case GL_PACK_ALIGNMENT: | |
case GL_UNPACK_ALIGNMENT: | |
case GL_GENERATE_MIPMAP_HINT: | |
case GL_RED_BITS: | |
case GL_GREEN_BITS: | |
case GL_BLUE_BITS: | |
case GL_ALPHA_BITS: | |
case GL_DEPTH_BITS: | |
case GL_STENCIL_BITS: | |
case GL_ELEMENT_ARRAY_BUFFER_BINDING: | |
case GL_CULL_FACE_MODE: | |
case GL_FRONT_FACE: | |
case GL_ACTIVE_TEXTURE: | |
case GL_STENCIL_FUNC: | |
case GL_STENCIL_VALUE_MASK: | |
case GL_STENCIL_REF: | |
case GL_STENCIL_FAIL: | |
case GL_STENCIL_PASS_DEPTH_FAIL: | |
case GL_STENCIL_PASS_DEPTH_PASS: | |
case GL_DEPTH_FUNC: | |
case GL_BLEND_SRC_RGB_OES: | |
case GL_BLEND_SRC_ALPHA_OES: | |
case GL_BLEND_DST_RGB_OES: | |
case GL_BLEND_DST_ALPHA_OES: | |
case GL_BLEND_EQUATION_RGB_OES: | |
case GL_BLEND_EQUATION_ALPHA_OES: | |
case GL_STENCIL_WRITEMASK: | |
case GL_STENCIL_CLEAR_VALUE: | |
case GL_SUBPIXEL_BITS: | |
case GL_MAX_TEXTURE_SIZE: | |
case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES: | |
case GL_SAMPLE_BUFFERS: | |
case GL_SAMPLES: | |
case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES: | |
case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES: | |
case GL_TEXTURE_BINDING_2D: | |
case GL_TEXTURE_BINDING_CUBE_MAP_OES: | |
case GL_TEXTURE_BINDING_EXTERNAL_OES: | |
return 1; | |
case GL_MAX_VIEWPORT_DIMS: | |
return 2; | |
case GL_VIEWPORT: | |
case GL_SCISSOR_BOX: | |
return 4; | |
case GL_SAMPLE_COVERAGE_INVERT: | |
case GL_DEPTH_WRITEMASK: | |
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, | |
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. | |
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural | |
case GL_SAMPLE_COVERAGE: | |
case GL_SCISSOR_TEST: | |
case GL_STENCIL_TEST: | |
case GL_DEPTH_TEST: | |
case GL_BLEND: | |
case GL_DITHER: | |
return 1; | |
case GL_COLOR_WRITEMASK: | |
return 4; | |
case GL_POLYGON_OFFSET_FACTOR: | |
case GL_POLYGON_OFFSET_UNITS: | |
case GL_SAMPLE_COVERAGE_VALUE: | |
case GL_DEPTH_CLEAR_VALUE: | |
case GL_LINE_WIDTH: | |
return 1; | |
case GL_ALIASED_LINE_WIDTH_RANGE: | |
case GL_ALIASED_POINT_SIZE_RANGE: | |
case GL_DEPTH_RANGE: | |
return 2; | |
case GL_COLOR_CLEAR_VALUE: | |
return 4; | |
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: | |
case GL_MAX_LIGHTS: | |
case GL_MAX_MODELVIEW_STACK_DEPTH: | |
case GL_MAX_PROJECTION_STACK_DEPTH: | |
case GL_MAX_TEXTURE_STACK_DEPTH: | |
case GL_MAX_TEXTURE_UNITS: | |
return 1; | |
default: | |
UNREACHABLE(pname); | |
} | |
return -1; | |
} | |
bool Context::isQueryParameterInt(GLenum pname) | |
{ | |
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation | |
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due | |
// to the fact that it is stored internally as a float, and so would require conversion | |
// if returned from Context::getIntegerv. Since this conversion is already implemented | |
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we | |
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling | |
// application. | |
switch(pname) | |
{ | |
case GL_COMPRESSED_TEXTURE_FORMATS: | |
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: | |
case GL_ARRAY_BUFFER_BINDING: | |
case GL_FRAMEBUFFER_BINDING_OES: | |
case GL_RENDERBUFFER_BINDING_OES: | |
case GL_PACK_ALIGNMENT: | |
case GL_UNPACK_ALIGNMENT: | |
case GL_GENERATE_MIPMAP_HINT: | |
case GL_RED_BITS: | |
case GL_GREEN_BITS: | |
case GL_BLUE_BITS: | |
case GL_ALPHA_BITS: | |
case GL_DEPTH_BITS: | |
case GL_STENCIL_BITS: | |
case GL_ELEMENT_ARRAY_BUFFER_BINDING: | |
case GL_CULL_FACE_MODE: | |
case GL_FRONT_FACE: | |
case GL_ACTIVE_TEXTURE: | |
case GL_STENCIL_FUNC: | |
case GL_STENCIL_VALUE_MASK: | |
case GL_STENCIL_REF: | |
case GL_STENCIL_FAIL: | |
case GL_STENCIL_PASS_DEPTH_FAIL: | |
case GL_STENCIL_PASS_DEPTH_PASS: | |
case GL_DEPTH_FUNC: | |
case GL_BLEND_SRC_RGB_OES: | |
case GL_BLEND_SRC_ALPHA_OES: | |
case GL_BLEND_DST_RGB_OES: | |
case GL_BLEND_DST_ALPHA_OES: | |
case GL_BLEND_EQUATION_RGB_OES: | |
case GL_BLEND_EQUATION_ALPHA_OES: | |
case GL_STENCIL_WRITEMASK: | |
case GL_STENCIL_CLEAR_VALUE: | |
case GL_SUBPIXEL_BITS: | |
case GL_MAX_TEXTURE_SIZE: | |
case GL_MAX_CUBE_MAP_TEXTURE_SIZE_OES: | |
case GL_SAMPLE_BUFFERS: | |
case GL_SAMPLES: | |
case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES: | |
case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES: | |
case GL_TEXTURE_BINDING_2D: | |
case GL_TEXTURE_BINDING_CUBE_MAP_OES: | |
case GL_TEXTURE_BINDING_EXTERNAL_OES: | |
case GL_MAX_VIEWPORT_DIMS: | |
case GL_VIEWPORT: | |
case GL_SCISSOR_BOX: | |
case GL_MAX_LIGHTS: | |
case GL_MAX_MODELVIEW_STACK_DEPTH: | |
case GL_MAX_PROJECTION_STACK_DEPTH: | |
case GL_MAX_TEXTURE_STACK_DEPTH: | |
case GL_MAX_TEXTURE_UNITS: | |
return true; | |
default: | |
ASSERT(isQueryParameterFloat(pname) || isQueryParameterBool(pname)); | |
} | |
return false; | |
} | |
bool Context::isQueryParameterFloat(GLenum pname) | |
{ | |
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation | |
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due | |
// to the fact that it is stored internally as a float, and so would require conversion | |
// if returned from Context::getIntegerv. Since this conversion is already implemented | |
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we | |
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling | |
// application. | |
switch(pname) | |
{ | |
case GL_POLYGON_OFFSET_FACTOR: | |
case GL_POLYGON_OFFSET_UNITS: | |
case GL_SAMPLE_COVERAGE_VALUE: | |
case GL_DEPTH_CLEAR_VALUE: | |
case GL_LINE_WIDTH: | |
case GL_ALIASED_LINE_WIDTH_RANGE: | |
case GL_ALIASED_POINT_SIZE_RANGE: | |
case GL_DEPTH_RANGE: | |
case GL_COLOR_CLEAR_VALUE: | |
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT: | |
return true; | |
default: | |
ASSERT(isQueryParameterInt(pname) || isQueryParameterBool(pname)); | |
} | |
return false; | |
} | |
bool Context::isQueryParameterBool(GLenum pname) | |
{ | |
switch(pname) | |
{ | |
case GL_SAMPLE_COVERAGE_INVERT: | |
case GL_DEPTH_WRITEMASK: | |
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled, | |
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries. | |
