| //===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file describes the PTX instructions in TableGen format. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| include "NVPTXInstrFormats.td" |
| |
| // A NOP instruction |
| let hasSideEffects = 0 in { |
| def NOP : NVPTXInst<(outs), (ins), "", []>; |
| } |
| |
| let OperandType = "OPERAND_IMMEDIATE" in { |
| def f16imm : Operand<f16>; |
| } |
| |
| // List of vector specific properties |
| def isVecLD : VecInstTypeEnum<1>; |
| def isVecST : VecInstTypeEnum<2>; |
| def isVecBuild : VecInstTypeEnum<3>; |
| def isVecShuffle : VecInstTypeEnum<4>; |
| def isVecExtract : VecInstTypeEnum<5>; |
| def isVecInsert : VecInstTypeEnum<6>; |
| def isVecDest : VecInstTypeEnum<7>; |
| def isVecOther : VecInstTypeEnum<15>; |
| |
| //===----------------------------------------------------------------------===// |
| // NVPTX Operand Definitions. |
| //===----------------------------------------------------------------------===// |
| |
| def brtarget : Operand<OtherVT>; |
| |
| // CVT conversion modes |
| // These must match the enum in NVPTX.h |
| def CvtNONE : PatLeaf<(i32 0x0)>; |
| def CvtRNI : PatLeaf<(i32 0x1)>; |
| def CvtRZI : PatLeaf<(i32 0x2)>; |
| def CvtRMI : PatLeaf<(i32 0x3)>; |
| def CvtRPI : PatLeaf<(i32 0x4)>; |
| def CvtRN : PatLeaf<(i32 0x5)>; |
| def CvtRZ : PatLeaf<(i32 0x6)>; |
| def CvtRM : PatLeaf<(i32 0x7)>; |
| def CvtRP : PatLeaf<(i32 0x8)>; |
| |
| def CvtNONE_FTZ : PatLeaf<(i32 0x10)>; |
| def CvtRNI_FTZ : PatLeaf<(i32 0x11)>; |
| def CvtRZI_FTZ : PatLeaf<(i32 0x12)>; |
| def CvtRMI_FTZ : PatLeaf<(i32 0x13)>; |
| def CvtRPI_FTZ : PatLeaf<(i32 0x14)>; |
| def CvtRN_FTZ : PatLeaf<(i32 0x15)>; |
| def CvtRZ_FTZ : PatLeaf<(i32 0x16)>; |
| def CvtRM_FTZ : PatLeaf<(i32 0x17)>; |
| def CvtRP_FTZ : PatLeaf<(i32 0x18)>; |
| |
| def CvtSAT : PatLeaf<(i32 0x20)>; |
| def CvtSAT_FTZ : PatLeaf<(i32 0x30)>; |
| |
| def CvtMode : Operand<i32> { |
| let PrintMethod = "printCvtMode"; |
| } |
| |
| // Compare modes |
| // These must match the enum in NVPTX.h |
| def CmpEQ : PatLeaf<(i32 0)>; |
| def CmpNE : PatLeaf<(i32 1)>; |
| def CmpLT : PatLeaf<(i32 2)>; |
| def CmpLE : PatLeaf<(i32 3)>; |
| def CmpGT : PatLeaf<(i32 4)>; |
| def CmpGE : PatLeaf<(i32 5)>; |
| def CmpEQU : PatLeaf<(i32 10)>; |
| def CmpNEU : PatLeaf<(i32 11)>; |
| def CmpLTU : PatLeaf<(i32 12)>; |
| def CmpLEU : PatLeaf<(i32 13)>; |
| def CmpGTU : PatLeaf<(i32 14)>; |
| def CmpGEU : PatLeaf<(i32 15)>; |
| def CmpNUM : PatLeaf<(i32 16)>; |
| def CmpNAN : PatLeaf<(i32 17)>; |
| |
| def CmpEQ_FTZ : PatLeaf<(i32 0x100)>; |
| def CmpNE_FTZ : PatLeaf<(i32 0x101)>; |
| def CmpLT_FTZ : PatLeaf<(i32 0x102)>; |
| def CmpLE_FTZ : PatLeaf<(i32 0x103)>; |
| def CmpGT_FTZ : PatLeaf<(i32 0x104)>; |
| def CmpGE_FTZ : PatLeaf<(i32 0x105)>; |
| def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>; |
| def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>; |
| def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>; |
| def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>; |
| def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>; |
| def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>; |
| def CmpNUM_FTZ : PatLeaf<(i32 0x110)>; |
| def CmpNAN_FTZ : PatLeaf<(i32 0x111)>; |
| |
| def CmpMode : Operand<i32> { |
| let PrintMethod = "printCmpMode"; |
| } |
| def VecElement : Operand<i32> { |
| let PrintMethod = "printVecElement"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NVPTX Instruction Predicate Definitions |
| //===----------------------------------------------------------------------===// |
| |
| |
| def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">; |
| def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">; |
| def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">; |
| def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">; |
| def hasVote : Predicate<"Subtarget->hasVote()">; |
| def hasDouble : Predicate<"Subtarget->hasDouble()">; |
| def hasLDG : Predicate<"Subtarget->hasLDG()">; |
| def hasLDU : Predicate<"Subtarget->hasLDU()">; |
| |
| def doF32FTZ : Predicate<"useF32FTZ()">; |
| def doNoF32FTZ : Predicate<"!useF32FTZ()">; |
| |
| def doMulWide : Predicate<"doMulWide">; |
| |
| def allowFMA : Predicate<"allowFMA()">; |
| def noFMA : Predicate<"!allowFMA()">; |
| def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">; |
| |
| def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">; |
| def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">; |
| |
| def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">; |
| def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">; |
| |
| def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">; |
| def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">; |
| |
| def true : Predicate<"true">; |
| |
| def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">; |
| def hasPTX60 : Predicate<"Subtarget->getPTXVersion() >= 60">; |
| def hasPTX61 : Predicate<"Subtarget->getPTXVersion() >= 61">; |
| |
| def hasSM30 : Predicate<"Subtarget->getSmVersion() >= 30">; |
| def hasSM70 : Predicate<"Subtarget->getSmVersion() >= 70">; |
| |
| def useShortPtr : Predicate<"useShortPointers()">; |
| def useFP16Math: Predicate<"Subtarget->allowFP16Math()">; |
| |
| //===----------------------------------------------------------------------===// |
| // Some Common Instruction Class Templates |
| //===----------------------------------------------------------------------===// |
| |
| // Template for instructions which take three int64, int32, or int16 args. |
| // The instructions are named "<OpcStr><Width>" (e.g. "add.s64"). |
| multiclass I3<string OpcStr, SDNode OpNode> { |
| def i64rr : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), |
| !strconcat(OpcStr, "64 \t$dst, $a, $b;"), |
| [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; |
| def i64ri : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), |
| !strconcat(OpcStr, "64 \t$dst, $a, $b;"), |
| [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; |
| def i32rr : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), |
| !strconcat(OpcStr, "32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; |
| def i32ri : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), |
| !strconcat(OpcStr, "32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; |
| def i16rr : |
| NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), |
| !strconcat(OpcStr, "16 \t$dst, $a, $b;"), |
| [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; |
| def i16ri : |
| NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), |
| !strconcat(OpcStr, "16 \t$dst, $a, $b;"), |
| [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>; |
| } |
| |
| // Template for instructions which take 3 int32 args. The instructions are |
| // named "<OpcStr>.s32" (e.g. "addc.cc.s32"). |
| multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> { |
| def i32rr : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), |
| !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; |
| def i32ri : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), |
| !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; |
| } |
| |
| // Template for instructions which take three fp64 or fp32 args. The |
| // instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64"). |
| // |
| // Also defines ftz (flush subnormal inputs and results to sign-preserving |
| // zero) variants for fp32 functions. |
| // |
| // This multiclass should be used for nodes that cannot be folded into FMAs. |
| // For nodes that can be folded into FMAs (i.e. adds and muls), use |
| // F3_fma_component. |
| multiclass F3<string OpcStr, SDNode OpNode> { |
| def f64rr : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins Float64Regs:$a, Float64Regs:$b), |
| !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), |
| [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>; |
| def f64ri : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins Float64Regs:$a, f64imm:$b), |
| !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), |
| [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>; |
| def f32rr_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[doF32FTZ]>; |
| def f32ri_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, |
| Requires<[doF32FTZ]>; |
| def f32rr : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>; |
| def f32ri : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>; |
| } |
| |
| // Template for instructions which take three FP args. The |
| // instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64"). |
| // |
| // Also defines ftz (flush subnormal inputs and results to sign-preserving |
| // zero) variants for fp32/fp16 functions. |
| // |
| // This multiclass should be used for nodes that can be folded to make fma ops. |
| // In this case, we use the ".rn" variant when FMA is disabled, as this behaves |
| // just like the non ".rn" op, but prevents ptxas from creating FMAs. |
| multiclass F3_fma_component<string OpcStr, SDNode OpNode> { |
| def f64rr : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins Float64Regs:$a, Float64Regs:$b), |
| !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), |
| [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, |
| Requires<[allowFMA]>; |
| def f64ri : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins Float64Regs:$a, f64imm:$b), |
| !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), |
| [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, |
| Requires<[allowFMA]>; |
| def f32rr_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[allowFMA, doF32FTZ]>; |
| def f32ri_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, |
| Requires<[allowFMA, doF32FTZ]>; |
| def f32rr : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[allowFMA]>; |
| def f32ri : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, |
| Requires<[allowFMA]>; |
| |
| def f16rr_ftz : |
| NVPTXInst<(outs Float16Regs:$dst), |
| (ins Float16Regs:$a, Float16Regs:$b), |
| !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"), |
| [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, |
| Requires<[useFP16Math, allowFMA, doF32FTZ]>; |
| def f16rr : |
| NVPTXInst<(outs Float16Regs:$dst), |
| (ins Float16Regs:$a, Float16Regs:$b), |
| !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"), |
| [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, |
| Requires<[useFP16Math, allowFMA]>; |
| |
| def f16x2rr_ftz : |
| NVPTXInst<(outs Float16x2Regs:$dst), |
| (ins Float16x2Regs:$a, Float16x2Regs:$b), |
| !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"), |
| [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, |
| Requires<[useFP16Math, allowFMA, doF32FTZ]>; |
| def f16x2rr : |
| NVPTXInst<(outs Float16x2Regs:$dst), |
| (ins Float16x2Regs:$a, Float16x2Regs:$b), |
| !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"), |
| [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, |
| Requires<[useFP16Math, allowFMA]>; |
| |
| // These have strange names so we don't perturb existing mir tests. |
| def _rnf64rr : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins Float64Regs:$a, Float64Regs:$b), |
| !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), |
| [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, |
| Requires<[noFMA]>; |
| def _rnf64ri : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins Float64Regs:$a, f64imm:$b), |
| !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), |
| [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, |
| Requires<[noFMA]>; |
| def _rnf32rr_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[noFMA, doF32FTZ]>; |
| def _rnf32ri_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, |
| Requires<[noFMA, doF32FTZ]>; |
| def _rnf32rr : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[noFMA]>; |
| def _rnf32ri : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, |
| Requires<[noFMA]>; |
| def _rnf16rr_ftz : |
| NVPTXInst<(outs Float16Regs:$dst), |
| (ins Float16Regs:$a, Float16Regs:$b), |
| !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"), |
| [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, |
| Requires<[useFP16Math, noFMA, doF32FTZ]>; |
| def _rnf16rr : |
| NVPTXInst<(outs Float16Regs:$dst), |
| (ins Float16Regs:$a, Float16Regs:$b), |
| !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"), |
| [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, |
| Requires<[useFP16Math, noFMA]>; |
| def _rnf16x2rr_ftz : |
| NVPTXInst<(outs Float16x2Regs:$dst), |
| (ins Float16x2Regs:$a, Float16x2Regs:$b), |
| !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"), |
| [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, |
| Requires<[useFP16Math, noFMA, doF32FTZ]>; |
| def _rnf16x2rr : |
| NVPTXInst<(outs Float16x2Regs:$dst), |
| (ins Float16x2Regs:$a, Float16x2Regs:$b), |
| !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"), |
| [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, |
| Requires<[useFP16Math, noFMA]>; |
| } |
| |
| // Template for operations which take two f32 or f64 operands. Provides three |
| // instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush |
| // subnormal inputs and results to zero). |
| multiclass F2<string OpcStr, SDNode OpNode> { |
| def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a), |
| !strconcat(OpcStr, ".f64 \t$dst, $a;"), |
| [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>; |
| def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), |
| !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>, |
| Requires<[doF32FTZ]>; |
| def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), |
| !strconcat(OpcStr, ".f32 \t$dst, $a;"), |
| [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NVPTX Instructions. |
| //===----------------------------------------------------------------------===// |
| |
| //----------------------------------- |
| // Type Conversion |
| //----------------------------------- |
| |
| let hasSideEffects = 0 in { |
| // Generate a cvt to the given type from all possible types. Each instance |
| // takes a CvtMode immediate that defines the conversion mode to use. It can |
| // be CvtNONE to omit a conversion mode. |
| multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> { |
| def _s8 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Int16Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".s8 \t$dst, $src;"), []>; |
| def _u8 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Int16Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".u8 \t$dst, $src;"), []>; |
| def _s16 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Int16Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".s16 \t$dst, $src;"), []>; |
