| //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "HexagonISelLowering.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/Support/CommandLine.h" |
| |
| using namespace llvm; |
| |
| static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 }; |
| static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; |
| static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 }; |
| static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 }; |
| |
| |
| void |
| HexagonTargetLowering::initializeHVXLowering() { |
| if (Subtarget.useHVX64BOps()) { |
| addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass); |
| addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass); |
| addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass); |
| addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass); |
| addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass); |
| addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass); |
| // These "short" boolean vector types should be legal because |
| // they will appear as results of vector compares. If they were |
| // not legal, type legalization would try to make them legal |
| // and that would require using operations that do not use or |
| // produce such types. That, in turn, would imply using custom |
| // nodes, which would be unoptimizable by the DAG combiner. |
| // The idea is to rely on target-independent operations as much |
| // as possible. |
| addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass); |
| addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); |
| addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); |
| addRegisterClass(MVT::v512i1, &Hexagon::HvxQRRegClass); |
| } else if (Subtarget.useHVX128BOps()) { |
| addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass); |
| addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass); |
| addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass); |
| addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass); |
| addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass); |
| addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass); |
| addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass); |
| addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass); |
| addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass); |
| addRegisterClass(MVT::v1024i1, &Hexagon::HvxQRRegClass); |
| } |
| |
| // Set up operation actions. |
| |
| bool Use64b = Subtarget.useHVX64BOps(); |
| ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128; |
| ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128; |
| MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8; |
| MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8; |
| |
| auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) { |
| setOperationAction(Opc, FromTy, Promote); |
| AddPromotedToType(Opc, FromTy, ToTy); |
| }; |
| |
| setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal); |
| setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal); |
| |
| for (MVT T : LegalV) { |
| setIndexedLoadAction(ISD::POST_INC, T, Legal); |
| setIndexedStoreAction(ISD::POST_INC, T, Legal); |
| |
| setOperationAction(ISD::AND, T, Legal); |
| setOperationAction(ISD::OR, T, Legal); |
| setOperationAction(ISD::XOR, T, Legal); |
| setOperationAction(ISD::ADD, T, Legal); |
| setOperationAction(ISD::SUB, T, Legal); |
| setOperationAction(ISD::CTPOP, T, Legal); |
| setOperationAction(ISD::CTLZ, T, Legal); |
| if (T != ByteV) { |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); |
| setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); |
| setOperationAction(ISD::BSWAP, T, Legal); |
| } |
| |
| setOperationAction(ISD::CTTZ, T, Custom); |
| setOperationAction(ISD::LOAD, T, Custom); |
| setOperationAction(ISD::MUL, T, Custom); |
| setOperationAction(ISD::MULHS, T, Custom); |
| setOperationAction(ISD::MULHU, T, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, T, Custom); |
| // Make concat-vectors custom to handle concats of more than 2 vectors. |
| setOperationAction(ISD::CONCAT_VECTORS, T, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom); |
| setOperationAction(ISD::ANY_EXTEND, T, Custom); |
| setOperationAction(ISD::SIGN_EXTEND, T, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, T, Custom); |
| if (T != ByteV) { |
| setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); |
| // HVX only has shifts of words and halfwords. |
| setOperationAction(ISD::SRA, T, Custom); |
| setOperationAction(ISD::SHL, T, Custom); |
| setOperationAction(ISD::SRL, T, Custom); |
| |
| // Promote all shuffles to operate on vectors of bytes. |
| setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV); |
| } |
| |
| setCondCodeAction(ISD::SETNE, T, Expand); |
| setCondCodeAction(ISD::SETLE, T, Expand); |
| setCondCodeAction(ISD::SETGE, T, Expand); |
| setCondCodeAction(ISD::SETLT, T, Expand); |
| setCondCodeAction(ISD::SETULE, T, Expand); |
| setCondCodeAction(ISD::SETUGE, T, Expand); |
| setCondCodeAction(ISD::SETULT, T, Expand); |
| } |
| |
| for (MVT T : LegalW) { |
| // Custom-lower BUILD_VECTOR for vector pairs. The standard (target- |
| // independent) handling of it would convert it to a load, which is |
| // not always the optimal choice. |
| setOperationAction(ISD::BUILD_VECTOR, T, Custom); |
| // Make concat-vectors custom to handle concats of more than 2 vectors. |
| setOperationAction(ISD::CONCAT_VECTORS, T, Custom); |
| |
| // Custom-lower these operations for pairs. Expand them into a concat |
| // of the corresponding operations on individual vectors. |
| setOperationAction(ISD::ANY_EXTEND, T, Custom); |
| setOperationAction(ISD::SIGN_EXTEND, T, Custom); |
| setOperationAction(ISD::ZERO_EXTEND, T, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom); |
| setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom); |
| setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal); |
| setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal); |
| |
| setOperationAction(ISD::LOAD, T, Custom); |
| setOperationAction(ISD::STORE, T, Custom); |
| setOperationAction(ISD::CTLZ, T, Custom); |
| setOperationAction(ISD::CTTZ, T, Custom); |
| setOperationAction(ISD::CTPOP, T, Custom); |
| |
| setOperationAction(ISD::ADD, T, Legal); |
| setOperationAction(ISD::SUB, T, Legal); |
| setOperationAction(ISD::MUL, T, Custom); |
| setOperationAction(ISD::MULHS, T, Custom); |
| setOperationAction(ISD::MULHU, T, Custom); |
| setOperationAction(ISD::AND, T, Custom); |
| setOperationAction(ISD::OR, T, Custom); |
| setOperationAction(ISD::XOR, T, Custom); |
| setOperationAction(ISD::SETCC, T, Custom); |
| setOperationAction(ISD::VSELECT, T, Custom); |
| if (T != ByteW) { |
| setOperationAction(ISD::SRA, T, Custom); |
| setOperationAction(ISD::SHL, T, Custom); |
| setOperationAction(ISD::SRL, T, Custom); |
| |
| // Promote all shuffles to operate on vectors of bytes. |
| setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW); |
| } |
| } |
| |
| // Boolean vectors. |
| |
| for (MVT T : LegalW) { |
| // Boolean types for vector pairs will overlap with the boolean |
| // types for single vectors, e.g. |
| // v64i8 -> v64i1 (single) |
| // v64i16 -> v64i1 (pair) |
| // Set these actions first, and allow the single actions to overwrite |
| // any duplicates. |
| MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); |
| setOperationAction(ISD::SETCC, BoolW, Custom); |
| setOperationAction(ISD::AND, BoolW, Custom); |
