| //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Subclass of MipsDAGToDAGISel specialized for mips32/64. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MipsSEISelDAGToDAG.h" |
| #include "MCTargetDesc/MipsBaseInfo.h" |
| #include "Mips.h" |
| #include "MipsAnalyzeImmediate.h" |
| #include "MipsMachineFunction.h" |
| #include "MipsRegisterInfo.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "mips-isel" |
| |
| bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { |
| Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget()); |
| if (Subtarget->inMips16Mode()) |
| return false; |
| return MipsDAGToDAGISel::runOnMachineFunction(MF); |
| } |
| |
| void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| SelectionDAGISel::getAnalysisUsage(AU); |
| } |
| |
| void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, |
| MachineFunction &MF) { |
| MachineInstrBuilder MIB(MF, &MI); |
| unsigned Mask = MI.getOperand(1).getImm(); |
| unsigned Flag = |
| IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef; |
| |
| if (Mask & 1) |
| MIB.addReg(Mips::DSPPos, Flag); |
| |
| if (Mask & 2) |
| MIB.addReg(Mips::DSPSCount, Flag); |
| |
| if (Mask & 4) |
| MIB.addReg(Mips::DSPCarry, Flag); |
| |
| if (Mask & 8) |
| MIB.addReg(Mips::DSPOutFlag, Flag); |
| |
| if (Mask & 16) |
| MIB.addReg(Mips::DSPCCond, Flag); |
| |
| if (Mask & 32) |
| MIB.addReg(Mips::DSPEFI, Flag); |
| } |
| |
| unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { |
| switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) { |
| default: |
| llvm_unreachable("Could not map int to register"); |
| case 0: return Mips::MSAIR; |
| case 1: return Mips::MSACSR; |
| case 2: return Mips::MSAAccess; |
| case 3: return Mips::MSASave; |
| case 4: return Mips::MSAModify; |
| case 5: return Mips::MSARequest; |
| case 6: return Mips::MSAMap; |
| case 7: return Mips::MSAUnmap; |
| } |
| } |
| |
| bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, |
| const MachineInstr& MI) { |
| unsigned DstReg = 0, ZeroReg = 0; |
| |
| // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". |
| if ((MI.getOpcode() == Mips::ADDiu) && |
| (MI.getOperand(1).getReg() == Mips::ZERO) && |
| (MI.getOperand(2).isImm()) && |
| (MI.getOperand(2).getImm() == 0)) { |
| DstReg = MI.getOperand(0).getReg(); |
| ZeroReg = Mips::ZERO; |
| } else if ((MI.getOpcode() == Mips::DADDiu) && |
| (MI.getOperand(1).getReg() == Mips::ZERO_64) && |
| (MI.getOperand(2).isImm()) && |
| (MI.getOperand(2).getImm() == 0)) { |
| DstReg = MI.getOperand(0).getReg(); |
| ZeroReg = Mips::ZERO_64; |
| } |
| |
| if (!DstReg) |
| return false; |
| |
| // Replace uses with ZeroReg. |
| for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), |
| E = MRI->use_end(); U != E;) { |
| MachineOperand &MO = *U; |
| unsigned OpNo = U.getOperandNo(); |
| MachineInstr *MI = MO.getParent(); |
| ++U; |
| |
| // Do not replace if it is a phi's operand or is tied to def operand. |
| if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) |
| continue; |
| |
| // Also, we have to check that the register class of the operand |
| // contains the zero register. |
| if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg)) |
| continue; |
| |
| MO.setReg(ZeroReg); |
| } |
| |
| return true; |
| } |
| |
| void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) { |
| MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| |
| if (!MipsFI->globalBaseRegSet()) |
| return; |
| |
| MachineBasicBlock &MBB = MF.front(); |
| MachineBasicBlock::iterator I = MBB.begin(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); |
| DebugLoc DL; |
| unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg(); |
| const TargetRegisterClass *RC; |
| const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI(); |
| RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; |
| |
| V0 = RegInfo.createVirtualRegister(RC); |
| V1 = RegInfo.createVirtualRegister(RC); |
| |
| if (ABI.IsN64()) { |
| MF.getRegInfo().addLiveIn(Mips::T9_64); |
| MBB.addLiveIn(Mips::T9_64); |
| |
| // lui $v0, %hi(%neg(%gp_rel(fname))) |
| // daddu $v1, $v0, $t9 |
| // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) |
| const GlobalValue *FName = &MF.getFunction(); |
| BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0) |
| .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); |
| BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0) |
| .addReg(Mips::T9_64); |
| BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1) |
| .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); |
| return; |
| } |
| |
| if (!MF.getTarget().isPositionIndependent()) { |
| // Set global register to __gnu_local_gp. |
| // |
| // lui $v0, %hi(__gnu_local_gp) |
| // addiu $globalbasereg, $v0, %lo(__gnu_local_gp) |
| BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) |
| .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI); |
| BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0) |
| .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO); |
| return; |
| } |
| |
| MF.getRegInfo().addLiveIn(Mips::T9); |
| MBB.addLiveIn(Mips::T9); |
| |
| if (ABI.IsN32()) { |
| // lui $v0, %hi(%neg(%gp_rel(fname))) |
| // addu $v1, $v0, $t9 |
| // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) |