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural | |
case GL_SAMPLE_COVERAGE: | |
case GL_SCISSOR_TEST: | |
case GL_STENCIL_TEST: | |
case GL_DEPTH_TEST: | |
case GL_BLEND: | |
case GL_DITHER: | |
case GL_COLOR_WRITEMASK: | |
return true; | |
default: | |
ASSERT(isQueryParameterInt(pname) || isQueryParameterFloat(pname)); | |
} | |
return false; | |
} | |
// Applies the render target surface, depth stencil surface, viewport rectangle and scissor rectangle | |
bool Context::applyRenderTarget() | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
int width, height, samples; | |
if(!framebuffer || framebuffer->completeness(width, height, samples) != GL_FRAMEBUFFER_COMPLETE_OES) | |
{ | |
return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES, false); | |
} | |
egl::Image *renderTarget = framebuffer->getRenderTarget(); | |
device->setRenderTarget(renderTarget); | |
if(renderTarget) renderTarget->release(); | |
egl::Image *depthStencil = framebuffer->getDepthStencil(); | |
device->setDepthStencilSurface(depthStencil); | |
if(depthStencil) depthStencil->release(); | |
Viewport viewport; | |
float zNear = clamp01(mState.zNear); | |
float zFar = clamp01(mState.zFar); | |
viewport.x0 = mState.viewportX; | |
viewport.y0 = mState.viewportY; | |
viewport.width = mState.viewportWidth; | |
viewport.height = mState.viewportHeight; | |
viewport.minZ = zNear; | |
viewport.maxZ = zFar; | |
device->setViewport(viewport); | |
if(mState.scissorTest) | |
{ | |
sw::Rect scissor = {mState.scissorX, mState.scissorY, mState.scissorX + mState.scissorWidth, mState.scissorY + mState.scissorHeight}; | |
scissor.clip(0, 0, width, height); | |
device->setScissorRect(scissor); | |
device->setScissorEnable(true); | |
} | |
else | |
{ | |
device->setScissorEnable(false); | |
} | |
return true; | |
} | |
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) | |
void Context::applyState(GLenum drawMode) | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
if(mState.cullFace) | |
{ | |
device->setCullMode(es2sw::ConvertCullMode(mState.cullMode, mState.frontFace)); | |
} | |
else | |
{ | |
device->setCullMode(sw::CULL_NONE); | |
} | |
if(mDepthStateDirty) | |
{ | |
if(mState.depthTest) | |
{ | |
device->setDepthBufferEnable(true); | |
device->setDepthCompare(es2sw::ConvertDepthComparison(mState.depthFunc)); | |
} | |
else | |
{ | |
device->setDepthBufferEnable(false); | |
} | |
mDepthStateDirty = false; | |
} | |
if(mBlendStateDirty) | |
{ | |
if(mState.blend) | |
{ | |
device->setAlphaBlendEnable(true); | |
device->setSeparateAlphaBlendEnable(true); | |
device->setSourceBlendFactor(es2sw::ConvertBlendFunc(mState.sourceBlendRGB)); | |
device->setDestBlendFactor(es2sw::ConvertBlendFunc(mState.destBlendRGB)); | |
device->setBlendOperation(es2sw::ConvertBlendOp(mState.blendEquationRGB)); | |
device->setSourceBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.sourceBlendAlpha)); | |
device->setDestBlendFactorAlpha(es2sw::ConvertBlendFunc(mState.destBlendAlpha)); | |
device->setBlendOperationAlpha(es2sw::ConvertBlendOp(mState.blendEquationAlpha)); | |
} | |
else | |
{ | |
device->setAlphaBlendEnable(false); | |
} | |
mBlendStateDirty = false; | |
} | |
if(mStencilStateDirty || mFrontFaceDirty) | |
{ | |
if(mState.stencilTest && framebuffer->hasStencil()) | |
{ | |
device->setStencilEnable(true); | |
device->setTwoSidedStencil(true); | |
// get the maximum size of the stencil ref | |
Renderbuffer *stencilbuffer = framebuffer->getStencilbuffer(); | |
GLuint maxStencil = (1 << stencilbuffer->getStencilSize()) - 1; | |
device->setStencilWriteMask(mState.stencilWritemask); | |
device->setStencilCompare(es2sw::ConvertStencilComparison(mState.stencilFunc)); | |
device->setStencilReference((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); | |
device->setStencilMask(mState.stencilMask); | |
device->setStencilFailOperation(es2sw::ConvertStencilOp(mState.stencilFail)); | |
device->setStencilZFailOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); | |
device->setStencilPassOperation(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); | |
device->setStencilWriteMaskCCW(mState.stencilWritemask); | |
device->setStencilCompareCCW(es2sw::ConvertStencilComparison(mState.stencilFunc)); | |
device->setStencilReferenceCCW((mState.stencilRef < (GLint)maxStencil) ? mState.stencilRef : maxStencil); | |
device->setStencilMaskCCW(mState.stencilMask); | |
device->setStencilFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilFail)); | |
device->setStencilZFailOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthFail)); | |
device->setStencilPassOperationCCW(es2sw::ConvertStencilOp(mState.stencilPassDepthPass)); | |
} | |
else | |
{ | |
device->setStencilEnable(false); | |
} | |
mStencilStateDirty = false; | |
mFrontFaceDirty = false; | |
} | |
if(mMaskStateDirty) | |
{ | |
device->setColorWriteMask(0, es2sw::ConvertColorMask(mState.colorMaskRed, mState.colorMaskGreen, mState.colorMaskBlue, mState.colorMaskAlpha)); | |
device->setDepthWriteEnable(mState.depthMask); | |
mMaskStateDirty = false; | |
} | |
if(mPolygonOffsetStateDirty) | |
{ | |
if(mState.polygonOffsetFill) | |
{ | |
Renderbuffer *depthbuffer = framebuffer->getDepthbuffer(); | |
if(depthbuffer) | |
{ | |
device->setSlopeDepthBias(mState.polygonOffsetFactor); | |
float depthBias = ldexp(mState.polygonOffsetUnits, -(int)(depthbuffer->getDepthSize())); | |
device->setDepthBias(depthBias); | |
} | |
} | |
else | |
{ | |
device->setSlopeDepthBias(0); | |
device->setDepthBias(0); | |
} | |
mPolygonOffsetStateDirty = false; | |
} | |
if(mSampleStateDirty) | |
{ | |
if(mState.sampleAlphaToCoverage) | |
{ | |
device->setTransparencyAntialiasing(sw::TRANSPARENCY_ALPHA_TO_COVERAGE); | |
} | |
else | |
{ | |
device->setTransparencyAntialiasing(sw::TRANSPARENCY_NONE); | |
} | |
if(mState.sampleCoverage) | |
{ | |
unsigned int mask = 0; | |
if(mState.sampleCoverageValue != 0) | |
{ | |
int width, height, samples; | |
framebuffer->completeness(width, height, samples); | |
float threshold = 0.5f; | |
for(int i = 0; i < samples; i++) | |
{ | |
mask <<= 1; | |