| def _u16 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Int16Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".u16 \t$dst, $src;"), []>; |
| def _s32 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Int32Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".s32 \t$dst, $src;"), []>; |
| def _u32 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Int32Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".u32 \t$dst, $src;"), []>; |
| def _s64 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Int64Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".s64 \t$dst, $src;"), []>; |
| def _u64 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Int64Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".u64 \t$dst, $src;"), []>; |
| def _f16 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Float16Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".f16 \t$dst, $src;"), []>; |
| def _f32 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Float32Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".f32 \t$dst, $src;"), []>; |
| def _f64 : |
| NVPTXInst<(outs RC:$dst), |
| (ins Float64Regs:$src, CvtMode:$mode), |
| !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", |
| FromName, ".f64 \t$dst, $src;"), []>; |
| } |
| |
| // Generate cvts from all types to all types. |
| defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>; |
| defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>; |
| defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>; |
| defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>; |
| defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>; |
| defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>; |
| defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>; |
| defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>; |
| defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>; |
| defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>; |
| defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>; |
| |
| // These cvts are different from those above: The source and dest registers |
| // are of the same type. |
| def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), |
| "cvt.s16.s8 \t$dst, $src;", []>; |
| def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), |
| "cvt.s32.s8 \t$dst, $src;", []>; |
| def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), |
| "cvt.s32.s16 \t$dst, $src;", []>; |
| def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), |
| "cvt.s64.s8 \t$dst, $src;", []>; |
| def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), |
| "cvt.s64.s16 \t$dst, $src;", []>; |
| def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), |
| "cvt.s64.s32 \t$dst, $src;", []>; |
| } |
| |
| //----------------------------------- |
| // Integer Arithmetic |
| //----------------------------------- |
| |
| // Template for xor masquerading as int1 arithmetic. |
| multiclass ADD_SUB_i1<SDNode OpNode> { |
| def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), |
| "xor.pred \t$dst, $a, $b;", |
| [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; |
| def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), |
| "xor.pred \t$dst, $a, $b;", |
| [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>; |
| } |
| |
| // int1 addition and subtraction are both just xor. |
| defm ADD_i1 : ADD_SUB_i1<add>; |
| defm SUB_i1 : ADD_SUB_i1<sub>; |
| |
| // int16, int32, and int64 signed addition. Since nvptx is 2's complement, we |
| // also use these for unsigned arithmetic. |
| defm ADD : I3<"add.s", add>; |
| defm SUB : I3<"sub.s", sub>; |
| |
| // int32 addition and subtraction with carry-out. |
| // FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?). |
| defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>; |
| defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>; |
| |
| // int32 addition and subtraction with carry-in and carry-out. |
| defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>; |
| defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>; |
| |
| defm MULT : I3<"mul.lo.s", mul>; |
| |
| defm MULTHS : I3<"mul.hi.s", mulhs>; |
| defm MULTHU : I3<"mul.hi.u", mulhu>; |
| |
| defm SDIV : I3<"div.s", sdiv>; |
| defm UDIV : I3<"div.u", udiv>; |
| |
| // The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM |
| // will lower it. |
| defm SREM : I3<"rem.s", srem>; |
| defm UREM : I3<"rem.u", urem>; |
| |
| // Integer absolute value. NumBits should be one minus the bit width of RC. |
| // This idiom implements the algorithm at |
| // http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs. |
| multiclass ABS<RegisterClass RC, string SizeName> { |
| def : NVPTXInst<(outs RC:$dst), (ins RC:$a), |
| !strconcat("abs", SizeName, " \t$dst, $a;"), |
| [(set RC:$dst, (abs RC:$a))]>; |
| } |
| defm ABS_16 : ABS<Int16Regs, ".s16">; |
| defm ABS_32 : ABS<Int32Regs, ".s32">; |
| defm ABS_64 : ABS<Int64Regs, ".s64">; |
| |
| // Integer min/max. |
| defm SMAX : I3<"max.s", smax>; |
| defm UMAX : I3<"max.u", umax>; |
| defm SMIN : I3<"min.s", smin>; |
| defm UMIN : I3<"min.u", umin>; |
| |
| // |
| // Wide multiplication |
| // |
| def MULWIDES64 : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), |
| "mul.wide.s32 \t$dst, $a, $b;", []>; |
| def MULWIDES64Imm : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), |
| "mul.wide.s32 \t$dst, $a, $b;", []>; |
| def MULWIDES64Imm64 : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), |
| "mul.wide.s32 \t$dst, $a, $b;", []>; |
| |
| def MULWIDEU64 : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), |
| "mul.wide.u32 \t$dst, $a, $b;", []>; |
| def MULWIDEU64Imm : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), |
| "mul.wide.u32 \t$dst, $a, $b;", []>; |
| def MULWIDEU64Imm64 : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), |
| "mul.wide.u32 \t$dst, $a, $b;", []>; |
| |
| def MULWIDES32 : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), |
| "mul.wide.s16 \t$dst, $a, $b;", []>; |
| def MULWIDES32Imm : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), |
| "mul.wide.s16 \t$dst, $a, $b;", []>; |
| def MULWIDES32Imm32 : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), |
| "mul.wide.s16 \t$dst, $a, $b;", []>; |
| |
| def MULWIDEU32 : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), |
| "mul.wide.u16 \t$dst, $a, $b;", []>; |
| def MULWIDEU32Imm : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), |
| "mul.wide.u16 \t$dst, $a, $b;", []>; |
| def MULWIDEU32Imm32 : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), |
| "mul.wide.u16 \t$dst, $a, $b;", []>; |
| |
| def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>; |
| def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>; |
| def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>; |
| |
| // Matchers for signed, unsigned mul.wide ISD nodes. |
| def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)), |
| (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)), |
| (MULWIDES32Imm Int16Regs:$a, imm:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)), |
| (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)), |
| (MULWIDEU32Imm Int16Regs:$a, imm:$b)>, |
| Requires<[doMulWide]>; |
| |
| def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)), |
| (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)), |
| (MULWIDES64Imm Int32Regs:$a, imm:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)), |
| (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)), |
| (MULWIDEU64Imm Int32Regs:$a, imm:$b)>, |
| Requires<[doMulWide]>; |
| |
| // Predicates used for converting some patterns to mul.wide. |
| def SInt32Const : PatLeaf<(imm), [{ |
| const APInt &v = N->getAPIntValue(); |
| return v.isSignedIntN(32); |
| }]>; |
| |
| def UInt32Const : PatLeaf<(imm), [{ |
| const APInt &v = N->getAPIntValue(); |
| return v.isIntN(32); |
| }]>; |
| |
| def SInt16Const : PatLeaf<(imm), [{ |
| const APInt &v = N->getAPIntValue(); |
| return v.isSignedIntN(16); |
| }]>; |
| |
| def UInt16Const : PatLeaf<(imm), [{ |
| const APInt &v = N->getAPIntValue(); |
| return v.isIntN(16); |
| }]>; |
| |
| def Int5Const : PatLeaf<(imm), [{ |
| // Check if 0 <= v < 32; only then will the result of (x << v) be an int32. |
| const APInt &v = N->getAPIntValue(); |
| return v.sge(0) && v.slt(32); |
| }]>; |
| |
| def Int4Const : PatLeaf<(imm), [{ |
| // Check if 0 <= v < 16; only then will the result of (x << v) be an int16. |
| const APInt &v = N->getAPIntValue(); |
| return v.sge(0) && v.slt(16); |
| }]>; |
| |
| def SHL2MUL32 : SDNodeXForm<imm, [{ |
| const APInt &v = N->getAPIntValue(); |
| APInt temp(32, 1); |
| return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def SHL2MUL16 : SDNodeXForm<imm, [{ |
| const APInt &v = N->getAPIntValue(); |
| APInt temp(16, 1); |
| return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16); |
| }]>; |
| |
| // Convert "sign/zero-extend, then shift left by an immediate" to mul.wide. |
| def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)), |
| (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, |
| Requires<[doMulWide]>; |
| def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)), |
| (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, |
| Requires<[doMulWide]>; |
| |
| def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)), |
| (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, |
| Requires<[doMulWide]>; |
| def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)), |
| (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, |
| Requires<[doMulWide]>; |
| |
| // Convert "sign/zero-extend then multiply" to mul.wide. |
| def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)), |
| (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)), |
| (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>, |
| Requires<[doMulWide]>; |
| |
| def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)), |
| (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)), |
| (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>, |
| Requires<[doMulWide]>; |
| |
| def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)), |
| (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)), |
| (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>, |
| Requires<[doMulWide]>; |
| |
| def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)), |
| (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, |
| Requires<[doMulWide]>; |
| def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)), |
| (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>, |
| Requires<[doMulWide]>; |
| |
| // |
| // Integer multiply-add |
| // |
| def SDTIMAD : |
| SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>, |
| SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>; |
| def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>; |
| |
| def MAD16rrr : |
| NVPTXInst<(outs Int16Regs:$dst), |
| (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c), |
| "mad.lo.s16 \t$dst, $a, $b, $c;", |
| [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>; |
| def MAD16rri : |
| NVPTXInst<(outs Int16Regs:$dst), |
| (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c), |
| "mad.lo.s16 \t$dst, $a, $b, $c;", |
| [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>; |
| def MAD16rir : |
| NVPTXInst<(outs Int16Regs:$dst), |
| (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c), |
| "mad.lo.s16 \t$dst, $a, $b, $c;", |
| [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>; |
| def MAD16rii : |
| NVPTXInst<(outs Int16Regs:$dst), |
| (ins Int16Regs:$a, i16imm:$b, i16imm:$c), |
| "mad.lo.s16 \t$dst, $a, $b, $c;", |
| [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>; |
| |
| def MAD32rrr : |
| NVPTXInst<(outs Int32Regs:$dst), |
| (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c), |
| "mad.lo.s32 \t$dst, $a, $b, $c;", |
| [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>; |
| def MAD32rri : |
| NVPTXInst<(outs Int32Regs:$dst), |
| (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c), |
| "mad.lo.s32 \t$dst, $a, $b, $c;", |
| [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>; |
| def MAD32rir : |
| NVPTXInst<(outs Int32Regs:$dst), |
| (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c), |
| "mad.lo.s32 \t$dst, $a, $b, $c;", |
| [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>; |
| def MAD32rii : |
| NVPTXInst<(outs Int32Regs:$dst), |
| (ins Int32Regs:$a, i32imm:$b, i32imm:$c), |
| "mad.lo.s32 \t$dst, $a, $b, $c;", |
| [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>; |
| |
| def MAD64rrr : |
| NVPTXInst<(outs Int64Regs:$dst), |
| (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c), |
| "mad.lo.s64 \t$dst, $a, $b, $c;", |
| [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>; |
| def MAD64rri : |
| NVPTXInst<(outs Int64Regs:$dst), |
| (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c), |
| "mad.lo.s64 \t$dst, $a, $b, $c;", |
| [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>; |
| def MAD64rir : |
| NVPTXInst<(outs Int64Regs:$dst), |
| (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c), |
| "mad.lo.s64 \t$dst, $a, $b, $c;", |
| [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>; |
| def MAD64rii : |
| NVPTXInst<(outs Int64Regs:$dst), |
| (ins Int64Regs:$a, i64imm:$b, i64imm:$c), |
| "mad.lo.s64 \t$dst, $a, $b, $c;", |
| [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>; |
| |
| def INEG16 : |
| NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), |
| "neg.s16 \t$dst, $src;", |
| [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>; |
| def INEG32 : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), |
| "neg.s32 \t$dst, $src;", |
| [(set Int32Regs:$dst, (ineg Int32Regs:$src))]>; |
| def INEG64 : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), |
| "neg.s64 \t$dst, $src;", |
| [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>; |
| |
| //----------------------------------- |
| // Floating Point Arithmetic |
| //----------------------------------- |
| |
| // Constant 1.0f |
| def FloatConst1 : PatLeaf<(fpimm), [{ |
| return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() && |
| N->getValueAPF().convertToFloat() == 1.0f; |
| }]>; |
| // Constant 1.0 (double) |
| def DoubleConst1 : PatLeaf<(fpimm), [{ |
| return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() && |
| N->getValueAPF().convertToDouble() == 1.0; |
| }]>; |
| |
| // Loads FP16 constant into a register. |
| // |
| // ptxas does not have hex representation for fp16, so we can't use |
| // fp16 immediate values in .f16 instructions. Instead we have to load |
| // the constant into a register using mov.b16. |
| def LOAD_CONST_F16 : |
| NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a), |
| "mov.b16 \t$dst, $a;", []>; |
