blob: d6b8bb5d89c7ca0c94d91af8e1dc36b29c81c525 [file] [log] [blame]
//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// AArch64 Instruction definitions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ARM Instruction Predicate Definitions.
//
def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">,
AssemblerPredicate<"HasV8_1aOps", "armv8.1a">;
def HasV8_2a : Predicate<"Subtarget->hasV8_2aOps()">,
AssemblerPredicate<"HasV8_2aOps", "armv8.2a">;
def HasV8_3a : Predicate<"Subtarget->hasV8_3aOps()">,
AssemblerPredicate<"HasV8_3aOps", "armv8.3a">;
def HasV8_4a : Predicate<"Subtarget->hasV8_4aOps()">,
AssemblerPredicate<"HasV8_4aOps", "armv8.4a">;
def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">,
AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
def HasNEON : Predicate<"Subtarget->hasNEON()">,
AssemblerPredicate<"FeatureNEON", "neon">;
def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
AssemblerPredicate<"FeatureCrypto", "crypto">;
def HasSM4 : Predicate<"Subtarget->hasSM4()">,
AssemblerPredicate<"FeatureSM4", "sm4">;
def HasSHA3 : Predicate<"Subtarget->hasSHA3()">,
AssemblerPredicate<"FeatureSHA3", "sha3">;
def HasSHA2 : Predicate<"Subtarget->hasSHA2()">,
AssemblerPredicate<"FeatureSHA2", "sha2">;
def HasAES : Predicate<"Subtarget->hasAES()">,
AssemblerPredicate<"FeatureAES", "aes">;
def HasDotProd : Predicate<"Subtarget->hasDotProd()">,
AssemblerPredicate<"FeatureDotProd", "dotprod">;
def HasCRC : Predicate<"Subtarget->hasCRC()">,
AssemblerPredicate<"FeatureCRC", "crc">;
def HasLSE : Predicate<"Subtarget->hasLSE()">,
AssemblerPredicate<"FeatureLSE", "lse">;
def HasRAS : Predicate<"Subtarget->hasRAS()">,
AssemblerPredicate<"FeatureRAS", "ras">;
def HasRDM : Predicate<"Subtarget->hasRDM()">,
AssemblerPredicate<"FeatureRDM", "rdm">;
def HasPerfMon : Predicate<"Subtarget->hasPerfMon()">;
def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">,
AssemblerPredicate<"FeatureFullFP16", "fullfp16">;
def HasSPE : Predicate<"Subtarget->hasSPE()">,
AssemblerPredicate<"FeatureSPE", "spe">;
def HasFuseAES : Predicate<"Subtarget->hasFuseAES()">,
AssemblerPredicate<"FeatureFuseAES",
"fuse-aes">;
def HasSVE : Predicate<"Subtarget->hasSVE()">,
AssemblerPredicate<"FeatureSVE", "sve">;
def HasRCPC : Predicate<"Subtarget->hasRCPC()">,
AssemblerPredicate<"FeatureRCPC", "rcpc">;
def IsLE : Predicate<"Subtarget->isLittleEndian()">;
def IsBE : Predicate<"!Subtarget->isLittleEndian()">;
def UseAlternateSExtLoadCVTF32
: Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
def UseNegativeImmediates
: Predicate<"false">, AssemblerPredicate<"!FeatureNoNegativeImmediates",
"NegativeImmediates">;
//===----------------------------------------------------------------------===//
// AArch64-specific DAG Nodes.
//
// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>, SDTCisVT<1, i32>]>;
// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisInt<0>,
SDTCisVT<3, i32>]>;
// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
[SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisInt<0>,
SDTCisVT<1, i32>,
SDTCisVT<4, i32>]>;
def SDT_AArch64Brcond : SDTypeProfile<0, 3,
[SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisVT<2, OtherVT>]>;
def SDT_AArch64CSel : SDTypeProfile<1, 4,
[SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisInt<3>,
SDTCisVT<4, i32>]>;
def SDT_AArch64CCMP : SDTypeProfile<1, 5,
[SDTCisVT<0, i32>,
SDTCisInt<1>,
SDTCisSameAs<1, 2>,
SDTCisInt<3>,
SDTCisInt<4>,
SDTCisVT<5, i32>]>;
def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
[SDTCisVT<0, i32>,
SDTCisFP<1>,
SDTCisSameAs<1, 2>,
SDTCisInt<3>,
SDTCisInt<4>,
SDTCisVT<5, i32>]>;
def SDT_AArch64FCmp : SDTypeProfile<0, 2,
[SDTCisFP<0>,
SDTCisSameAs<0, 1>]>;
def SDT_AArch64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
def SDT_AArch64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
def SDT_AArch64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>]>;
def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisInt<2>, SDTCisInt<3>]>;
def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>, SDTCisInt<3>]>;
def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
def SDT_AArch64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>;
def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>,
SDTCisSameAs<0,3>]>;
def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
def SDT_AArch64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
SDTCisPtrTy<1>]>;
// Generates the general dynamic sequences, i.e.
// adrp x0, :tlsdesc:var
// ldr x1, [x0, #:tlsdesc_lo12:var]
// add x0, x0, #:tlsdesc_lo12:var
// .tlsdesccall var
// blr x1
// (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
// number of operands (the variable)
def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
[SDTCisPtrTy<0>]>;
def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
[SDTCisVT<0, i64>, SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
SDTCisSameAs<1, 4>]>;
// Node definitions.
def AArch64adrp : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
def AArch64addlow : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
def AArch64LOADgot : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
SDCallSeqStart<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>,
[SDNPHasChain, SDNPOutGlue]>;
def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END",
SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def AArch64call : SDNode<"AArch64ISD::CALL",
SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def AArch64brcond : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
[SDNPHasChain]>;
def AArch64cbz : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
[SDNPHasChain]>;
def AArch64cbnz : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
[SDNPHasChain]>;
def AArch64tbz : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
[SDNPHasChain]>;
def AArch64tbnz : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
[SDNPHasChain]>;
def AArch64csel : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
def AArch64csinv : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
def AArch64csneg : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
def AArch64csinc : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
def AArch64retflag : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def AArch64adc : SDNode<"AArch64ISD::ADC", SDTBinaryArithWithFlagsIn >;
def AArch64sbc : SDNode<"AArch64ISD::SBC", SDTBinaryArithWithFlagsIn>;
def AArch64add_flag : SDNode<"AArch64ISD::ADDS", SDTBinaryArithWithFlagsOut,
[SDNPCommutative]>;
def AArch64sub_flag : SDNode<"AArch64ISD::SUBS", SDTBinaryArithWithFlagsOut>;
def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut,
[SDNPCommutative]>;
def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>;
def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>;
def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>;
def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>;
def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
def AArch64dup : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
def AArch64duplane8 : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
def AArch64zip1 : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
def AArch64zip2 : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
def AArch64uzp1 : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
def AArch64uzp2 : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
def AArch64trn1 : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
def AArch64trn2 : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>;
def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
(AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def AArch64Prefetch : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
[SDNPHasChain, SDNPSideEffect]>;
def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
SDT_AArch64TLSDescCallSeq,
[SDNPInGlue, SDNPOutGlue, SDNPHasChain,
SDNPVariadic]>;
def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
SDT_AArch64WrapperLarge>;
def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
SDTCisSameAs<1, 2>]>;
def AArch64smull : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
def AArch64frecpe : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
def AArch64frecps : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
def AArch64frsqrte : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
def AArch64frsqrts : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;
def AArch64saddv : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
def AArch64uaddv : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
def AArch64sminv : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
def AArch64uminv : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
def AArch64smaxv : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
def AArch64umaxv : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// AArch64 Instruction Predicate Definitions.
