| //===- subzero/src/assembler.h - Integrated assembler -----------*- C++ -*-===// |
| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| // |
| // Modified by the Subzero authors. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the Assembler base class. Instructions are assembled |
| // by architecture-specific assemblers that derive from this base class. |
| // This base class manages buffers and fixups for emitting code, etc. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SUBZERO_SRC_ASSEMBLER_H |
| #define SUBZERO_SRC_ASSEMBLER_H |
| |
| #include "IceDefs.h" |
| |
| #include "IceFixups.h" |
| #include "llvm/Support/Allocator.h" |
| |
| namespace Ice { |
| |
| // Forward declarations. |
| class Assembler; |
| class AssemblerFixup; |
| class AssemblerBuffer; |
| class ConstantRelocatable; |
| class MemoryRegion; |
| |
| // Assembler fixups are positions in generated code that hold relocation |
| // information that needs to be processed before finalizing the code |
| // into executable memory. |
| class AssemblerFixup { |
| AssemblerFixup(const AssemblerFixup &) = delete; |
| AssemblerFixup &operator=(const AssemblerFixup &) = delete; |
| |
| public: |
| virtual void Process(const MemoryRegion ®ion, intptr_t position) = 0; |
| |
| // It would be ideal if the destructor method could be made private, |
| // but the g++ compiler complains when this is subclassed. |
| virtual ~AssemblerFixup() { llvm_unreachable("~AssemblerFixup used"); } |
| |
| intptr_t position() const { return position_; } |
| |
| FixupKind kind() const { return kind_; } |
| |
| const ConstantRelocatable *value() const { return value_; } |
| |
| protected: |
| AssemblerFixup(FixupKind Kind, const ConstantRelocatable *Value) |
| : position_(0), kind_(Kind), value_(Value) {} |
| |
| private: |
| intptr_t position_; |
| FixupKind kind_; |
| const ConstantRelocatable *value_; |
| |
| void set_position(intptr_t position) { position_ = position; } |
| |
| friend class AssemblerBuffer; |
| }; |
| |
| // Assembler buffers are used to emit binary code. They grow on demand. |
| class AssemblerBuffer { |
| AssemblerBuffer(const AssemblerBuffer &) = delete; |
| AssemblerBuffer &operator=(const AssemblerBuffer &) = delete; |
| |
| public: |
| AssemblerBuffer(Assembler &); |
| ~AssemblerBuffer(); |
| |
| // Basic support for emitting, loading, and storing. |
| template <typename T> void Emit(T value) { |
| assert(HasEnsuredCapacity()); |
| *reinterpret_cast<T *>(cursor_) = value; |
| cursor_ += sizeof(T); |
| } |
| |
| template <typename T> T Load(intptr_t position) const { |
| assert(position >= 0 && |
| position <= (Size() - static_cast<intptr_t>(sizeof(T)))); |
| return *reinterpret_cast<T *>(contents_ + position); |
| } |
| |
| template <typename T> void Store(intptr_t position, T value) { |
| assert(position >= 0 && |
| position <= (Size() - static_cast<intptr_t>(sizeof(T)))); |
| *reinterpret_cast<T *>(contents_ + position) = value; |
| } |
| |
| // Emit a fixup at the current location. |
| void EmitFixup(AssemblerFixup *fixup) { |
| fixup->set_position(Size()); |
| fixups_.push_back(fixup); |
| } |
| |
| // Get the size of the emitted code. |
| intptr_t Size() const { return cursor_ - contents_; } |
| uintptr_t contents() const { return contents_; } |
| |
| // Copy the assembled instructions into the specified memory block |
| // and apply all fixups. |
| // TODO(jvoung): This will be different. We'll be writing the text |
| // and reloc section to a file? |
| void FinalizeInstructions(const MemoryRegion ®ion); |
| |
| // To emit an instruction to the assembler buffer, the EnsureCapacity helper |
| // must be used to guarantee that the underlying data area is big enough to |