| const GlobalValue *FName = &MF.getFunction(); |
| BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) |
| .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); |
| BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9); |
| BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1) |
| .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); |
| return; |
| } |
| |
| assert(ABI.IsO32()); |
| |
| // For O32 ABI, the following instruction sequence is emitted to initialize |
| // the global base register: |
| // |
| // 0. lui $2, %hi(_gp_disp) |
| // 1. addiu $2, $2, %lo(_gp_disp) |
| // 2. addu $globalbasereg, $2, $t9 |
| // |
| // We emit only the last instruction here. |
| // |
| // GNU linker requires that the first two instructions appear at the beginning |
| // of a function and no instructions be inserted before or between them. |
| // The two instructions are emitted during lowering to MC layer in order to |
| // avoid any reordering. |
| // |
| // Register $2 (Mips::V0) is added to the list of live-in registers to ensure |
| // the value instruction 1 (addiu) defines is valid when instruction 2 (addu) |
| // reads it. |
| MF.getRegInfo().addLiveIn(Mips::V0); |
| MBB.addLiveIn(Mips::V0); |
| BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg) |
| .addReg(Mips::V0).addReg(Mips::T9); |
| } |
| |
| void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { |
| initGlobalBaseReg(MF); |
| |
| MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| |
| for (auto &MBB: MF) { |
| for (auto &MI: MBB) { |
| switch (MI.getOpcode()) { |
| case Mips::RDDSP: |
| addDSPCtrlRegOperands(false, MI, MF); |
| break; |
| case Mips::WRDSP: |
| addDSPCtrlRegOperands(true, MI, MF); |
| break; |
| case Mips::BuildPairF64_64: |
| case Mips::ExtractElementF64_64: |
| if (!Subtarget->useOddSPReg()) { |
| MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true)); |
| break; |
| } |
| // fallthrough |
| case Mips::BuildPairF64: |
| case Mips::ExtractElementF64: |
| if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1()) |
| MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true)); |
| break; |
| default: |
| replaceUsesWithZeroReg(MRI, MI); |
| } |
| } |
| } |
| } |
| |
| void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const { |
| SDValue InFlag = Node->getOperand(2); |
| unsigned Opc = InFlag.getOpcode(); |
| SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); |
| EVT VT = LHS.getValueType(); |
| |
| // In the base case, we can rely on the carry bit from the addsc |
| // instruction. |
| if (Opc == ISD::ADDC) { |
| SDValue Ops[3] = {LHS, RHS, InFlag}; |
| CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops); |
| return; |
| } |
| |
| assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!"); |
| |
| // The more complex case is when there is a chain of ISD::ADDE nodes like: |
| // (adde (adde (adde (addc a b) c) d) e). |
| // |
| // The addwc instruction does not write to the carry bit, instead it writes |
| // to bit 20 of the dsp control register. To match this series of nodes, each |
| // intermediate adde node must be expanded to write the carry bit before the |
| // addition. |
| |
| // Start by reading the overflow field for addsc and moving the value to the |
| // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP |
| // corresponds to reading/writing the entire control register to/from a GPR. |
| |
| SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32); |
| |
| SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32); |
| |
| SDNode *DSPCtrlField = |
| CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32, MVT::Glue, CstOne, InFlag); |
| |
| SDNode *Carry = CurDAG->getMachineNode( |
| Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne); |
| |
| SDValue Ops[4] = {SDValue(DSPCtrlField, 0), |
| CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne, |
| SDValue(Carry, 0)}; |
| SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops); |
| |
| // My reading of the MIPS DSP 3.01 specification isn't as clear as I |
| // would like about whether bit 20 always gets overwritten by addwc. |
| // Hence take an extremely conservative view and presume it's sticky. We |
| // therefore need to clear it. |
| |
| SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32); |
| |
| SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)}; |
| SDNode *DSPCtrlFinal = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps); |
| |
| SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue, |
| SDValue(DSPCtrlFinal, 0), CstOne); |
| |
| SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)}; |
| CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands); |
| } |
| |
| /// Match frameindex |
| bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { |
| EVT ValTy = Addr.getValueType(); |
| |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); |
| Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Match frameindex+offset and frameindex|offset |
| bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset( |
| SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits, |
| unsigned ShiftAmount = 0) const { |
| if (CurDAG->isBaseWithConstantOffset(Addr)) { |
| ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); |