| setOperationAction(ISD::OR, BoolW, Custom); |
| setOperationAction(ISD::XOR, BoolW, Custom); |
| } |
| |
| for (MVT T : LegalV) { |
| MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements()); |
| setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom); |
| setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom); |
| setOperationAction(ISD::AND, BoolV, Legal); |
| setOperationAction(ISD::OR, BoolV, Legal); |
| setOperationAction(ISD::XOR, BoolV, Legal); |
| } |
| |
| if (Use64b) |
| for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32}) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); |
| else |
| for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32}) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal); |
| |
| setTargetDAGCombine(ISD::VSELECT); |
| } |
| |
| SDValue |
| HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, |
| const SDLoc &dl, SelectionDAG &DAG) const { |
| SmallVector<SDValue,4> IntOps; |
| IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32)); |
| for (const SDValue &Op : Ops) |
| IntOps.push_back(Op); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps); |
| } |
| |
| MVT |
| HexagonTargetLowering::typeJoin(const TypePair &Tys) const { |
| assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType()); |
| |
| MVT ElemTy = Tys.first.getVectorElementType(); |
| return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() + |
| Tys.second.getVectorNumElements()); |
| } |
| |
| HexagonTargetLowering::TypePair |
| HexagonTargetLowering::typeSplit(MVT VecTy) const { |
| assert(VecTy.isVector()); |
| unsigned NumElem = VecTy.getVectorNumElements(); |
| assert((NumElem % 2) == 0 && "Expecting even-sized vector type"); |
| MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2); |
| return { HalfTy, HalfTy }; |
| } |
| |
| MVT |
| HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const { |
| MVT ElemTy = VecTy.getVectorElementType(); |
| MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor); |
| return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); |
| } |
| |
| MVT |
| HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const { |
| MVT ElemTy = VecTy.getVectorElementType(); |
| MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor); |
| return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); |
| } |
| |
| SDValue |
| HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy, |
| SelectionDAG &DAG) const { |
| if (ty(Vec).getVectorElementType() == ElemTy) |
| return Vec; |
| MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy); |
| return DAG.getBitcast(CastTy, Vec); |
| } |
| |
| SDValue |
| HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl, |
| SelectionDAG &DAG) const { |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)), |
| Ops.second, Ops.first); |
| } |
| |
| HexagonTargetLowering::VectorPair |
| HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl, |
| SelectionDAG &DAG) const { |
| TypePair Tys = typeSplit(ty(Vec)); |
| if (Vec.getOpcode() == HexagonISD::QCAT) |
| return VectorPair(Vec.getOperand(0), Vec.getOperand(1)); |
| return DAG.SplitVector(Vec, dl, Tys.first, Tys.second); |
| } |
| |
| bool |
| HexagonTargetLowering::isHvxSingleTy(MVT Ty) const { |
| return Subtarget.isHVXVectorType(Ty) && |
| Ty.getSizeInBits() == 8 * Subtarget.getVectorLength(); |
| } |
| |
| bool |
| HexagonTargetLowering::isHvxPairTy(MVT Ty) const { |
| return Subtarget.isHVXVectorType(Ty) && |
| Ty.getSizeInBits() == 16 * Subtarget.getVectorLength(); |
| } |
| |
| SDValue |
| HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy, |
| SelectionDAG &DAG) const { |
| if (ElemIdx.getValueType().getSimpleVT() != MVT::i32) |
| ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx); |
| |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| if (ElemWidth == 8) |
| return ElemIdx; |
| |
| unsigned L = Log2_32(ElemWidth/8); |
| const SDLoc &dl(ElemIdx); |
| return DAG.getNode(ISD::SHL, dl, MVT::i32, |
| {ElemIdx, DAG.getConstant(L, dl, MVT::i32)}); |
| } |
| |
| SDValue |
| HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy, |
| SelectionDAG &DAG) const { |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| assert(ElemWidth >= 8 && ElemWidth <= 32); |
| if (ElemWidth == 32) |
| return Idx; |
| |
| if (ty(Idx) != MVT::i32) |
| Idx = DAG.getBitcast(MVT::i32, Idx); |
| const SDLoc &dl(Idx); |
| SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32); |
| SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask}); |
| return SubIdx; |
| } |
| |
| SDValue |
| HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0, |
| SDValue Op1, ArrayRef<int> Mask, |
| SelectionDAG &DAG) const { |
| MVT OpTy = ty(Op0); |
| assert(OpTy == ty(Op1)); |
| |
| MVT ElemTy = OpTy.getVectorElementType(); |
| if (ElemTy == MVT::i8) |
| return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask); |
| assert(ElemTy.getSizeInBits() >= 8); |
| |
| MVT ResTy = tyVector(OpTy, MVT::i8); |
| unsigned ElemSize = ElemTy.getSizeInBits() / 8; |
| |
| SmallVector<int,128> ByteMask; |
| for (int M : Mask) { |
| if (M < 0) { |
| for (unsigned I = 0; I != ElemSize; ++I) |
| ByteMask.push_back(-1); |
| } else { |
| int NewM = M*ElemSize; |
| for (unsigned I = 0; I != ElemSize; ++I) |
| ByteMask.push_back(NewM+I); |
| } |
| } |
| assert(ResTy.getVectorNumElements() == ByteMask.size()); |
| return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG), |
| opCastElem(Op1, MVT::i8, DAG), ByteMask); |
| } |
| |
| SDValue |
| HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values, |
| const SDLoc &dl, MVT VecTy, |
| SelectionDAG &DAG) const { |
| unsigned VecLen = Values.size(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MVT ElemTy = VecTy.getVectorElementType(); |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| |
| unsigned ElemSize = ElemWidth / 8; |
| assert(ElemSize*VecLen == HwLen); |
| SmallVector<SDValue,32> Words; |
| |
| if (VecTy.getVectorElementType() != MVT::i32) { |
| assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size"); |
| unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2; |
| MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord); |
| for (unsigned i = 0; i != VecLen; i += OpsPerWord) { |
| SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG); |
| Words.push_back(DAG.getBitcast(MVT::i32, W)); |
| } |
| } else { |
| Words.assign(Values.begin(), Values.end()); |
| } |
| |
| unsigned NumWords = Words.size(); |
| bool IsSplat = true, IsUndef = true; |
| SDValue SplatV; |
| for (unsigned i = 0; i != NumWords && IsSplat; ++i) { |
| if (isUndef(Words[i])) |
| continue; |
| IsUndef = false; |
| if (!SplatV.getNode()) |
| SplatV = Words[i]; |
| else if (SplatV != Words[i]) |
| IsSplat = false; |
| } |
| if (IsUndef) |
| return DAG.getUNDEF(VecTy); |
| if (IsSplat) { |
| assert(SplatV.getNode()); |
| auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode()); |
| if (IdxN && IdxN->isNullValue()) |
| return getZero(dl, VecTy, DAG); |
| return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV); |
| } |
| |
| // Delay recognizing constant vectors until here, so that we can generate |
| // a vsplat. |
| SmallVector<ConstantInt*, 128> Consts(VecLen); |
| bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts); |
| if (AllConst) { |
| ArrayRef<Constant*> Tmp((Constant**)Consts.begin(), |
| (Constant**)Consts.end()); |
| Constant *CV = ConstantVector::get(Tmp); |