// We could compute these on a per-module basis but doing so requires accessing
// the Function object through the <Target>Subtarget and objections were raised
// to that (see post-commit review comments for r301750).
let RecomputePerFunction = 1 in {
def ForCodeSize : Predicate<"MF->getFunction().optForSize()">;
def NotForCodeSize : Predicate<"!MF->getFunction().optForSize()">;
// Avoid generating STRQro if it is slow, unless we're optimizing for code size.
def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || MF->getFunction().optForSize()">;
}
include "AArch64InstrFormats.td"
include "SVEInstrFormats.td"
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Miscellaneous instructions.
//===----------------------------------------------------------------------===//
let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
// We set Sched to empty list because we expect these instructions to simply get
// removed in most cases.
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
Sched<[]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
Sched<[]>;
} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
let isReMaterializable = 1, isCodeGenOnly = 1 in {
// FIXME: The following pseudo instructions are only needed because remat
// cannot handle multiple instructions. When that changes, they can be
// removed, along with the AArch64Wrapper node.
let AddedComplexity = 10 in
def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
[(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
Sched<[WriteLDAdr]>;
// The MOVaddr instruction should match only when the add is not folded
// into a load or store address.
def MOVaddr
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
tglobaladdr:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrJT
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
tjumptable:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrCP
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
tconstpool:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrBA
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
tblockaddress:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrTLS
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
tglobaltlsaddr:$low))]>,
Sched<[WriteAdrAdr]>;
def MOVaddrEXT
: Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
[(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
texternalsym:$low))]>,
Sched<[WriteAdrAdr]>;
// Normally AArch64addlow either gets folded into a following ldr/str,
// or together with an adrp into MOVaddr above. For cases with TLS, it
// might appear without either of them, so allow lowering it into a plain
// add.
def ADDlowTLS
: Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
[(set GPR64:$dst, (AArch64addlow GPR64:$src,
tglobaltlsaddr:$low))]>,
Sched<[WriteAdr]>;
} // isReMaterializable, isCodeGenOnly
def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
(LOADgot tglobaltlsaddr:$addr)>;
def : Pat<(AArch64LOADgot texternalsym:$addr),
(LOADgot texternalsym:$addr)>;
def : Pat<(AArch64LOADgot tconstpool:$addr),
(LOADgot tconstpool:$addr)>;
//===----------------------------------------------------------------------===//
// System instructions.
//===----------------------------------------------------------------------===//
def HINT : HintI<"hint">;
def : InstAlias<"nop", (HINT 0b000)>;
def : InstAlias<"yield",(HINT 0b001)>;
def : InstAlias<"wfe", (HINT 0b010)>;
def : InstAlias<"wfi", (HINT 0b011)>;
def : InstAlias<"sev", (HINT 0b100)>;
def : InstAlias<"sevl", (HINT 0b101)>;
def : InstAlias<"esb", (HINT 0b10000)>, Requires<[HasRAS]>;
def : InstAlias<"csdb", (HINT 20)>;
// v8.2a Statistical Profiling extension
def : InstAlias<"psb $op", (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
// As far as LLVM is concerned this writes to the system's exclusive monitors.
let mayLoad = 1, mayStore = 1 in
def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
// model patterns with sufficiently fine granularity.
let mayLoad = ?, mayStore = ? in {
def DMB : CRmSystemI<barrier_op, 0b101, "dmb",
[(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
def DSB : CRmSystemI<barrier_op, 0b100, "dsb",
[(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
def ISB : CRmSystemI<barrier_op, 0b110, "isb",
[(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
def TSB : CRmSystemI<barrier_op, 0b010, "tsb", []> {
let CRm = 0b0010;
let Inst{12} = 0;
let Predicates = [HasV8_4a];
}
}
// ARMv8.2 Dot Product
let Predicates = [HasDotProd] in {
defm SDOT : SIMDThreeSameVectorDot<0, "sdot", int_aarch64_neon_sdot>;
defm UDOT : SIMDThreeSameVectorDot<1, "udot", int_aarch64_neon_udot>;
defm SDOTlane : SIMDThreeSameVectorDotIndex<0, "sdot", int_aarch64_neon_sdot>;
defm UDOTlane : SIMDThreeSameVectorDotIndex<1, "udot", int_aarch64_neon_udot>;
}
// Armv8.2-A Crypto extensions
let Predicates = [HasSHA3] in {
def SHA512H : CryptoRRRTied<0b0, 0b00, "sha512h">;
def SHA512H2 : CryptoRRRTied<0b0, 0b01, "sha512h2">;
def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
def RAX1 : CryptoRRR_2D<0b0,0b11, "rax1">;
def EOR3 : CryptoRRRR_16B<0b00, "eor3">;
def BCAX : CryptoRRRR_16B<0b01, "bcax">;
def XAR : CryptoRRRi6<"xar">;
} // HasSHA3
let Predicates = [HasSM4] in {
def SM3TT1A : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
def SM3TT1B : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
def SM3TT2A : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
def SM3TT2B : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
def SM3SS1 : CryptoRRRR_4S<0b10, "sm3ss1">;
def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
def SM4E : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
} // HasSM4
let Predicates = [HasRCPC] in {
// v8.3 Release Consistent Processor Consistent support, optional in v8.2.
def LDAPRB : RCPCLoad<0b00, "ldaprb", GPR32>;
def LDAPRH : RCPCLoad<0b01, "ldaprh", GPR32>;
def LDAPRW : RCPCLoad<0b10, "ldapr", GPR32>;
def LDAPRX : RCPCLoad<0b11, "ldapr", GPR64>;
}
// v8.3a complex add and multiply-accumulate. No predicate here, that is done
// inside the multiclass as the FP16 versions need different predicates.
defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
"fcmla", null_frag>;
defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
"fcadd", null_frag>;
defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
null_frag>;
// v8.3a Pointer Authentication
// These instructions inhabit part of the hint space and so can be used for
// armv8 targets
let Uses = [LR], Defs = [LR] in {
def PACIAZ : SystemNoOperands<0b000, "paciaz">;
def PACIBZ : SystemNoOperands<0b010, "pacibz">;
def AUTIAZ : SystemNoOperands<0b100, "autiaz">;
def AUTIBZ : SystemNoOperands<0b110, "autibz">;
}
let Uses = [LR, SP], Defs = [LR] in {
def PACIASP : SystemNoOperands<0b001, "paciasp">;
def PACIBSP : SystemNoOperands<0b011, "pacibsp">;
def AUTIASP : SystemNoOperands<0b101, "autiasp">;
def AUTIBSP : SystemNoOperands<0b111, "autibsp">;
}
let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
def PACIA1716 : SystemNoOperands<0b000, "pacia1716">;
def PACIB1716 : SystemNoOperands<0b010, "pacib1716">;
def AUTIA1716 : SystemNoOperands<0b100, "autia1716">;
def AUTIB1716 : SystemNoOperands<0b110, "autib1716">;
}
let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
def XPACLRI : SystemNoOperands<0b111, "xpaclri">;
}
// These pointer authentication isntructions require armv8.3a
let Predicates = [HasV8_3a] in {
multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
def IA : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
def IB : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
def DA : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
def DB : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
def IZA : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
def DZA : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
def IZB : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
def DZB : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
}
defm PAC : SignAuth<0b000, 0b010, "pac">;
defm AUT : SignAuth<0b001, 0b011, "aut">;
def XPACI : SignAuthZero<0b100, 0b00, "xpaci">;
def XPACD : SignAuthZero<0b100, 0b01, "xpacd">;
def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;
// Combined Instructions
def BRAA : AuthBranchTwoOperands<0, 0, "braa">;
def BRAB : AuthBranchTwoOperands<0, 1, "brab">;
def BLRAA : AuthBranchTwoOperands<1, 0, "blraa">;
def BLRAB : AuthBranchTwoOperands<1, 1, "blrab">;
def BRAAZ : AuthOneOperand<0b000, 0, "braaz">;
def BRABZ : AuthOneOperand<0b000, 1, "brabz">;
def BLRAAZ : AuthOneOperand<0b001, 0, "blraaz">;
def BLRABZ : AuthOneOperand<0b001, 1, "blrabz">;
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
def RETAA : AuthReturn<0b010, 0, "retaa">;
def RETAB : AuthReturn<0b010, 1, "retab">;
def ERETAA : AuthReturn<0b100, 0, "eretaa">;
def ERETAB : AuthReturn<0b100, 1, "eretab">;
}
defm LDRAA : AuthLoad<0, "ldraa", simm10Scaled>;
defm LDRAB : AuthLoad<1, "ldrab", simm10Scaled>;
// v8.3a floating point conversion for javascript
let Predicates = [HasV8_3a, HasFPARMv8] in
def FJCVTZS : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
"fjcvtzs", []> {
let Inst{31} = 0;
}
} // HasV8_3a
// v8.4 Flag manipulation instructions
let Predicates = [HasV8_4a] in {
def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
let Inst{20-5} = 0b0000001000000000;
}
def SETF8 : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
def RMIF : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
"{\t$Rn, $imm, $mask}">;
} // HasV8_4a
def : InstAlias<"clrex", (CLREX 0xf)>;
def : InstAlias<"isb", (ISB 0xf)>;
def MRS : MRSI;
def MSR : MSRI;
def MSRpstateImm1 : MSRpstateImm0_1;
def MSRpstateImm4 : MSRpstateImm0_15;
// The thread pointer (on Linux, at least, where this has been implemented) is
// TPIDR_EL0.
def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
[(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;
// The cycle counter PMC register is PMCCNTR_EL0.
let Predicates = [HasPerfMon] in
def : Pat<(readcyclecounter), (MRS 0xdce8)>;
// FPCR register
def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;
// Generic system instructions
def SYSxt : SystemXtI<0, "sys">;
def SYSLxt : SystemLXtI<1, "sysl">;
def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
(SYSxt imm0_7:$op1, sys_cr_op:$Cn,
sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
//===----------------------------------------------------------------------===//
// Move immediate instructions.
//===----------------------------------------------------------------------===//
defm MOVK : InsertImmediate<0b11, "movk">;
defm MOVN : MoveImmediate<0b00, "movn">;
let PostEncoderMethod = "fixMOVZ" in
defm MOVZ : MoveImmediate<0b10, "movz">;
// First group of aliases covers an implicit "lsl #0".
def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0), 0>;
def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0), 0>;
def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>;
def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>;
// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48), 0>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32), 0>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16), 0>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0), 0>;
def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16), 0>;
def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0), 0>;
// Final group of aliases covers true "mov $Rd, $imm" cases.
multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
int width, int shift> {
def _asmoperand : AsmOperandClass {
let Name = basename # width # "_lsl" # shift # "MovAlias";
let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
# shift # ">";
let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
}
def _movimm : Operand<i32> {
let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
}
def : InstAlias<"mov $Rd, $imm",
(INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
}
defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
isAsCheapAsAMove = 1 in {
// FIXME: The following pseudo instructions are only needed because remat
// cannot handle multiple instructions. When that changes, we can select
// directly to the real instructions and get rid of these pseudos.
def MOVi32imm
: Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
[(set GPR32:$dst, imm:$src)]>,
Sched<[WriteImm]>;
def MOVi64imm
: Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
[(set GPR64:$dst, imm:$src)]>,
Sched<[WriteImm]>;
} // isReMaterializable, isCodeGenOnly
// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
// eventual expansion code fewer bits to worry about getting right. Marshalling
// the types is a little tricky though:
def i64imm_32bit : ImmLeaf<i64, [{
return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
}]>;
def s64imm_32bit : ImmLeaf<i64, [{
int64_t Imm64 = static_cast<int64_t>(Imm);
return Imm64 >= std::numeric_limits<int32_t>::min() &&
Imm64 <= std::numeric_limits<int32_t>::max();
}]>;
def trunc_imm : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
GISDNodeXFormEquiv<trunc_imm>;
def : Pat<(i64 i64imm_32bit:$src),
(SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(
N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
}]>;
def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(
N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
}]>;
def : Pat<(f32 fpimm:$in),
(COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
def : Pat<(f64 fpimm:$in),
(COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
// sequences.
def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
tglobaladdr:$g1, tglobaladdr:$g0),
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
tglobaladdr:$g1, 16),
tglobaladdr:$g2, 32),
tglobaladdr:$g3, 48)>;
def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
tblockaddress:$g1, tblockaddress:$g0),
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
tblockaddress:$g1, 16),
tblockaddress:$g2, 32),
tblockaddress:$g3, 48)>;
def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
tconstpool:$g1, tconstpool:$g0),
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
tconstpool:$g1, 16),
tconstpool:$g2, 32),
tconstpool:$g3, 48)>;
def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
tjumptable:$g1, tjumptable:$g0),
(MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
tjumptable:$g1, 16),
tjumptable:$g2, 32),
tjumptable:$g3, 48)>;
//===----------------------------------------------------------------------===//
// Arithmetic instructions.
