| //===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a printer that converts from our internal representation |
| // of machine-dependent LLVM code to GAS-format MIPS assembly language. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "MipsAsmPrinter.h" |
| #include "InstPrinter/MipsInstPrinter.h" |
| #include "MCTargetDesc/MipsABIInfo.h" |
| #include "MCTargetDesc/MipsBaseInfo.h" |
| #include "MCTargetDesc/MipsMCNaCl.h" |
| #include "MCTargetDesc/MipsMCTargetDesc.h" |
| #include "Mips.h" |
| #include "MipsMCInstLower.h" |
| #include "MipsMachineFunction.h" |
| #include "MipsSubtarget.h" |
| #include "MipsTargetMachine.h" |
| #include "MipsTargetStreamer.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstBuilder.h" |
| #include "llvm/MC/MCObjectFileInfo.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCSymbolELF.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "mips-asm-printer" |
| |
| MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const { |
| return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer()); |
| } |
| |
| bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) { |
| Subtarget = &MF.getSubtarget<MipsSubtarget>(); |
| |
| MipsFI = MF.getInfo<MipsFunctionInfo>(); |
| if (Subtarget->inMips16Mode()) |
| for (std::map< |
| const char *, |
| const Mips16HardFloatInfo::FuncSignature *>::const_iterator |
| it = MipsFI->StubsNeeded.begin(); |
| it != MipsFI->StubsNeeded.end(); ++it) { |
| const char *Symbol = it->first; |
| const Mips16HardFloatInfo::FuncSignature *Signature = it->second; |
| if (StubsNeeded.find(Symbol) == StubsNeeded.end()) |
| StubsNeeded[Symbol] = Signature; |
| } |
| MCP = MF.getConstantPool(); |
| |
| // In NaCl, all indirect jump targets must be aligned to bundle size. |
| if (Subtarget->isTargetNaCl()) |
| NaClAlignIndirectJumpTargets(MF); |
| |
| AsmPrinter::runOnMachineFunction(MF); |
| |
| emitXRayTable(); |
| |
| return true; |
| } |
| |
| bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) { |
| MCOp = MCInstLowering.LowerOperand(MO); |
| return MCOp.isValid(); |
| } |
| |
| #include "MipsGenMCPseudoLowering.inc" |
| |
| // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM, |
| // JALR, or JALR64 as appropriate for the target. |
| void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer, |
| const MachineInstr *MI) { |
| bool HasLinkReg = false; |
| bool InMicroMipsMode = Subtarget->inMicroMipsMode(); |
| MCInst TmpInst0; |
| |
| if (Subtarget->hasMips64r6()) { |
| // MIPS64r6 should use (JALR64 ZERO_64, $rs) |
| TmpInst0.setOpcode(Mips::JALR64); |
| HasLinkReg = true; |
| } else if (Subtarget->hasMips32r6()) { |
| // MIPS32r6 should use (JALR ZERO, $rs) |
| if (InMicroMipsMode) |
| TmpInst0.setOpcode(Mips::JRC16_MMR6); |
| else { |
| TmpInst0.setOpcode(Mips::JALR); |
| HasLinkReg = true; |
| } |
| } else if (Subtarget->inMicroMipsMode()) |
| // microMIPS should use (JR_MM $rs) |
| TmpInst0.setOpcode(Mips::JR_MM); |
| else { |
| // Everything else should use (JR $rs) |
| TmpInst0.setOpcode(Mips::JR); |
| } |
| |
| MCOperand MCOp; |
| |
| if (HasLinkReg) { |
| unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO; |
| TmpInst0.addOperand(MCOperand::createReg(ZeroReg)); |
| } |
| |
| lowerOperand(MI->getOperand(0), MCOp); |
| TmpInst0.addOperand(MCOp); |
| |
| EmitToStreamer(OutStreamer, TmpInst0); |
| } |
| |
| void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) { |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| unsigned Opc = MI->getOpcode(); |
| TS.forbidModuleDirective(); |
| |
| if (MI->isDebugValue()) { |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| |
| PrintDebugValueComment(MI, OS); |
| return; |
| } |
| if (MI->isDebugLabel()) |
| return; |
| |
| // If we just ended a constant pool, mark it as such. |
| if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) { |
| OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); |
| InConstantPool = false; |
| } |
| if (Opc == Mips::CONSTPOOL_ENTRY) { |
| // CONSTPOOL_ENTRY - This instruction represents a floating |
| // constant pool in the function. The first operand is the ID# |
| // for this instruction, the second is the index into the |
| // MachineConstantPool that this is, the third is the size in |
| // bytes of this constant pool entry. |
| // The required alignment is specified on the basic block holding this MI. |
| // |
| unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); |
| unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); |
| |
| // If this is the first entry of the pool, mark it. |
| if (!InConstantPool) { |
| OutStreamer->EmitDataRegion(MCDR_DataRegion); |
| InConstantPool = true; |
| } |
| |
| OutStreamer->EmitLabel(GetCPISymbol(LabelId)); |
| |
| const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; |
| if (MCPE.isMachineConstantPoolEntry()) |
| EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); |
| else |
| EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal); |
| return; |
| } |
| |
| switch (Opc) { |
| case Mips::PATCHABLE_FUNCTION_ENTER: |