| |
| defm FADD : F3_fma_component<"add", fadd>; |
| defm FSUB : F3_fma_component<"sub", fsub>; |
| defm FMUL : F3_fma_component<"mul", fmul>; |
| |
| defm FMIN : F3<"min", fminnum>; |
| defm FMAX : F3<"max", fmaxnum>; |
| |
| defm FABS : F2<"abs", fabs>; |
| defm FNEG : F2<"neg", fneg>; |
| defm FSQRT : F2<"sqrt.rn", fsqrt>; |
| |
| // |
| // F64 division |
| // |
| def FDIV641r : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins f64imm:$a, Float64Regs:$b), |
| "rcp.rn.f64 \t$dst, $b;", |
| [(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>; |
| def FDIV64rr : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins Float64Regs:$a, Float64Regs:$b), |
| "div.rn.f64 \t$dst, $a, $b;", |
| [(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>; |
| def FDIV64ri : |
| NVPTXInst<(outs Float64Regs:$dst), |
| (ins Float64Regs:$a, f64imm:$b), |
| "div.rn.f64 \t$dst, $a, $b;", |
| [(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>; |
| |
| // |
| // F32 Approximate reciprocal |
| // |
| def FDIV321r_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins f32imm:$a, Float32Regs:$b), |
| "rcp.approx.ftz.f32 \t$dst, $b;", |
| [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, |
| Requires<[do_DIVF32_APPROX, doF32FTZ]>; |
| def FDIV321r : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins f32imm:$a, Float32Regs:$b), |
| "rcp.approx.f32 \t$dst, $b;", |
| [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, |
| Requires<[do_DIVF32_APPROX]>; |
| // |
| // F32 Approximate division |
| // |
| def FDIV32approxrr_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| "div.approx.ftz.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[do_DIVF32_APPROX, doF32FTZ]>; |
| def FDIV32approxri_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| "div.approx.ftz.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, |
| Requires<[do_DIVF32_APPROX, doF32FTZ]>; |
| def FDIV32approxrr : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| "div.approx.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[do_DIVF32_APPROX]>; |
| def FDIV32approxri : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| "div.approx.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, |
| Requires<[do_DIVF32_APPROX]>; |
| // |
| // F32 Semi-accurate reciprocal |
| // |
| // rcp.approx gives the same result as div.full(1.0f, a) and is faster. |
| // |
| def FDIV321r_approx_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins f32imm:$a, Float32Regs:$b), |
| "rcp.approx.ftz.f32 \t$dst, $b;", |
| [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, |
| Requires<[do_DIVF32_FULL, doF32FTZ]>; |
| def FDIV321r_approx : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins f32imm:$a, Float32Regs:$b), |
| "rcp.approx.f32 \t$dst, $b;", |
| [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, |
| Requires<[do_DIVF32_FULL]>; |
| // |
| // F32 Semi-accurate division |
| // |
| def FDIV32rr_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| "div.full.ftz.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[do_DIVF32_FULL, doF32FTZ]>; |
| def FDIV32ri_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| "div.full.ftz.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, |
| Requires<[do_DIVF32_FULL, doF32FTZ]>; |
| def FDIV32rr : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| "div.full.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[do_DIVF32_FULL]>; |
| def FDIV32ri : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| "div.full.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, |
| Requires<[do_DIVF32_FULL]>; |
| // |
| // F32 Accurate reciprocal |
| // |
| def FDIV321r_prec_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins f32imm:$a, Float32Regs:$b), |
| "rcp.rn.ftz.f32 \t$dst, $b;", |
| [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, |
| Requires<[doF32FTZ]>; |
| def FDIV321r_prec : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins f32imm:$a, Float32Regs:$b), |
| "rcp.rn.f32 \t$dst, $b;", |
| [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>; |
| // |
| // F32 Accurate division |
| // |
| def FDIV32rr_prec_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| "div.rn.ftz.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, |
| Requires<[doF32FTZ]>; |
| def FDIV32ri_prec_ftz : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| "div.rn.ftz.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, |
| Requires<[doF32FTZ]>; |
| def FDIV32rr_prec : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, Float32Regs:$b), |
| "div.rn.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>; |
| def FDIV32ri_prec : |
| NVPTXInst<(outs Float32Regs:$dst), |
| (ins Float32Regs:$a, f32imm:$b), |
| "div.rn.f32 \t$dst, $a, $b;", |
| [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>; |
| |
| // |
| // FMA |
| // |
| |
| multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> { |
| def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), |
| !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), |
| [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, |
| Requires<[Pred]>; |
| def rri : NVPTXInst<(outs RC:$dst), |
| (ins RC:$a, RC:$b, ImmCls:$c), |
| !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), |
| [(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>, |
| Requires<[Pred]>; |
| def rir : NVPTXInst<(outs RC:$dst), |
| (ins RC:$a, ImmCls:$b, RC:$c), |
| !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), |
| [(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>, |
| Requires<[Pred]>; |
| def rii : NVPTXInst<(outs RC:$dst), |
| (ins RC:$a, ImmCls:$b, ImmCls:$c), |
| !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), |
| [(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>, |
| Requires<[Pred]>; |
| } |
| |
| multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> { |
| def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), |
| !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), |
| [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, |
| Requires<[useFP16Math, Pred]>; |
| } |
| |
| defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>; |
| defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, true>; |
| defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>; |
| defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, true>; |
| defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>; |
| defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, true>; |
| defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, true>; |
| |
| // sin/cos |
| def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), |
| "sin.approx.f32 \t$dst, $src;", |
| [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>, |
| Requires<[allowUnsafeFPMath]>; |
| def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), |
| "cos.approx.f32 \t$dst, $src;", |
| [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>, |
| Requires<[allowUnsafeFPMath]>; |
| |
| // Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)), |
| // i.e. "poor man's fmod()" |
| |
| // frem - f32 FTZ |
| def : Pat<(frem Float32Regs:$x, Float32Regs:$y), |
| (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32 |
| (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ), |
| Float32Regs:$y))>, |
| Requires<[doF32FTZ]>; |
| def : Pat<(frem Float32Regs:$x, fpimm:$y), |
| (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32 |
| (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ), |
| fpimm:$y))>, |
| Requires<[doF32FTZ]>; |
| |
| // frem - f32 |
| def : Pat<(frem Float32Regs:$x, Float32Regs:$y), |
| (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32 |
| (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI), |
| Float32Regs:$y))>; |
| def : Pat<(frem Float32Regs:$x, fpimm:$y), |
| (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32 |
| (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI), |
| fpimm:$y))>; |
| |
| // frem - f64 |
| def : Pat<(frem Float64Regs:$x, Float64Regs:$y), |
| (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64 |
| (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI), |
| Float64Regs:$y))>; |
| def : Pat<(frem Float64Regs:$x, fpimm:$y), |
| (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64 |
| (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI), |
| fpimm:$y))>; |
| |
| //----------------------------------- |
| // Bitwise operations |
| //----------------------------------- |
| |
| // Template for three-arg bitwise operations. Takes three args, Creates .b16, |
| // .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr. |
| multiclass BITWISE<string OpcStr, SDNode OpNode> { |
| def b1rr : |
| NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), |
| !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), |
| [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; |
| def b1ri : |
| NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), |
| !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), |
| [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>; |
| def b16rr : |
| NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), |
| !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), |
| [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; |
| def b16ri : |
| NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), |
| !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), |
| [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>; |
| def b32rr : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), |
| !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; |
| def b32ri : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), |
| !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; |
| def b64rr : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), |
| !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), |
| [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; |
| def b64ri : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), |
| !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), |
| [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; |
| } |
| |
| defm OR : BITWISE<"or", or>; |
| defm AND : BITWISE<"and", and>; |
| defm XOR : BITWISE<"xor", xor>; |
| |
| def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src), |
| "not.pred \t$dst, $src;", |
| [(set Int1Regs:$dst, (not Int1Regs:$src))]>; |
| def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), |
| "not.b16 \t$dst, $src;", |
| [(set Int16Regs:$dst, (not Int16Regs:$src))]>; |
| def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), |
| "not.b32 \t$dst, $src;", |
| [(set Int32Regs:$dst, (not Int32Regs:$src))]>; |
| def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), |
| "not.b64 \t$dst, $src;", |
| [(set Int64Regs:$dst, (not Int64Regs:$src))]>; |
| |
| // Template for left/right shifts. Takes three operands, |
| // [dest (reg), src (reg), shift (reg or imm)]. |
| // dest and src may be int64, int32, or int16, but shift is always int32. |
| // |
| // This template also defines a 32-bit shift (imm, imm) instruction. |
| multiclass SHIFT<string OpcStr, SDNode OpNode> { |
| def i64rr : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b), |
| !strconcat(OpcStr, "64 \t$dst, $a, $b;"), |
| [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>; |
| def i64ri : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b), |
| !strconcat(OpcStr, "64 \t$dst, $a, $b;"), |
| [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>; |
| def i32rr : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), |
| !strconcat(OpcStr, "32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; |
| def i32ri : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), |
| !strconcat(OpcStr, "32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>; |
| def i32ii : |
| NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b), |
| !strconcat(OpcStr, "32 \t$dst, $a, $b;"), |
| [(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>; |
| def i16rr : |
| NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b), |
| !strconcat(OpcStr, "16 \t$dst, $a, $b;"), |
| [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>; |
| def i16ri : |
| NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b), |
| !strconcat(OpcStr, "16 \t$dst, $a, $b;"), |
| [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>; |
| } |
| |
| defm SHL : SHIFT<"shl.b", shl>; |
| defm SRA : SHIFT<"shr.s", sra>; |
| defm SRL : SHIFT<"shr.u", srl>; |
| |
| // Bit-reverse |
| def BREV32 : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), |
| "brev.b32 \t$dst, $a;", |
| [(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>; |
| def BREV64 : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a), |
| "brev.b64 \t$dst, $a;", |
| [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>; |
| |
| // |
| // Rotate: Use ptx shf instruction if available. |
| // |
| |
| // 32 bit r2 = rotl r1, n |
| // => |
| // r2 = shf.l r1, r1, n |
| def ROTL32imm_hw : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), |
| "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", |
| [(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>, |
| Requires<[hasHWROT32]>; |
| |
| def ROTL32reg_hw : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), |
| "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", |
| [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, |
| Requires<[hasHWROT32]>; |
| |
| // 32 bit r2 = rotr r1, n |
| // => |
| // r2 = shf.r r1, r1, n |
| def ROTR32imm_hw : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), |
| "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", |
| [(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>, |
| Requires<[hasHWROT32]>; |
| |
| def ROTR32reg_hw : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), |
| "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", |
| [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, |
| Requires<[hasHWROT32]>; |
| |
| // 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1. |
| def ROT32imm_sw : |
| NVPTXInst<(outs Int32Regs:$dst), |
| (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2), |
| "{{\n\t" |
| ".reg .b32 %lhs;\n\t" |
| ".reg .b32 %rhs;\n\t" |
| "shl.b32 \t%lhs, $src, $amt1;\n\t" |
| "shr.b32 \t%rhs, $src, $amt2;\n\t" |
| "add.u32 \t$dst, %lhs, %rhs;\n\t" |
| "}}", |
| []>; |
| |
| def SUB_FRM_32 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)), |
| (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>, |
| Requires<[noHWROT32]>; |
| def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)), |
| (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>, |
| Requires<[noHWROT32]>; |
| |
| // 32-bit software rotate left by register. |
| def ROTL32reg_sw : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), |