| unsigned Align = HwLen; |
| SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG); |
| return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP, |
| MachinePointerInfo::getConstantPool(MF), Align); |
| } |
| |
| // A special case is a situation where the vector is built entirely from |
| // elements extracted from another vector. This could be done via a shuffle |
| // more efficiently, but typically, the size of the source vector will not |
| // match the size of the vector being built (which precludes the use of a |
| // shuffle directly). |
| // This only handles a single source vector, and the vector being built |
| // should be of a sub-vector type of the source vector type. |
| auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec, |
| SmallVectorImpl<int> &SrcIdx) { |
| SDValue Vec; |
| for (SDValue V : Values) { |
| if (isUndef(V)) { |
| SrcIdx.push_back(-1); |
| continue; |
| } |
| if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| return false; |
| // All extracts should come from the same vector. |
| SDValue T = V.getOperand(0); |
| if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode()) |
| return false; |
| Vec = T; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1)); |
| if (C == nullptr) |
| return false; |
| int I = C->getSExtValue(); |
| assert(I >= 0 && "Negative element index"); |
| SrcIdx.push_back(I); |
| } |
| SrcVec = Vec; |
| return true; |
| }; |
| |
| SmallVector<int,128> ExtIdx; |
| SDValue ExtVec; |
| if (IsBuildFromExtracts(ExtVec, ExtIdx)) { |
| MVT ExtTy = ty(ExtVec); |
| unsigned ExtLen = ExtTy.getVectorNumElements(); |
| if (ExtLen == VecLen || ExtLen == 2*VecLen) { |
| // Construct a new shuffle mask that will produce a vector with the same |
| // number of elements as the input vector, and such that the vector we |
| // want will be the initial subvector of it. |
| SmallVector<int,128> Mask; |
| BitVector Used(ExtLen); |
| |
| for (int M : ExtIdx) { |
| Mask.push_back(M); |
| if (M >= 0) |
| Used.set(M); |
| } |
| // Fill the rest of the mask with the unused elements of ExtVec in hopes |
| // that it will result in a permutation of ExtVec's elements. It's still |
| // fine if it doesn't (e.g. if undefs are present, or elements are |
| // repeated), but permutations can always be done efficiently via vdelta |
| // and vrdelta. |
| for (unsigned I = 0; I != ExtLen; ++I) { |
| if (Mask.size() == ExtLen) |
| break; |
| if (!Used.test(I)) |
| Mask.push_back(I); |
| } |
| |
| SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec, |
| DAG.getUNDEF(ExtTy), Mask); |
| if (ExtLen == VecLen) |
| return S; |
| return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S); |
| } |
| } |
| |
| // Construct two halves in parallel, then or them together. |
| assert(4*Words.size() == Subtarget.getVectorLength()); |
| SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG); |
| SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG); |
| SDValue S = DAG.getConstant(4, dl, MVT::i32); |
| for (unsigned i = 0; i != NumWords/2; ++i) { |
| SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, |
| {HalfV0, Words[i]}); |
| SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, |
| {HalfV1, Words[i+NumWords/2]}); |
| HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S}); |
| HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S}); |
| } |
| |
| HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, |
| {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)}); |
| SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1}); |
| return DstV; |
| } |
| |
| SDValue |
| HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl, |
| unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const { |
| MVT PredTy = ty(PredV); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| |
| if (Subtarget.isHVXVectorType(PredTy, true)) { |
| // Move the vector predicate SubV to a vector register, and scale it |
| // down to match the representation (bytes per type element) that VecV |
| // uses. The scaling down will pick every 2nd or 4th (every Scale-th |
| // in general) element and put them at the front of the resulting |
| // vector. This subvector will then be inserted into the Q2V of VecV. |
| // To avoid having an operation that generates an illegal type (short |
| // vector), generate a full size vector. |
| // |
| SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV); |
| SmallVector<int,128> Mask(HwLen); |
| // Scale = BitBytes(PredV) / Given BitBytes. |
| unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes); |
| unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes; |
| |
| for (unsigned i = 0; i != HwLen; ++i) { |
| unsigned Num = i % Scale; |
| unsigned Off = i / Scale; |
| Mask[BlockLen*Num + Off] = i; |
| } |
| SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask); |
| if (!ZeroFill) |
| return S; |
| // Fill the bytes beyond BlockLen with 0s. |
| MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); |
| SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, |
| {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); |
| SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q); |
| return DAG.getNode(ISD::AND, dl, ByteTy, S, M); |
| } |
| |
| // Make sure that this is a valid scalar predicate. |
| assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1); |
| |
| unsigned Bytes = 8 / PredTy.getVectorNumElements(); |
| SmallVector<SDValue,4> Words[2]; |
| unsigned IdxW = 0; |
| |
| auto Lo32 = [&DAG, &dl] (SDValue P) { |
| return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P); |
| }; |
| auto Hi32 = [&DAG, &dl] (SDValue P) { |
| return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P); |
| }; |
| |
| SDValue W0 = isUndef(PredV) |
| ? DAG.getUNDEF(MVT::i64) |
| : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV); |
| Words[IdxW].push_back(Hi32(W0)); |
| Words[IdxW].push_back(Lo32(W0)); |
| |
| while (Bytes < BitBytes) { |
| IdxW ^= 1; |
| Words[IdxW].clear(); |
| |
| if (Bytes < 4) { |
| for (const SDValue &W : Words[IdxW ^ 1]) { |
| SDValue T = expandPredicate(W, dl, DAG); |
| Words[IdxW].push_back(Hi32(T)); |
| Words[IdxW].push_back(Lo32(T)); |
| } |
| } else { |
| for (const SDValue &W : Words[IdxW ^ 1]) { |
| Words[IdxW].push_back(W); |
| Words[IdxW].push_back(W); |
| } |
| } |
| Bytes *= 2; |
| } |
| |
| assert(Bytes == BitBytes); |
| |
| SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy); |
| SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32); |
| for (const SDValue &W : Words[IdxW]) { |
| Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4); |
| Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W); |
| } |
| |
| return Vec; |
| } |
| |
| SDValue |
| HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values, |
| const SDLoc &dl, MVT VecTy, |
| SelectionDAG &DAG) const { |
| // Construct a vector V of bytes, such that a comparison V >u 0 would |
| // produce the required vector predicate. |
| unsigned VecLen = Values.size(); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| assert(VecLen <= HwLen || VecLen == 8*HwLen); |
| SmallVector<SDValue,128> Bytes; |
| bool AllT = true, AllF = true; |
| |
| auto IsTrue = [] (SDValue V) { |
| if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) |
| return !N->isNullValue(); |
| return false; |
| }; |
| auto IsFalse = [] (SDValue V) { |
| if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode())) |
| return N->isNullValue(); |
| return false; |
| }; |
| |