//===----------------------------------------------------------------------===//
// Add/subtract with carry.
defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>;
def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>;
def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
// Add/subtract
defm ADD : AddSub<0, "add", "sub", add>;
defm SUB : AddSub<1, "sub", "add">;
def : InstAlias<"mov $dst, $src",
(ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
def : InstAlias<"mov $dst, $src",
(ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
def : InstAlias<"mov $dst, $src",
(ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
def : InstAlias<"mov $dst, $src",
(ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
// Use SUBS instead of SUB to enable CSE between SUBS and SUB.
def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
(SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
(SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
(SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
(SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
(SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
(SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
let AddedComplexity = 1 in {
def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3),
(SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>;
def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3),
(SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>;
}
// Because of the immediate format for add/sub-imm instructions, the
// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
// These patterns capture that transformation.
let AddedComplexity = 1 in {
def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
(SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
(SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
(ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
(ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
}
// Because of the immediate format for add/sub-imm instructions, the
// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
// These patterns capture that transformation.
let AddedComplexity = 1 in {
def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
(SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
(SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
(ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
(ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
}
def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
def : InstAlias<"neg $dst, $src$shift",
(SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
def : InstAlias<"neg $dst, $src$shift",
(SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
def : InstAlias<"negs $dst, $src$shift",
(SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
def : InstAlias<"negs $dst, $src$shift",
(SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
// Unsigned/Signed divide
defm UDIV : Div<0, "udiv", udiv>;
defm SDIV : Div<1, "sdiv", sdiv>;
def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;
// Variable shift
defm ASRV : Shift<0b10, "asr", sra>;
defm LSLV : Shift<0b00, "lsl", shl>;
defm LSRV : Shift<0b01, "lsr", srl>;
defm RORV : Shift<0b11, "ror", rotr>;
def : ShiftAlias<"asrv", ASRVWr, GPR32>;
def : ShiftAlias<"asrv", ASRVXr, GPR64>;
def : ShiftAlias<"lslv", LSLVWr, GPR32>;
def : ShiftAlias<"lslv", LSLVXr, GPR64>;
def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
def : ShiftAlias<"rorv", RORVWr, GPR32>;
def : ShiftAlias<"rorv", RORVXr, GPR64>;
// Multiply-add
let AddedComplexity = 5 in {
defm MADD : MulAccum<0, "madd", add>;
defm MSUB : MulAccum<1, "msub", sub>;
def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
(MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
(MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
(MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
(MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
(MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
(MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
} // AddedComplexity = 5
let AddedComplexity = 5 in {
def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
(SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
(UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
(SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
(UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
(SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
(UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
(SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
(MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
(SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
(UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
(SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
(MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
(SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
(UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
GPR64:$Ra)),
(SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
(MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
(SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
(UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
(s64imm_32bit:$C)))),
(SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
(MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
} // AddedComplexity = 5
def : MulAccumWAlias<"mul", MADDWrrr>;
def : MulAccumXAlias<"mul", MADDXrrr>;
def : MulAccumWAlias<"mneg", MSUBWrrr>;
def : MulAccumXAlias<"mneg", MSUBXrrr>;
def : WideMulAccumAlias<"smull", SMADDLrrr>;
def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
def : WideMulAccumAlias<"umull", UMADDLrrr>;
def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
// Multiply-high
def SMULHrr : MulHi<0b010, "smulh", mulhs>;
def UMULHrr : MulHi<0b110, "umulh", mulhu>;
// CRC32
def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
// v8.1 atomic CAS
defm CAS : CompareAndSwap<0, 0, "">;
defm CASA : CompareAndSwap<1, 0, "a">;
defm CASL : CompareAndSwap<0, 1, "l">;
defm CASAL : CompareAndSwap<1, 1, "al">;
// v8.1 atomic CASP
defm CASP : CompareAndSwapPair<0, 0, "">;
defm CASPA : CompareAndSwapPair<1, 0, "a">;
defm CASPL : CompareAndSwapPair<0, 1, "l">;
defm CASPAL : CompareAndSwapPair<1, 1, "al">;
// v8.1 atomic SWP
defm SWP : Swap<0, 0, "">;
defm SWPA : Swap<1, 0, "a">;
defm SWPL : Swap<0, 1, "l">;
defm SWPAL : Swap<1, 1, "al">;
// v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
defm LDADD : LDOPregister<0b000, "add", 0, 0, "">;
defm LDADDA : LDOPregister<0b000, "add", 1, 0, "a">;
defm LDADDL : LDOPregister<0b000, "add", 0, 1, "l">;
defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
defm LDCLR : LDOPregister<0b001, "clr", 0, 0, "">;
defm LDCLRA : LDOPregister<0b001, "clr", 1, 0, "a">;
defm LDCLRL : LDOPregister<0b001, "clr", 0, 1, "l">;
defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
defm LDEOR : LDOPregister<0b010, "eor", 0, 0, "">;
defm LDEORA : LDOPregister<0b010, "eor", 1, 0, "a">;
defm LDEORL : LDOPregister<0b010, "eor", 0, 1, "l">;
defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
defm LDSET : LDOPregister<0b011, "set", 0, 0, "">;
defm LDSETA : LDOPregister<0b011, "set", 1, 0, "a">;
defm LDSETL : LDOPregister<0b011, "set", 0, 1, "l">;
defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
defm LDSMAX : LDOPregister<0b100, "smax", 0, 0, "">;
defm LDSMAXA : LDOPregister<0b100, "smax", 1, 0, "a">;
defm LDSMAXL : LDOPregister<0b100, "smax", 0, 1, "l">;
defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
defm LDSMIN : LDOPregister<0b101, "smin", 0, 0, "">;
defm LDSMINA : LDOPregister<0b101, "smin", 1, 0, "a">;
defm LDSMINL : LDOPregister<0b101, "smin", 0, 1, "l">;
defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
defm LDUMAX : LDOPregister<0b110, "umax", 0, 0, "">;
defm LDUMAXA : LDOPregister<0b110, "umax", 1, 0, "a">;
defm LDUMAXL : LDOPregister<0b110, "umax", 0, 1, "l">;
defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
defm LDUMIN : LDOPregister<0b111, "umin", 0, 0, "">;
defm LDUMINA : LDOPregister<0b111, "umin", 1, 0, "a">;
defm LDUMINL : LDOPregister<0b111, "umin", 0, 1, "l">;
defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
// v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
defm : STOPregister<"stadd","LDADD">; // STADDx
defm : STOPregister<"stclr","LDCLR">; // STCLRx
defm : STOPregister<"steor","LDEOR">; // STEORx
defm : STOPregister<"stset","LDSET">; // STSETx
defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
defm : STOPregister<"stumin","LDUMIN">;// STUMINx
//===----------------------------------------------------------------------===//
// Logical instructions.