if((i + 1) * mState.sampleCoverageValue >= threshold) | |
{ | |
threshold += 1.0f; | |
mask |= 1; | |
} | |
} | |
} | |
if(mState.sampleCoverageInvert) | |
{ | |
mask = ~mask; | |
} | |
device->setMultiSampleMask(mask); | |
} | |
else | |
{ | |
device->setMultiSampleMask(0xFFFFFFFF); | |
} | |
mSampleStateDirty = false; | |
} | |
if(mDitherStateDirty) | |
{ | |
// UNIMPLEMENTED(); // FIXME | |
mDitherStateDirty = false; | |
} | |
switch(mState.shadeModel) | |
{ | |
default: UNREACHABLE(mState.shadeModel); | |
case GL_SMOOTH: device->setShadingMode(sw::SHADING_GOURAUD); break; | |
case GL_FLAT: device->setShadingMode(sw::SHADING_FLAT); break; | |
} | |
device->setLightingEnable(lighting); | |
device->setGlobalAmbient(sw::Color<float>(globalAmbient.red, globalAmbient.green, globalAmbient.blue, globalAmbient.alpha)); | |
for(int i = 0; i < MAX_LIGHTS; i++) | |
{ | |
device->setLightEnable(i, light[i].enable); | |
device->setLightAmbient(i, sw::Color<float>(light[i].ambient.red, light[i].ambient.green, light[i].ambient.blue, light[i].ambient.alpha)); | |
device->setLightDiffuse(i, sw::Color<float>(light[i].diffuse.red, light[i].diffuse.green, light[i].diffuse.blue, light[i].diffuse.alpha)); | |
device->setLightSpecular(i, sw::Color<float>(light[i].specular.red, light[i].specular.green, light[i].specular.blue, light[i].specular.alpha)); | |
device->setLightAttenuation(i, light[i].attenuation.constant, light[i].attenuation.linear, light[i].attenuation.quadratic); | |
if(light[i].position.w != 0.0f) | |
{ | |
device->setLightPosition(i, sw::Point(light[i].position.x / light[i].position.w, light[i].position.y / light[i].position.w, light[i].position.z / light[i].position.w)); | |
} | |
else // Directional light | |
{ | |
// Hack: set the position far way | |
float max = std::max(std::max(abs(light[i].position.x), abs(light[i].position.y)), abs(light[i].position.z)); | |
device->setLightPosition(i, sw::Point(1e10f * (light[i].position.x / max), 1e10f * (light[i].position.y / max), 1e10f * (light[i].position.z / max))); | |
} | |
} | |
device->setMaterialAmbient(sw::Color<float>(materialAmbient.red, materialAmbient.green, materialAmbient.blue, materialAmbient.alpha)); | |
device->setMaterialDiffuse(sw::Color<float>(materialDiffuse.red, materialDiffuse.green, materialDiffuse.blue, materialDiffuse.alpha)); | |
device->setMaterialSpecular(sw::Color<float>(materialSpecular.red, materialSpecular.green, materialSpecular.blue, materialSpecular.alpha)); | |
device->setMaterialEmission(sw::Color<float>(materialEmission.red, materialEmission.green, materialEmission.blue, materialEmission.alpha)); | |
device->setMaterialShininess(materialShininess); | |
device->setDiffuseMaterialSource(sw::MATERIAL_MATERIAL); | |
device->setSpecularMaterialSource(sw::MATERIAL_MATERIAL); | |
device->setAmbientMaterialSource(sw::MATERIAL_MATERIAL); | |
device->setEmissiveMaterialSource(sw::MATERIAL_MATERIAL); | |
device->setProjectionMatrix(projectionStack.current()); | |
device->setViewMatrix(modelViewStack.current()); | |
device->setTextureMatrix(0, textureStack0.current()); | |
device->setTextureMatrix(1, textureStack1.current()); | |
device->setTextureTransform(0, textureStack0.isIdentity() ? 0 : 4, false); | |
device->setTextureTransform(1, textureStack1.isIdentity() ? 0 : 4, false); | |
device->setTexGen(0, sw::TEXGEN_NONE); | |
device->setTexGen(1, sw::TEXGEN_NONE); | |
} | |
GLenum Context::applyVertexBuffer(GLint base, GLint first, GLsizei count) | |
{ | |
TranslatedAttribute attributes[MAX_VERTEX_ATTRIBS]; | |
GLenum err = mVertexDataManager->prepareVertexData(first, count, attributes); | |
if(err != GL_NO_ERROR) | |
{ | |
return err; | |
} | |
device->resetInputStreams(false); | |
for(int i = 0; i < MAX_VERTEX_ATTRIBS; i++) | |
{ | |
sw::Resource *resource = attributes[i].vertexBuffer; | |
const void *buffer = (char*)resource->data() + attributes[i].offset; | |
int stride = attributes[i].stride; | |
buffer = (char*)buffer + stride * base; | |
sw::Stream attribute(resource, buffer, stride); | |
attribute.type = attributes[i].type; | |
attribute.count = attributes[i].count; | |
attribute.normalized = attributes[i].normalized; | |
device->setInputStream(i, attribute); | |
} | |
return GL_NO_ERROR; | |
} | |
// Applies the indices and element array bindings | |
GLenum Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo) | |
{ | |
GLenum err = mIndexDataManager->prepareIndexData(type, count, mState.elementArrayBuffer, indices, indexInfo); | |
if(err == GL_NO_ERROR) | |
{ | |
device->setIndexBuffer(indexInfo->indexBuffer); | |
} | |
return err; | |
} | |
void Context::applyTextures() | |
{ | |
for(int unit = 0; unit < MAX_TEXTURE_UNITS; unit++) | |
{ | |
Texture *texture = nullptr; | |
if(textureExternalEnabled[unit]) | |
{ | |
texture = getSamplerTexture(unit, TEXTURE_EXTERNAL); | |
} | |
else if(texture2Denabled[unit]) | |
{ | |
texture = getSamplerTexture(unit, TEXTURE_2D); | |
} | |
if(texture && texture->isSamplerComplete()) | |
{ | |
texture->autoGenerateMipmaps(); | |
GLenum wrapS = texture->getWrapS(); | |
GLenum wrapT = texture->getWrapT(); | |
GLenum texFilter = texture->getMinFilter(); | |
GLenum magFilter = texture->getMagFilter(); | |
GLfloat maxAnisotropy = texture->getMaxAnisotropy(); | |
device->setAddressingModeU(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapS)); | |
device->setAddressingModeV(sw::SAMPLER_PIXEL, unit, es2sw::ConvertTextureWrap(wrapT)); | |
sw::FilterType minFilter; | |
sw::MipmapType mipFilter; | |
es2sw::ConvertMinFilter(texFilter, &minFilter, &mipFilter, maxAnisotropy); | |
// ASSERT(minFilter == es2sw::ConvertMagFilter(magFilter)); | |
device->setTextureFilter(sw::SAMPLER_PIXEL, unit, minFilter); | |
// device->setTextureFilter(sw::SAMPLER_PIXEL, unit, es2sw::ConvertMagFilter(magFilter)); | |
device->setMipmapFilter(sw::SAMPLER_PIXEL, unit, mipFilter); | |
device->setMaxAnisotropy(sw::SAMPLER_PIXEL, unit, maxAnisotropy); | |
applyTexture(unit, texture); | |
if(mState.textureUnit[unit].environmentMode != GL_COMBINE) | |
{ | |
device->setFirstArgument(unit, sw::TextureStage::SOURCE_TEXTURE); // Cs | |
