| //===- subzero/src/assembler.cpp - Assembler base class -------------------===// |
| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| // |
| // Modified by the Subzero authors. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The Subzero Code Generator |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Assembler class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "assembler.h" |
| #include "IceMemoryRegion.h" |
| |
| namespace Ice { |
| |
| static uintptr_t NewContents(Assembler &assembler, intptr_t capacity) { |
| uintptr_t result = assembler.AllocateBytes(capacity); |
| return result; |
| } |
| |
| #ifndef NDEBUG |
| AssemblerBuffer::EnsureCapacity::EnsureCapacity(AssemblerBuffer *buffer) { |
| if (buffer->cursor() >= buffer->limit()) |
| buffer->ExtendCapacity(); |
| // In debug mode, we save the assembler buffer along with the gap |
| // size before we start emitting to the buffer. This allows us to |
| // check that any single generated instruction doesn't overflow the |
| // limit implied by the minimum gap size. |
| buffer_ = buffer; |
| gap_ = ComputeGap(); |
| // Make sure that extending the capacity leaves a big enough gap |
| // for any kind of instruction. |
| assert(gap_ >= kMinimumGap); |
| // Mark the buffer as having ensured the capacity. |
| assert(!buffer->HasEnsuredCapacity()); // Cannot nest. |
| buffer->has_ensured_capacity_ = true; |
| } |
| |
| AssemblerBuffer::EnsureCapacity::~EnsureCapacity() { |
| // Unmark the buffer, so we cannot emit after this. |
| buffer_->has_ensured_capacity_ = false; |
| // Make sure the generated instruction doesn't take up more |
| // space than the minimum gap. |
| intptr_t delta = gap_ - ComputeGap(); |
| assert(delta <= kMinimumGap); |
| } |
| #endif // !NDEBUG |
| |
| AssemblerBuffer::AssemblerBuffer(Assembler &assembler) : assembler_(assembler) { |
| const intptr_t OneKB = 1024; |
| static const intptr_t kInitialBufferCapacity = 4 * OneKB; |
| contents_ = NewContents(assembler_, kInitialBufferCapacity); |
| cursor_ = contents_; |
| limit_ = ComputeLimit(contents_, kInitialBufferCapacity); |
| #ifndef NDEBUG |
| has_ensured_capacity_ = false; |
| fixups_processed_ = false; |
| #endif // !NDEBUG |
| |
| // Verify internal state. |
| assert(Capacity() == kInitialBufferCapacity); |
| assert(Size() == 0); |
| } |
| |
| AssemblerBuffer::~AssemblerBuffer() {} |
| |
| AssemblerFixup *AssemblerBuffer::GetLatestFixup() const { |
| if (fixups_.empty()) |
| return NULL; |
| return fixups_.back(); |
| } |
| |
| void AssemblerBuffer::ProcessFixups(const MemoryRegion ®ion) { |
| for (SizeT I = 0; I < fixups_.size(); ++I) { |
| AssemblerFixup *fixup = fixups_[I]; |
| fixup->Process(region, fixup->position()); |
| } |
| } |
| |
| void AssemblerBuffer::FinalizeInstructions(const MemoryRegion &instructions) { |
| // Copy the instructions from the buffer. |
| MemoryRegion from(reinterpret_cast<void *>(contents()), Size()); |
| instructions.CopyFrom(0, from); |
| |
| // Process fixups in the instructions. |
| ProcessFixups(instructions); |
| #ifndef NDEBUG |
| fixups_processed_ = true; |
| #endif // !NDEBUG |
| } |
| |
| void AssemblerBuffer::ExtendCapacity() { |
| intptr_t old_size = Size(); |
| intptr_t old_capacity = Capacity(); |
| const intptr_t OneMB = 1 << 20; |
| intptr_t new_capacity = std::min(old_capacity * 2, old_capacity + OneMB); |
| if (new_capacity < old_capacity) { |
| // FATAL |
| llvm_unreachable("Unexpected overflow in AssemblerBuffer::ExtendCapacity"); |
| } |
| |
| // Allocate the new data area and copy contents of the old one to it. |
| uintptr_t new_contents = NewContents(assembler_, new_capacity); |
| memmove(reinterpret_cast<void *>(new_contents), |
| reinterpret_cast<void *>(contents_), old_size); |
| |
| // Compute the relocation delta and switch to the new contents area. |
| intptr_t delta = new_contents - contents_; |
| contents_ = new_contents; |
| |
| // Update the cursor and recompute the limit. |
| cursor_ += delta; |
| limit_ = ComputeLimit(new_contents, new_capacity); |
| |
| // Verify internal state. |
| assert(Capacity() == new_capacity); |
| assert(Size() == old_size); |
| } |
| |
| } // end of namespace Ice |