| LowerPATCHABLE_FUNCTION_ENTER(*MI); |
| return; |
| case Mips::PATCHABLE_FUNCTION_EXIT: |
| LowerPATCHABLE_FUNCTION_EXIT(*MI); |
| return; |
| case Mips::PATCHABLE_TAIL_CALL: |
| LowerPATCHABLE_TAIL_CALL(*MI); |
| return; |
| } |
| |
| MachineBasicBlock::const_instr_iterator I = MI->getIterator(); |
| MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end(); |
| |
| do { |
| // Do any auto-generated pseudo lowerings. |
| if (emitPseudoExpansionLowering(*OutStreamer, &*I)) |
| continue; |
| |
| if (I->getOpcode() == Mips::PseudoReturn || |
| I->getOpcode() == Mips::PseudoReturn64 || |
| I->getOpcode() == Mips::PseudoIndirectBranch || |
| I->getOpcode() == Mips::PseudoIndirectBranch64 || |
| I->getOpcode() == Mips::TAILCALLREG || |
| I->getOpcode() == Mips::TAILCALLREG64) { |
| emitPseudoIndirectBranch(*OutStreamer, &*I); |
| continue; |
| } |
| |
| // The inMips16Mode() test is not permanent. |
| // Some instructions are marked as pseudo right now which |
| // would make the test fail for the wrong reason but |
| // that will be fixed soon. We need this here because we are |
| // removing another test for this situation downstream in the |
| // callchain. |
| // |
| if (I->isPseudo() && !Subtarget->inMips16Mode() |
| && !isLongBranchPseudo(I->getOpcode())) |
| llvm_unreachable("Pseudo opcode found in EmitInstruction()"); |
| |
| MCInst TmpInst0; |
| MCInstLowering.Lower(&*I, TmpInst0); |
| EmitToStreamer(*OutStreamer, TmpInst0); |
| } while ((++I != E) && I->isInsideBundle()); // Delay slot check |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // |
| // Mips Asm Directives |
| // |
| // -- Frame directive "frame Stackpointer, Stacksize, RARegister" |
| // Describe the stack frame. |
| // |
| // -- Mask directives "(f)mask bitmask, offset" |
| // Tells the assembler which registers are saved and where. |
| // bitmask - contain a little endian bitset indicating which registers are |
| // saved on function prologue (e.g. with a 0x80000000 mask, the |
| // assembler knows the register 31 (RA) is saved at prologue. |
| // offset - the position before stack pointer subtraction indicating where |
| // the first saved register on prologue is located. (e.g. with a |
| // |
| // Consider the following function prologue: |
| // |
| // .frame $fp,48,$ra |
| // .mask 0xc0000000,-8 |
| // addiu $sp, $sp, -48 |
| // sw $ra, 40($sp) |
| // sw $fp, 36($sp) |
| // |
| // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and |
| // 30 (FP) are saved at prologue. As the save order on prologue is from |
| // left to right, RA is saved first. A -8 offset means that after the |
| // stack pointer subtration, the first register in the mask (RA) will be |
| // saved at address 48-8=40. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Mask directives |
| //===----------------------------------------------------------------------===// |
| |
| // Create a bitmask with all callee saved registers for CPU or Floating Point |
| // registers. For CPU registers consider RA, GP and FP for saving if necessary. |
| void MipsAsmPrinter::printSavedRegsBitmask() { |
| // CPU and FPU Saved Registers Bitmasks |
| unsigned CPUBitmask = 0, FPUBitmask = 0; |
| int CPUTopSavedRegOff, FPUTopSavedRegOff; |
| |
| // Set the CPU and FPU Bitmasks |
| const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
| const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); |
| // size of stack area to which FP callee-saved regs are saved. |
| unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8; |
| unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8; |
| unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8; |
| bool HasAFGR64Reg = false; |
| unsigned CSFPRegsSize = 0; |
| |
| for (const auto &I : CSI) { |
| unsigned Reg = I.getReg(); |
| unsigned RegNum = TRI->getEncodingValue(Reg); |
| |
| // If it's a floating point register, set the FPU Bitmask. |
| // If it's a general purpose register, set the CPU Bitmask. |
| if (Mips::FGR32RegClass.contains(Reg)) { |
| FPUBitmask |= (1 << RegNum); |
| CSFPRegsSize += FGR32RegSize; |
| } else if (Mips::AFGR64RegClass.contains(Reg)) { |
| FPUBitmask |= (3 << RegNum); |
| CSFPRegsSize += AFGR64RegSize; |
| HasAFGR64Reg = true; |
| } else if (Mips::GPR32RegClass.contains(Reg)) |
| CPUBitmask |= (1 << RegNum); |
| } |
| |
| // FP Regs are saved right below where the virtual frame pointer points to. |
| FPUTopSavedRegOff = FPUBitmask ? |
| (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0; |
| |
| // CPU Regs are saved below FP Regs. |
| CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0; |
| |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| // Print CPUBitmask |
| TS.emitMask(CPUBitmask, CPUTopSavedRegOff); |
| |
| // Print FPUBitmask |
| TS.emitFMask(FPUBitmask, FPUTopSavedRegOff); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Frame and Set directives |
| //===----------------------------------------------------------------------===// |
| |
| /// Frame Directive |
| void MipsAsmPrinter::emitFrameDirective() { |