| "{{\n\t" |
| ".reg .b32 %lhs;\n\t" |
| ".reg .b32 %rhs;\n\t" |
| ".reg .b32 %amt2;\n\t" |
| "shl.b32 \t%lhs, $src, $amt;\n\t" |
| "sub.s32 \t%amt2, 32, $amt;\n\t" |
| "shr.b32 \t%rhs, $src, %amt2;\n\t" |
| "add.u32 \t$dst, %lhs, %rhs;\n\t" |
| "}}", |
| [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, |
| Requires<[noHWROT32]>; |
| |
| // 32-bit software rotate right by register. |
| def ROTR32reg_sw : |
| NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), |
| "{{\n\t" |
| ".reg .b32 %lhs;\n\t" |
| ".reg .b32 %rhs;\n\t" |
| ".reg .b32 %amt2;\n\t" |
| "shr.b32 \t%lhs, $src, $amt;\n\t" |
| "sub.s32 \t%amt2, 32, $amt;\n\t" |
| "shl.b32 \t%rhs, $src, %amt2;\n\t" |
| "add.u32 \t$dst, %lhs, %rhs;\n\t" |
| "}}", |
| [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, |
| Requires<[noHWROT32]>; |
| |
| // 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1. |
| def ROT64imm_sw : |
| NVPTXInst<(outs Int64Regs:$dst), |
| (ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2), |
| "{{\n\t" |
| ".reg .b64 %lhs;\n\t" |
| ".reg .b64 %rhs;\n\t" |
| "shl.b64 \t%lhs, $src, $amt1;\n\t" |
| "shr.b64 \t%rhs, $src, $amt2;\n\t" |
| "add.u64 \t$dst, %lhs, %rhs;\n\t" |
| "}}", |
| []>; |
| |
| def SUB_FRM_64 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)), |
| (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>; |
| def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)), |
| (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>; |
| |
| // 64-bit software rotate left by register. |
| def ROTL64reg_sw : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), |
| "{{\n\t" |
| ".reg .b64 %lhs;\n\t" |
| ".reg .b64 %rhs;\n\t" |
| ".reg .u32 %amt2;\n\t" |
| "shl.b64 \t%lhs, $src, $amt;\n\t" |
| "sub.u32 \t%amt2, 64, $amt;\n\t" |
| "shr.b64 \t%rhs, $src, %amt2;\n\t" |
| "add.u64 \t$dst, %lhs, %rhs;\n\t" |
| "}}", |
| [(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>; |
| |
| def ROTR64reg_sw : |
| NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), |
| "{{\n\t" |
| ".reg .b64 %lhs;\n\t" |
| ".reg .b64 %rhs;\n\t" |
| ".reg .u32 %amt2;\n\t" |
| "shr.b64 \t%lhs, $src, $amt;\n\t" |
| "sub.u32 \t%amt2, 64, $amt;\n\t" |
| "shl.b64 \t%rhs, $src, %amt2;\n\t" |
| "add.u64 \t$dst, %lhs, %rhs;\n\t" |
| "}}", |
| [(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>; |
| |
| // |
| // Funnnel shift in clamp mode |
| // |
| |
| // Create SDNodes so they can be used in the DAG code, e.g. |
| // NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts) |
| def SDTIntShiftDOp : |
| SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, |
| SDTCisInt<0>, SDTCisInt<3>]>; |
| def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>; |
| def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>; |
| |
| def FUNSHFLCLAMP : |
| NVPTXInst<(outs Int32Regs:$dst), |
| (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), |
| "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;", |
| [(set Int32Regs:$dst, |
| (FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; |
| |
| def FUNSHFRCLAMP : |
| NVPTXInst<(outs Int32Regs:$dst), |
| (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), |
| "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;", |
| [(set Int32Regs:$dst, |
| (FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; |
| |
| // |
| // BFE - bit-field extract |
| // |
| |
| // Template for BFE instructions. Takes four args, |
| // [dest (reg), src (reg), start (reg or imm), end (reg or imm)]. |
| // Start may be an imm only if end is also an imm. FIXME: Is this a |
| // restriction in PTX? |
| // |
| // dest and src may be int32 or int64, but start and end are always int32. |
| multiclass BFE<string TyStr, RegisterClass RC> { |
| def rrr |
| : NVPTXInst<(outs RC:$d), |
| (ins RC:$a, Int32Regs:$b, Int32Regs:$c), |
| !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; |
| def rri |
| : NVPTXInst<(outs RC:$d), |
| (ins RC:$a, Int32Regs:$b, i32imm:$c), |
| !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; |
| def rii |
| : NVPTXInst<(outs RC:$d), |
| (ins RC:$a, i32imm:$b, i32imm:$c), |
| !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; |
| } |
| |
| let hasSideEffects = 0 in { |
| defm BFE_S32 : BFE<"s32", Int32Regs>; |
| defm BFE_U32 : BFE<"u32", Int32Regs>; |
| defm BFE_S64 : BFE<"s64", Int64Regs>; |
| defm BFE_U64 : BFE<"u64", Int64Regs>; |
| } |
| |
| //----------------------------------- |
| // Comparison instructions (setp, set) |
| //----------------------------------- |
| |
| // FIXME: This doesn't cover versions of set and setp that combine with a |
| // boolean predicate, e.g. setp.eq.and.b16. |
| |
| let hasSideEffects = 0 in { |
| multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> { |
| def rr : |
| NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), |
| !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, |
| " \t$dst, $a, $b;"), []>; |
| def ri : |
| NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), |
| !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, |
| " \t$dst, $a, $b;"), []>; |
| def ir : |
| NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), |
| !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, |
| " \t$dst, $a, $b;"), []>; |
| } |
| } |
| |
| defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>; |
| defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>; |
| defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>; |
| defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>; |
| defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>; |
| defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>; |
| defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>; |
| defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>; |
| defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>; |
| defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>; |
| defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>; |
| def SETP_f16rr : |
| NVPTXInst<(outs Int1Regs:$dst), |
| (ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp), |
| "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;", |
| []>, Requires<[useFP16Math]>; |
| |
| def SETP_f16x2rr : |
| NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q), |
| (ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp), |
| "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;", |
| []>, |
| Requires<[useFP16Math]>; |
| |
| |
| // FIXME: This doesn't appear to be correct. The "set" mnemonic has the form |
| // "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination |
| // reg, either u32, s32, or f32. Anyway these aren't used at the moment. |
| |
| let hasSideEffects = 0 in { |
| multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> { |
| def rr : NVPTXInst<(outs Int32Regs:$dst), |
| (ins RC:$a, RC:$b, CmpMode:$cmp), |
| !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; |
| def ri : NVPTXInst<(outs Int32Regs:$dst), |
| (ins RC:$a, ImmCls:$b, CmpMode:$cmp), |
| !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; |
| def ir : NVPTXInst<(outs Int32Regs:$dst), |
| (ins ImmCls:$a, RC:$b, CmpMode:$cmp), |
| !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; |
| } |
| } |
| |
| defm SET_b16 : SET<"b16", Int16Regs, i16imm>; |
| defm SET_s16 : SET<"s16", Int16Regs, i16imm>; |
| defm SET_u16 : SET<"u16", Int16Regs, i16imm>; |
| defm SET_b32 : SET<"b32", Int32Regs, i32imm>; |
| defm SET_s32 : SET<"s32", Int32Regs, i32imm>; |
| defm SET_u32 : SET<"u32", Int32Regs, i32imm>; |
| defm SET_b64 : SET<"b64", Int64Regs, i64imm>; |
| defm SET_s64 : SET<"s64", Int64Regs, i64imm>; |
| defm SET_u64 : SET<"u64", Int64Regs, i64imm>; |
| defm SET_f16 : SET<"f16", Float16Regs, f16imm>; |
| defm SET_f32 : SET<"f32", Float32Regs, f32imm>; |
| defm SET_f64 : SET<"f64", Float64Regs, f64imm>; |
| |
| //----------------------------------- |
| // Selection instructions (selp) |
| //----------------------------------- |
| |
| // FIXME: Missing slct |
| |
| // selp instructions that don't have any pattern matches; we explicitly use |
| // them within this file. |
| let hasSideEffects = 0 in { |
| multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> { |
| def rr : NVPTXInst<(outs RC:$dst), |
| (ins RC:$a, RC:$b, Int1Regs:$p), |
| !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; |
| def ri : NVPTXInst<(outs RC:$dst), |
| (ins RC:$a, ImmCls:$b, Int1Regs:$p), |
| !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; |
| def ir : NVPTXInst<(outs RC:$dst), |
| (ins ImmCls:$a, RC:$b, Int1Regs:$p), |
| !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; |
| def ii : NVPTXInst<(outs RC:$dst), |
| (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), |
| !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; |
| } |
| |
| multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls, |
| SDNode ImmNode> { |
| def rr : |
| NVPTXInst<(outs RC:$dst), |
| (ins RC:$a, RC:$b, Int1Regs:$p), |
| !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), |
| [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>; |
| def ri : |
| NVPTXInst<(outs RC:$dst), |
| (ins RC:$a, ImmCls:$b, Int1Regs:$p), |
| !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), |
| [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>; |
| def ir : |
| NVPTXInst<(outs RC:$dst), |
| (ins ImmCls:$a, RC:$b, Int1Regs:$p), |
| !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), |
| [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>; |
| def ii : |
| NVPTXInst<(outs RC:$dst), |
| (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), |
| !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), |
| [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>; |
| } |
| } |
| |
| // Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as |
| // good. |
| defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>; |
| defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>; |
| defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>; |
| defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>; |
| defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>; |
| defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>; |
| defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>; |
| defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>; |
| defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>; |
| defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>; |
| defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>; |
| defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>; |
| |
| def SELP_f16x2rr : |
| NVPTXInst<(outs Float16x2Regs:$dst), |
| (ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p), |
| "selp.b32 \t$dst, $a, $b, $p;", |
| [(set Float16x2Regs:$dst, |
| (select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>; |
| |
| //----------------------------------- |
| // Data Movement (Load / Store, Move) |
| //----------------------------------- |
| |
| def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], |
| [SDNPWantRoot]>; |
| def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex], |
| [SDNPWantRoot]>; |
| def ADDRvar : ComplexPattern<iPTR, 1, "SelectDirectAddr", [], []>; |
| |
| def MEMri : Operand<i32> { |
| let PrintMethod = "printMemOperand"; |
| let MIOperandInfo = (ops Int32Regs, i32imm); |
| } |
| def MEMri64 : Operand<i64> { |
| let PrintMethod = "printMemOperand"; |
| let MIOperandInfo = (ops Int64Regs, i64imm); |
| } |
| |
| def imem : Operand<iPTR> { |
| let PrintMethod = "printOperand"; |
| } |
| |
| def imemAny : Operand<iPTRAny> { |
| let PrintMethod = "printOperand"; |
| } |
| |
| def LdStCode : Operand<i32> { |
| let PrintMethod = "printLdStCode"; |
| } |
| |
| def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; |
| def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>; |
| |
| // Load a memory address into a u32 or u64 register. |
| def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a), |
| "mov.u32 \t$dst, $a;", |
| [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>; |
| def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a), |
| "mov.u64 \t$dst, $a;", |
| [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>; |
| |
| // Get pointer to local stack. |
| let hasSideEffects = 0 in { |
| def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num), |
| "mov.u32 \t$d, __local_depot$num;", []>; |
| def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num), |
| "mov.u64 \t$d, __local_depot$num;", []>; |
| } |
| |
| |
| // copyPhysreg is hard-coded in NVPTXInstrInfo.cpp |
| let IsSimpleMove=1, hasSideEffects=0 in { |
| def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss), |
| "mov.pred \t$dst, $sss;", []>; |
| def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss), |
| "mov.u16 \t$dst, $sss;", []>; |
| def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss), |
| "mov.u32 \t$dst, $sss;", []>; |
| def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss), |
| "mov.u64 \t$dst, $sss;", []>; |
| |
| def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src), |
| // We have to use .b16 here as there's no mov.f16. |
| "mov.b16 \t$dst, $src;", []>; |
| def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), |
| "mov.f32 \t$dst, $src;", []>; |
| def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src), |
| "mov.f64 \t$dst, $src;", []>; |
| } |
| |
| def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src), |
| "mov.pred \t$dst, $src;", |
| [(set Int1Regs:$dst, imm:$src)]>; |
| def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src), |
| "mov.u16 \t$dst, $src;", |
| [(set Int16Regs:$dst, imm:$src)]>; |
| def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src), |
| "mov.u32 \t$dst, $src;", |
| [(set Int32Regs:$dst, imm:$src)]>; |
| def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src), |
| "mov.u64 \t$dst, $src;", |
| [(set Int64Regs:$dst, imm:$src)]>; |
| |
| def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src), |
| "mov.f32 \t$dst, $src;", |
| [(set Float32Regs:$dst, fpimm:$src)]>; |
| def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src), |
| "mov.f64 \t$dst, $src;", |
| [(set Float64Regs:$dst, fpimm:$src)]>; |
| |
| def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>; |
| |
| //---- Copy Frame Index ---- |
| def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr), |
| "add.u32 \t$dst, ${addr:add};", |
| [(set Int32Regs:$dst, ADDRri:$addr)]>; |
| def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr), |
| "add.u64 \t$dst, ${addr:add};", |
| [(set Int64Regs:$dst, ADDRri64:$addr)]>; |
| |
| //----------------------------------- |
| // Comparison and Selection |
| //----------------------------------- |
| |
| multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode, |