device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR); | |
device->setSecondArgument(unit, sw::TextureStage::SOURCE_CURRENT); // Cp | |
device->setSecondModifier(unit, sw::TextureStage::MODIFIER_COLOR); | |
device->setThirdArgument(unit, sw::TextureStage::SOURCE_CONSTANT); // Cc | |
device->setThirdModifier(unit, sw::TextureStage::MODIFIER_COLOR); | |
device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_TEXTURE); // As | |
device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA); | |
device->setSecondArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT); // Ap | |
device->setSecondModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA); | |
device->setThirdArgumentAlpha(unit, sw::TextureStage::SOURCE_CONSTANT); // Ac | |
device->setThirdModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA); | |
GLenum texFormat = texture->getFormat(GL_TEXTURE_2D, 0); | |
switch(mState.textureUnit[unit].environmentMode) | |
{ | |
case GL_REPLACE: | |
if(IsAlpha(texFormat)) // GL_ALPHA | |
{ | |
// Cv = Cp, Av = As | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1); | |
} | |
else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) | |
{ | |
// Cv = Cs, Av = Ap | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); | |
} | |
else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) | |
{ | |
// Cv = Cs, Av = As | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1); | |
} | |
else UNREACHABLE(texFormat); | |
break; | |
case GL_MODULATE: | |
if(IsAlpha(texFormat)) // GL_ALPHA | |
{ | |
// Cv = Cp, Av = ApAs | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); | |
} | |
else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) | |
{ | |
// Cv = CpCs, Av = Ap | |
device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); | |
} | |
else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) | |
{ | |
// Cv = CpCs, Av = ApAs | |
device->setStageOperation(unit, sw::TextureStage::STAGE_MODULATE); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); | |
} | |
else UNREACHABLE(texFormat); | |
break; | |
case GL_DECAL: | |
if(texFormat == GL_ALPHA || | |
texFormat == GL_LUMINANCE || | |
texFormat == GL_LUMINANCE_ALPHA) | |
{ | |
// undefined // FIXME: Log | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); | |
} | |
else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) | |
{ | |
// Cv = Cs, Av = Ap | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); | |
} | |
else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) | |
{ | |
// Cv = Cp(1 - As) + CsAs, Av = Ap | |
device->setStageOperation(unit, sw::TextureStage::STAGE_BLENDTEXTUREALPHA); // Alpha * (Arg1 - Arg2) + Arg2 | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); | |
} | |
else UNREACHABLE(texFormat); | |
break; | |
case GL_BLEND: | |
if(IsAlpha(texFormat)) // GL_ALPHA | |
{ | |
// Cv = Cp, Av = ApAs | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); | |
} | |
else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) | |
{ | |
// Cv = Cp(1 - Cs) + CcCs, Av = Ap | |
device->setStageOperation(unit, sw::TextureStage::STAGE_LERP); // Arg3 * (Arg1 - Arg2) + Arg2 | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); | |
} | |
else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) | |
{ | |
// Cv = Cp(1 - Cs) + CcCs, Av = ApAs | |
device->setStageOperation(unit, sw::TextureStage::STAGE_LERP); // Arg3 * (Arg1 - Arg2) + Arg2 | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); | |
} | |
else UNREACHABLE(texFormat); | |
break; | |
case GL_ADD: | |
if(IsAlpha(texFormat)) // GL_ALPHA | |
{ | |
// Cv = Cp, Av = ApAs | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG2); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); | |
} | |
else if(IsRGB(texFormat)) // GL_LUMINANCE (or 1) / GL_RGB (or 3) | |
{ | |
// Cv = Cp + Cs, Av = Ap | |
device->setStageOperation(unit, sw::TextureStage::STAGE_ADD); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG2); | |
} | |
else if(IsRGBA(texFormat)) // GL_LUMINANCE_ALPHA (or 2) / GL_RGBA (or 4) | |
{ | |
// Cv = Cp + Cs, Av = ApAs | |
device->setStageOperation(unit, sw::TextureStage::STAGE_ADD); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_MODULATE); | |
} | |
else UNREACHABLE(texFormat); | |
break; | |
default: | |
UNREACHABLE(mState.textureUnit[unit].environmentMode); | |
} | |
} | |
else // GL_COMBINE | |
{ | |
device->setFirstArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0RGB)); | |
device->setFirstModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0RGB)); | |
device->setSecondArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1RGB)); | |
device->setSecondModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1RGB)); | |
device->setThirdArgument(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2RGB)); | |
device->setThirdModifier(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2RGB)); | |
device->setStageOperation(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineRGB)); | |
device->setFirstArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src0Alpha)); | |
device->setFirstModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand0Alpha)); | |
device->setSecondArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src1Alpha)); | |
device->setSecondModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand1Alpha)); | |
device->setThirdArgumentAlpha(unit, es2sw::ConvertSourceArgument(mState.textureUnit[unit].src2Alpha)); | |
device->setThirdModifierAlpha(unit, es2sw::ConvertSourceOperand(mState.textureUnit[unit].operand2Alpha)); | |
device->setStageOperationAlpha(unit, es2sw::ConvertCombineOperation(mState.textureUnit[unit].combineAlpha)); | |
} | |
} | |
else | |
{ | |
applyTexture(unit, 0); | |
device->setFirstArgument(unit, sw::TextureStage::SOURCE_CURRENT); | |
device->setFirstModifier(unit, sw::TextureStage::MODIFIER_COLOR); | |
device->setStageOperation(unit, sw::TextureStage::STAGE_SELECTARG1); | |
device->setFirstArgumentAlpha(unit, sw::TextureStage::SOURCE_CURRENT); | |
device->setFirstModifierAlpha(unit, sw::TextureStage::MODIFIER_ALPHA); | |