//===----------------------------------------------------------------------===//
// (immediate)
defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
defm AND : LogicalImm<0b00, "and", and, "bic">;
defm EOR : LogicalImm<0b10, "eor", xor, "eon">;
defm ORR : LogicalImm<0b01, "orr", or, "orn">;
// FIXME: these aliases *are* canonical sometimes (when movz can't be
// used). Actually, it seems to be working right now, but putting logical_immXX
// here is a bit dodgy on the AsmParser side too.
def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
logical_imm32:$imm), 0>;
def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
logical_imm64:$imm), 0>;
// (register)
defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
defm BICS : LogicalRegS<0b11, 1, "bics",
BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
defm AND : LogicalReg<0b00, 0, "and", and>;
defm BIC : LogicalReg<0b00, 1, "bic",
BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
defm EON : LogicalReg<0b10, 1, "eon",
BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
defm EOR : LogicalReg<0b10, 0, "eor", xor>;
defm ORN : LogicalReg<0b01, 1, "orn",
BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
defm ORR : LogicalReg<0b01, 0, "orr", or>;
def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
def : InstAlias<"mvn $Wd, $Wm$sh",
(ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
def : InstAlias<"mvn $Xd, $Xm$sh",
(ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
def : InstAlias<"tst $src1, $src2",
(ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
def : InstAlias<"tst $src1, $src2",
(ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
def : InstAlias<"tst $src1, $src2",
(ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
def : InstAlias<"tst $src1, $src2",
(ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
def : InstAlias<"tst $src1, $src2$sh",
(ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
def : InstAlias<"tst $src1, $src2$sh",
(ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
//===----------------------------------------------------------------------===//
// One operand data processing instructions.
//===----------------------------------------------------------------------===//
defm CLS : OneOperandData<0b101, "cls">;
defm CLZ : OneOperandData<0b100, "clz", ctlz>;
defm RBIT : OneOperandData<0b000, "rbit", bitreverse>;
def REV16Wr : OneWRegData<0b001, "rev16",
UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
def REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
def : Pat<(cttz GPR32:$Rn),
(CLZWr (RBITWr GPR32:$Rn))>;
def : Pat<(cttz GPR64:$Rn),
(CLZXr (RBITXr GPR64:$Rn))>;
def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
(i32 1))),
(CLSWr GPR32:$Rn)>;
def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
(i64 1))),
(CLSXr GPR64:$Rn)>;
// Unlike the other one operand instructions, the instructions with the "rev"
// mnemonic do *not* just different in the size bit, but actually use different
// opcode bits for the different sizes.
def REVWr : OneWRegData<0b010, "rev", bswap>;
def REVXr : OneXRegData<0b011, "rev", bswap>;
def REV32Xr : OneXRegData<0b010, "rev32",
UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
// The bswap commutes with the rotr so we want a pattern for both possible
// orders.
def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
//===----------------------------------------------------------------------===//
// Bitfield immediate extraction instruction.
//===----------------------------------------------------------------------===//
let hasSideEffects = 0 in
defm EXTR : ExtractImm<"extr">;
def : InstAlias<"ror $dst, $src, $shift",
(EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
def : InstAlias<"ror $dst, $src, $shift",
(EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
(EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
(EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
//===----------------------------------------------------------------------===//
// Other bitfield immediate instructions.
//===----------------------------------------------------------------------===//
let hasSideEffects = 0 in {
defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">;
defm SBFM : BitfieldImm<0b00, "sbfm">;
defm UBFM : BitfieldImm<0b10, "ubfm">;
}
def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 31 - N->getZExtValue();
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
// min(7, 31 - shift_amt)
def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 31 - N->getZExtValue();
enc = enc > 7 ? 7 : enc;
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
// min(15, 31 - shift_amt)
def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 31 - N->getZExtValue();
enc = enc > 15 ? 15 : enc;
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 63 - N->getZExtValue();
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
// min(7, 63 - shift_amt)
def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 63 - N->getZExtValue();
enc = enc > 7 ? 7 : enc;
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
// min(15, 63 - shift_amt)
def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 63 - N->getZExtValue();
enc = enc > 15 ? 15 : enc;
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
// min(31, 63 - shift_amt)
def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
uint64_t enc = 63 - N->getZExtValue();
enc = enc > 31 ? 31 : enc;
return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;
def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
(UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
(i64 (i32shift_b imm0_31:$imm)))>;
def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
(UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
(i64 (i64shift_b imm0_63:$imm)))>;
let AddedComplexity = 10 in {
def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
(SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
(SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
}
def : InstAlias<"asr $dst, $src, $shift",
(SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
def : InstAlias<"asr $dst, $src, $shift",
(SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
(UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
(UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
def : InstAlias<"lsr $dst, $src, $shift",
(UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
def : InstAlias<"lsr $dst, $src, $shift",
(UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
//===----------------------------------------------------------------------===//
// Conditional comparison instructions.
//===----------------------------------------------------------------------===//
defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
//===----------------------------------------------------------------------===//
// Conditional select instructions.
//===----------------------------------------------------------------------===//
defm CSEL : CondSelect<0, 0b00, "csel">;
def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
(CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
(CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
(CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
(CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
(CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
(CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
(CSINCWr WZR, WZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
(CSINCXr XZR, XZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
(CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
(CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
(CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
(CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
(CSINVWr WZR, WZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
(CSINVXr XZR, XZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
(CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
(CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
(CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
(CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
// The inverse of the condition code from the alias instruction is what is used
// in the aliased instruction. The parser all ready inverts the condition code
// for these aliases.
def : InstAlias<"cset $dst, $cc",
(CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
def : InstAlias<"cset $dst, $cc",
(CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
def : InstAlias<"csetm $dst, $cc",
(CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
def : InstAlias<"csetm $dst, $cc",
(CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
def : InstAlias<"cinc $dst, $src, $cc",
(CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
def : InstAlias<"cinc $dst, $src, $cc",
(CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
def : InstAlias<"cinv $dst, $src, $cc",
(CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
def : InstAlias<"cinv $dst, $src, $cc",
(CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
def : InstAlias<"cneg $dst, $src, $cc",
(CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
def : InstAlias<"cneg $dst, $src, $cc",
(CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
//===----------------------------------------------------------------------===//
// PC-relative instructions.