| Instruction setp_16rr, |
| Instruction setp_16ri, |
| Instruction setp_16ir, |
| Instruction setp_32rr, |
| Instruction setp_32ri, |
| Instruction setp_32ir, |
| Instruction setp_64rr, |
| Instruction setp_64ri, |
| Instruction setp_64ir, |
| Instruction set_16rr, |
| Instruction set_16ri, |
| Instruction set_16ir, |
| Instruction set_32rr, |
| Instruction set_32ri, |
| Instruction set_32ir, |
| Instruction set_64rr, |
| Instruction set_64ri, |
| Instruction set_64ir> { |
| // i16 -> pred |
| def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)), |
| (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; |
| def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)), |
| (setp_16ri Int16Regs:$a, imm:$b, Mode)>; |
| def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)), |
| (setp_16ir imm:$a, Int16Regs:$b, Mode)>; |
| // i32 -> pred |
| def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)), |
| (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; |
| def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)), |
| (setp_32ri Int32Regs:$a, imm:$b, Mode)>; |
| def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)), |
| (setp_32ir imm:$a, Int32Regs:$b, Mode)>; |
| // i64 -> pred |
| def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)), |
| (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; |
| def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)), |
| (setp_64ri Int64Regs:$a, imm:$b, Mode)>; |
| def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)), |
| (setp_64ir imm:$a, Int64Regs:$b, Mode)>; |
| |
| // i16 -> i32 |
| def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)), |
| (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; |
| def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)), |
| (set_16ri Int16Regs:$a, imm:$b, Mode)>; |
| def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)), |
| (set_16ir imm:$a, Int16Regs:$b, Mode)>; |
| // i32 -> i32 |
| def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)), |
| (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; |
| def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)), |
| (set_32ri Int32Regs:$a, imm:$b, Mode)>; |
| def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)), |
| (set_32ir imm:$a, Int32Regs:$b, Mode)>; |
| // i64 -> i32 |
| def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)), |
| (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; |
| def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)), |
| (set_64ri Int64Regs:$a, imm:$b, Mode)>; |
| def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)), |
| (set_64ir imm:$a, Int64Regs:$b, Mode)>; |
| } |
| |
| multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode> |
| : ISET_FORMAT<OpNode, Mode, |
| SETP_s16rr, SETP_s16ri, SETP_s16ir, |
| SETP_s32rr, SETP_s32ri, SETP_s32ir, |
| SETP_s64rr, SETP_s64ri, SETP_s64ir, |
| SET_s16rr, SET_s16ri, SET_s16ir, |
| SET_s32rr, SET_s32ri, SET_s32ir, |
| SET_s64rr, SET_s64ri, SET_s64ir> { |
| // TableGen doesn't like empty multiclasses. |
| def : PatLeaf<(i32 0)>; |
| } |
| |
| multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode> |
| : ISET_FORMAT<OpNode, Mode, |
| SETP_u16rr, SETP_u16ri, SETP_u16ir, |
| SETP_u32rr, SETP_u32ri, SETP_u32ir, |
| SETP_u64rr, SETP_u64ri, SETP_u64ir, |
| SET_u16rr, SET_u16ri, SET_u16ir, |
| SET_u32rr, SET_u32ri, SET_u32ir, |
| SET_u64rr, SET_u64ri, SET_u64ir> { |
| // TableGen doesn't like empty multiclasses. |
| def : PatLeaf<(i32 0)>; |
| } |
| |
| defm : ISET_FORMAT_SIGNED<setgt, CmpGT>; |
| defm : ISET_FORMAT_SIGNED<setlt, CmpLT>; |
| defm : ISET_FORMAT_SIGNED<setge, CmpGE>; |
| defm : ISET_FORMAT_SIGNED<setle, CmpLE>; |
| defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>; |
| defm : ISET_FORMAT_SIGNED<setne, CmpNE>; |
| defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>; |
| defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>; |
| defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>; |
| defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>; |
| defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>; |
| defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>; |
| |
| // i1 compares |
| def : Pat<(setne Int1Regs:$a, Int1Regs:$b), |
| (XORb1rr Int1Regs:$a, Int1Regs:$b)>; |
| def : Pat<(setune Int1Regs:$a, Int1Regs:$b), |
| (XORb1rr Int1Regs:$a, Int1Regs:$b)>; |
| |
| def : Pat<(seteq Int1Regs:$a, Int1Regs:$b), |
| (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; |
| def : Pat<(setueq Int1Regs:$a, Int1Regs:$b), |
| (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; |
| |
| // i1 compare -> i32 |
| def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), |
| (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; |
| def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), |
| (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; |
| |
| |
| |
| multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> { |
| // f16 -> pred |
| def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), |
| (SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, |
| Requires<[useFP16Math,doF32FTZ]>; |
| def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), |
| (SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, |
| Requires<[useFP16Math]>; |
| def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), |
| (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, |
| Requires<[useFP16Math,doF32FTZ]>; |
| def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), |
| (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, |
| Requires<[useFP16Math]>; |
| def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), |
| (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, |
| Requires<[useFP16Math,doF32FTZ]>; |
| def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), |
| (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, |
| Requires<[useFP16Math]>; |
| |
| // f32 -> pred |
| def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), |
| (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, |
| Requires<[doF32FTZ]>; |
| def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), |
| (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; |
| def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), |
| (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, |
| Requires<[doF32FTZ]>; |
| def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), |
| (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>; |
| def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), |
| (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, |
| Requires<[doF32FTZ]>; |
| def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), |
| (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>; |
| |
| // f64 -> pred |
| def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)), |
| (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; |
| def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)), |
| (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>; |
| def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)), |
| (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>; |
| |
| // f16 -> i32 |
| def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), |
| (SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, |
| Requires<[useFP16Math, doF32FTZ]>; |
| def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), |
| (SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, |
| Requires<[useFP16Math]>; |
| def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), |
| (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, |
| Requires<[useFP16Math, doF32FTZ]>; |
| def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), |
| (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, |
| Requires<[useFP16Math]>; |
| def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), |
| (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, |
| Requires<[useFP16Math, doF32FTZ]>; |
| def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), |
| (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, |
| Requires<[useFP16Math]>; |
| |
| // f32 -> i32 |
| def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), |
| (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, |
| Requires<[doF32FTZ]>; |
| def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), |
| (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; |
| def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), |
| (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, |
| Requires<[doF32FTZ]>; |
| def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), |
| (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>; |
| def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), |
| (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, |
| Requires<[doF32FTZ]>; |
| def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), |
| (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>; |
| |
| // f64 -> i32 |
| def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)), |
| (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; |
| def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)), |
| (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>; |
| def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)), |
| (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>; |
| } |
| |
| defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>; |
| defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>; |
| defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>; |
| defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>; |
| defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>; |
| defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>; |
| |
| defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>; |
| defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>; |
| defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>; |
| defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>; |
| defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>; |
| defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>; |
| |
| defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>; |
| defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>; |
| defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>; |
| defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>; |
| defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>; |
| defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>; |
| |
| defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>; |
| defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>; |
| |
| // FIXME: What is this doing here? Can it be deleted? |
| // def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad, |
| // [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; |
| |
| def SDTDeclareParamProfile : |
| SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; |
| def SDTDeclareScalarParamProfile : |
| SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; |
| def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; |
| def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>; |
| def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>; |
| def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; |
| def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; |
| def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; |
| def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>; |
| def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>; |
| def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; |
| def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; |
| def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>; |
| def SDTCallVoidProfile : SDTypeProfile<0, 1, []>; |
| def SDTCallValProfile : SDTypeProfile<1, 0, []>; |
| def SDTMoveParamProfile : SDTypeProfile<1, 1, []>; |
| def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; |
| def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>; |
| def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>; |
| def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>; |
| |
| def DeclareParam : |
| SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def DeclareScalarParam : |
| SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def DeclareRetParam : |
| SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def DeclareRet : |
| SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def LoadParam : |
| SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile, |
| [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; |
| def LoadParamV2 : |
| SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile, |
| [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; |
| def LoadParamV4 : |
| SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile, |
| [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; |
| def PrintCall : |
| SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def PrintConvergentCall : |
| SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def PrintCallUni : |
| SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def PrintConvergentCallUni : |
| SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def StoreParam : |
| SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def StoreParamV2 : |
| SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def StoreParamV4 : |
| SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def StoreParamU32 : |
| SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def StoreParamS32 : |
| SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def CallArgBegin : |
| SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def CallArg : |
| SDNode<"NVPTXISD::CallArg", SDTCallArgProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def LastCallArg : |
| SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def CallArgEnd : |
| SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def CallVoid : |
| SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def Prototype : |
| SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def CallVal : |
| SDNode<"NVPTXISD::CallVal", SDTCallValProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def MoveParam : |
| SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>; |
| def StoreRetval : |
| SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile, |
| [SDNPHasChain, SDNPSideEffect]>; |
| def StoreRetvalV2 : |
| SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile, |
| [SDNPHasChain, SDNPSideEffect]>; |
| def StoreRetvalV4 : |
| SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile, |
| [SDNPHasChain, SDNPSideEffect]>; |
| def PseudoUseParam : |
| SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def RETURNNode : |
| SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile, |