| if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) { |
| EVT ValTy = Addr.getValueType(); |
| |
| // If the first operand is a FI, get the TargetFI Node |
| if (FrameIndexSDNode *FIN = |
| dyn_cast<FrameIndexSDNode>(Addr.getOperand(0))) |
| Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); |
| else { |
| Base = Addr.getOperand(0); |
| // If base is a FI, additional offset calculation is done in |
| // eliminateFrameIndex, otherwise we need to check the alignment |
| if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0) |
| return false; |
| } |
| |
| Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr), |
| ValTy); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// ComplexPattern used on MipsInstrInfo |
| /// Used on Mips Load/Store instructions |
| bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| // if Address is FI, get the TargetFrameIndex. |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| // on PIC code Load GA |
| if (Addr.getOpcode() == MipsISD::Wrapper) { |
| Base = Addr.getOperand(0); |
| Offset = Addr.getOperand(1); |
| return true; |
| } |
| |
| if (!TM.isPositionIndependent()) { |
| if ((Addr.getOpcode() == ISD::TargetExternalSymbol || |
| Addr.getOpcode() == ISD::TargetGlobalAddress)) |
| return false; |
| } |
| |
| // Addresses of the form FI+const or FI|const |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) |
| return true; |
| |
| // Operand is a result from an ADD. |
| if (Addr.getOpcode() == ISD::ADD) { |
| // When loading from constant pools, load the lower address part in |
| // the instruction itself. Example, instead of: |
| // lui $2, %hi($CPI1_0) |
| // addiu $2, $2, %lo($CPI1_0) |
| // lwc1 $f0, 0($2) |
| // Generate: |
| // lui $2, %hi($CPI1_0) |
| // lwc1 $f0, %lo($CPI1_0)($2) |
| if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || |
| Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { |
| SDValue Opnd0 = Addr.getOperand(1).getOperand(0); |
| if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) || |
| isa<JumpTableSDNode>(Opnd0)) { |
| Base = Addr.getOperand(0); |
| Offset = Opnd0; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// ComplexPattern used on MipsInstrInfo |
| /// Used on Mips Load/Store instructions |
| bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| Base = Addr; |
| Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType()); |
| return true; |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| return selectAddrRegImm(Addr, Base, Offset) || |
| selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9)) |
| return true; |
| |
| return false; |
| } |
| |
| /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset) |
| bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11)) |
| return true; |
| |
| return false; |
| } |
| |
| /// Used on microMIPS Load/Store unaligned instructions (12-bit offset) |
| bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) |
| return true; |
| |
| return false; |
| } |
| |
| bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) |
| return true; |
| |
| return false; |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| return selectAddrRegImm11(Addr, Base, Offset) || |
| selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| return selectAddrRegImm12(Addr, Base, Offset) || |
| selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| return selectAddrRegImm16(Addr, Base, Offset) || |
| selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) { |
| if (isa<FrameIndexSDNode>(Base)) |
| return false; |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) { |
| unsigned CnstOff = CN->getZExtValue(); |
| return (CnstOff == (CnstOff & 0x3c)); |
| } |
| |
| return false; |
| } |
| |
| // For all other cases where "lw" would be selected, don't select "lw16" |
| // because it would result in additional instructions to prepare operands. |
| if (selectAddrRegImm(Addr, Base, Offset)) |
| return false; |
| |
| return selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) |
| return true; |
| |
| return selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1)) |
| return true; |
| |
| return selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2)) |
| return true; |
| |
| return selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base, |
| SDValue &Offset) const { |
| if (selectAddrFrameIndex(Addr, Base, Offset)) |
| return true; |
| |
| if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3)) |
| return true; |
| |
| return selectAddrDefault(Addr, Base, Offset); |
| } |
| |
| // Select constant vector splats. |
| // |
| // Returns true and sets Imm if: |
| // * MSA is enabled |
| // * N is a ISD::BUILD_VECTOR representing a constant splat |
| bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm, |
| unsigned MinSizeInBits) const { |
| if (!Subtarget->hasMSA()) |
| return false; |
| |
| BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N); |
| |
| if (!Node) |
| return false; |
| |
| APInt SplatValue, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| |
| if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, |
| MinSizeInBits, !Subtarget->isLittle())) |
| return false; |
| |
| Imm = SplatValue; |
| |
| return true; |
| } |
| |
| // Select constant vector splats. |
| // |