//===----------------------------------------------------------------------===//
let isReMaterializable = 1 in {
let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
def ADR : ADRI<0, "adr", adrlabel, []>;
} // hasSideEffects = 0
def ADRP : ADRI<1, "adrp", adrplabel,
[(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
} // isReMaterializable = 1
// page address of a constant pool entry, block address
def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;
//===----------------------------------------------------------------------===//
// Unconditional branch (register) instructions.
//===----------------------------------------------------------------------===//
let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
def RET : BranchReg<0b0010, "ret", []>;
def DRPS : SpecialReturn<0b0101, "drps">;
def ERET : SpecialReturn<0b0100, "eret">;
} // isReturn = 1, isTerminator = 1, isBarrier = 1
// Default to the LR register.
def : InstAlias<"ret", (RET LR)>;
let isCall = 1, Defs = [LR], Uses = [SP] in {
def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>;
} // isCall
let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
} // isBranch, isTerminator, isBarrier, isIndirectBranch
// Create a separate pseudo-instruction for codegen to use so that we don't
// flag lr as used in every function. It'll be restored before the RET by the
// epilogue if it's legitimately used.
def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
Sched<[WriteBrReg]> {
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
}
// This is a directive-like pseudo-instruction. The purpose is to insert an
// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
// (which in the usual case is a BLR).
let hasSideEffects = 1 in
def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
let AsmString = ".tlsdesccall $sym";
}
// FIXME: maybe the scratch register used shouldn't be fixed to X1?
// FIXME: can "hasSideEffects be dropped?
let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
isCodeGenOnly = 1 in
def TLSDESC_CALLSEQ
: Pseudo<(outs), (ins i64imm:$sym),
[(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
(TLSDESC_CALLSEQ texternalsym:$sym)>;
//===----------------------------------------------------------------------===//
// Conditional branch (immediate) instruction.
//===----------------------------------------------------------------------===//
def Bcc : BranchCond;
//===----------------------------------------------------------------------===//
// Compare-and-branch instructions.
//===----------------------------------------------------------------------===//
defm CBZ : CmpBranch<0, "cbz", AArch64cbz>;
defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
//===----------------------------------------------------------------------===//
// Test-bit-and-branch instructions.
//===----------------------------------------------------------------------===//
defm TBZ : TestBranch<0, "tbz", AArch64tbz>;
defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
//===----------------------------------------------------------------------===//
// Unconditional branch (immediate) instructions.
//===----------------------------------------------------------------------===//
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
def B : BranchImm<0, "b", [(br bb:$addr)]>;
} // isBranch, isTerminator, isBarrier
let isCall = 1, Defs = [LR], Uses = [SP] in {
def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
} // isCall
def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
//===----------------------------------------------------------------------===//
// Exception generation instructions.
//===----------------------------------------------------------------------===//
let isTrap = 1 in {
def BRK : ExceptionGeneration<0b001, 0b00, "brk">;
}
def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
def HLT : ExceptionGeneration<0b010, 0b00, "hlt">;
def HVC : ExceptionGeneration<0b000, 0b10, "hvc">;
def SMC : ExceptionGeneration<0b000, 0b11, "smc">;
def SVC : ExceptionGeneration<0b000, 0b01, "svc">;
// DCPSn defaults to an immediate operand of zero if unspecified.
def : InstAlias<"dcps1", (DCPS1 0)>;
def : InstAlias<"dcps2", (DCPS2 0)>;
def : InstAlias<"dcps3", (DCPS3 0)>;
//===----------------------------------------------------------------------===//
// Load instructions.
//===----------------------------------------------------------------------===//
// Pair (indexed, offset)
defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;
defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;
// Pair (pre-indexed)
def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
// Pair (post-indexed)
def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
// Pair (no allocate)
defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;
//---
// (register offset)
//---
// Integer
defm LDRBB : Load8RO<0b00, 0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
defm LDRW : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
defm LDRX : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
// Floating-point
defm LDRB : Load8RO<0b00, 1, 0b01, FPR8Op, "ldr", untyped, load>;
defm LDRH : Load16RO<0b01, 1, 0b01, FPR16Op, "ldr", f16, load>;
defm LDRS : Load32RO<0b10, 1, 0b01, FPR32Op, "ldr", f32, load>;
defm LDRD : Load64RO<0b11, 1, 0b01, FPR64Op, "ldr", f64, load>;
defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;
// Load sign-extended half-word
defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
// Load sign-extended byte
defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
// Load sign-extended word
defm LDRSW : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
// Pre-fetch.
defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
// For regular load, we do not have any alignment requirement.
// Thus, it is safe to directly map the vector loads with interesting
// addressing modes.
// FIXME: We could do the same for bitconvert to floating point vectors.
multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
ValueType ScalTy, ValueType VecTy,
Instruction LOADW, Instruction LOADX,
SubRegIndex sub> {
def : Pat<(VecTy (scalar_to_vector (ScalTy
(loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
(INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
(LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
sub)>;
def : Pat<(VecTy (scalar_to_vector (ScalTy
(loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
(INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
(LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
sub)>;
}
let AddedComplexity = 10 in {
defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v8i8, LDRBroW, LDRBroX, bsub>;
defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v16i8, LDRBroW, LDRBroX, bsub>;
defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
defm : ScalToVecROLoadPat<ro16, load, i32, v4f16, LDRHroW, LDRHroX, hsub>;
defm : ScalToVecROLoadPat<ro16, load, i32, v8f16, LDRHroW, LDRHroX, hsub>;
defm : ScalToVecROLoadPat<ro32, load, i32, v2i32, LDRSroW, LDRSroX, ssub>;
defm : ScalToVecROLoadPat<ro32, load, i32, v4i32, LDRSroW, LDRSroX, ssub>;
defm : ScalToVecROLoadPat<ro32, load, f32, v2f32, LDRSroW, LDRSroX, ssub>;
defm : ScalToVecROLoadPat<ro32, load, f32, v4f32, LDRSroW, LDRSroX, ssub>;
defm : ScalToVecROLoadPat<ro64, load, i64, v2i64, LDRDroW, LDRDroX, dsub>;
defm : ScalToVecROLoadPat<ro64, load, f64, v2f64, LDRDroW, LDRDroX, dsub>;
def : Pat <(v1i64 (scalar_to_vector (i64
(load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend64:$extend))))),
(LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
def : Pat <(v1i64 (scalar_to_vector (i64
(load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend64:$extend))))),
(LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
}
// Match all load 64 bits width whose type is compatible with FPR64
multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
Instruction LOADW, Instruction LOADX> {
def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
(LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
(LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}
let AddedComplexity = 10 in {
let Predicates = [IsLE] in {
// We must do vector loads with LD1 in big-endian.
defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
defm : VecROLoadPat<ro64, v8i8, LDRDroW, LDRDroX>;
defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
}
defm : VecROLoadPat<ro64, v1i64, LDRDroW, LDRDroX>;
defm : VecROLoadPat<ro64, v1f64, LDRDroW, LDRDroX>;
// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
// We must do vector loads with LD1 in big-endian.