| const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo(); |
| |
| unsigned stackReg = RI.getFrameRegister(*MF); |
| unsigned returnReg = RI.getRARegister(); |
| unsigned stackSize = MF->getFrameInfo().getStackSize(); |
| |
| getTargetStreamer().emitFrame(stackReg, stackSize, returnReg); |
| } |
| |
| /// Emit Set directives. |
| const char *MipsAsmPrinter::getCurrentABIString() const { |
| switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) { |
| case MipsABIInfo::ABI::O32: return "abi32"; |
| case MipsABIInfo::ABI::N32: return "abiN32"; |
| case MipsABIInfo::ABI::N64: return "abi64"; |
| default: llvm_unreachable("Unknown Mips ABI"); |
| } |
| } |
| |
| void MipsAsmPrinter::EmitFunctionEntryLabel() { |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| |
| // NaCl sandboxing requires that indirect call instructions are masked. |
| // This means that function entry points should be bundle-aligned. |
| if (Subtarget->isTargetNaCl()) |
| EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN)); |
| |
| if (Subtarget->inMicroMipsMode()) { |
| TS.emitDirectiveSetMicroMips(); |
| TS.setUsesMicroMips(); |
| TS.updateABIInfo(*Subtarget); |
| } else |
| TS.emitDirectiveSetNoMicroMips(); |
| |
| if (Subtarget->inMips16Mode()) |
| TS.emitDirectiveSetMips16(); |
| else |
| TS.emitDirectiveSetNoMips16(); |
| |
| TS.emitDirectiveEnt(*CurrentFnSym); |
| OutStreamer->EmitLabel(CurrentFnSym); |
| } |
| |
| /// EmitFunctionBodyStart - Targets can override this to emit stuff before |
| /// the first basic block in the function. |
| void MipsAsmPrinter::EmitFunctionBodyStart() { |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| |
| MCInstLowering.Initialize(&MF->getContext()); |
| |
| bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked); |
| if (!IsNakedFunction) |
| emitFrameDirective(); |
| |
| if (!IsNakedFunction) |
| printSavedRegsBitmask(); |
| |
| if (!Subtarget->inMips16Mode()) { |
| TS.emitDirectiveSetNoReorder(); |
| TS.emitDirectiveSetNoMacro(); |
| TS.emitDirectiveSetNoAt(); |
| } |
| } |
| |
| /// EmitFunctionBodyEnd - Targets can override this to emit stuff after |
| /// the last basic block in the function. |
| void MipsAsmPrinter::EmitFunctionBodyEnd() { |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| |
| // There are instruction for this macros, but they must |
| // always be at the function end, and we can't emit and |
| // break with BB logic. |
| if (!Subtarget->inMips16Mode()) { |
| TS.emitDirectiveSetAt(); |
| TS.emitDirectiveSetMacro(); |
| TS.emitDirectiveSetReorder(); |
| } |
| TS.emitDirectiveEnd(CurrentFnSym->getName()); |
| // Make sure to terminate any constant pools that were at the end |
| // of the function. |
| if (!InConstantPool) |
| return; |
| InConstantPool = false; |
| OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); |
| } |
| |
| void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { |
| AsmPrinter::EmitBasicBlockEnd(MBB); |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| if (MBB.empty()) |
| TS.emitDirectiveInsn(); |
| } |
| |
| /// isBlockOnlyReachableByFallthough - Return true if the basic block has |
| /// exactly one predecessor and the control transfer mechanism between |
| /// the predecessor and this block is a fall-through. |
| bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock* |
| MBB) const { |
| // The predecessor has to be immediately before this block. |
| const MachineBasicBlock *Pred = *MBB->pred_begin(); |
| |
| // If the predecessor is a switch statement, assume a jump table |
| // implementation, so it is not a fall through. |
| if (const BasicBlock *bb = Pred->getBasicBlock()) |
| if (isa<SwitchInst>(bb->getTerminator())) |
| return false; |
| |
| // If this is a landing pad, it isn't a fall through. If it has no preds, |
| // then nothing falls through to it. |
| if (MBB->isEHPad() || MBB->pred_empty()) |
| return false; |
| |
| // If there isn't exactly one predecessor, it can't be a fall through. |
| MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; |
| ++PI2; |
| |
| if (PI2 != MBB->pred_end()) |
| return false; |
| |
| // The predecessor has to be immediately before this block. |
| if (!Pred->isLayoutSuccessor(MBB)) |
| return false; |
| |
| // If the block is completely empty, then it definitely does fall through. |
| if (Pred->empty()) |
| return true; |
| |
| // Otherwise, check the last instruction. |
| // Check if the last terminator is an unconditional branch. |
| MachineBasicBlock::const_iterator I = Pred->end(); |
| while (I != Pred->begin() && !(--I)->isTerminator()) ; |
| |
| return !I->isBarrier(); |
| } |
| |
| // Print out an operand for an inline asm expression. |
| bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, |
| unsigned AsmVariant, const char *ExtraCode, |
| raw_ostream &O) { |
| // Does this asm operand have a single letter operand modifier? |
| if (ExtraCode && ExtraCode[0]) { |
| if (ExtraCode[1] != 0) return true; // Unknown modifier. |
| |
| const MachineOperand &MO = MI->getOperand(OpNum); |