| [SDNPHasChain, SDNPSideEffect]>; |
| |
| let mayLoad = 1 in { |
| class LoadParamMemInst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), |
| !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"), |
| []>; |
| |
| class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b), |
| !strconcat("ld.param.v2", opstr, |
| " \t{{$dst, $dst2}}, [retval0+$b];"), []>; |
| |
| class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3, |
| regclass:$dst4), |
| (ins i32imm:$b), |
| !strconcat("ld.param.v4", opstr, |
| " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), |
| []>; |
| } |
| |
| class LoadParamRegInst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), |
| !strconcat("mov", opstr, " \t$dst, retval$b;"), |
| [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>; |
| |
| let mayStore = 1 in { |
| class StoreParamInst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b), |
| !strconcat("st.param", opstr, " \t[param$a+$b], $val;"), |
| []>; |
| |
| class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, |
| i32imm:$a, i32imm:$b), |
| !strconcat("st.param.v2", opstr, |
| " \t[param$a+$b], {{$val, $val2}};"), |
| []>; |
| |
| class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3, |
| regclass:$val4, i32imm:$a, |
| i32imm:$b), |
| !strconcat("st.param.v4", opstr, |
| " \t[param$a+$b], {{$val, $val2, $val3, $val4}};"), |
| []>; |
| |
| class StoreRetvalInst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs), (ins regclass:$val, i32imm:$a), |
| !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"), |
| []>; |
| |
| class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a), |
| !strconcat("st.param.v2", opstr, |
| " \t[func_retval0+$a], {{$val, $val2}};"), |
| []>; |
| |
| class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> : |
| NVPTXInst<(outs), |
| (ins regclass:$val, regclass:$val2, regclass:$val3, |
| regclass:$val4, i32imm:$a), |
| !strconcat("st.param.v4", opstr, |
| " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"), |
| []>; |
| } |
| |
| let isCall=1 in { |
| multiclass CALL<string OpcStr, SDNode OpNode> { |
| def PrintCallNoRetInst : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " "), [(OpNode (i32 0))]>; |
| def PrintCallRetInst1 : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>; |
| def PrintCallRetInst2 : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>; |
| def PrintCallRetInst3 : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>; |
| def PrintCallRetInst4 : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "), |
| [(OpNode (i32 4))]>; |
| def PrintCallRetInst5 : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "), |
| [(OpNode (i32 5))]>; |
| def PrintCallRetInst6 : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " |
| "retval5), "), |
| [(OpNode (i32 6))]>; |
| def PrintCallRetInst7 : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " |
| "retval5, retval6), "), |
| [(OpNode (i32 7))]>; |
| def PrintCallRetInst8 : NVPTXInst<(outs), (ins), |
| !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " |
| "retval5, retval6, retval7), "), |
| [(OpNode (i32 8))]>; |
| } |
| } |
| |
| defm Call : CALL<"call", PrintCall>; |
| defm CallUni : CALL<"call.uni", PrintCallUni>; |
| |
| // Convergent call instructions. These are identical to regular calls, except |
| // they have the isConvergent bit set. |
| let isConvergent=1 in { |
| defm ConvergentCall : CALL<"call", PrintConvergentCall>; |
| defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>; |
| } |
| |
| def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">; |
| def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">; |
| def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">; |
| def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">; |
| def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">; |
| def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">; |
| def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">; |
| def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">; |
| def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">; |
| def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">; |
| def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">; |
| def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">; |
| def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">; |
| def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">; |
| def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">; |
| def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">; |
| def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">; |
| def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">; |
| def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">; |
| def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">; |
| def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">; |
| def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">; |
| |
| def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">; |
| def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">; |
| |
| def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">; |
| def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">; |
| def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">; |
| def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">; |
| def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">; |
| def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">; |
| |
| def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">; |
| def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">; |
| def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">; |
| |
| def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">; |
| def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">; |
| def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">; |
| def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">; |
| def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">; |
| def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">; |
| def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">; |
| def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">; |
| def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">; |
| def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">; |
| def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">; |
| |
| def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">; |
| def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">; |
| def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">; |
| def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">; |
| def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">; |
| def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">; |
| def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">; |
| def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">; |
| def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">; |
| def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">; |
| def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">; |
| |
| def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">; |
| def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">; |
| def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">; |
| def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">; |
| def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">; |
| def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">; |
| def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">; |
| def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">; |
| def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">; |
| def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">; |
| def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">; |
| |
| def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>; |
| def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>; |
| def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>; |
| def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>; |
| |
| class CallArgInst<NVPTXRegClass regclass> : |
| NVPTXInst<(outs), (ins regclass:$a), "$a, ", |
| [(CallArg (i32 0), regclass:$a)]>; |
| |
| class LastCallArgInst<NVPTXRegClass regclass> : |
| NVPTXInst<(outs), (ins regclass:$a), "$a", |
| [(LastCallArg (i32 0), regclass:$a)]>; |
| |
| def CallArgI64 : CallArgInst<Int64Regs>; |
| def CallArgI32 : CallArgInst<Int32Regs>; |
| def CallArgI16 : CallArgInst<Int16Regs>; |
| def CallArgF64 : CallArgInst<Float64Regs>; |
| def CallArgF32 : CallArgInst<Float32Regs>; |
| |
| def LastCallArgI64 : LastCallArgInst<Int64Regs>; |
| def LastCallArgI32 : LastCallArgInst<Int32Regs>; |
| def LastCallArgI16 : LastCallArgInst<Int16Regs>; |
| def LastCallArgF64 : LastCallArgInst<Float64Regs>; |
| def LastCallArgF32 : LastCallArgInst<Float32Regs>; |
| |
| def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ", |
| [(CallArg (i32 0), (i32 imm:$a))]>; |
| def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a", |
| [(LastCallArg (i32 0), (i32 imm:$a))]>; |
| |
| def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ", |
| [(CallArg (i32 1), (i32 imm:$a))]>; |
| def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a", |
| [(LastCallArg (i32 1), (i32 imm:$a))]>; |
| |
| def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ", |
| [(CallVoid (Wrapper tglobaladdr:$addr))]>; |
| def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ", |
| [(CallVoid Int32Regs:$addr)]>; |
| def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ", |
| [(CallVoid Int64Regs:$addr)]>; |
| def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;", |
| [(Prototype (i32 imm:$val))]>; |
| |
| def DeclareRetMemInst : |
| NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num), |
| ".param .align $align .b8 retval$num[$size];", |
| [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>; |
| def DeclareRetScalarInst : |
| NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), |
| ".param .b$size retval$num;", |
| [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>; |
| def DeclareRetRegInst : |
| NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), |
| ".reg .b$size retval$num;", |
| [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>; |
| |
| def DeclareParamInst : |
| NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size), |
| ".param .align $align .b8 param$a[$size];", |
| [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>; |
| def DeclareScalarParamInst : |
| NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), |
| ".param .b$size param$a;", |
| [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>; |
| def DeclareScalarRegInst : |
| NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), |
| ".reg .b$size param$a;", |
| [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>; |
| |
| class MoveParamInst<NVPTXRegClass regclass, string asmstr> : |
| NVPTXInst<(outs regclass:$dst), (ins regclass:$src), |
| !strconcat("mov", asmstr, " \t$dst, $src;"), |
| [(set regclass:$dst, (MoveParam regclass:$src))]>; |
| |
| def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">; |
| def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">; |
| def MoveParamI16 : |
| NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), |
| "cvt.u16.u32 \t$dst, $src;", |
| [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>; |
| def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">; |
| def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">; |
| def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">; |
| |
| class PseudoUseParamInst<NVPTXRegClass regclass> : |
| NVPTXInst<(outs), (ins regclass:$src), |
| "// Pseudo use of $src", |
| [(PseudoUseParam regclass:$src)]>; |
| |
| def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>; |
| def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>; |
| def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>; |
| def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>; |
| def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>; |
| |
| |
| // |
| // Load / Store Handling |
| // |
| multiclass LD<NVPTXRegClass regclass> { |
| def _avar : NVPTXInst< |
| (outs regclass:$dst), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, imem:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t$dst, [$addr];", []>; |
| def _areg : NVPTXInst< |
| (outs regclass:$dst), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int32Regs:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t$dst, [$addr];", []>; |
| def _areg_64 : NVPTXInst< |
| (outs regclass:$dst), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int64Regs:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t$dst, [$addr];", []>; |
| def _ari : NVPTXInst< |
| (outs regclass:$dst), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t$dst, [$addr+$offset];", []>; |
| def _ari_64 : NVPTXInst< |
| (outs regclass:$dst), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, |
| LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t$dst, [$addr+$offset];", []>; |
| def _asi : NVPTXInst< |
| (outs regclass:$dst), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, |
| LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t$dst, [$addr+$offset];", []>; |
| } |
| |
| let mayLoad=1, hasSideEffects=0 in { |
| defm LD_i8 : LD<Int16Regs>; |
| defm LD_i16 : LD<Int16Regs>; |
| defm LD_i32 : LD<Int32Regs>; |
| defm LD_i64 : LD<Int64Regs>; |
| defm LD_f16 : LD<Float16Regs>; |
| defm LD_f16x2 : LD<Float16x2Regs>; |
| defm LD_f32 : LD<Float32Regs>; |
| defm LD_f64 : LD<Float64Regs>; |
| } |
| |
| multiclass ST<NVPTXRegClass regclass> { |
| def _avar : NVPTXInst< |
| (outs), |
| (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, |
| LdStCode:$Sign, i32imm:$toWidth, imem:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" |
| " \t[$addr], $src;", []>; |
| def _areg : NVPTXInst< |
| (outs), |
| (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, |
| LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" |
| " \t[$addr], $src;", []>; |
| def _areg_64 : NVPTXInst< |
| (outs), |
| (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, |
| LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" |
| " \t[$addr], $src;", []>; |
| def _ari : NVPTXInst< |
| (outs), |
| (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, |
| LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" |
| " \t[$addr+$offset], $src;", []>; |
| def _ari_64 : NVPTXInst< |
| (outs), |
| (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, |
| LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" |
| " \t[$addr+$offset], $src;", []>; |
| def _asi : NVPTXInst< |
| (outs), |
| (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, |
| LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" |