defm : VecROLoadPat<ro128, v2i64, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v2f64, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v4i32, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v4f32, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v8i16, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v8f16, LDRQroW, LDRQroX>;
defm : VecROLoadPat<ro128, v16i8, LDRQroW, LDRQroX>;
}
} // AddedComplexity = 10
// zextload -> i64
multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
Instruction INSTW, Instruction INSTX> {
def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
(SUBREG_TO_REG (i64 0),
(INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
sub_32)>;
def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
(SUBREG_TO_REG (i64 0),
(INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
sub_32)>;
}
let AddedComplexity = 10 in {
defm : ExtLoadTo64ROPat<ro8, zextloadi8, LDRBBroW, LDRBBroX>;
defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW, LDRWroX>;
// zextloadi1 -> zextloadi8
defm : ExtLoadTo64ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
// extload -> zextload
defm : ExtLoadTo64ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>;
defm : ExtLoadTo64ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>;
defm : ExtLoadTo64ROPat<ro32, extloadi32, LDRWroW, LDRWroX>;
// extloadi1 -> zextloadi8
defm : ExtLoadTo64ROPat<ro8, extloadi1, LDRBBroW, LDRBBroX>;
}
// zextload -> i64
multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
Instruction INSTW, Instruction INSTX> {
def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
(INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
(INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}
let AddedComplexity = 10 in {
// extload -> zextload
defm : ExtLoadTo32ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>;
defm : ExtLoadTo32ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>;
defm : ExtLoadTo32ROPat<ro32, extloadi32, LDRWroW, LDRWroX>;
// zextloadi1 -> zextloadi8
defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
}
//---
// (unsigned immediate)
//---
defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
[(set GPR64z:$Rt,
(load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
[(set GPR32z:$Rt,
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
[(set FPR8Op:$Rt,
(load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
[(set (f16 FPR16Op:$Rt),
(load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
[(set (f32 FPR32Op:$Rt),
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
[(set (f64 FPR64Op:$Rt),
(load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
[(set (f128 FPR128Op:$Rt),
(load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
// For regular load, we do not have any alignment requirement.
// Thus, it is safe to directly map the vector loads with interesting
// addressing modes.
// FIXME: We could do the same for bitconvert to floating point vectors.
def : Pat <(v8i8 (scalar_to_vector (i32
(extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
(INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
(LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
def : Pat <(v16i8 (scalar_to_vector (i32
(extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
def : Pat <(v4i16 (scalar_to_vector (i32
(extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
(INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
(LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
def : Pat <(v8i16 (scalar_to_vector (i32
(extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
(LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
def : Pat <(v2i32 (scalar_to_vector (i32
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
(INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
(LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
def : Pat <(v4i32 (scalar_to_vector (i32
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
def : Pat <(v1i64 (scalar_to_vector (i64
(load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat <(v2i64 (scalar_to_vector (i64
(load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
// Match all load 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
// We must use LD1 to perform vector loads in big-endian.
def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
}
def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
(LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
// We must use LD1 to perform vector loads in big-endian.
def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
}
def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
(LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
[(set GPR32:$Rt,
(zextloadi16 (am_indexed16 GPR64sp:$Rn,
uimm12s2:$offset)))]>;
defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
[(set GPR32:$Rt,
(zextloadi8 (am_indexed8 GPR64sp:$Rn,
uimm12s1:$offset)))]>;
// zextload -> i64
def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
(SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
(SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
// zextloadi1 -> zextloadi8
def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
(LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
(SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
// extload -> zextload
def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
(LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
(LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
(LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
(SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
(SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
(SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
(SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
// load sign-extended half-word
defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
[(set GPR32:$Rt,
(sextloadi16 (am_indexed16 GPR64sp:$Rn,
uimm12s2:$offset)))]>;
defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
[(set GPR64:$Rt,
(sextloadi16 (am_indexed16 GPR64sp:$Rn,
uimm12s2:$offset)))]>;
// load sign-extended byte
defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
[(set GPR32:$Rt,
(sextloadi8 (am_indexed8 GPR64sp:$Rn,
uimm12s1:$offset)))]>;
defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
[(set GPR64:$Rt,
(sextloadi8 (am_indexed8 GPR64sp:$Rn,
uimm12s1:$offset)))]>;
// load sign-extended word
defm LDRSW : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
[(set GPR64:$Rt,
(sextloadi32 (am_indexed32 GPR64sp:$Rn,
uimm12s4:$offset)))]>;
// load zero-extended word
def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
(SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
// Pre-fetch.
def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
[(AArch64Prefetch imm:$Rt,
(am_indexed64 GPR64sp:$Rn,
uimm12s8:$offset))]>;
def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
//---
// (literal)
def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr">;
def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr">;
def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr">;
def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr">;
def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr">;
// load sign-extended word
def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw">;
// prefetch
def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
// [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
//---
// (unscaled immediate)
defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
[(set GPR64z:$Rt,
(load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
[(set GPR32z:$Rt,
(load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
[(set FPR8Op:$Rt,
(load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
[(set FPR16Op:$Rt,
(load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
[(set (f32 FPR32Op:$Rt),
(load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
[(set (f64 FPR64Op:$Rt),
(load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
[(set (f128 FPR128Op:$Rt),
(load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURHH
: LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
[(set GPR32:$Rt,
(zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURBB
: LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
[(set GPR32:$Rt,
(zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
// Match all load 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
}
def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
(LDURDi GPR64sp:$Rn, simm9:$offset)>;
// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
(LDURQi GPR64sp:$Rn, simm9:$offset)>;
}
// anyext -> zext
def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
(LDURHHi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
// unscaled zext
def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
(LDURHHi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(LDURBBi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
//---
// LDR mnemonics fall back to LDUR for negative or unaligned offsets.