| switch (ExtraCode[0]) { |
| default: |
| // See if this is a generic print operand |
| return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O); |
| case 'X': // hex const int |
| if ((MO.getType()) != MachineOperand::MO_Immediate) |
| return true; |
| O << "0x" << Twine::utohexstr(MO.getImm()); |
| return false; |
| case 'x': // hex const int (low 16 bits) |
| if ((MO.getType()) != MachineOperand::MO_Immediate) |
| return true; |
| O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff); |
| return false; |
| case 'd': // decimal const int |
| if ((MO.getType()) != MachineOperand::MO_Immediate) |
| return true; |
| O << MO.getImm(); |
| return false; |
| case 'm': // decimal const int minus 1 |
| if ((MO.getType()) != MachineOperand::MO_Immediate) |
| return true; |
| O << MO.getImm() - 1; |
| return false; |
| case 'y': // exact log2 |
| if ((MO.getType()) != MachineOperand::MO_Immediate) |
| return true; |
| if (!isPowerOf2_64(MO.getImm())) |
| return true; |
| O << Log2_64(MO.getImm()); |
| return false; |
| case 'z': |
| // $0 if zero, regular printing otherwise |
| if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) { |
| O << "$0"; |
| return false; |
| } |
| // If not, call printOperand as normal. |
| break; |
| case 'D': // Second part of a double word register operand |
| case 'L': // Low order register of a double word register operand |
| case 'M': // High order register of a double word register operand |
| { |
| if (OpNum == 0) |
| return true; |
| const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); |
| if (!FlagsOP.isImm()) |
| return true; |
| unsigned Flags = FlagsOP.getImm(); |
| unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); |
| // Number of registers represented by this operand. We are looking |
| // for 2 for 32 bit mode and 1 for 64 bit mode. |
| if (NumVals != 2) { |
| if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) { |
| unsigned Reg = MO.getReg(); |
| O << '$' << MipsInstPrinter::getRegisterName(Reg); |
| return false; |
| } |
| return true; |
| } |
| |
| unsigned RegOp = OpNum; |
| if (!Subtarget->isGP64bit()){ |
| // Endianness reverses which register holds the high or low value |
| // between M and L. |
| switch(ExtraCode[0]) { |
| case 'M': |
| RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum; |
| break; |
| case 'L': |
| RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1; |
| break; |
| case 'D': // Always the second part |
| RegOp = OpNum + 1; |
| } |
| if (RegOp >= MI->getNumOperands()) |
| return true; |
| const MachineOperand &MO = MI->getOperand(RegOp); |
| if (!MO.isReg()) |
| return true; |
| unsigned Reg = MO.getReg(); |
| O << '$' << MipsInstPrinter::getRegisterName(Reg); |
| return false; |
| } |
| } |
| case 'w': |
| // Print MSA registers for the 'f' constraint |
| // In LLVM, the 'w' modifier doesn't need to do anything. |
| // We can just call printOperand as normal. |
| break; |
| } |
| } |
| |
| printOperand(MI, OpNum, O); |
| return false; |
| } |
| |
| bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, |
| unsigned OpNum, unsigned AsmVariant, |
| const char *ExtraCode, |
| raw_ostream &O) { |
| assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands"); |
| const MachineOperand &BaseMO = MI->getOperand(OpNum); |
| const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1); |
| assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand."); |
| assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand."); |
| int Offset = OffsetMO.getImm(); |
| |
| // Currently we are expecting either no ExtraCode or 'D','M','L'. |
| if (ExtraCode) { |
| switch (ExtraCode[0]) { |
| case 'D': |
| Offset += 4; |
| break; |
| case 'M': |
| if (Subtarget->isLittle()) |
| Offset += 4; |
| break; |
| case 'L': |
| if (!Subtarget->isLittle()) |
| Offset += 4; |
| break; |
| default: |
| return true; // Unknown modifier. |
| } |
| } |
| |
| O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) |
| << ")"; |
| |
| return false; |
| } |
| |
| void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum, |
| raw_ostream &O) { |
| const MachineOperand &MO = MI->getOperand(opNum); |
| bool closeP = false; |
| |
| if (MO.getTargetFlags()) |
| closeP = true; |
| |
| switch(MO.getTargetFlags()) { |
| case MipsII::MO_GPREL: O << "%gp_rel("; break; |
| case MipsII::MO_GOT_CALL: O << "%call16("; break; |
| case MipsII::MO_GOT: O << "%got("; break; |
| case MipsII::MO_ABS_HI: O << "%hi("; break; |
| case MipsII::MO_ABS_LO: O << "%lo("; break; |
| case MipsII::MO_HIGHER: O << "%higher("; break; |
| case MipsII::MO_HIGHEST: O << "%highest(("; break; |
| case MipsII::MO_TLSGD: O << "%tlsgd("; break; |
| case MipsII::MO_GOTTPREL: O << "%gottprel("; break; |
| case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break; |
| case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break; |
| case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break; |
| case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break; |
| case MipsII::MO_GOT_DISP: O << "%got_disp("; break; |