device->setStageOperationAlpha(unit, sw::TextureStage::STAGE_SELECTARG1); | |
} | |
} | |
} | |
void Context::setTextureEnvMode(GLenum texEnvMode) | |
{ | |
mState.textureUnit[mState.activeSampler].environmentMode = texEnvMode; | |
} | |
void Context::setCombineRGB(GLenum combineRGB) | |
{ | |
mState.textureUnit[mState.activeSampler].combineRGB = combineRGB; | |
} | |
void Context::setCombineAlpha(GLenum combineAlpha) | |
{ | |
mState.textureUnit[mState.activeSampler].combineAlpha = combineAlpha; | |
} | |
void Context::applyTexture(int index, Texture *baseTexture) | |
{ | |
sw::Resource *resource = 0; | |
if(baseTexture) | |
{ | |
resource = baseTexture->getResource(); | |
} | |
device->setTextureResource(index, resource); | |
if(baseTexture) | |
{ | |
int levelCount = baseTexture->getLevelCount(); | |
if(baseTexture->getTarget() == GL_TEXTURE_2D || baseTexture->getTarget() == GL_TEXTURE_EXTERNAL_OES) | |
{ | |
Texture2D *texture = static_cast<Texture2D*>(baseTexture); | |
for(int mipmapLevel = 0; mipmapLevel < MIPMAP_LEVELS; mipmapLevel++) | |
{ | |
int surfaceLevel = mipmapLevel; | |
if(surfaceLevel < 0) | |
{ | |
surfaceLevel = 0; | |
} | |
else if(surfaceLevel >= levelCount) | |
{ | |
surfaceLevel = levelCount - 1; | |
} | |
egl::Image *surface = texture->getImage(surfaceLevel); | |
device->setTextureLevel(index, 0, mipmapLevel, surface, sw::TEXTURE_2D); | |
} | |
} | |
else UNIMPLEMENTED(); | |
} | |
else | |
{ | |
device->setTextureLevel(index, 0, 0, 0, sw::TEXTURE_NULL); | |
} | |
} | |
void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, | |
GLenum format, GLenum type, GLsizei *bufSize, void* pixels) | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
int framebufferWidth, framebufferHeight, framebufferSamples; | |
if(framebuffer->completeness(framebufferWidth, framebufferHeight, framebufferSamples) != GL_FRAMEBUFFER_COMPLETE_OES) | |
{ | |
return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES); | |
} | |
if(getFramebufferName() != 0 && framebufferSamples != 0) | |
{ | |
return error(GL_INVALID_OPERATION); | |
} | |
if(format != GL_RGBA || type != GL_UNSIGNED_BYTE) | |
{ | |
if(format != framebuffer->getImplementationColorReadFormat() || type != framebuffer->getImplementationColorReadType()) | |
{ | |
return error(GL_INVALID_OPERATION); | |
} | |
} | |
GLsizei outputPitch = egl::ComputePitch(width, format, type, mState.packAlignment); | |
// Sized query sanity check | |
if(bufSize) | |
{ | |
int requiredSize = outputPitch * height; | |
if(requiredSize > *bufSize) | |
{ | |
return error(GL_INVALID_OPERATION); | |
} | |
} | |
egl::Image *renderTarget = framebuffer->getRenderTarget(); | |
if(!renderTarget) | |
{ | |
return error(GL_OUT_OF_MEMORY); | |
} | |
sw::Rect rect = {x, y, x + width, y + height}; | |
rect.clip(0, 0, renderTarget->getWidth(), renderTarget->getHeight()); | |
unsigned char *source = (unsigned char*)renderTarget->lock(rect.x0, rect.y0, sw::LOCK_READONLY); | |
unsigned char *dest = (unsigned char*)pixels; | |
int inputPitch = (int)renderTarget->getPitch(); | |
for(int j = 0; j < rect.y1 - rect.y0; j++) | |
{ | |
unsigned short *dest16 = (unsigned short*)dest; | |
unsigned int *dest32 = (unsigned int*)dest; | |
if(renderTarget->getInternalFormat() == sw::FORMAT_A8B8G8R8 && | |
format == GL_RGBA && type == GL_UNSIGNED_BYTE) | |
{ | |
memcpy(dest, source, (rect.x1 - rect.x0) * 4); | |
} | |
else if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 && | |
format == GL_RGBA && type == GL_UNSIGNED_BYTE) | |
{ | |
for(int i = 0; i < rect.x1 - rect.x0; i++) | |
{ | |
unsigned int argb = *(unsigned int*)(source + 4 * i); | |
dest32[i] = (argb & 0xFF00FF00) | ((argb & 0x000000FF) << 16) | ((argb & 0x00FF0000) >> 16); | |
} | |
} | |
else if(renderTarget->getInternalFormat() == sw::FORMAT_X8R8G8B8 && | |
format == GL_RGBA && type == GL_UNSIGNED_BYTE) | |
{ | |
for(int i = 0; i < rect.x1 - rect.x0; i++) | |
{ | |
unsigned int xrgb = *(unsigned int*)(source + 4 * i); | |
dest32[i] = (xrgb & 0xFF00FF00) | ((xrgb & 0x000000FF) << 16) | ((xrgb & 0x00FF0000) >> 16) | 0xFF000000; | |
} | |
} | |
else if(renderTarget->getInternalFormat() == sw::FORMAT_X8R8G8B8 && | |
format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE) | |
{ | |
for(int i = 0; i < rect.x1 - rect.x0; i++) | |
{ | |
unsigned int xrgb = *(unsigned int*)(source + 4 * i); | |
dest32[i] = xrgb | 0xFF000000; | |
} | |
} | |
else if(renderTarget->getInternalFormat() == sw::FORMAT_A8R8G8B8 && | |
format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE) | |
{ | |
memcpy(dest, source, (rect.x1 - rect.x0) * 4); | |
} | |
else if(renderTarget->getInternalFormat() == sw::FORMAT_A1R5G5B5 && | |
format == GL_BGRA_EXT && type == GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT) | |
{ | |
memcpy(dest, source, (rect.x1 - rect.x0) * 2); | |
} | |
else if(renderTarget->getInternalFormat() == sw::FORMAT_R5G6B5 && | |
format == 0x80E0 && type == GL_UNSIGNED_SHORT_5_6_5) // GL_BGR_EXT | |
{ | |
memcpy(dest, source, (rect.x1 - rect.x0) * 2); | |
} | |
else | |
{ | |
for(int i = 0; i < rect.x1 - rect.x0; i++) | |
{ | |
float r; | |
float g; | |
float b; | |
float a; | |
switch(renderTarget->getInternalFormat()) | |
{ | |
case sw::FORMAT_R5G6B5: | |
{ | |
unsigned short rgb = *(unsigned short*)(source + 2 * i); | |
a = 1.0f; | |
b = (rgb & 0x001F) * (1.0f / 0x001F); | |
g = (rgb & 0x07E0) * (1.0f / 0x07E0); | |
r = (rgb & 0xF800) * (1.0f / 0xF800); | |
} | |
break; | |
case sw::FORMAT_A1R5G5B5: | |
{ | |
unsigned short argb = *(unsigned short*)(source + 2 * i); | |
a = (argb & 0x8000) ? 1.0f : 0.0f; | |
b = (argb & 0x001F) * (1.0f / 0x001F); | |
g = (argb & 0x03E0) * (1.0f / 0x03E0); | |
r = (argb & 0x7C00) * (1.0f / 0x7C00); | |
} | |
break; | |
case sw::FORMAT_A8R8G8B8: | |
{ | |
unsigned int argb = *(unsigned int*)(source + 4 * i); | |
a = (argb & 0xFF000000) * (1.0f / 0xFF000000); | |
b = (argb & 0x000000FF) * (1.0f / 0x000000FF); | |
g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00); | |
r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000); | |
} | |
break; | |
case sw::FORMAT_A8B8G8R8: | |