| " \t[$addr+$offset], $src;", []>; |
| } |
| |
| let mayStore=1, hasSideEffects=0 in { |
| defm ST_i8 : ST<Int16Regs>; |
| defm ST_i16 : ST<Int16Regs>; |
| defm ST_i32 : ST<Int32Regs>; |
| defm ST_i64 : ST<Int64Regs>; |
| defm ST_f16 : ST<Float16Regs>; |
| defm ST_f16x2 : ST<Float16x2Regs>; |
| defm ST_f32 : ST<Float32Regs>; |
| defm ST_f64 : ST<Float64Regs>; |
| } |
| |
| // The following is used only in and after vector elementizations. Vector |
| // elementization happens at the machine instruction level, so the following |
| // instructions never appear in the DAG. |
| multiclass LD_VEC<NVPTXRegClass regclass> { |
| def _v2_avar : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, imem:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2}}, [$addr];", []>; |
| def _v2_areg : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int32Regs:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2}}, [$addr];", []>; |
| def _v2_areg_64 : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int64Regs:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2}}, [$addr];", []>; |
| def _v2_ari : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; |
| def _v2_ari_64 : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; |
| def _v2_asi : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, imem:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; |
| def _v4_avar : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, imem:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; |
| def _v4_areg : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int32Regs:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; |
| def _v4_areg_64 : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int64Regs:$addr), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; |
| def _v4_ari : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; |
| def _v4_ari_64 : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; |
| def _v4_asi : NVPTXInst< |
| (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), |
| (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, imem:$addr, i32imm:$offset), |
| "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; |
| } |
| let mayLoad=1, hasSideEffects=0 in { |
| defm LDV_i8 : LD_VEC<Int16Regs>; |
| defm LDV_i16 : LD_VEC<Int16Regs>; |
| defm LDV_i32 : LD_VEC<Int32Regs>; |
| defm LDV_i64 : LD_VEC<Int64Regs>; |
| defm LDV_f16 : LD_VEC<Float16Regs>; |
| defm LDV_f16x2 : LD_VEC<Float16x2Regs>; |
| defm LDV_f32 : LD_VEC<Float32Regs>; |
| defm LDV_f64 : LD_VEC<Float64Regs>; |
| } |
| |
| multiclass ST_VEC<NVPTXRegClass regclass> { |
| def _v2_avar : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, |
| LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr], {{$src1, $src2}};", []>; |
| def _v2_areg : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, |
| LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr], {{$src1, $src2}};", []>; |
| def _v2_areg_64 : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, |
| LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr], {{$src1, $src2}};", []>; |
| def _v2_ari : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, |
| LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, |
| i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr+$offset], {{$src1, $src2}};", []>; |
| def _v2_ari_64 : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, |
| LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, |
| i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr+$offset], {{$src1, $src2}};", []>; |
| def _v2_asi : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, |
| LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, |
| i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr+$offset], {{$src1, $src2}};", []>; |
| def _v4_avar : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, |
| LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, imem:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; |
| def _v4_areg : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, |
| LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int32Regs:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; |
| def _v4_areg_64 : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, |
| LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int64Regs:$addr), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; |
| def _v4_ari : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, |
| LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; |
| def _v4_ari_64 : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, |
| LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " |
| "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; |
| def _v4_asi : NVPTXInst< |
| (outs), |
| (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, |
| LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, |
| i32imm:$fromWidth, imem:$addr, i32imm:$offset), |
| "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}" |
| "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; |
| } |
| |
| let mayStore=1, hasSideEffects=0 in { |
| defm STV_i8 : ST_VEC<Int16Regs>; |
| defm STV_i16 : ST_VEC<Int16Regs>; |
| defm STV_i32 : ST_VEC<Int32Regs>; |
| defm STV_i64 : ST_VEC<Int64Regs>; |
| defm STV_f16 : ST_VEC<Float16Regs>; |
| defm STV_f16x2 : ST_VEC<Float16x2Regs>; |
| defm STV_f32 : ST_VEC<Float32Regs>; |
| defm STV_f64 : ST_VEC<Float64Regs>; |
| } |
| |
| //---- Conversion ---- |
| |
| class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn, |
| NVPTXRegClass regclassOut> : |
| NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a), |
| !strconcat("mov.b", !strconcat(SzStr, " \t$d, $a;")), |
| [(set regclassOut:$d, (bitconvert regclassIn:$a))]>; |
| |
| def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>; |
| def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>; |
| def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>; |
| def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>; |
| def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>; |
| def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>; |
| def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>; |
| def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>; |
| |
| // NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where |
| // we cannot specify floating-point literals in isel patterns. Therefore, we |
| // use an integer selp to select either 1 or 0 and then cvt to floating-point. |
| |
| // sint -> f16 |
| def : Pat<(f16 (sint_to_fp Int1Regs:$a)), |
| (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; |
| def : Pat<(f16 (sint_to_fp Int16Regs:$a)), |
| (CVT_f16_s16 Int16Regs:$a, CvtRN)>; |
| def : Pat<(f16 (sint_to_fp Int32Regs:$a)), |
| (CVT_f16_s32 Int32Regs:$a, CvtRN)>; |
| def : Pat<(f16 (sint_to_fp Int64Regs:$a)), |
| (CVT_f16_s64 Int64Regs:$a, CvtRN)>; |
| |
| // uint -> f16 |
| def : Pat<(f16 (uint_to_fp Int1Regs:$a)), |
| (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; |
| def : Pat<(f16 (uint_to_fp Int16Regs:$a)), |
| (CVT_f16_u16 Int16Regs:$a, CvtRN)>; |
| def : Pat<(f16 (uint_to_fp Int32Regs:$a)), |
| (CVT_f16_u32 Int32Regs:$a, CvtRN)>; |
| def : Pat<(f16 (uint_to_fp Int64Regs:$a)), |
| (CVT_f16_u64 Int64Regs:$a, CvtRN)>; |
| |
| // sint -> f32 |
| def : Pat<(f32 (sint_to_fp Int1Regs:$a)), |
| (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; |
| def : Pat<(f32 (sint_to_fp Int16Regs:$a)), |
| (CVT_f32_s16 Int16Regs:$a, CvtRN)>; |
| def : Pat<(f32 (sint_to_fp Int32Regs:$a)), |
| (CVT_f32_s32 Int32Regs:$a, CvtRN)>; |
| def : Pat<(f32 (sint_to_fp Int64Regs:$a)), |
| (CVT_f32_s64 Int64Regs:$a, CvtRN)>; |
| |
| // uint -> f32 |
| def : Pat<(f32 (uint_to_fp Int1Regs:$a)), |
| (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; |
| def : Pat<(f32 (uint_to_fp Int16Regs:$a)), |
| (CVT_f32_u16 Int16Regs:$a, CvtRN)>; |
| def : Pat<(f32 (uint_to_fp Int32Regs:$a)), |
| (CVT_f32_u32 Int32Regs:$a, CvtRN)>; |
| def : Pat<(f32 (uint_to_fp Int64Regs:$a)), |
| (CVT_f32_u64 Int64Regs:$a, CvtRN)>; |
| |
| // sint -> f64 |
| def : Pat<(f64 (sint_to_fp Int1Regs:$a)), |
| (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; |
| def : Pat<(f64 (sint_to_fp Int16Regs:$a)), |
| (CVT_f64_s16 Int16Regs:$a, CvtRN)>; |
| def : Pat<(f64 (sint_to_fp Int32Regs:$a)), |
| (CVT_f64_s32 Int32Regs:$a, CvtRN)>; |
| def : Pat<(f64 (sint_to_fp Int64Regs:$a)), |
| (CVT_f64_s64 Int64Regs:$a, CvtRN)>; |
| |
| // uint -> f64 |
| def : Pat<(f64 (uint_to_fp Int1Regs:$a)), |
| (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; |
| def : Pat<(f64 (uint_to_fp Int16Regs:$a)), |
| (CVT_f64_u16 Int16Regs:$a, CvtRN)>; |
| def : Pat<(f64 (uint_to_fp Int32Regs:$a)), |
| (CVT_f64_u32 Int32Regs:$a, CvtRN)>; |
| def : Pat<(f64 (uint_to_fp Int64Regs:$a)), |
| (CVT_f64_u64 Int64Regs:$a, CvtRN)>; |
| |
| |
| // f16 -> sint |
| def : Pat<(i1 (fp_to_sint Float16Regs:$a)), |
| (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; |
| def : Pat<(i16 (fp_to_sint Float16Regs:$a)), |
| (CVT_s16_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i16 (fp_to_sint Float16Regs:$a)), |
| (CVT_s16_f16 Float16Regs:$a, CvtRZI)>; |
| def : Pat<(i32 (fp_to_sint Float16Regs:$a)), |
| (CVT_s32_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i32 (fp_to_sint Float16Regs:$a)), |
| (CVT_s32_f16 Float16Regs:$a, CvtRZI)>; |
| def : Pat<(i64 (fp_to_sint Float16Regs:$a)), |
| (CVT_s64_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i64 (fp_to_sint Float16Regs:$a)), |
| (CVT_s64_f16 Float16Regs:$a, CvtRZI)>; |
| |
| // f16 -> uint |
| def : Pat<(i1 (fp_to_uint Float16Regs:$a)), |
| (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; |
| def : Pat<(i16 (fp_to_uint Float16Regs:$a)), |
| (CVT_u16_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i16 (fp_to_uint Float16Regs:$a)), |
| (CVT_u16_f16 Float16Regs:$a, CvtRZI)>; |
| def : Pat<(i32 (fp_to_uint Float16Regs:$a)), |
| (CVT_u32_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i32 (fp_to_uint Float16Regs:$a)), |
| (CVT_u32_f16 Float16Regs:$a, CvtRZI)>; |
| def : Pat<(i64 (fp_to_uint Float16Regs:$a)), |
| (CVT_u64_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i64 (fp_to_uint Float16Regs:$a)), |
| (CVT_u64_f16 Float16Regs:$a, CvtRZI)>; |
| |
| // f32 -> sint |
| def : Pat<(i1 (fp_to_sint Float32Regs:$a)), |
| (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; |
| def : Pat<(i16 (fp_to_sint Float32Regs:$a)), |
| (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i16 (fp_to_sint Float32Regs:$a)), |
| (CVT_s16_f32 Float32Regs:$a, CvtRZI)>; |
| def : Pat<(i32 (fp_to_sint Float32Regs:$a)), |
| (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i32 (fp_to_sint Float32Regs:$a)), |
| (CVT_s32_f32 Float32Regs:$a, CvtRZI)>; |
| def : Pat<(i64 (fp_to_sint Float32Regs:$a)), |
| (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i64 (fp_to_sint Float32Regs:$a)), |
| (CVT_s64_f32 Float32Regs:$a, CvtRZI)>; |
| |
| // f32 -> uint |
| def : Pat<(i1 (fp_to_uint Float32Regs:$a)), |
| (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; |
| def : Pat<(i16 (fp_to_uint Float32Regs:$a)), |
| (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i16 (fp_to_uint Float32Regs:$a)), |
| (CVT_u16_f32 Float32Regs:$a, CvtRZI)>; |
| def : Pat<(i32 (fp_to_uint Float32Regs:$a)), |
| (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i32 (fp_to_uint Float32Regs:$a)), |
| (CVT_u32_f32 Float32Regs:$a, CvtRZI)>; |
| def : Pat<(i64 (fp_to_uint Float32Regs:$a)), |
| (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(i64 (fp_to_uint Float32Regs:$a)), |
| (CVT_u64_f32 Float32Regs:$a, CvtRZI)>; |
| |
| // f64 -> sint |
| def : Pat<(i1 (fp_to_sint Float64Regs:$a)), |
| (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; |
| def : Pat<(i16 (fp_to_sint Float64Regs:$a)), |
| (CVT_s16_f64 Float64Regs:$a, CvtRZI)>; |
| def : Pat<(i32 (fp_to_sint Float64Regs:$a)), |
| (CVT_s32_f64 Float64Regs:$a, CvtRZI)>; |
| def : Pat<(i64 (fp_to_sint Float64Regs:$a)), |
| (CVT_s64_f64 Float64Regs:$a, CvtRZI)>; |
| |
| // f64 -> uint |
| def : Pat<(i1 (fp_to_uint Float64Regs:$a)), |
| (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; |
| def : Pat<(i16 (fp_to_uint Float64Regs:$a)), |
| (CVT_u16_f64 Float64Regs:$a, CvtRZI)>; |
| def : Pat<(i32 (fp_to_uint Float64Regs:$a)), |
| (CVT_u32_f64 Float64Regs:$a, CvtRZI)>; |
| def : Pat<(i64 (fp_to_uint Float64Regs:$a)), |
| (CVT_u64_f64 Float64Regs:$a, CvtRZI)>; |
| |
| // sext i1 |
| def : Pat<(i16 (sext Int1Regs:$a)), |
| (SELP_s16ii -1, 0, Int1Regs:$a)>; |
| def : Pat<(i32 (sext Int1Regs:$a)), |
| (SELP_s32ii -1, 0, Int1Regs:$a)>; |
| def : Pat<(i64 (sext Int1Regs:$a)), |
| (SELP_s64ii -1, 0, Int1Regs:$a)>; |
| |
| // zext i1 |
| def : Pat<(i16 (zext Int1Regs:$a)), |
| (SELP_u16ii 1, 0, Int1Regs:$a)>; |
| def : Pat<(i32 (zext Int1Regs:$a)), |
| (SELP_u32ii 1, 0, Int1Regs:$a)>; |
| def : Pat<(i64 (zext Int1Regs:$a)), |
| (SELP_u64ii 1, 0, Int1Regs:$a)>; |
| |
| // anyext i1 |
| def : Pat<(i16 (anyext Int1Regs:$a)), |
| (SELP_u16ii -1, 0, Int1Regs:$a)>; |
| def : Pat<(i32 (anyext Int1Regs:$a)), |
| (SELP_u32ii -1, 0, Int1Regs:$a)>; |
| def : Pat<(i64 (anyext Int1Regs:$a)), |
| (SELP_u64ii -1, 0, Int1Regs:$a)>; |
| |
| // sext i16 |
| def : Pat<(i32 (sext Int16Regs:$a)), |
| (CVT_s32_s16 Int16Regs:$a, CvtNONE)>; |
| def : Pat<(i64 (sext Int16Regs:$a)), |
| (CVT_s64_s16 Int16Regs:$a, CvtNONE)>; |
| |
| // zext i16 |
| def : Pat<(i32 (zext Int16Regs:$a)), |
| (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; |
| def : Pat<(i64 (zext Int16Regs:$a)), |
| (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; |
| |
| // anyext i16 |
| def : Pat<(i32 (anyext Int16Regs:$a)), |
| (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; |
| def : Pat<(i64 (anyext Int16Regs:$a)), |
| (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; |
| |
| // sext i32 |
| def : Pat<(i64 (sext Int32Regs:$a)), |
| (CVT_s64_s32 Int32Regs:$a, CvtNONE)>; |
| |
| // zext i32 |
| def : Pat<(i64 (zext Int32Regs:$a)), |
| (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; |
| |
| // anyext i32 |
| def : Pat<(i64 (anyext Int32Regs:$a)), |
| (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; |
| |
| |
| // truncate i64 |
| def : Pat<(i32 (trunc Int64Regs:$a)), |
| (CVT_u32_u64 Int64Regs:$a, CvtNONE)>; |
| def : Pat<(i16 (trunc Int64Regs:$a)), |
| (CVT_u16_u64 Int64Regs:$a, CvtNONE)>; |
| def : Pat<(i1 (trunc Int64Regs:$a)), |
| (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>; |
| |
| // truncate i32 |
| def : Pat<(i16 (trunc Int32Regs:$a)), |
| (CVT_u16_u32 Int32Regs:$a, CvtNONE)>; |
| def : Pat<(i1 (trunc Int32Regs:$a)), |
| (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>; |
| |
| // truncate i16 |
| def : Pat<(i1 (trunc Int16Regs:$a)), |