| case MipsII::MO_GOT_PAGE: O << "%got_page("; break; |
| case MipsII::MO_GOT_OFST: O << "%got_ofst("; break; |
| } |
| |
| switch (MO.getType()) { |
| case MachineOperand::MO_Register: |
| O << '$' |
| << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower(); |
| break; |
| |
| case MachineOperand::MO_Immediate: |
| O << MO.getImm(); |
| break; |
| |
| case MachineOperand::MO_MachineBasicBlock: |
| MO.getMBB()->getSymbol()->print(O, MAI); |
| return; |
| |
| case MachineOperand::MO_GlobalAddress: |
| getSymbol(MO.getGlobal())->print(O, MAI); |
| break; |
| |
| case MachineOperand::MO_BlockAddress: { |
| MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress()); |
| O << BA->getName(); |
| break; |
| } |
| |
| case MachineOperand::MO_ConstantPoolIndex: |
| O << getDataLayout().getPrivateGlobalPrefix() << "CPI" |
| << getFunctionNumber() << "_" << MO.getIndex(); |
| if (MO.getOffset()) |
| O << "+" << MO.getOffset(); |
| break; |
| |
| default: |
| llvm_unreachable("<unknown operand type>"); |
| } |
| |
| if (closeP) O << ")"; |
| } |
| |
| void MipsAsmPrinter:: |
| printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) { |
| // Load/Store memory operands -- imm($reg) |
| // If PIC target the target is loaded as the |
| // pattern lw $25,%call16($28) |
| |
| // opNum can be invalid if instruction has reglist as operand. |
| // MemOperand is always last operand of instruction (base + offset). |
| switch (MI->getOpcode()) { |
| default: |
| break; |
| case Mips::SWM32_MM: |
| case Mips::LWM32_MM: |
| opNum = MI->getNumOperands() - 2; |
| break; |
| } |
| |
| printOperand(MI, opNum+1, O); |
| O << "("; |
| printOperand(MI, opNum, O); |
| O << ")"; |
| } |
| |
| void MipsAsmPrinter:: |
| printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) { |
| // when using stack locations for not load/store instructions |
| // print the same way as all normal 3 operand instructions. |
| printOperand(MI, opNum, O); |
| O << ", "; |
| printOperand(MI, opNum+1, O); |
| } |
| |
| void MipsAsmPrinter:: |
| printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O, |
| const char *Modifier) { |
| const MachineOperand &MO = MI->getOperand(opNum); |
| O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm()); |
| } |
| |
| void MipsAsmPrinter:: |
| printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) { |
| for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) { |
| if (i != opNum) O << ", "; |
| printOperand(MI, i, O); |
| } |
| } |
| |
| void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) { |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| |
| // MipsTargetStreamer has an initialization order problem when emitting an |
| // object file directly (see MipsTargetELFStreamer for full details). Work |
| // around it by re-initializing the PIC state here. |
| TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent()); |
| |
| // Compute MIPS architecture attributes based on the default subtarget |
| // that we'd have constructed. Module level directives aren't LTO |
| // clean anyhow. |
| // FIXME: For ifunc related functions we could iterate over and look |
| // for a feature string that doesn't match the default one. |
| const Triple &TT = TM.getTargetTriple(); |
| StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU()); |
| StringRef FS = TM.getTargetFeatureString(); |
| const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM); |
| const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, 0); |
| |
| bool IsABICalls = STI.isABICalls(); |
| const MipsABIInfo &ABI = MTM.getABI(); |
| if (IsABICalls) { |
| TS.emitDirectiveAbiCalls(); |
| // FIXME: This condition should be a lot more complicated that it is here. |
| // Ideally it should test for properties of the ABI and not the ABI |
| // itself. |
| // For the moment, I'm only correcting enough to make MIPS-IV work. |
| if (!isPositionIndependent() && STI.hasSym32()) |
| TS.emitDirectiveOptionPic0(); |
| } |
| |
| // Tell the assembler which ABI we are using |
| std::string SectionName = std::string(".mdebug.") + getCurrentABIString(); |
| OutStreamer->SwitchSection( |
| OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0)); |
| |
| // NaN: At the moment we only support: |
| // 1. .nan legacy (default) |
| // 2. .nan 2008 |
| STI.isNaN2008() ? TS.emitDirectiveNaN2008() |
| : TS.emitDirectiveNaNLegacy(); |
| |
| // TODO: handle O64 ABI |
| |
| TS.updateABIInfo(STI); |
| |
| // We should always emit a '.module fp=...' but binutils 2.24 does not accept |
| // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or |
| // -mfp64) and omit it otherwise. |
| if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) |
| TS.emitDirectiveModuleFP(); |
| |
| // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not |
| // accept it. We therefore emit it when it contradicts the default or an |
| // option has changed the default (i.e. FPXX) and omit it otherwise. |
| if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX())) |
| TS.emitDirectiveModuleOddSPReg(); |