| // In addition to the requirements of selectVSplat(), this function returns |
| // true and sets Imm if: |
| // * The splat value is the same width as the elements of the vector |
| // * The splat value fits in an integer with the specified signed-ness and |
| // width. |
| // |
| // This function looks through ISD::BITCAST nodes. |
| // TODO: This might not be appropriate for big-endian MSA since BITCAST is |
| // sometimes a shuffle in big-endian mode. |
| // |
| // It's worth noting that this function is not used as part of the selection |
| // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] |
| // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in |
| // MipsSEDAGToDAGISel::selectNode. |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, |
| unsigned ImmBitSize) const { |
| APInt ImmValue; |
| EVT EltTy = N->getValueType(0).getVectorElementType(); |
| |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0); |
| |
| if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && |
| ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| |
| if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || |
| (!Signed && ImmValue.isIntN(ImmBitSize))) { |
| Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Select constant vector splats. |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatUimm1(SDValue N, SDValue &Imm) const { |
| return selectVSplatCommon(N, Imm, false, 1); |
| } |
| |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatUimm2(SDValue N, SDValue &Imm) const { |
| return selectVSplatCommon(N, Imm, false, 2); |
| } |
| |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatUimm3(SDValue N, SDValue &Imm) const { |
| return selectVSplatCommon(N, Imm, false, 3); |
| } |
| |
| // Select constant vector splats. |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatUimm4(SDValue N, SDValue &Imm) const { |
| return selectVSplatCommon(N, Imm, false, 4); |
| } |
| |
| // Select constant vector splats. |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatUimm5(SDValue N, SDValue &Imm) const { |
| return selectVSplatCommon(N, Imm, false, 5); |
| } |
| |
| // Select constant vector splats. |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatUimm6(SDValue N, SDValue &Imm) const { |
| return selectVSplatCommon(N, Imm, false, 6); |
| } |
| |
| // Select constant vector splats. |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatUimm8(SDValue N, SDValue &Imm) const { |
| return selectVSplatCommon(N, Imm, false, 8); |
| } |
| |
| // Select constant vector splats. |
| bool MipsSEDAGToDAGISel:: |
| selectVSplatSimm5(SDValue N, SDValue &Imm) const { |
| return selectVSplatCommon(N, Imm, true, 5); |
| } |
| |
| // Select constant vector splats whose value is a power of 2. |
| // |
| // In addition to the requirements of selectVSplat(), this function returns |
| // true and sets Imm if: |
| // * The splat value is the same width as the elements of the vector |
| // * The splat value is a power of two. |
| // |
| // This function looks through ISD::BITCAST nodes. |
| // TODO: This might not be appropriate for big-endian MSA since BITCAST is |
| // sometimes a shuffle in big-endian mode. |
| bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { |
| APInt ImmValue; |
| EVT EltTy = N->getValueType(0).getVectorElementType(); |
| |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0); |
| |
| if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && |
| ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| int32_t Log2 = ImmValue.exactLogBase2(); |
| |
| if (Log2 != -1) { |
| Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Select constant vector splats whose value only has a consecutive sequence |
| // of left-most bits set (e.g. 0b11...1100...00). |
| // |
| // In addition to the requirements of selectVSplat(), this function returns |
| // true and sets Imm if: |
| // * The splat value is the same width as the elements of the vector |
| // * The splat value is a consecutive sequence of left-most bits. |
| // |
| // This function looks through ISD::BITCAST nodes. |
| // TODO: This might not be appropriate for big-endian MSA since BITCAST is |
| // sometimes a shuffle in big-endian mode. |
| bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { |
| APInt ImmValue; |
| EVT EltTy = N->getValueType(0).getVectorElementType(); |
| |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0); |
| |
| if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && |
| ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| // Extract the run of set bits starting with bit zero from the bitwise |
| // inverse of ImmValue, and test that the inverse of this is the same |
| // as the original value. |
| if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { |
| |
| Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), |
| EltTy); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| // Select constant vector splats whose value only has a consecutive sequence |
| // of right-most bits set (e.g. 0b00...0011...11). |
| // |
| // In addition to the requirements of selectVSplat(), this function returns |
| // true and sets Imm if: |
| // * The splat value is the same width as the elements of the vector |
| // * The splat value is a consecutive sequence of right-most bits. |
| // |