| if (VecLen <= HwLen) { |
| // In the hardware, each bit of a vector predicate corresponds to a byte |
| // of a vector register. Calculate how many bytes does a bit of VecTy |
| // correspond to. |
| assert(HwLen % VecLen == 0); |
| unsigned BitBytes = HwLen / VecLen; |
| for (SDValue V : Values) { |
| AllT &= IsTrue(V); |
| AllF &= IsFalse(V); |
| |
| SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8) |
| : DAG.getUNDEF(MVT::i8); |
| for (unsigned B = 0; B != BitBytes; ++B) |
| Bytes.push_back(Ext); |
| } |
| } else { |
| // There are as many i1 values, as there are bits in a vector register. |
| // Divide the values into groups of 8 and check that each group consists |
| // of the same value (ignoring undefs). |
| for (unsigned I = 0; I != VecLen; I += 8) { |
| unsigned B = 0; |
| // Find the first non-undef value in this group. |
| for (; B != 8; ++B) { |
| if (!Values[I+B].isUndef()) |
| break; |
| } |
| SDValue F = Values[I+B]; |
| AllT &= IsTrue(F); |
| AllF &= IsFalse(F); |
| |
| SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8) |
| : DAG.getUNDEF(MVT::i8); |
| Bytes.push_back(Ext); |
| // Verify that the rest of values in the group are the same as the |
| // first. |
| for (; B != 8; ++B) |
| assert(Values[I+B].isUndef() || Values[I+B] == F); |
| } |
| } |
| |
| if (AllT) |
| return DAG.getNode(HexagonISD::QTRUE, dl, VecTy); |
| if (AllF) |
| return DAG.getNode(HexagonISD::QFALSE, dl, VecTy); |
| |
| MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG); |
| return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); |
| } |
| |
| SDValue |
| HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV, |
| const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| MVT ElemTy = ty(VecV).getVectorElementType(); |
| |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| assert(ElemWidth >= 8 && ElemWidth <= 32); |
| (void)ElemWidth; |
| |
| SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); |
| SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, |
| {VecV, ByteIdx}); |
| if (ElemTy == MVT::i32) |
| return ExWord; |
| |
| // Have an extracted word, need to extract the smaller element out of it. |
| // 1. Extract the bits of (the original) IdxV that correspond to the index |
| // of the desired element in the 32-bit word. |
| SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); |
| // 2. Extract the element from the word. |
| SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord); |
| return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV, |
| const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| // Implement other return types if necessary. |
| assert(ResTy == MVT::i1); |
| |
| unsigned HwLen = Subtarget.getVectorLength(); |
| MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); |
| |
| unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); |
| SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); |
| IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); |
| |
| SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG); |
| SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32); |
| return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV, |
| SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { |
| MVT ElemTy = ty(VecV).getVectorElementType(); |
| |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| assert(ElemWidth >= 8 && ElemWidth <= 32); |
| (void)ElemWidth; |
| |
| auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV, |
| SDValue ByteIdxV) { |
| MVT VecTy = ty(VecV); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32, |
| {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)}); |
| SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV}); |
| SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV}); |
| SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| {DAG.getConstant(HwLen, dl, MVT::i32), MaskV}); |
| SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV}); |
| return TorV; |
| }; |
| |
| SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); |
| if (ElemTy == MVT::i32) |
| return InsertWord(VecV, ValV, ByteIdx); |
| |
| // If this is not inserting a 32-bit word, convert it into such a thing. |
| // 1. Extract the existing word from the target vector. |
| SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32, |
| {ByteIdx, DAG.getConstant(2, dl, MVT::i32)}); |
| SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx, |
| dl, MVT::i32, DAG); |
| |
| // 2. Treating the extracted word as a 32-bit vector, insert the given |
| // value into it. |
| SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); |
| MVT SubVecTy = tyVector(ty(Ext), ElemTy); |
| SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext), |
| ValV, SubIdx, dl, ElemTy, DAG); |
| |
| // 3. Insert the 32-bit word back into the original vector. |
| return InsertWord(VecV, Ins, ByteIdx); |
| } |
| |
| SDValue |
| HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV, |
| SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { |
| unsigned HwLen = Subtarget.getVectorLength(); |
| MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); |
| |
| unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); |
| SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); |
| IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); |
| ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV); |
| |
| SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG); |
| return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV); |
| } |
| |
| SDValue |
| HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV, |
| const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| MVT VecTy = ty(VecV); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); |
| MVT ElemTy = VecTy.getVectorElementType(); |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| |
| // If the source vector is a vector pair, get the single vector containing |
| // the subvector of interest. The subvector will never overlap two single |
| // vectors. |
| if (isHvxPairTy(VecTy)) { |
| unsigned SubIdx; |
| if (Idx * ElemWidth >= 8*HwLen) { |
| SubIdx = Hexagon::vsub_hi; |
| Idx -= VecTy.getVectorNumElements() / 2; |
| } else { |
| SubIdx = Hexagon::vsub_lo; |
| } |
| VecTy = typeSplit(VecTy).first; |
| VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV); |
| if (VecTy == ResTy) |
| return VecV; |
| } |
| |
| // The only meaningful subvectors of a single HVX vector are those that |
| // fit in a scalar register. |
| assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64); |
| |
| MVT WordTy = tyVector(VecTy, MVT::i32); |
| SDValue WordVec = DAG.getBitcast(WordTy, VecV); |
| unsigned WordIdx = (Idx*ElemWidth) / 32; |
| |
| SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32); |
| SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG); |
| if (ResTy.getSizeInBits() == 32) |
| return DAG.getBitcast(ResTy, W0); |
| |
| SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32); |
| SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG); |
| SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0}); |
| return DAG.getBitcast(ResTy, WW); |
| } |
| |
| SDValue |
| HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, |
| const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| MVT VecTy = ty(VecV); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); |
| // IdxV is required to be a constant. |
| unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); |
| |