| } |
| |
| void MipsAsmPrinter::emitInlineAsmStart() const { |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| |
| // GCC's choice of assembler options for inline assembly code ('at', 'macro' |
| // and 'reorder') is different from LLVM's choice for generated code ('noat', |
| // 'nomacro' and 'noreorder'). |
| // In order to maintain compatibility with inline assembly code which depends |
| // on GCC's assembler options being used, we have to switch to those options |
| // for the duration of the inline assembly block and then switch back. |
| TS.emitDirectiveSetPush(); |
| TS.emitDirectiveSetAt(); |
| TS.emitDirectiveSetMacro(); |
| TS.emitDirectiveSetReorder(); |
| OutStreamer->AddBlankLine(); |
| } |
| |
| void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, |
| const MCSubtargetInfo *EndInfo) const { |
| OutStreamer->AddBlankLine(); |
| getTargetStreamer().emitDirectiveSetPop(); |
| } |
| |
| void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) { |
| MCInst I; |
| I.setOpcode(Mips::JAL); |
| I.addOperand( |
| MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext))); |
| OutStreamer->EmitInstruction(I, STI); |
| } |
| |
| void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode, |
| unsigned Reg) { |
| MCInst I; |
| I.setOpcode(Opcode); |
| I.addOperand(MCOperand::createReg(Reg)); |
| OutStreamer->EmitInstruction(I, STI); |
| } |
| |
| void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI, |
| unsigned Opcode, unsigned Reg1, |
| unsigned Reg2) { |
| MCInst I; |
| // |
| // Because of the current td files for Mips32, the operands for MTC1 |
| // appear backwards from their normal assembly order. It's not a trivial |
| // change to fix this in the td file so we adjust for it here. |
| // |
| if (Opcode == Mips::MTC1) { |
| unsigned Temp = Reg1; |
| Reg1 = Reg2; |
| Reg2 = Temp; |
| } |
| I.setOpcode(Opcode); |
| I.addOperand(MCOperand::createReg(Reg1)); |
| I.addOperand(MCOperand::createReg(Reg2)); |
| OutStreamer->EmitInstruction(I, STI); |
| } |
| |
| void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI, |
| unsigned Opcode, unsigned Reg1, |
| unsigned Reg2, unsigned Reg3) { |
| MCInst I; |
| I.setOpcode(Opcode); |
| I.addOperand(MCOperand::createReg(Reg1)); |
| I.addOperand(MCOperand::createReg(Reg2)); |
| I.addOperand(MCOperand::createReg(Reg3)); |
| OutStreamer->EmitInstruction(I, STI); |
| } |
| |
| void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI, |
| unsigned MovOpc, unsigned Reg1, |
| unsigned Reg2, unsigned FPReg1, |
| unsigned FPReg2, bool LE) { |
| if (!LE) { |
| unsigned temp = Reg1; |
| Reg1 = Reg2; |
| Reg2 = temp; |
| } |
| EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1); |
| EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2); |
| } |
| |
| void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI, |
| Mips16HardFloatInfo::FPParamVariant PV, |
| bool LE, bool ToFP) { |
| using namespace Mips16HardFloatInfo; |
| |
| unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1; |
| switch (PV) { |
| case FSig: |
| EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); |
| break; |
| case FFSig: |
| EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE); |
| break; |
| case FDSig: |
| EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12); |
| EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); |
| break; |
| case DSig: |
| EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); |
| break; |
| case DDSig: |
| EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); |
| EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE); |
| break; |
| case DFSig: |
| EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE); |
| EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14); |
| break; |
| case NoSig: |
| return; |
| } |
| } |
| |
| void MipsAsmPrinter::EmitSwapFPIntRetval( |
| const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV, |
| bool LE) { |
| using namespace Mips16HardFloatInfo; |
| |
| unsigned MovOpc = Mips::MFC1; |
| switch (RV) { |
| case FRet: |
| EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0); |
| break; |
| case DRet: |
| EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); |
| break; |
| case CFRet: |
| EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); |
| break; |
| case CDRet: |
| EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE); |
| EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE); |
| break; |
| case NoFPRet: |
| break; |
| } |
| } |
| |
| void MipsAsmPrinter::EmitFPCallStub( |
| const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) { |
| using namespace Mips16HardFloatInfo; |
| |
| MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol)); |
| bool LE = getDataLayout().isLittleEndian(); |
| // Construct a local MCSubtargetInfo here. |
| // This is because the MachineFunction won't exist (but have not yet been |
| // freed) and since we're at the global level we can use the default |
| // constructed subtarget. |
| std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( |