| (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>; |
| |
| // sext_inreg |
| def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>; |
| def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>; |
| def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>; |
| def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>; |
| def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>; |
| def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>; |
| |
| |
| // Select instructions with 32-bit predicates |
| def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b), |
| (SELP_b16rr Int16Regs:$a, Int16Regs:$b, |
| (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; |
| def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b), |
| (SELP_b32rr Int32Regs:$a, Int32Regs:$b, |
| (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; |
| def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b), |
| (SELP_b64rr Int64Regs:$a, Int64Regs:$b, |
| (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; |
| def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b), |
| (SELP_f16rr Float16Regs:$a, Float16Regs:$b, |
| (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; |
| def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b), |
| (SELP_f32rr Float32Regs:$a, Float32Regs:$b, |
| (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; |
| def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b), |
| (SELP_f64rr Float64Regs:$a, Float64Regs:$b, |
| (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; |
| |
| |
| let hasSideEffects = 0 in { |
| // pack a set of smaller int registers to a larger int register |
| def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d), |
| (ins Int16Regs:$s1, Int16Regs:$s2, |
| Int16Regs:$s3, Int16Regs:$s4), |
| "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>; |
| def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d), |
| (ins Int16Regs:$s1, Int16Regs:$s2), |
| "mov.b32 \t$d, {{$s1, $s2}};", []>; |
| def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d), |
| (ins Int32Regs:$s1, Int32Regs:$s2), |
| "mov.b64 \t$d, {{$s1, $s2}};", []>; |
| def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d), |
| (ins Float32Regs:$s1, Float32Regs:$s2), |
| "mov.b64 \t$d, {{$s1, $s2}};", []>; |
| |
| // unpack a larger int register to a set of smaller int registers |
| def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2, |
| Int16Regs:$d3, Int16Regs:$d4), |
| (ins Int64Regs:$s), |
| "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>; |
| def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2), |
| (ins Int32Regs:$s), |
| "mov.b32 \t{{$d1, $d2}}, $s;", []>; |
| def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2), |
| (ins Int64Regs:$s), |
| "mov.b64 \t{{$d1, $d2}}, $s;", []>; |
| def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2), |
| (ins Float64Regs:$s), |
| "mov.b64 \t{{$d1, $d2}}, $s;", []>; |
| |
| } |
| |
| let hasSideEffects = 0 in { |
| // Extract element of f16x2 register. PTX does not provide any way |
| // to access elements of f16x2 vector directly, so we need to |
| // extract it using a temporary register. |
| def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst), |
| (ins Float16x2Regs:$src), |
| "{{ .reg .b16 \t%tmp_hi;\n\t" |
| " mov.b32 \t{$dst, %tmp_hi}, $src; }}", |
| [(set Float16Regs:$dst, |
| (extractelt (v2f16 Float16x2Regs:$src), 0))]>; |
| def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst), |
| (ins Float16x2Regs:$src), |
| "{{ .reg .b16 \t%tmp_lo;\n\t" |
| " mov.b32 \t{%tmp_lo, $dst}, $src; }}", |
| [(set Float16Regs:$dst, |
| (extractelt (v2f16 Float16x2Regs:$src), 1))]>; |
| |
| // Coalesce two f16 registers into f16x2 |
| def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst), |
| (ins Float16Regs:$a, Float16Regs:$b), |
| "mov.b32 \t$dst, {{$a, $b}};", |
| [(set Float16x2Regs:$dst, |
| (build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>; |
| |
| // Directly initializing underlying the b32 register is one less SASS |
| // instruction than than vector-packing move. |
| def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src), |
| "mov.b32 \t$dst, $src;", |
| []>; |
| |
| // Split f16x2 into two f16 registers. |
| def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), |
| (ins Float16x2Regs:$src), |
| "mov.b32 \t{{$lo, $hi}}, $src;", |
| []>; |
| // Split an i32 into two f16 |
| def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), |
| (ins Int32Regs:$src), |
| "mov.b32 \t{{$lo, $hi}}, $src;", |
| []>; |
| } |
| |
| // Count leading zeros |
| let hasSideEffects = 0 in { |
| def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), |
| "clz.b32 \t$d, $a;", []>; |
| def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), |
| "clz.b64 \t$d, $a;", []>; |
| } |
| |
| // 32-bit has a direct PTX instruction |
| def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>; |
| |
| // The return type of the ctlz ISD node is the same as its input, but the PTX |
| // ctz instruction always returns a 32-bit value. For ctlz.i64, convert the |
| // ptx value to 64 bits to match the ISD node's semantics, unless we know we're |
| // truncating back down to 32 bits. |
| def : Pat<(ctlz Int64Regs:$a), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>; |
| def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>; |
| |
| // For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the |
| // result back to 16-bits if necessary. We also need to subtract 16 because |
| // the high-order 16 zeros were counted. |
| // |
| // TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could |
| // use to save one SASS instruction (on sm_35 anyway): |
| // |
| // mov.b32 $tmp, {0xffff, $a} |
| // ctlz.b32 $result, $tmp |
| // |
| // That is, instead of zero-extending the input to 32 bits, we'd "one-extend" |
| // and then ctlz that value. This way we don't have to subtract 16 from the |
| // result. Unfortunately today we don't have a way to generate |
| // "mov b32reg, {b16imm, b16reg}", so we don't do this optimization. |
| def : Pat<(ctlz Int16Regs:$a), |
| (SUBi16ri (CVT_u16_u32 |
| (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>; |
| def : Pat<(i32 (zext (ctlz Int16Regs:$a))), |
| (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>; |
| |
| // Population count |
| let hasSideEffects = 0 in { |
| def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), |
| "popc.b32 \t$d, $a;", []>; |
| def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), |
| "popc.b64 \t$d, $a;", []>; |
| } |
| |
| // 32-bit has a direct PTX instruction |
| def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>; |
| |
| // For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit |
| // to match the LLVM semantics. Just as with ctlz.i64, we provide a second |
| // pattern that avoids the type conversion if we're truncating the result to |
| // i32 anyway. |
| def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>; |
| def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>; |
| |
| // For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits. |
| // If we know that we're storing into an i32, we can avoid the final trunc. |
| def : Pat<(ctpop Int16Regs:$a), |
| (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>; |
| def : Pat<(i32 (zext (ctpop Int16Regs:$a))), |
| (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>; |
| |
| // fpround f32 -> f16 |
| def : Pat<(f16 (fpround Float32Regs:$a)), |
| (CVT_f16_f32 Float32Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(f16 (fpround Float32Regs:$a)), |
| (CVT_f16_f32 Float32Regs:$a, CvtRN)>; |
| |
| // fpround f64 -> f16 |
| def : Pat<(f16 (fpround Float64Regs:$a)), |
| (CVT_f16_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(f16 (fpround Float64Regs:$a)), |
| (CVT_f16_f64 Float64Regs:$a, CvtRN)>; |
| |
| // fpround f64 -> f32 |
| def : Pat<(f32 (fpround Float64Regs:$a)), |
| (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(f32 (fpround Float64Regs:$a)), |
| (CVT_f32_f64 Float64Regs:$a, CvtRN)>; |
| |
| // fpextend f16 -> f32 |
| def : Pat<(f32 (fpextend Float16Regs:$a)), |
| (CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(f32 (fpextend Float16Regs:$a)), |
| (CVT_f32_f16 Float16Regs:$a, CvtNONE)>; |
| |
| // fpextend f16 -> f64 |
| def : Pat<(f64 (fpextend Float16Regs:$a)), |
| (CVT_f64_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(f64 (fpextend Float16Regs:$a)), |
| (CVT_f64_f16 Float16Regs:$a, CvtNONE)>; |
| |
| // fpextend f32 -> f64 |
| def : Pat<(f64 (fpextend Float32Regs:$a)), |
| (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(f64 (fpextend Float32Regs:$a)), |
| (CVT_f64_f32 Float32Regs:$a, CvtNONE)>; |
| |
| def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone, |
| [SDNPHasChain, SDNPOptInGlue]>; |
| |
| // fceil, ffloor, fround, ftrunc. |
| |
| def : Pat<(fceil Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(fceil Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(fceil Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(fceil Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(fceil Float64Regs:$a), |
| (CVT_f64_f64 Float64Regs:$a, CvtRPI)>; |
| |
| def : Pat<(ffloor Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(ffloor Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(ffloor Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(ffloor Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(ffloor Float64Regs:$a), |
| (CVT_f64_f64 Float64Regs:$a, CvtRMI)>; |
| |
| def : Pat<(fround Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(f16 (fround Float16Regs:$a)), |
| (CVT_f16_f16 Float16Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(fround Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(f32 (fround Float32Regs:$a)), |
| (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(f64 (fround Float64Regs:$a)), |
| (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; |
| |
| def : Pat<(ftrunc Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(ftrunc Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(ftrunc Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(ftrunc Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(ftrunc Float64Regs:$a), |
| (CVT_f64_f64 Float64Regs:$a, CvtRZI)>; |
| |
| // nearbyint and rint are implemented as rounding to nearest even. This isn't |
| // strictly correct, because it causes us to ignore the rounding mode. But it |
| // matches what CUDA's "libm" does. |
| |
| def : Pat<(fnearbyint Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(fnearbyint Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(fnearbyint Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(fnearbyint Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(fnearbyint Float64Regs:$a), |
| (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; |
| |
| def : Pat<(frint Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(frint Float16Regs:$a), |
| (CVT_f16_f16 Float16Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(frint Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; |
| def : Pat<(frint Float32Regs:$a), |
| (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; |
| def : Pat<(frint Float64Regs:$a), |
| (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; |
| |
| |
| //----------------------------------- |
| // Control-flow |
| //----------------------------------- |
| |
| let isTerminator=1 in { |
| let isReturn=1, isBarrier=1 in |
| def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>; |
| |
| let isBranch=1 in |
| def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), |
| "@$a bra \t$target;", |
| [(brcond Int1Regs:$a, bb:$target)]>; |
| let isBranch=1 in |
| def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), |
| "@!$a bra \t$target;", []>; |
| |
| let isBranch=1, isBarrier=1 in |
| def GOTO : NVPTXInst<(outs), (ins brtarget:$target), |
| "bra.uni \t$target;", [(br bb:$target)]>; |
| } |
| |
| def : Pat<(brcond Int32Regs:$a, bb:$target), |
| (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>; |
| |
| // SelectionDAGBuilder::visitSWitchCase() will invert the condition of a |
| // conditional branch if the target block is the next block so that the code |
| // can fall through to the target block. The invertion is done by 'xor |
| // condition, 1', which will be translated to (setne condition, -1). Since ptx |
| // supports '@!pred bra target', we should use it. |
| def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target), |
| (CBranchOther Int1Regs:$a, bb:$target)>; |
| |
| // Call |
| def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, |
| SDTCisVT<1, i32>]>; |
| def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; |
| |
| def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart, |
| [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>; |
| def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPSideEffect]>; |
| |
| def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; |
| def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; |
| def calltarget : Operand<i32>; |
| let isCall=1 in { |
| def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>; |
| } |
| |
| def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; |
| def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; |
| |
| // Pseudo instructions. |
| class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> |
| : NVPTXInst<outs, ins, asmstr, pattern>; |
| |
| def Callseq_Start : |
| NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| "\\{ // callseq $amt1, $amt2\n" |
| "\t.reg .b32 temp_param_reg;", |
| [(callseq_start timm:$amt1, timm:$amt2)]>; |
| def Callseq_End : |
| NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| "\\} // callseq $amt1", |
| [(callseq_end timm:$amt1, timm:$amt2)]>; |
| |
| // trap instruction |
| def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>; |
| |
| // Call prototype wrapper |
| def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>; |
| def CallPrototype : |
| SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype, |
| [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; |
| def ProtoIdent : Operand<i32> { |
| let PrintMethod = "printProtoIdent"; |
| } |
| def CALL_PROTOTYPE : |
| NVPTXInst<(outs), (ins ProtoIdent:$ident), |
| "$ident", [(CallPrototype (i32 texternalsym:$ident))]>; |
| |
| |
| include "NVPTXIntrinsics.td" |
| |
| |
| //----------------------------------- |
| // Notes |
| //----------------------------------- |
| // BSWAP is currently expanded. The following is a more efficient |
| // - for < sm_20, use vector scalar mov, as tesla support native 16-bit register |
| // - for sm_20, use pmpt (use vector scalar mov to get the pack and |
| // unpack). sm_20 supports native 32-bit register, but not native 16-bit |
| // register. |