{ | |
unsigned int abgr = *(unsigned int*)(source + 4 * i); | |
a = (abgr & 0xFF000000) * (1.0f / 0xFF000000); | |
b = (abgr & 0x00FF0000) * (1.0f / 0x00FF0000); | |
g = (abgr & 0x0000FF00) * (1.0f / 0x0000FF00); | |
r = (abgr & 0x000000FF) * (1.0f / 0x000000FF); | |
} | |
break; | |
case sw::FORMAT_X8R8G8B8: | |
{ | |
unsigned int xrgb = *(unsigned int*)(source + 4 * i); | |
a = 1.0f; | |
b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF); | |
g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00); | |
r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000); | |
} | |
break; | |
case sw::FORMAT_X8B8G8R8: | |
{ | |
unsigned int xbgr = *(unsigned int*)(source + 4 * i); | |
a = 1.0f; | |
b = (xbgr & 0x00FF0000) * (1.0f / 0x00FF0000); | |
g = (xbgr & 0x0000FF00) * (1.0f / 0x0000FF00); | |
r = (xbgr & 0x000000FF) * (1.0f / 0x000000FF); | |
} | |
break; | |
case sw::FORMAT_A2R10G10B10: | |
{ | |
unsigned int argb = *(unsigned int*)(source + 4 * i); | |
a = (argb & 0xC0000000) * (1.0f / 0xC0000000); | |
b = (argb & 0x000003FF) * (1.0f / 0x000003FF); | |
g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00); | |
r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000); | |
} | |
break; | |
default: | |
UNIMPLEMENTED(); // FIXME | |
UNREACHABLE(renderTarget->getInternalFormat()); | |
} | |
switch(format) | |
{ | |
case GL_RGBA: | |
switch(type) | |
{ | |
case GL_UNSIGNED_BYTE: | |
dest[4 * i + 0] = (unsigned char)(255 * r + 0.5f); | |
dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f); | |
dest[4 * i + 2] = (unsigned char)(255 * b + 0.5f); | |
dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f); | |
break; | |
default: UNREACHABLE(type); | |
} | |
break; | |
case GL_BGRA_EXT: | |
switch(type) | |
{ | |
case GL_UNSIGNED_BYTE: | |
dest[4 * i + 0] = (unsigned char)(255 * b + 0.5f); | |
dest[4 * i + 1] = (unsigned char)(255 * g + 0.5f); | |
dest[4 * i + 2] = (unsigned char)(255 * r + 0.5f); | |
dest[4 * i + 3] = (unsigned char)(255 * a + 0.5f); | |
break; | |
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT: | |
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section | |
// this type is packed as follows: | |
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 | |
// -------------------------------------------------------------------------------- | |
// | 4th | 3rd | 2nd | 1st component | | |
// -------------------------------------------------------------------------------- | |
// in the case of BGRA_EXT, B is the first component, G the second, and so forth. | |
dest16[i] = | |
((unsigned short)(15 * a + 0.5f) << 12)| | |
((unsigned short)(15 * r + 0.5f) << 8) | | |
((unsigned short)(15 * g + 0.5f) << 4) | | |
((unsigned short)(15 * b + 0.5f) << 0); | |
break; | |
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT: | |
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section | |
// this type is packed as follows: | |
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 | |
// -------------------------------------------------------------------------------- | |
// | 4th | 3rd | 2nd | 1st component | | |
// -------------------------------------------------------------------------------- | |
// in the case of BGRA_EXT, B is the first component, G the second, and so forth. | |
dest16[i] = | |
((unsigned short)( a + 0.5f) << 15) | | |
((unsigned short)(31 * r + 0.5f) << 10) | | |
((unsigned short)(31 * g + 0.5f) << 5) | | |
((unsigned short)(31 * b + 0.5f) << 0); | |
break; | |
default: UNREACHABLE(type); | |
} | |
break; | |
case GL_RGB: | |
switch(type) | |
{ | |
case GL_UNSIGNED_SHORT_5_6_5: | |
dest16[i] = | |
((unsigned short)(31 * b + 0.5f) << 0) | | |
((unsigned short)(63 * g + 0.5f) << 5) | | |
((unsigned short)(31 * r + 0.5f) << 11); | |
break; | |
default: UNREACHABLE(type); | |
} | |
break; | |
default: UNREACHABLE(format); | |
} | |
} | |
} | |
source += inputPitch; | |
dest += outputPitch; | |
} | |
renderTarget->unlock(); | |
renderTarget->release(); | |
} | |
void Context::clear(GLbitfield mask) | |
{ | |
Framebuffer *framebuffer = getFramebuffer(); | |
if(!framebuffer || framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE_OES) | |
{ | |
return error(GL_INVALID_FRAMEBUFFER_OPERATION_OES); | |
} | |
if(!applyRenderTarget()) | |
{ | |
return; | |
} | |
unsigned int color = (unorm<8>(mState.colorClearValue.alpha) << 24) | | |
(unorm<8>(mState.colorClearValue.red) << 16) | | |
(unorm<8>(mState.colorClearValue.green) << 8) | | |
(unorm<8>(mState.colorClearValue.blue) << 0); | |
float depth = clamp01(mState.depthClearValue); | |
int stencil = mState.stencilClearValue & 0x000000FF; | |
if(mask & GL_COLOR_BUFFER_BIT) | |
{ | |
unsigned int rgbaMask = (mState.colorMaskRed ? 0x1 : 0) | | |
(mState.colorMaskGreen ? 0x2 : 0) | | |
(mState.colorMaskBlue ? 0x4 : 0) | | |
(mState.colorMaskAlpha ? 0x8 : 0); | |
if(rgbaMask != 0) | |
{ | |
device->clearColor(color, rgbaMask); | |
} | |
} | |
if(mask & GL_DEPTH_BUFFER_BIT) | |
{ | |
if(mState.depthMask != 0) | |
{ | |
device->clearDepth(depth); | |
} | |
} | |
if(mask & GL_STENCIL_BUFFER_BIT) | |
{ | |
if(mState.stencilWritemask != 0) | |
{ | |
device->clearStencil(stencil, mState.stencilWritemask); | |
} | |
} | |
} | |
void Context::drawArrays(GLenum mode, GLint first, GLsizei count) | |
{ | |
PrimitiveType primitiveType; | |
int primitiveCount; | |
if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount)) | |
return error(GL_INVALID_ENUM); | |
if(primitiveCount <= 0) | |
{ | |
return; | |
} | |
if(!applyRenderTarget()) | |
{ | |
return; | |
} | |
applyState(mode); | |
GLenum err = applyVertexBuffer(0, first, count); | |
if(err != GL_NO_ERROR) | |
{ | |
return error(err); | |
} | |
applyTextures(); | |
if(!cullSkipsDraw(mode)) | |
{ | |
device->drawPrimitive(primitiveType, primitiveCount); | |
} | |
} | |
void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void *indices) | |
{ | |
if(!indices && !mState.elementArrayBuffer) | |
{ | |
return error(GL_INVALID_OPERATION); | |
} | |
PrimitiveType primitiveType; | |
int primitiveCount; | |
if(!es2sw::ConvertPrimitiveType(mode, count, primitiveType, primitiveCount)) | |