| TM.getTargetTriple().str(), TM.getTargetCPU(), |
| TM.getTargetFeatureString())); |
| |
| // |
| // .global xxxx |
| // |
| OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global); |
| const char *RetType; |
| // |
| // make the comment field identifying the return and parameter |
| // types of the floating point stub |
| // # Stub function to call rettype xxxx (params) |
| // |
| switch (Signature->RetSig) { |
| case FRet: |
| RetType = "float"; |
| break; |
| case DRet: |
| RetType = "double"; |
| break; |
| case CFRet: |
| RetType = "complex"; |
| break; |
| case CDRet: |
| RetType = "double complex"; |
| break; |
| case NoFPRet: |
| RetType = ""; |
| break; |
| } |
| const char *Parms; |
| switch (Signature->ParamSig) { |
| case FSig: |
| Parms = "float"; |
| break; |
| case FFSig: |
| Parms = "float, float"; |
| break; |
| case FDSig: |
| Parms = "float, double"; |
| break; |
| case DSig: |
| Parms = "double"; |
| break; |
| case DDSig: |
| Parms = "double, double"; |
| break; |
| case DFSig: |
| Parms = "double, float"; |
| break; |
| case NoSig: |
| Parms = ""; |
| break; |
| } |
| OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " + |
| Twine(Symbol) + " (" + Twine(Parms) + ")"); |
| // |
| // probably not necessary but we save and restore the current section state |
| // |
| OutStreamer->PushSection(); |
| // |
| // .section mips16.call.fpxxxx,"ax",@progbits |
| // |
| MCSectionELF *M = OutContext.getELFSection( |
| ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS, |
| ELF::SHF_ALLOC | ELF::SHF_EXECINSTR); |
| OutStreamer->SwitchSection(M, nullptr); |
| // |
| // .align 2 |
| // |
| OutStreamer->EmitValueToAlignment(4); |
| MipsTargetStreamer &TS = getTargetStreamer(); |
| // |
| // .set nomips16 |
| // .set nomicromips |
| // |
| TS.emitDirectiveSetNoMips16(); |
| TS.emitDirectiveSetNoMicroMips(); |
| // |
| // .ent __call_stub_fp_xxxx |
| // .type __call_stub_fp_xxxx,@function |
| // __call_stub_fp_xxxx: |
| // |
| std::string x = "__call_stub_fp_" + std::string(Symbol); |
| MCSymbolELF *Stub = |
| cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x))); |
| TS.emitDirectiveEnt(*Stub); |
| MCSymbol *MType = |
| OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol)); |
| OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction); |
| OutStreamer->EmitLabel(Stub); |
| |
| // Only handle non-pic for now. |
| assert(!isPositionIndependent() && |
| "should not be here if we are compiling pic"); |
| TS.emitDirectiveSetReorder(); |
| // |
| // We need to add a MipsMCExpr class to MCTargetDesc to fully implement |
| // stubs without raw text but this current patch is for compiler generated |
| // functions and they all return some value. |
| // The calling sequence for non pic is different in that case and we need |
| // to implement %lo and %hi in order to handle the case of no return value |
| // See the corresponding method in Mips16HardFloat for details. |
| // |
| // mov the return address to S2. |
| // we have no stack space to store it and we are about to make another call. |
| // We need to make sure that the enclosing function knows to save S2 |
| // This should have already been handled. |
| // |
| // Mov $18, $31 |
| |
| EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO); |
| |
| EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true); |
| |
| // Jal xxxx |
| // |
| EmitJal(*STI, MSymbol); |
| |
| // fix return values |
| EmitSwapFPIntRetval(*STI, Signature->RetSig, LE); |
| // |
| // do the return |
| // if (Signature->RetSig == NoFPRet) |
| // llvm_unreachable("should not be any stubs here with no return value"); |
| // else |
| EmitInstrReg(*STI, Mips::JR, Mips::S2); |
| |
| MCSymbol *Tmp = OutContext.createTempSymbol(); |
| OutStreamer->EmitLabel(Tmp); |
| const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext); |
| const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext); |
| const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext); |
| OutStreamer->emitELFSize(Stub, T_min_E); |
| TS.emitDirectiveEnd(x); |
| OutStreamer->PopSection(); |
| } |
| |
| void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) { |
| // Emit needed stubs |
| // |
| for (std::map< |
| const char *, |
| const Mips16HardFloatInfo::FuncSignature *>::const_iterator |
| it = StubsNeeded.begin(); |
| it != StubsNeeded.end(); ++it) { |
| const char *Symbol = it->first; |
| const Mips16HardFloatInfo::FuncSignature *Signature = it->second; |
| EmitFPCallStub(Symbol, Signature); |
| } |
| // return to the text section |
| OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection()); |
| } |
| |
| void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) { |
| const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11; |
| // For mips32 we want to emit the following pattern: |
| // |
| // .Lxray_sled_N: |
| // ALIGN |
| // B .tmpN |
| // 11 NOP instructions (44 bytes) |
| // ADDIU T9, T9, 52 |
| // .tmpN |
| // |
| // We need the 44 bytes (11 instructions) because at runtime, we'd |