| unsigned ResLen = ResTy.getVectorNumElements(); |
| unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); |
| unsigned Offset = Idx * BitBytes; |
| SDValue Undef = DAG.getUNDEF(ByteTy); |
| SmallVector<int,128> Mask; |
| |
| if (Subtarget.isHVXVectorType(ResTy, true)) { |
| // Converting between two vector predicates. Since the result is shorter |
| // than the source, it will correspond to a vector predicate with the |
| // relevant bits replicated. The replication count is the ratio of the |
| // source and target vector lengths. |
| unsigned Rep = VecTy.getVectorNumElements() / ResLen; |
| assert(isPowerOf2_32(Rep) && HwLen % Rep == 0); |
| for (unsigned i = 0; i != HwLen/Rep; ++i) { |
| for (unsigned j = 0; j != Rep; ++j) |
| Mask.push_back(i + Offset); |
| } |
| SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); |
| return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV); |
| } |
| |
| // Converting between a vector predicate and a scalar predicate. In the |
| // vector predicate, a group of BitBytes bits will correspond to a single |
| // i1 element of the source vector type. Those bits will all have the same |
| // value. The same will be true for ByteVec, where each byte corresponds |
| // to a bit in the vector predicate. |
| // The algorithm is to traverse the ByteVec, going over the i1 values from |
| // the source vector, and generate the corresponding representation in an |
| // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the |
| // elements so that the interesting 8 bytes will be in the low end of the |
| // vector. |
| unsigned Rep = 8 / ResLen; |
| // Make sure the output fill the entire vector register, so repeat the |
| // 8-byte groups as many times as necessary. |
| for (unsigned r = 0; r != HwLen/ResLen; ++r) { |
| // This will generate the indexes of the 8 interesting bytes. |
| for (unsigned i = 0; i != ResLen; ++i) { |
| for (unsigned j = 0; j != Rep; ++j) |
| Mask.push_back(Offset + i*BitBytes); |
| } |
| } |
| |
| SDValue Zero = getZero(dl, MVT::i32, DAG); |
| SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); |
| // Combine the two low words from ShuffV into a v8i8, and byte-compare |
| // them against 0. |
| SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero}); |
| SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, |
| {ShuffV, DAG.getConstant(4, dl, MVT::i32)}); |
| SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0}); |
| return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy, |
| {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV, |
| SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { |
| MVT VecTy = ty(VecV); |
| MVT SubTy = ty(SubV); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| MVT ElemTy = VecTy.getVectorElementType(); |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| |
| bool IsPair = isHvxPairTy(VecTy); |
| MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth); |
| // The two single vectors that VecV consists of, if it's a pair. |
| SDValue V0, V1; |
| SDValue SingleV = VecV; |
| SDValue PickHi; |
| |
| if (IsPair) { |
| V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV); |
| V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV); |
| |
| SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(), |
| dl, MVT::i32); |
| PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT); |
| if (isHvxSingleTy(SubTy)) { |
| if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) { |
| unsigned Idx = CN->getZExtValue(); |
| assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2); |
| unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi; |
| return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV); |
| } |
| // If IdxV is not a constant, generate the two variants: with the |
| // SubV as the high and as the low subregister, and select the right |
| // pair based on the IdxV. |
| SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1}); |
| SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV}); |
| return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); |
| } |
| // The subvector being inserted must be entirely contained in one of |
| // the vectors V0 or V1. Set SingleV to the correct one, and update |
| // IdxV to be the index relative to the beginning of that vector. |
| SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV); |
| IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV); |
| SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0); |
| } |
| |
| // The only meaningful subvectors of a single HVX vector are those that |
| // fit in a scalar register. |
| assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64); |
| // Convert IdxV to be index in bytes. |
| auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); |
| if (!IdxN || !IdxN->isNullValue()) { |
| IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, |
| DAG.getConstant(ElemWidth/8, dl, MVT::i32)); |
| SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV); |
| } |
| // When inserting a single word, the rotation back to the original position |
| // would be by HwLen-Idx, but if two words are inserted, it will need to be |
| // by (HwLen-4)-Idx. |
| unsigned RolBase = HwLen; |
| if (VecTy.getSizeInBits() == 32) { |
| SDValue V = DAG.getBitcast(MVT::i32, SubV); |
| SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V); |
| } else { |
| SDValue V = DAG.getBitcast(MVT::i64, SubV); |
| SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V); |
| SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V); |
| SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0); |
| SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, |
| DAG.getConstant(4, dl, MVT::i32)); |
| SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1); |
| RolBase = HwLen-4; |
| } |
| // If the vector wasn't ror'ed, don't ror it back. |
| if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) { |
| SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(RolBase, dl, MVT::i32), IdxV); |
| SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV); |
| } |
| |
| if (IsPair) { |
| SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1}); |
| SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV}); |
| return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); |
| } |
| return SingleV; |
| } |
| |
| SDValue |
| HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV, |
| SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { |
| MVT VecTy = ty(VecV); |
| MVT SubTy = ty(SubV); |
| assert(Subtarget.isHVXVectorType(VecTy, true)); |
| // VecV is an HVX vector predicate. SubV may be either an HVX vector |
| // predicate as well, or it can be a scalar predicate. |
| |
| unsigned VecLen = VecTy.getVectorNumElements(); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| assert(HwLen % VecLen == 0 && "Unexpected vector type"); |
| |
| unsigned Scale = VecLen / SubTy.getVectorNumElements(); |
| unsigned BitBytes = HwLen / VecLen; |
| unsigned BlockLen = HwLen / Scale; |
| |
| MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); |
| SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG); |
| SDValue ByteIdx; |
| |
| auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); |
| if (!IdxN || !IdxN->isNullValue()) { |
| ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, |
| DAG.getConstant(BitBytes, dl, MVT::i32)); |
| ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx); |
| } |
| |