| // hold the emitted instruction. Usage: |
| // |
| // AssemblerBuffer buffer; |
| // AssemblerBuffer::EnsureCapacity ensured(&buffer); |
| // ... emit bytes for single instruction ... |
| |
| #ifndef NDEBUG |
| class EnsureCapacity { |
| EnsureCapacity(const EnsureCapacity &) = delete; |
| EnsureCapacity &operator=(const EnsureCapacity &) = delete; |
| |
| public: |
| explicit EnsureCapacity(AssemblerBuffer *buffer); |
| ~EnsureCapacity(); |
| |
| private: |
| AssemblerBuffer *buffer_; |
| intptr_t gap_; |
| |
| intptr_t ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } |
| }; |
| |
| bool has_ensured_capacity_; |
| bool HasEnsuredCapacity() const { return has_ensured_capacity_; } |
| #else // NDEBUG |
| class EnsureCapacity { |
| EnsureCapacity(const EnsureCapacity &) = delete; |
| EnsureCapacity &operator=(const EnsureCapacity &) = delete; |
| |
| public: |
| explicit EnsureCapacity(AssemblerBuffer *buffer) { |
| if (buffer->cursor() >= buffer->limit()) |
| buffer->ExtendCapacity(); |
| } |
| }; |
| |
| // When building the C++ tests, assertion code is enabled. To allow |
| // asserting that the user of the assembler buffer has ensured the |
| // capacity needed for emitting, we add a dummy method in non-debug mode. |
| bool HasEnsuredCapacity() const { return true; } |
| #endif // NDEBUG |
| |
| // Returns the position in the instruction stream. |
| intptr_t GetPosition() const { return cursor_ - contents_; } |
| |
| // For bringup only. |
| AssemblerFixup *GetLatestFixup() const; |
| |
| private: |
| // The limit is set to kMinimumGap bytes before the end of the data area. |
| // This leaves enough space for the longest possible instruction and allows |
| // for a single, fast space check per instruction. |
| static const intptr_t kMinimumGap = 32; |
| |
| uintptr_t contents_; |
| uintptr_t cursor_; |
| uintptr_t limit_; |
| Assembler &assembler_; |
| std::vector<AssemblerFixup *> fixups_; |
| #ifndef NDEBUG |
| bool fixups_processed_; |
| #endif // !NDEBUG |
| |
| uintptr_t cursor() const { return cursor_; } |
| uintptr_t limit() const { return limit_; } |
| intptr_t Capacity() const { |
| assert(limit_ >= contents_); |
| return (limit_ - contents_) + kMinimumGap; |
| } |
| |
| // Process the fixup chain. |
| void ProcessFixups(const MemoryRegion ®ion); |
| |
| // Compute the limit based on the data area and the capacity. See |
| // description of kMinimumGap for the reasoning behind the value. |
| static uintptr_t ComputeLimit(uintptr_t data, intptr_t capacity) { |
| return data + capacity - kMinimumGap; |
| } |
| |
| void ExtendCapacity(); |
| |
| friend class AssemblerFixup; |
| }; |
| |
| class Assembler { |
| Assembler(const Assembler &) = delete; |
| Assembler &operator=(const Assembler &) = delete; |
| |
| public: |
| Assembler() {} |
| ~Assembler() {} |
| |
| // Allocate a chunk of bytes using the per-Assembler allocator. |
| uintptr_t AllocateBytes(size_t bytes) { |
| // For now, alignment is not related to NaCl bundle alignment, since |
| // the buffer's GetPosition is relative to the base. So NaCl bundle |
| // alignment checks can be relative to that base. Later, the buffer |
| // will be copied out to a ".text" section (or an in memory-buffer |
| // that can be mprotect'ed with executable permission), and that |
| // second buffer should be aligned for NaCl. |
| const size_t Alignment = 16; |
| return reinterpret_cast<uintptr_t>(Allocator.Allocate(bytes, Alignment)); |
| } |
| |
| // Allocate data of type T using the per-Assembler allocator. |
| template <typename T> T *Allocate() { return Allocator.Allocate<T>(); } |
| |
| private: |
| llvm::BumpPtrAllocator Allocator; |
| }; |
| |
| } // end of namespace Ice |
| |
| #endif // SUBZERO_SRC_ASSEMBLER_H_ |