| // be patching over the full 48 bytes (12 instructions) with the following |
| // pattern: |
| // |
| // ADDIU SP, SP, -8 |
| // NOP |
| // SW RA, 4(SP) |
| // SW T9, 0(SP) |
| // LUI T9, %hi(__xray_FunctionEntry/Exit) |
| // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) |
| // LUI T0, %hi(function_id) |
| // JALR T9 |
| // ORI T0, T0, %lo(function_id) |
| // LW T9, 0(SP) |
| // LW RA, 4(SP) |
| // ADDIU SP, SP, 8 |
| // |
| // We add 52 bytes to t9 because we want to adjust the function pointer to |
| // the actual start of function i.e. the address just after the noop sled. |
| // We do this because gp displacement relocation is emitted at the start of |
| // of the function i.e after the nop sled and to correctly calculate the |
| // global offset table address, t9 must hold the address of the instruction |
| // containing the gp displacement relocation. |
| // FIXME: Is this correct for the static relocation model? |
| // |
| // For mips64 we want to emit the following pattern: |
| // |
| // .Lxray_sled_N: |
| // ALIGN |
| // B .tmpN |
| // 15 NOP instructions (60 bytes) |
| // .tmpN |
| // |
| // We need the 60 bytes (15 instructions) because at runtime, we'd |
| // be patching over the full 64 bytes (16 instructions) with the following |
| // pattern: |
| // |
| // DADDIU SP, SP, -16 |
| // NOP |
| // SD RA, 8(SP) |
| // SD T9, 0(SP) |
| // LUI T9, %highest(__xray_FunctionEntry/Exit) |
| // ORI T9, T9, %higher(__xray_FunctionEntry/Exit) |
| // DSLL T9, T9, 16 |
| // ORI T9, T9, %hi(__xray_FunctionEntry/Exit) |
| // DSLL T9, T9, 16 |
| // ORI T9, T9, %lo(__xray_FunctionEntry/Exit) |
| // LUI T0, %hi(function_id) |
| // JALR T9 |
| // ADDIU T0, T0, %lo(function_id) |
| // LD T9, 0(SP) |
| // LD RA, 8(SP) |
| // DADDIU SP, SP, 16 |
| // |
| OutStreamer->EmitCodeAlignment(4); |
| auto CurSled = OutContext.createTempSymbol("xray_sled_", true); |
| OutStreamer->EmitLabel(CurSled); |
| auto Target = OutContext.createTempSymbol(); |
| |
| // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual |
| // start of function |
| const MCExpr *TargetExpr = MCSymbolRefExpr::create( |
| Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext); |
| EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ) |
| .addReg(Mips::ZERO) |
| .addReg(Mips::ZERO) |
| .addExpr(TargetExpr)); |
| |
| for (int8_t I = 0; I < NoopsInSledCount; I++) |
| EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL) |
| .addReg(Mips::ZERO) |
| .addReg(Mips::ZERO) |
| .addImm(0)); |
| |
| OutStreamer->EmitLabel(Target); |
| |
| if (!Subtarget->isGP64bit()) { |
| EmitToStreamer(*OutStreamer, |
| MCInstBuilder(Mips::ADDiu) |
| .addReg(Mips::T9) |
| .addReg(Mips::T9) |
| .addImm(0x34)); |
| } |
| |
| recordSled(CurSled, MI, Kind); |
| } |
| |
| void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) { |
| EmitSled(MI, SledKind::FUNCTION_ENTER); |
| } |
| |
| void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) { |
| EmitSled(MI, SledKind::FUNCTION_EXIT); |
| } |
| |
| void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) { |
| EmitSled(MI, SledKind::TAIL_CALL); |
| } |
| |
| void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI, |
| raw_ostream &OS) { |
| // TODO: implement |
| } |
| |
| // Emit .dtprelword or .dtpreldword directive |
| // and value for debug thread local expression. |
| void MipsAsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, |
| unsigned Size) const { |
| switch (Size) { |
| case 4: |
| OutStreamer->EmitDTPRel32Value(Value); |
| break; |
| case 8: |
| OutStreamer->EmitDTPRel64Value(Value); |
| break; |
| default: |
| llvm_unreachable("Unexpected size of expression value."); |
| } |
| } |
| |
| // Align all targets of indirect branches on bundle size. Used only if target |
| // is NaCl. |
| void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) { |
| // Align all blocks that are jumped to through jump table. |
| if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) { |
| const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables(); |
| for (unsigned I = 0; I < JT.size(); ++I) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs; |
| |
| for (unsigned J = 0; J < MBBs.size(); ++J) |
| MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN); |
| } |
| } |
| |
| // If basic block address is taken, block can be target of indirect branch. |
| for (auto &MBB : MF) { |
| if (MBB.hasAddressTaken()) |
| MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN); |
| } |
| } |
| |
| bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const { |
| return (Opcode == Mips::LONG_BRANCH_LUi |
| || Opcode == Mips::LONG_BRANCH_ADDiu |
| || Opcode == Mips::LONG_BRANCH_DADDiu); |
| } |
| |
| // Force static initialization. |
| extern "C" void LLVMInitializeMipsAsmPrinter() { |
| RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget()); |
| RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget()); |
| RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target()); |
| RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget()); |
| } |