| // ByteVec is the target vector VecV rotated in such a way that the |
| // subvector should be inserted at index 0. Generate a predicate mask |
| // and use vmux to do the insertion. |
| MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); |
| SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy, |
| {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); |
| ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG); |
| // Rotate ByteVec back, and convert to a vector predicate. |
| if (!IdxN || !IdxN->isNullValue()) { |
| SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32); |
| SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx); |
| ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi); |
| } |
| return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); |
| } |
| |
| SDValue |
| HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl, |
| MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const { |
| // Sign- and any-extending of a vector predicate to a vector register is |
| // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and |
| // a vector of 1s (where the 1s are of type matching the vector type). |
| assert(Subtarget.isHVXVectorType(ResTy)); |
| if (!ZeroExt) |
| return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV); |
| |
| assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()); |
| SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy, |
| DAG.getConstant(1, dl, MVT::i32)); |
| SDValue False = getZero(dl, ResTy, DAG); |
| return DAG.getSelect(dl, ResTy, VecV, True, False); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) |
| const { |
| const SDLoc &dl(Op); |
| MVT VecTy = ty(Op); |
| |
| unsigned Size = Op.getNumOperands(); |
| SmallVector<SDValue,128> Ops; |
| for (unsigned i = 0; i != Size; ++i) |
| Ops.push_back(Op.getOperand(i)); |
| |
| if (VecTy.getVectorElementType() == MVT::i1) |
| return buildHvxVectorPred(Ops, dl, VecTy, DAG); |
| |
| if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) { |
| ArrayRef<SDValue> A(Ops); |
| MVT SingleTy = typeSplit(VecTy).first; |
| SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG); |
| SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG); |
| return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1); |
| } |
| |
| return buildHvxVectorReg(Ops, dl, VecTy, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) |
| const { |
| // Vector concatenation of two integer (non-bool) vectors does not need |
| // special lowering. Custom-lower concats of bool vectors and expand |
| // concats of more than 2 vectors. |
| MVT VecTy = ty(Op); |
| const SDLoc &dl(Op); |
| unsigned NumOp = Op.getNumOperands(); |
| if (VecTy.getVectorElementType() != MVT::i1) { |
| if (NumOp == 2) |
| return Op; |
| // Expand the other cases into a build-vector. |
| SmallVector<SDValue,8> Elems; |
| for (SDValue V : Op.getNode()->ops()) |
| DAG.ExtractVectorElements(V, Elems); |
| // A vector of i16 will be broken up into a build_vector of i16's. |
| // This is a problem, since at the time of operation legalization, |
| // all operations are expected to be type-legalized, and i16 is not |
| // a legal type. If any of the extracted elements is not of a valid |
| // type, sign-extend it to a valid one. |
| for (unsigned i = 0, e = Elems.size(); i != e; ++i) { |
| SDValue V = Elems[i]; |
| MVT Ty = ty(V); |
| if (!isTypeLegal(Ty)) { |
| EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty); |
| if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy, |
| V.getOperand(0), V.getOperand(1)), |
| DAG.getValueType(Ty)); |
| continue; |
| } |
| // A few less complicated cases. |
| if (V.getOpcode() == ISD::Constant) |
| Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy); |
| else if (V.isUndef()) |
| Elems[i] = DAG.getUNDEF(NTy); |
| else |
| llvm_unreachable("Unexpected vector element"); |
| } |
| } |
| return DAG.getBuildVector(VecTy, dl, Elems); |
| } |
| |
| assert(VecTy.getVectorElementType() == MVT::i1); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0); |
| |
| SDValue Op0 = Op.getOperand(0); |
| |
| // If the operands are HVX types (i.e. not scalar predicates), then |
| // defer the concatenation, and create QCAT instead. |
| if (Subtarget.isHVXVectorType(ty(Op0), true)) { |
| if (NumOp == 2) |
| return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1)); |
| |
| ArrayRef<SDUse> U(Op.getNode()->ops()); |
| SmallVector<SDValue,4> SV(U.begin(), U.end()); |
| ArrayRef<SDValue> Ops(SV); |
| |
| MVT HalfTy = typeSplit(VecTy).first; |
| SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, |
| Ops.take_front(NumOp/2)); |
| SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy, |
| Ops.take_back(NumOp/2)); |
| return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1); |
| } |
| |
| // Count how many bytes (in a vector register) each bit in VecTy |
| // corresponds to. |
| unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); |
| |
| SmallVector<SDValue,8> Prefixes; |
| for (SDValue V : Op.getNode()->op_values()) { |
| SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG); |
| Prefixes.push_back(P); |
| } |
| |
| unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements(); |
| MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32); |
| SDValue Res = getZero(dl, ByteTy, DAG); |
| for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) { |
| Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S); |
| Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]); |
| } |
| return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) |
| const { |
| // Change the type of the extracted element to i32. |
| SDValue VecV = Op.getOperand(0); |
| MVT ElemTy = ty(VecV).getVectorElementType(); |
| const SDLoc &dl(Op); |
| SDValue IdxV = Op.getOperand(1); |
| if (ElemTy == MVT::i1) |
| return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG); |
| |
| return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) |
| const { |
| const SDLoc &dl(Op); |
| SDValue VecV = Op.getOperand(0); |
| SDValue ValV = Op.getOperand(1); |
| SDValue IdxV = Op.getOperand(2); |
| MVT ElemTy = ty(VecV).getVectorElementType(); |
| if (ElemTy == MVT::i1) |
| return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG); |
| |
| return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) |
| const { |
| SDValue SrcV = Op.getOperand(0); |
| MVT SrcTy = ty(SrcV); |
| MVT DstTy = ty(Op); |
| SDValue IdxV = Op.getOperand(1); |
| unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); |
| assert(Idx % DstTy.getVectorNumElements() == 0); |
| (void)Idx; |
| const SDLoc &dl(Op); |
| |
| MVT ElemTy = SrcTy.getVectorElementType(); |
| if (ElemTy == MVT::i1) |
| return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG); |
| |
| return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) |
| const { |
| // Idx does not need to be a constant. |
| SDValue VecV = Op.getOperand(0); |
| SDValue ValV = Op.getOperand(1); |
| SDValue IdxV = Op.getOperand(2); |
| |
| const SDLoc &dl(Op); |
| MVT VecTy = ty(VecV); |
| MVT ElemTy = VecTy.getVectorElementType(); |
| if (ElemTy == MVT::i1) |
| return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG); |
| |
| return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const { |
| // Lower any-extends of boolean vectors to sign-extends, since they |
| // translate directly to Q2V. Zero-extending could also be done equally |
| // fast, but Q2V is used/recognized in more places. |
| // For all other vectors, use zero-extend. |