return error(GL_INVALID_ENUM); | |
if(primitiveCount <= 0) | |
{ | |
return; | |
} | |
if(!applyRenderTarget()) | |
{ | |
return; | |
} | |
applyState(mode); | |
TranslatedIndexData indexInfo; | |
GLenum err = applyIndexBuffer(indices, count, mode, type, &indexInfo); | |
if(err != GL_NO_ERROR) | |
{ | |
return error(err); | |
} | |
GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1; | |
err = applyVertexBuffer(-(int)indexInfo.minIndex, indexInfo.minIndex, vertexCount); | |
if(err != GL_NO_ERROR) | |
{ | |
return error(err); | |
} | |
applyTextures(); | |
if(!cullSkipsDraw(mode)) | |
{ | |
device->drawIndexedPrimitive(primitiveType, indexInfo.indexOffset, primitiveCount, IndexDataManager::typeSize(type)); | |
} | |
} | |
void Context::drawTexture(GLfloat x, GLfloat y, GLfloat z, GLfloat width, GLfloat height) | |
{ | |
es1::Framebuffer *framebuffer = getFramebuffer(); | |
es1::Renderbuffer *renderbuffer = framebuffer->getColorbuffer(); | |
float targetWidth = renderbuffer->getWidth(); | |
float targetHeight = renderbuffer->getHeight(); | |
float x0 = 2.0f * x / targetWidth - 1.0f; | |
float y0 = 2.0f * y / targetHeight - 1.0f; | |
float x1 = 2.0f * (x + width) / targetWidth - 1.0f; | |
float y1 = 2.0f * (y + height) / targetHeight - 1.0f; | |
float Zw = sw::clamp(mState.zNear + z * (mState.zFar - mState.zNear), mState.zNear, mState.zFar); | |
float vertices[][3] = {{x0, y0, Zw}, | |
{x0, y1, Zw}, | |
{x1, y0, Zw}, | |
{x1, y1, Zw}}; | |
ASSERT(mState.samplerTexture[TEXTURE_2D][1].name() == 0); // Multi-texturing unimplemented | |
es1::Texture *texture = getSamplerTexture(0, TEXTURE_2D); | |
float textureWidth = texture->getWidth(GL_TEXTURE_2D, 0); | |
float textureHeight = texture->getHeight(GL_TEXTURE_2D, 0); | |
int Ucr = texture->getCropRectU(); | |
int Vcr = texture->getCropRectV(); | |
int Wcr = texture->getCropRectW(); | |
int Hcr = texture->getCropRectH(); | |
float texCoords[][2] = {{Ucr / textureWidth, Vcr / textureHeight}, | |
{Ucr / textureWidth, (Vcr + Hcr) / textureHeight}, | |
{(Ucr + Wcr) / textureWidth, Vcr / textureHeight}, | |
{(Ucr + Wcr) / textureWidth, (Vcr + Hcr) / textureHeight}}; | |
VertexAttribute oldPositionAttribute = mState.vertexAttribute[sw::Position]; | |
VertexAttribute oldTexCoord0Attribute = mState.vertexAttribute[sw::TexCoord0]; | |
glVertexPointer(3, GL_FLOAT, 3 * sizeof(float), vertices); | |
glEnableClientState(GL_VERTEX_ARRAY); | |
glTexCoordPointer(2, GL_FLOAT, 2 * sizeof(float), texCoords); | |
glEnableClientState(GL_TEXTURE_COORD_ARRAY); | |
textureStack0.push(); | |
textureStack0.identity(); // Disable texture coordinate transformation | |
drawArrays(GL_TRIANGLE_STRIP, 0, 4); | |
// Restore state | |
mState.vertexAttribute[sw::Position] = oldPositionAttribute; | |
mState.vertexAttribute[sw::TexCoord0] = oldTexCoord0Attribute; | |
textureStack0.pop(); | |
} | |
void Context::finish() | |
{ | |
device->finish(); | |
} | |
void Context::flush() | |
{ | |
// We don't queue anything without processing it as fast as possible | |
} | |
void Context::recordInvalidEnum() | |
{ | |
mInvalidEnum = true; | |
} | |
void Context::recordInvalidValue() | |
{ | |
mInvalidValue = true; | |
} | |
void Context::recordInvalidOperation() | |
{ | |
mInvalidOperation = true; | |
} | |
void Context::recordOutOfMemory() | |
{ | |
mOutOfMemory = true; | |
} | |
void Context::recordInvalidFramebufferOperation() | |
{ | |
mInvalidFramebufferOperation = true; | |
} | |
// Get one of the recorded errors and clear its flag, if any. | |
// [OpenGL ES 2.0.24] section 2.5 page 13. | |
GLenum Context::getError() | |
{ | |
if(mInvalidEnum) | |
{ | |
mInvalidEnum = false; | |
return GL_INVALID_ENUM; | |
} | |
if(mInvalidValue) | |
{ | |
mInvalidValue = false; | |
return GL_INVALID_VALUE; | |
} | |
if(mInvalidOperation) | |
{ | |
mInvalidOperation = false; | |
return GL_INVALID_OPERATION; | |
} | |
if(mOutOfMemory) | |
{ | |
mOutOfMemory = false; | |
return GL_OUT_OF_MEMORY; | |
} | |
if(mInvalidFramebufferOperation) | |
{ | |
mInvalidFramebufferOperation = false; | |
return GL_INVALID_FRAMEBUFFER_OPERATION_OES; | |
} | |
return GL_NO_ERROR; | |
} | |
int Context::getSupportedMultiSampleDepth(sw::Format format, int requested) | |
{ | |
if(requested <= 1) | |
{ | |
return 1; | |
} | |
if(requested == 2) | |
{ | |
return 2; | |
} | |
return 4; | |
} | |
void Context::detachBuffer(GLuint buffer) | |
{ | |
// [OpenGL ES 2.0.24] section 2.9 page 22: | |
// If a buffer object is deleted while it is bound, all bindings to that object in the current context | |
// (i.e. in the thread that called Delete-Buffers) are reset to zero. | |
if(mState.arrayBuffer.name() == buffer) | |
{ | |
mState.arrayBuffer = NULL; | |
} | |
if(mState.elementArrayBuffer.name() == buffer) | |
{ | |
mState.elementArrayBuffer = NULL; | |
} | |
for(int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++) | |
{ | |
if(mState.vertexAttribute[attribute].mBoundBuffer.name() == buffer) | |
{ | |
mState.vertexAttribute[attribute].mBoundBuffer = NULL; | |
} | |
} | |
} | |
void Context::detachTexture(GLuint texture) | |
{ | |
// [OpenGL ES 2.0.24] section 3.8 page 84: | |
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are | |
// rebound to texture object zero | |
for(int type = 0; type < TEXTURE_TYPE_COUNT; type++) | |
{ | |
for(int sampler = 0; sampler < MAX_TEXTURE_UNITS; sampler++) | |
{ | |
if(mState.samplerTexture[type][sampler].name() == texture) | |
{ | |
mState.samplerTexture[type][sampler] = NULL; | |
} | |
} | |
} | |
// [OpenGL ES 2.0.24] section 4.4 page 112: | |
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is | |
// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this | |
// image was attached in the currently bound framebuffer. | |
Framebuffer *framebuffer = getFramebuffer(); | |
if(framebuffer) | |
{ | |
framebuffer->detachTexture(texture); | |
} | |
} | |
void Context::detachFramebuffer(GLuint framebuffer) | |
{ | |
// [OpenGL ES 2.0.24] section 4.4 page 107: | |
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though | |