| // This function looks through ISD::BITCAST nodes. |
| // TODO: This might not be appropriate for big-endian MSA since BITCAST is |
| // sometimes a shuffle in big-endian mode. |
| bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { |
| APInt ImmValue; |
| EVT EltTy = N->getValueType(0).getVectorElementType(); |
| |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0); |
| |
| if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && |
| ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| // Extract the run of set bits starting with bit zero, and test that the |
| // result is the same as the original value |
| if (ImmValue == (ImmValue & ~(ImmValue + 1))) { |
| Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N), |
| EltTy); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, |
| SDValue &Imm) const { |
| APInt ImmValue; |
| EVT EltTy = N->getValueType(0).getVectorElementType(); |
| |
| if (N->getOpcode() == ISD::BITCAST) |
| N = N->getOperand(0); |
| |
| if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) && |
| ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| int32_t Log2 = (~ImmValue).exactLogBase2(); |
| |
| if (Log2 != -1) { |
| Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) { |
| unsigned Opcode = Node->getOpcode(); |
| SDLoc DL(Node); |
| |
| /// |
| // Instruction Selection not handled by the auto-generated |
| // tablegen selection should be handled here. |
| /// |
| switch(Opcode) { |
| default: break; |
| |
| case ISD::ADDE: { |
| selectAddE(Node, DL); |
| return true; |
| } |
| |
| case ISD::ConstantFP: { |
| ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node); |
| if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { |
| if (Subtarget->isGP64bit()) { |
| SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, |
| Mips::ZERO_64, MVT::i64); |
| ReplaceNode(Node, |
| CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero)); |
| } else if (Subtarget->isFP64bit()) { |
| SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, |
| Mips::ZERO, MVT::i32); |
| ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, |
| MVT::f64, Zero, Zero)); |
| } else { |
| SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, |
| Mips::ZERO, MVT::i32); |
| ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL, |
| MVT::f64, Zero, Zero)); |
| } |
| return true; |
| } |
| break; |
| } |
| |
| case ISD::Constant: { |
| const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node); |
| int64_t Imm = CN->getSExtValue(); |
| unsigned Size = CN->getValueSizeInBits(0); |
| |
| if (isInt<32>(Imm)) |
| break; |
| |
| MipsAnalyzeImmediate AnalyzeImm; |
| |
| const MipsAnalyzeImmediate::InstSeq &Seq = |
| AnalyzeImm.Analyze(Imm, Size, false); |
| |
| MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); |
| SDLoc DL(CN); |
| SDNode *RegOpnd; |
| SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), |
| DL, MVT::i64); |
| |
| // The first instruction can be a LUi which is different from other |
| // instructions (ADDiu, ORI and SLL) in that it does not have a register |
| // operand. |
| if (Inst->Opc == Mips::LUi64) |
| RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); |
| else |
| RegOpnd = |
| CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, |
| CurDAG->getRegister(Mips::ZERO_64, MVT::i64), |
| ImmOpnd); |
| |
| // The remaining instructions in the sequence are handled here. |
| for (++Inst; Inst != Seq.end(); ++Inst) { |
| ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL, |
| MVT::i64); |
| RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, |
| SDValue(RegOpnd, 0), ImmOpnd); |
| } |
| |
| ReplaceNode(Node, RegOpnd); |
| return true; |
| } |
| |
| case ISD::INTRINSIC_W_CHAIN: { |
| switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { |
| default: |
| break; |
| |
| case Intrinsic::mips_cfcmsa: { |
| SDValue ChainIn = Node->getOperand(0); |
| SDValue RegIdx = Node->getOperand(2); |
| SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, |
| getMSACtrlReg(RegIdx), MVT::i32); |
| ReplaceNode(Node, Reg.getNode()); |
| return true; |
| } |
| } |
| break; |
| } |
| |
| case ISD::INTRINSIC_WO_CHAIN: { |
| switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) { |
| default: |
| break; |
| |
| case Intrinsic::mips_move_v: |
| // Like an assignment but will always produce a move.v even if |
| // unnecessary. |
| ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL, |
| Node->getValueType(0), |
| Node->getOperand(1))); |
| return true; |
| } |
| break; |
| } |
| |
| case ISD::INTRINSIC_VOID: { |
| switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { |
| default: |
| break; |
| |
| case Intrinsic::mips_ctcmsa: { |
| SDValue ChainIn = Node->getOperand(0); |
| SDValue RegIdx = Node->getOperand(2); |
| SDValue Value = Node->getOperand(3); |
| SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, |
| getMSACtrlReg(RegIdx), Value); |
| ReplaceNode(Node, ChainOut.getNode()); |
| return true; |
| } |
| } |
| break; |
| } |
| |
| // Manually match MipsISD::Ins nodes to get the correct instruction. It has |
| // to be done in this fashion so that we respect the differences between |
| // dins and dinsm, as the difference is that the size operand has the range |
| // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which |
| // means SelectionDAGISel would have to test all the operands at once to |
| // match the instruction. |
| case MipsISD::Ins: { |
| |
| // Sanity checking for the node operands. |
| if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64) |
| return false; |
| |
| if (Node->getNumOperands() != 4) |
| return false; |
| |
| if (Node->getOperand(1)->getOpcode() != ISD::Constant || |
| Node->getOperand(2)->getOpcode() != ISD::Constant) |
| return false; |
| |
| MVT ResTy = Node->getSimpleValueType(0); |
| uint64_t Pos = Node->getConstantOperandVal(1); |
| uint64_t Size = Node->getConstantOperandVal(2); |
| |
| // Size has to be >0 for 'ins', 'dins' and 'dinsu'. |
| if (!Size) |
| return false; |
| |
| if (Pos + Size > 64) |
| return false; |
| |
| if (ResTy != MVT::i32 && ResTy != MVT::i64) |
| return false; |
| |
| unsigned Opcode = 0; |
| if (ResTy == MVT::i32) { |
| if (Pos + Size <= 32) |
| Opcode = Mips::INS; |
| } else { |
| if (Pos + Size <= 32) |
| Opcode = Mips::DINS; |
| else if (Pos < 32 && 1 < Size) |
| Opcode = Mips::DINSM; |
| else |
| Opcode = Mips::DINSU; |
| } |
| |
| if (Opcode) { |
| SDValue Ops[4] = { |
| Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32), |
| CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)}; |
| |
| ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| case MipsISD::ThreadPointer: { |
| EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout()); |
| unsigned RdhwrOpc, DestReg; |
| |
| if (PtrVT == MVT::i32) { |
| RdhwrOpc = Mips::RDHWR; |
| DestReg = Mips::V1; |
| } else { |
| RdhwrOpc = Mips::RDHWR64; |
| DestReg = Mips::V1_64; |
| } |
| |
| SDNode *Rdhwr = |
| CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), |
| CurDAG->getRegister(Mips::HWR29, MVT::i32), |
| CurDAG->getTargetConstant(0, DL, MVT::i32)); |
| SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, |
| SDValue(Rdhwr, 0)); |
| SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); |
| ReplaceNode(Node, ResNode.getNode()); |
| return true; |
| } |
| |
| case ISD::BUILD_VECTOR: { |
| // Select appropriate ldi.[bhwd] instructions for constant splats of |
| // 128-bit when MSA is enabled. Fixup any register class mismatches that |
| // occur as a result. |
| // |
| // This allows the compiler to use a wider range of immediates than would |
| // otherwise be allowed. If, for example, v4i32 could only use ldi.h then |
| // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, |
| // 0x01010101 } without using a constant pool. This would be sub-optimal |
| // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the |
| // same set/ of registers. Similarly, ldi.h isn't capable of producing { |
| // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. |
| |
| const MipsABIInfo &ABI = |
| static_cast<const MipsTargetMachine &>(TM).getABI(); |
| |
| BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node); |
| APInt SplatValue, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| unsigned LdiOp; |
| EVT ResVecTy = BVN->getValueType(0); |
| EVT ViaVecTy; |
| |
| if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) |
| return false; |
| |
| if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, |
| HasAnyUndefs, 8, |
| !Subtarget->isLittle())) |
| return false; |
| |
| switch (SplatBitSize) { |
| default: |
| return false; |
| case 8: |
| LdiOp = Mips::LDI_B; |
| ViaVecTy = MVT::v16i8; |
| break; |
| case 16: |
| LdiOp = Mips::LDI_H; |
| ViaVecTy = MVT::v8i16; |
| break; |
| case 32: |
| LdiOp = Mips::LDI_W; |
| ViaVecTy = MVT::v4i32; |
| break; |
| case 64: |
| LdiOp = Mips::LDI_D; |
| ViaVecTy = MVT::v2i64; |
| break; |
| } |
| |
| SDNode *Res; |
| |
| // If we have a signed 10 bit integer, we can splat it directly. |
| // |
| // If we have something bigger we can synthesize the value into a GPR and |
| // splat from there. |
| if (SplatValue.isSignedIntN(10)) { |
| SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL, |
| ViaVecTy.getVectorElementType()); |
| |
| Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm); |
| } else if (SplatValue.isSignedIntN(16) && |
| ((ABI.IsO32() && SplatBitSize < 64) || |
| (ABI.IsN32() || ABI.IsN64()))) { |
| // Only handle signed 16 bit values when the element size is GPR width. |
| // MIPS64 can handle all the cases but MIPS32 would need to handle |
| // negative cases specifically here. Instead, handle those cases as |
| // 64bit values. |
| |
| bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64; |
| const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu; |
| const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64; |
| SDValue ZeroVal = CurDAG->getRegister( |
| Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT); |
| |
| const unsigned FILLOp = |
| SplatBitSize == 16 |
| ? Mips::FILL_H |
| : (SplatBitSize == 32 ? Mips::FILL_W |
| : (SplatBitSize == 64 ? Mips::FILL_D : 0)); |
| |
| assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!"); |
| assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && |
| "Attempting to use fill.d on MIPS32!"); |
| |
| const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); |
| SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT); |
| |
| Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal); |
| Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0)); |
| |
| } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) { |
| // Only handle the cases where the splat size agrees with the size |
| // of the SplatValue here. |
| const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); |
| const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); |
| SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); |
| |
| SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); |
| SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); |
| |
| if (Hi) |
| Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); |
| |
| if (Lo) |
| Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, |
| Hi ? SDValue(Res, 0) : ZeroVal, LoVal); |
| |
| assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!"); |
| Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0)); |
| |
| } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 && |
| (ABI.IsN32() || ABI.IsN64())) { |
| // N32 and N64 can perform some tricks that O32 can't for signed 32 bit |
| // integers due to having 64bit registers. lui will cause the necessary |
| // zero/sign extension. |
| const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); |
| const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); |
| SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); |
| |
| SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); |
| SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); |
| |
| if (Hi) |
| Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); |
| |
| if (Lo) |
| Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, |
| Hi ? SDValue(Res, 0) : ZeroVal, LoVal); |
| |
| Res = CurDAG->getMachineNode( |
| Mips::SUBREG_TO_REG, DL, MVT::i64, |
| CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), |
| SDValue(Res, 0), |
| CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); |
| |
| Res = |
| CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); |
| |
| } else if (SplatValue.isSignedIntN(64)) { |
| // If we have a 64 bit Splat value, we perform a similar sequence to the |
| // above: |
| // |
| // MIPS32: MIPS64: |
| // lui $res, %highest(val) lui $res, %highest(val) |
| // ori $res, $res, %higher(val) ori $res, $res, %higher(val) |
| // lui $res2, %hi(val) lui $res2, %hi(val) |
| // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val) |
| // $res3 = fill $res2 dinsu $res, $res2, 0, 32 |
| // $res4 = insert.w $res3[1], $res fill.d $res |
| // splat.d $res4, 0 |
| // |
| // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves |
| // having to materialize the value by shifts and ors. |
| // |
| // FIXME: Implement the preferred sequence for MIPS64R6: |
| // |
| // MIPS64R6: |
| // ori $res, $zero, %lo(val) |
| // daui $res, $res, %hi(val) |
| // dahi $res, $res, %higher(val) |
| // dati $res, $res, %highest(cal) |
| // fill.d $res |
| // |
| |
| const unsigned Lo = SplatValue.getLoBits(16).getZExtValue(); |
| const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue(); |
| const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue(); |
| const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue(); |
| |
| SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32); |
| SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32); |
| SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32); |
| SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32); |
| SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32); |
| |
| // Independent of whether we're targeting MIPS64 or not, the basic |
| // operations are the same. Also, directly use the $zero register if |
| // the 16 bit chunk is zero. |
| // |
| // For optimization purposes we always synthesize the splat value as |
| // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG |
| // just before combining the values with dinsu to produce an i64. This |
| // enables SelectionDAG to aggressively share components of splat values |
| // where possible. |
| // |
| // FIXME: This is the general constant synthesis problem. This code |
| // should be factored out into a class shared between all the |
| // classes that need it. Specifically, for a splat size of 64 |
| // bits that's a negative number we can do better than LUi/ORi |
| // for the upper 32bits. |
| |
| if (Hi) |
| Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal); |
| |
| if (Lo) |
| Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, |
| Hi ? SDValue(Res, 0) : ZeroVal, LoVal); |
| |
| SDNode *HiRes; |
| if (Highest) |
| HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal); |
| |
| if (Higher) |
| HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32, |
| Highest ? SDValue(HiRes, 0) : ZeroVal, |
| HigherVal); |
| |
| |
| if (ABI.IsO32()) { |
| Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, |
| (Hi || Lo) ? SDValue(Res, 0) : ZeroVal); |
| |
| Res = CurDAG->getMachineNode( |
| Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0), |
| (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal, |
| CurDAG->getTargetConstant(1, DL, MVT::i32)); |
| |
| const TargetLowering *TLI = getTargetLowering(); |
| const TargetRegisterClass *RC = |
| TLI->getRegClassFor(ViaVecTy.getSimpleVT()); |
| |
| Res = CurDAG->getMachineNode( |
| Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0), |
| CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32)); |
| |
| Res = CurDAG->getMachineNode( |
| Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0), |
| CurDAG->getTargetConstant(0, DL, MVT::i32)); |
| } else if (ABI.IsN64() || ABI.IsN32()) { |
| |
| SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64); |
| const bool HiResNonZero = Highest || Higher; |
| const bool ResNonZero = Hi || Lo; |
| |
| if (HiResNonZero) |
| HiRes = CurDAG->getMachineNode( |
| Mips::SUBREG_TO_REG, DL, MVT::i64, |
| CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64), |
| SDValue(HiRes, 0), |
| CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); |
| |
| if (ResNonZero) |
| Res = CurDAG->getMachineNode( |
| Mips::SUBREG_TO_REG, DL, MVT::i64, |
| CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64), |
| SDValue(Res, 0), |
| CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64)); |
| |
| // We have 3 cases: |
| // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0 |
| // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32 |
| // Both are non zero => dinsu Res, HiRes, 32, 32 |
| // |
| // The obvious "missing" case is when both are zero, but that case is |
| // handled by the ldi case. |
| if (ResNonZero) { |
| IntegerType *Int32Ty = |
| IntegerType::get(MF->getFunction().getContext(), 32); |
| const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32); |
| SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val, |
| CurDAG->getConstant(*Const32, DL, MVT::i32), |
| CurDAG->getConstant(*Const32, DL, MVT::i32), |
| SDValue(Res, 0)}; |
| |
| Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops); |
| } else if (HiResNonZero) { |
| Res = CurDAG->getMachineNode( |
| Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0), |
| CurDAG->getTargetConstant(0, DL, MVT::i32)); |
| } else |
| llvm_unreachable( |
| "Zero splat value handled by non-zero 64bit splat synthesis!"); |
| |
| Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0)); |
| } else |
| llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!"); |
| |
| } else |
| return false; |
| |
| if (ResVecTy != ViaVecTy) { |
| // If LdiOp is writing to a different register class to ResVecTy, then |
| // fix it up here. This COPY_TO_REGCLASS should never cause a move.v |
| // since the source and destination register sets contain the same |
| // registers. |
| const TargetLowering *TLI = getTargetLowering(); |
| MVT ResVecTySimple = ResVecTy.getSimpleVT(); |
| const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); |
| Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL, |
| ResVecTy, SDValue(Res, 0), |
| CurDAG->getTargetConstant(RC->getID(), DL, |
| MVT::i32)); |
| } |
| |
| ReplaceNode(Node, Res); |
| return true; |
| } |
| |
| } |
| |
| return false; |
| } |
| |
| bool MipsSEDAGToDAGISel:: |
| SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, |
| std::vector<SDValue> &OutOps) { |
| SDValue Base, Offset; |
| |
| switch(ConstraintID) { |
| default: |
| llvm_unreachable("Unexpected asm memory constraint"); |
| // All memory constraints can at least accept raw pointers. |
| case InlineAsm::Constraint_i: |
| OutOps.push_back(Op); |
| OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); |
| return false; |
| case InlineAsm::Constraint_m: |
| if (selectAddrRegImm16(Op, Base, Offset)) { |
| OutOps.push_back(Base); |
| OutOps.push_back(Offset); |
| return false; |
| } |
| OutOps.push_back(Op); |
| OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); |
| return false; |
| case InlineAsm::Constraint_R: |
| // The 'R' constraint is supposed to be much more complicated than this. |
| // However, it's becoming less useful due to architectural changes and |
| // ought to be replaced by other constraints such as 'ZC'. |
| // For now, support 9-bit signed offsets which is supportable by all |
| // subtargets for all instructions. |
| if (selectAddrRegImm9(Op, Base, Offset)) { |
| OutOps.push_back(Base); |
| OutOps.push_back(Offset); |
| return false; |
| } |
| OutOps.push_back(Op); |
| OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); |
| return false; |
| case InlineAsm::Constraint_ZC: |
| // ZC matches whatever the pref, ll, and sc instructions can handle for the |
| // given subtarget. |
| if (Subtarget->inMicroMipsMode()) { |
| // On microMIPS, they can handle 12-bit offsets. |
| if (selectAddrRegImm12(Op, Base, Offset)) { |
| OutOps.push_back(Base); |
| OutOps.push_back(Offset); |
| return false; |
| } |
| } else if (Subtarget->hasMips32r6()) { |
| // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets. |
| if (selectAddrRegImm9(Op, Base, Offset)) { |
| OutOps.push_back(Base); |
| OutOps.push_back(Offset); |
| return false; |
| } |
| } else if (selectAddrRegImm16(Op, Base, Offset)) { |
| // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets. |
| OutOps.push_back(Base); |
| OutOps.push_back(Offset); |
| return false; |
| } |
| // In all cases, 0-bit offsets are acceptable. |
| OutOps.push_back(Op); |
| OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); |
| return false; |
| } |
| return true; |
| } |
| |
| FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new MipsSEDAGToDAGISel(TM, OptLevel); |
| } |