| MVT ResTy = ty(Op); |
| SDValue InpV = Op.getOperand(0); |
| MVT ElemTy = ty(InpV).getVectorElementType(); |
| if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) |
| return LowerHvxSignExt(Op, DAG); |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const { |
| MVT ResTy = ty(Op); |
| SDValue InpV = Op.getOperand(0); |
| MVT ElemTy = ty(InpV).getVectorElementType(); |
| if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) |
| return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG); |
| return Op; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const { |
| MVT ResTy = ty(Op); |
| SDValue InpV = Op.getOperand(0); |
| MVT ElemTy = ty(InpV).getVectorElementType(); |
| if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy)) |
| return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG); |
| return Op; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const { |
| // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight): |
| // cttz(x) = bitwidth(x) - ctlz(~x & (x-1)) |
| const SDLoc &dl(Op); |
| MVT ResTy = ty(Op); |
| SDValue InpV = Op.getOperand(0); |
| assert(ResTy == ty(InpV)); |
| |
| // Calculate the vectors of 1 and bitwidth(x). |
| MVT ElemTy = ty(InpV).getVectorElementType(); |
| unsigned ElemWidth = ElemTy.getSizeInBits(); |
| // Using uint64_t because a shift by 32 can happen. |
| uint64_t Splat1 = 0, SplatW = 0; |
| assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32); |
| for (unsigned i = 0; i != 32/ElemWidth; ++i) { |
| Splat1 = (Splat1 << ElemWidth) | 1; |
| SplatW = (SplatW << ElemWidth) | ElemWidth; |
| } |
| SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy, |
| DAG.getConstant(uint32_t(Splat1), dl, MVT::i32)); |
| SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy, |
| DAG.getConstant(uint32_t(SplatW), dl, MVT::i32)); |
| SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy, |
| DAG.getConstant(-1, dl, MVT::i32)); |
| // Do not use DAG.getNOT, because that would create BUILD_VECTOR with |
| // a BITCAST. Here we can skip the BITCAST (so we don't have to handle |
| // it separately in custom combine or selection). |
| SDValue A = DAG.getNode(ISD::AND, dl, ResTy, |
| {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}), |
| DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})}); |
| return DAG.getNode(ISD::SUB, dl, ResTy, |
| {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)}); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const { |
| MVT ResTy = ty(Op); |
| assert(ResTy.isVector() && isHvxSingleTy(ResTy)); |
| const SDLoc &dl(Op); |
| SmallVector<int,256> ShuffMask; |
| |
| MVT ElemTy = ResTy.getVectorElementType(); |
| unsigned VecLen = ResTy.getVectorNumElements(); |
| SDValue Vs = Op.getOperand(0); |
| SDValue Vt = Op.getOperand(1); |
| |
| switch (ElemTy.SimpleTy) { |
| case MVT::i8: { |
| // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...), |
| // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo, |
| // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...). |
| MVT ExtTy = typeExtElem(ResTy, 2); |
| unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv |
| : Hexagon::V6_vmpyhv; |
| SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG); |
| |
| // Discard high halves of the resulting values, collect the low halves. |
| for (unsigned I = 0; I < VecLen; I += 2) { |
| ShuffMask.push_back(I); // Pick even element. |
| ShuffMask.push_back(I+VecLen); // Pick odd element. |
| } |
| VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG); |
| SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG); |
| return DAG.getBitcast(ResTy, BS); |
| } |
| case MVT::i16: |
| // For i16 there is V6_vmpyih, which acts exactly like the MUL opcode. |
| // (There is also V6_vmpyhv, which behaves in an analogous way to |
| // V6_vmpybv.) |
| return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG); |
| case MVT::i32: { |
| // Use the following sequence for signed word multiply: |
| // T0 = V6_vmpyiowh Vs, Vt |
| // T1 = V6_vaslw T0, 16 |
| // T2 = V6_vmpyiewuh_acc T1, Vs, Vt |
| SDValue S16 = DAG.getConstant(16, dl, MVT::i32); |
| SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG); |
| SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG); |
| SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy, |
| {T1, Vs, Vt}, DAG); |
| return T2; |
| } |
| default: |
| break; |
| } |
| return SDValue(); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const { |
| MVT ResTy = ty(Op); |
| assert(ResTy.isVector()); |
| const SDLoc &dl(Op); |
| SmallVector<int,256> ShuffMask; |
| |
| MVT ElemTy = ResTy.getVectorElementType(); |
| unsigned VecLen = ResTy.getVectorNumElements(); |
| SDValue Vs = Op.getOperand(0); |
| SDValue Vt = Op.getOperand(1); |
| bool IsSigned = Op.getOpcode() == ISD::MULHS; |
| |
| if (ElemTy == MVT::i8 || ElemTy == MVT::i16) { |
| // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...), |
| // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo, |
| // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...). |
| // For i16, use V6_vmpyhv, which behaves in an analogous way to |
| // V6_vmpybv: results Lo and Hi are products of even/odd elements |
| // respectively. |
| MVT ExtTy = typeExtElem(ResTy, 2); |
| unsigned MpyOpc = ElemTy == MVT::i8 |
| ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv) |
| : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv); |
| SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG); |
| |
| // Discard low halves of the resulting values, collect the high halves. |
| for (unsigned I = 0; I < VecLen; I += 2) { |
| ShuffMask.push_back(I+1); // Pick even element. |
| ShuffMask.push_back(I+VecLen+1); // Pick odd element. |
| } |
| VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG); |
| SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG); |
| return DAG.getBitcast(ResTy, BS); |
| } |
| |
| assert(ElemTy == MVT::i32); |
| SDValue S16 = DAG.getConstant(16, dl, MVT::i32); |
| |
| if (IsSigned) { |
| // mulhs(Vs,Vt) = |
| // = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32 |
| // = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16 |
| // + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32 |
| // = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16 |
| // + Lo(Vs) *us Vt] >> 32 |
| // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to |
| // anything, so it cannot produce any carry over to higher bits), |
| // so everything in [] can be shifted by 16 without loss of precision. |
| // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16 |
| // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16 |
| // Denote Hi(Vs) = Vs': |
| // = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16 |
| // = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16 |
| SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG); |
| // Get Vs': |
| SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG); |
| SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy, |
| {T0, S0, Vt}, DAG); |
| // Shift by 16: |
| SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG); |
| // Get Vs'*Hi(Vt): |
| SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG); |
| // Add: |
| SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2}); |
| return T3; |
| } |
| |
| // Unsigned mulhw. (Would expansion using signed mulhw be better?) |
| |
| auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) { |