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero. | |
if(mState.framebuffer == framebuffer) | |
{ | |
bindFramebuffer(0); | |
} | |
} | |
void Context::detachRenderbuffer(GLuint renderbuffer) | |
{ | |
// [OpenGL ES 2.0.24] section 4.4 page 109: | |
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer | |
// had been executed with the target RENDERBUFFER and name of zero. | |
if(mState.renderbuffer.name() == renderbuffer) | |
{ | |
bindRenderbuffer(0); | |
} | |
// [OpenGL ES 2.0.24] section 4.4 page 111: | |
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer, | |
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment | |
// point to which this image was attached in the currently bound framebuffer. | |
Framebuffer *framebuffer = getFramebuffer(); | |
if(framebuffer) | |
{ | |
framebuffer->detachRenderbuffer(renderbuffer); | |
} | |
} | |
bool Context::cullSkipsDraw(GLenum drawMode) | |
{ | |
return mState.cullFace && mState.cullMode == GL_FRONT_AND_BACK && isTriangleMode(drawMode); | |
} | |
bool Context::isTriangleMode(GLenum drawMode) | |
{ | |
switch (drawMode) | |
{ | |
case GL_TRIANGLES: | |
case GL_TRIANGLE_FAN: | |
case GL_TRIANGLE_STRIP: | |
return true; | |
case GL_POINTS: | |
case GL_LINES: | |
case GL_LINE_LOOP: | |
case GL_LINE_STRIP: | |
return false; | |
default: UNREACHABLE(drawMode); | |
} | |
return false; | |
} | |
void Context::setVertexAttrib(GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat w) | |
{ | |
ASSERT(index < MAX_VERTEX_ATTRIBS); | |
mState.vertexAttribute[index].mCurrentValue[0] = x; | |
mState.vertexAttribute[index].mCurrentValue[1] = y; | |
mState.vertexAttribute[index].mCurrentValue[2] = z; | |
mState.vertexAttribute[index].mCurrentValue[3] = w; | |
mVertexDataManager->dirtyCurrentValue(index); | |
} | |
void Context::bindTexImage(egl::Surface *surface) | |
{ | |
es1::Texture2D *textureObject = getTexture2D(); | |
if(textureObject) | |
{ | |
textureObject->bindTexImage(surface); | |
} | |
} | |
EGLenum Context::validateSharedImage(EGLenum target, GLuint name, GLuint textureLevel) | |
{ | |
switch(target) | |
{ | |
case EGL_GL_TEXTURE_2D_KHR: | |
break; | |
case EGL_GL_RENDERBUFFER_KHR: | |
break; | |
default: | |
return EGL_BAD_PARAMETER; | |
} | |
if(textureLevel >= IMPLEMENTATION_MAX_TEXTURE_LEVELS) | |
{ | |
return EGL_BAD_MATCH; | |
} | |
if(target == EGL_GL_TEXTURE_2D_KHR) | |
{ | |
Texture *texture = getTexture(name); | |
if(!texture || texture->getTarget() != GL_TEXTURE_2D) | |
{ | |
return EGL_BAD_PARAMETER; | |
} | |
if(texture->isShared(GL_TEXTURE_2D, textureLevel)) // Bound to an EGLSurface or already an EGLImage sibling | |
{ | |
return EGL_BAD_ACCESS; | |
} | |
if(textureLevel != 0 && !texture->isSamplerComplete()) | |
{ | |
return EGL_BAD_PARAMETER; | |
} | |
if(textureLevel == 0 && !(texture->isSamplerComplete() && texture->getLevelCount() == 1)) | |
{ | |
return EGL_BAD_PARAMETER; | |
} | |
} | |
else if(target == EGL_GL_RENDERBUFFER_KHR) | |
{ | |
Renderbuffer *renderbuffer = getRenderbuffer(name); | |
if(!renderbuffer) | |
{ | |
return EGL_BAD_PARAMETER; | |
} | |
if(renderbuffer->isShared()) // Already an EGLImage sibling | |
{ | |
return EGL_BAD_ACCESS; | |
} | |
} | |
else UNREACHABLE(target); | |
return EGL_SUCCESS; | |
} | |
egl::Image *Context::createSharedImage(EGLenum target, GLuint name, GLuint textureLevel) | |
{ | |
if(target == EGL_GL_TEXTURE_2D_KHR) | |
{ | |
es1::Texture *texture = getTexture(name); | |
return texture->createSharedImage(GL_TEXTURE_2D, textureLevel); | |
} | |
else if(target == EGL_GL_RENDERBUFFER_KHR) | |
{ | |
es1::Renderbuffer *renderbuffer = getRenderbuffer(name); | |
return renderbuffer->createSharedImage(); | |
} | |
else UNREACHABLE(target); | |
return 0; | |
} | |
Device *Context::getDevice() | |
{ | |
return device; | |
} | |
void Context::setMatrixMode(GLenum mode) | |
{ | |
matrixMode = mode; | |
} | |
sw::MatrixStack &Context::currentMatrixStack() | |
{ | |
switch(matrixMode) | |
{ | |
case GL_MODELVIEW: | |
return modelViewStack; | |
case GL_PROJECTION: | |
return projectionStack; | |
case GL_TEXTURE: | |
switch(mState.activeSampler) | |
{ | |
case 0: return textureStack0; | |
case 1: return textureStack1; | |
} | |
break; | |
} | |
UNREACHABLE(matrixMode); | |
return textureStack0; | |
} | |
void Context::loadIdentity() | |
{ | |
currentMatrixStack().identity(); | |
} | |
void Context::load(const GLfloat *m) | |
{ | |
currentMatrixStack().load(m); | |
} | |
void Context::pushMatrix() | |
{ | |
if(!currentMatrixStack().push()) | |
{ | |
return error(GL_STACK_OVERFLOW); | |
} | |
} | |
void Context::popMatrix() | |
{ | |
if(!currentMatrixStack().pop()) | |
{ | |
return error(GL_STACK_OVERFLOW); | |
} | |
} | |
void Context::rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) | |
{ | |
currentMatrixStack().rotate(angle, x, y, z); | |
} | |
void Context::translate(GLfloat x, GLfloat y, GLfloat z) | |
{ | |
currentMatrixStack().translate(x, y, z); | |
} | |
void Context::scale(GLfloat x, GLfloat y, GLfloat z) | |
{ | |
currentMatrixStack().scale(x, y, z); | |
} | |
void Context::multiply(const GLfloat *m) | |
{ | |
currentMatrixStack().multiply(m); | |
} | |
void Context::frustum(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar) | |
{ | |
currentMatrixStack().frustum(left, right, bottom, top, zNear, zFar); | |
} | |
void Context::ortho(GLfloat left, GLfloat right, GLfloat bottom, GLfloat top, GLfloat zNear, GLfloat zFar) | |
{ | |
currentMatrixStack().ortho(left, right, bottom, top, zNear, zFar); | |
} | |
void Context::clientActiveTexture(GLenum texture) | |
{ | |
clientTexture = texture; | |
} | |
GLenum Context::getClientActiveTexture() const | |
{ | |
return clientTexture; | |
} | |
unsigned int Context::getActiveTexture() const | |
{ | |
return mState.activeSampler; | |
} | |
} | |
egl::Context *es1CreateContext(const egl::Config *config, const egl::Context *shareContext) | |
{ | |
ASSERT(!shareContext || shareContext->getClientVersion() == 1); // Should be checked by eglCreateContext | |
return new es1::Context(config, static_cast<const es1::Context*>(shareContext)); | |
} |