| return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair); |
| }; |
| auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) { |
| return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair); |
| }; |
| |
| MVT PairTy = typeJoin({ResTy, ResTy}); |
| SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy, |
| {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG); |
| // Multiply-unsigned halfwords: |
| // LoVec = Vs.uh[2i] * Vt.uh[2i], |
| // HiVec = Vs.uh[2i+1] * Vt.uh[2i+1] |
| SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG); |
| // The low halves in the LoVec of the pair can be discarded. They are |
| // not added to anything (in the full-precision product), so they cannot |
| // produce a carry into the higher bits. |
| SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG); |
| // Swap low and high halves in Vt, and do the halfword multiplication |
| // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i]. |
| SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG); |
| SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG); |
| // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs). |
| // These products are words, but cannot be added directly because the |
| // sums could overflow. Add these products, by halfwords, where each sum |
| // of a pair of halfwords gives a word. |
| SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, |
| {LoVec(T2), HiVec(T2)}, DAG); |
| // Add the high halfwords from the products of the low halfwords. |
| SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)}); |
| SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG); |
| SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)}); |
| SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6}); |
| return T7; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const { |
| // Sign- and zero-extends are legal. |
| assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG); |
| return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op), |
| Op.getOperand(0)); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const { |
| if (SDValue S = getVectorShiftByInt(Op, DAG)) |
| return S; |
| return Op; |
| } |
| |
| SDValue |
| HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const { |
| assert(!Op.isMachineOpcode()); |
| SmallVector<SDValue,2> OpsL, OpsH; |
| const SDLoc &dl(Op); |
| |
| auto SplitVTNode = [&DAG,this] (const VTSDNode *N) { |
| MVT Ty = typeSplit(N->getVT().getSimpleVT()).first; |
| SDValue TV = DAG.getValueType(Ty); |
| return std::make_pair(TV, TV); |
| }; |
| |
| for (SDValue A : Op.getNode()->ops()) { |
| VectorPair P = Subtarget.isHVXVectorType(ty(A), true) |
| ? opSplit(A, dl, DAG) |
| : std::make_pair(A, A); |
| // Special case for type operand. |
| if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| if (const auto *N = dyn_cast<const VTSDNode>(A.getNode())) |
| P = SplitVTNode(N); |
| } |
| OpsL.push_back(P.first); |
| OpsH.push_back(P.second); |
| } |
| |
| MVT ResTy = ty(Op); |
| MVT HalfTy = typeSplit(ResTy).first; |
| SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL); |
| SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH); |
| SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H); |
| return S; |
| } |
| |
| SDValue |
| HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const { |
| LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode()); |
| assert(BN->isUnindexed()); |
| MVT MemTy = BN->getMemoryVT().getSimpleVT(); |
| if (!isHvxPairTy(MemTy)) |
| return Op; |
| |
| const SDLoc &dl(Op); |
| unsigned HwLen = Subtarget.getVectorLength(); |
| MVT SingleTy = typeSplit(MemTy).first; |
| SDValue Chain = BN->getChain(); |
| SDValue Base0 = BN->getBasePtr(); |
| SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl); |
| |
| MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr; |
| if (MachineMemOperand *MMO = BN->getMemOperand()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen); |
| MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen); |
| } |
| |
| unsigned MemOpc = BN->getOpcode(); |
| SDValue NewOp; |
| |
| if (MemOpc == ISD::LOAD) { |
| SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0); |
| SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1); |
| NewOp = DAG.getMergeValues( |
| { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1), |
| DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| Load0.getValue(1), Load1.getValue(1)) }, dl); |
| } else { |
| assert(MemOpc == ISD::STORE); |
| VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG); |
| SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0); |
| SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1); |
| NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1); |
| } |
| |
| return NewOp; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const { |
| unsigned Opc = Op.getOpcode(); |
| bool IsPairOp = isHvxPairTy(ty(Op)) || |
| llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) { |
| return isHvxPairTy(ty(V)); |
| }); |
| |
| if (IsPairOp) { |
| switch (Opc) { |
| default: |
| break; |
| case ISD::LOAD: |
| case ISD::STORE: |
| return SplitHvxMemOp(Op, DAG); |
| case ISD::CTPOP: |
| case ISD::CTLZ: |
| case ISD::CTTZ: |
| case ISD::MUL: |
| case ISD::MULHS: |
| case ISD::MULHU: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SRA: |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SETCC: |
| case ISD::VSELECT: |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND_INREG: |
| return SplitHvxPairOp(Op, DAG); |
| } |
| } |
| |
| switch (Opc) { |
| default: |
| break; |
| case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG); |
| case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG); |
| |
| case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG); |
| case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG); |
| case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG); |
| case ISD::CTTZ: return LowerHvxCttz(Op, DAG); |
| case ISD::SRA: |
| case ISD::SHL: |
| case ISD::SRL: return LowerHvxShift(Op, DAG); |
| case ISD::MUL: return LowerHvxMul(Op, DAG); |
| case ISD::MULHS: |
| case ISD::MULHU: return LowerHvxMulh(Op, DAG); |
| case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG); |
| case ISD::SETCC: |
| case ISD::INTRINSIC_VOID: return Op; |
| // Unaligned loads will be handled by the default lowering. |
| case ISD::LOAD: return SDValue(); |
| } |
| #ifndef NDEBUG |
| Op.dumpr(&DAG); |
| #endif |
| llvm_unreachable("Unhandled HVX operation"); |
| } |
| |
| SDValue |
| HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) |
| const { |
| const SDLoc &dl(N); |
| SDValue Op(N, 0); |
| |
| unsigned Opc = Op.getOpcode(); |
| if (Opc == ISD::VSELECT) { |
| // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0) |
| SDValue Cond = Op.getOperand(0); |
| if (Cond->getOpcode() == ISD::XOR) { |
| SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1); |
| if (C1->getOpcode() == HexagonISD::QTRUE) { |
| SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0, |
| Op.getOperand(2), Op.getOperand(1)); |
| return VSel; |
| } |
| } |
| } |
| return SDValue(); |
| } |
| |
| bool |
| HexagonTargetLowering::isHvxOperation(SDValue Op) const { |
| // If the type of the result, or any operand type are HVX vector types, |
| // this is an HVX operation. |
| return Subtarget.isHVXVectorType(ty(Op), true) || |
| llvm::any_of(Op.getNode()->ops(), |
| [this] (SDValue V) { |
| return Subtarget.isHVXVectorType(ty(V), true); |
| }); |
| } |