// Define new assembler match classes as we want to only match these when
// the don't otherwise match the scaled addressing mode for LDR/STR. Don't
// associate a DiagnosticType either, as we want the diagnostic for the
// canonical form (the scaled operand) to take precedence.
class SImm9OffsetOperand<int Width> : AsmOperandClass {
let Name = "SImm9OffsetFB" # Width;
let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
let RenderMethod = "addImmOperands";
}
def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
def simm9_offset_fb8 : Operand<i64> {
let ParserMatchClass = SImm9OffsetFB8Operand;
}
def simm9_offset_fb16 : Operand<i64> {
let ParserMatchClass = SImm9OffsetFB16Operand;
}
def simm9_offset_fb32 : Operand<i64> {
let ParserMatchClass = SImm9OffsetFB32Operand;
}
def simm9_offset_fb64 : Operand<i64> {
let ParserMatchClass = SImm9OffsetFB64Operand;
}
def simm9_offset_fb128 : Operand<i64> {
let ParserMatchClass = SImm9OffsetFB128Operand;
}
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
(LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
(LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
(LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
(LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
(LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
(LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
(LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
// zextload -> i64
def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
(SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
// load sign-extended half-word
defm LDURSHW
: LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
[(set GPR32:$Rt,
(sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURSHX
: LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
[(set GPR64:$Rt,
(sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
// load sign-extended byte
defm LDURSBW
: LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
[(set GPR32:$Rt,
(sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURSBX
: LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
[(set GPR64:$Rt,
(sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
// load sign-extended word
defm LDURSW
: LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
[(set GPR64:$Rt,
(sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
// zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
(LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
(LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
(LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
(LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
(LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
(LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
(LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
// Pre-fetch.
defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
[(AArch64Prefetch imm:$Rt,
(am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
//---
// (unscaled immediate, unprivileged)
defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
// load sign-extended half-word
defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
// load sign-extended byte
defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
// load sign-extended word
defm LDTRSW : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
//---
// (immediate pre-indexed)
def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op, "ldr">;
def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
// load sign-extended half-word
def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
// load sign-extended byte
def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
// load zero-extended byte
def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
// load sign-extended word
def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
//---
// (immediate post-indexed)
def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op, "ldr">;
def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
// load sign-extended half-word
def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
// load sign-extended byte
def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
// load zero-extended byte
def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
// load sign-extended word
def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
//===----------------------------------------------------------------------===//
// Store instructions.
//===----------------------------------------------------------------------===//
// Pair (indexed, offset)
// FIXME: Use dedicated range-checked addressing mode operand here.
defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;
// Pair (pre-indexed)
def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
// Pair (pre-indexed)
def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
// Pair (no allocate)
defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;
//---
// (Register offset)
// Integer
defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
defm STRW : Store32RO<0b10, 0, 0b00, GPR32, "str", i32, store>;
defm STRX : Store64RO<0b11, 0, 0b00, GPR64, "str", i64, store>;
// Floating-point
defm STRB : Store8RO< 0b00, 1, 0b00, FPR8Op, "str", untyped, store>;
defm STRH : Store16RO<0b01, 1, 0b00, FPR16Op, "str", f16, store>;
defm STRS : Store32RO<0b10, 1, 0b00, FPR32Op, "str", f32, store>;
defm STRD : Store64RO<0b11, 1, 0b00, FPR64Op, "str", f64, store>;
defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128, store>;
let Predicates = [UseSTRQro], AddedComplexity = 10 in {
def : Pat<(store (f128 FPR128:$Rt),
(ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
ro_Wextend128:$extend)),
(STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
def : Pat<(store (f128 FPR128:$Rt),
(ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
ro_Xextend128:$extend)),
(STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
}
multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
Instruction STRW, Instruction STRX> {
def : Pat<(storeop GPR64:$Rt,
(ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
(STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
def : Pat<(storeop GPR64:$Rt,
(ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
(STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}
let AddedComplexity = 10 in {
// truncstore i64
defm : TruncStoreFrom64ROPat<ro8, truncstorei8, STRBBroW, STRBBroX>;
defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW, STRWroX>;
}
multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
Instruction STRW, Instruction STRX> {
def : Pat<(store (VecTy FPR:$Rt),
(ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
(STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
def : Pat<(store (VecTy FPR:$Rt),
(ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
(STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}
let AddedComplexity = 10 in {
// Match all store 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
}
defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
// Match all store 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE, UseSTRQro] in {
// We must use ST1 to store vectors in big-endian.
defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
}
} // AddedComplexity = 10
// Match stores from lane 0 to the appropriate subreg's store.
multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
ValueType VecTy, ValueType STy,
SubRegIndex SubRegIdx,
Instruction STRW, Instruction STRX> {
def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
(ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
(STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
(ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
(STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}
let AddedComplexity = 19 in {
defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
defm : VecROStoreLane0Pat<ro16, store, v8f16, f16, hsub, STRHroW, STRHroX>;
defm : VecROStoreLane0Pat<ro32, store, v4i32, i32, ssub, STRSroW, STRSroX>;
defm : VecROStoreLane0Pat<ro32, store, v4f32, f32, ssub, STRSroW, STRSroX>;
defm : VecROStoreLane0Pat<ro64, store, v2i64, i64, dsub, STRDroW, STRDroX>;
defm : VecROStoreLane0Pat<ro64, store, v2f64, f64, dsub, STRDroW, STRDroX>;
}
//---
// (unsigned immediate)
defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
[(store GPR64z:$Rt,
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
[(store GPR32z:$Rt,
(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
[(store FPR8Op:$Rt,
(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
[(store (f16 FPR16Op:$Rt),
(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
[(store (f32 FPR32Op:$Rt),
(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
[(store (f64 FPR64Op:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;
defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
[(truncstorei16 GPR32z:$Rt,
(am_indexed16 GPR64sp:$Rn,
uimm12s2:$offset))]>;
defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1, "strb",
[(truncstorei8 GPR32z:$Rt,
(am_indexed8 GPR64sp:$Rn,
uimm12s1:$offset))]>;
let AddedComplexity = 10 in {
// Match all store 64 bits width whose type is compatible with FPR64
def : Pat<(store (v1i64 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(store (v1f64 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v2f32 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(store (v8i8 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(store (v4i16 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(store (v2i32 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(store (v4f16 FPR64:$Rt),
(am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
(STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
}
// Match all store 128 bits width whose type is compatible with FPR128
def : Pat<(store (f128 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v4f32 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(store (v2f64 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(store (v16i8 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(store (v8i16 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(store (v4i32 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(store (v2i64 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
def : Pat<(store (v8f16 FPR128:$Rt),
(am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
(STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
}
// truncstore i64
def : Pat<(truncstorei32 GPR64:$Rt,
(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
(STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
def : Pat<(truncstorei16 GPR64:$Rt,
(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
(STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
(STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
} // AddedComplexity = 10
// Match stores from lane 0 to the appropriate subreg's store.
multiclass VecStoreLane0Pat<Operand UIAddrMode, SDPatternOperator storeop,
ValueType VTy, ValueType STy,
SubRegIndex SubRegIdx, Operand IndexType,
Instruction STR> {
def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
(UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
(STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
GPR64sp:$Rn, IndexType:$offset)>;
}
let AddedComplexity = 19 in {
defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
defm : VecStoreLane0Pat<am_indexed16, store, v8f16, f16, hsub, uimm12s2, STRHui>;
defm : VecStoreLane0Pat<am_indexed32, store, v4i32, i32, ssub, uimm12s4, STRSui>;
defm : VecStoreLane0Pat<am_indexed32, store, v4f32, f32, ssub, uimm12s4, STRSui>;
defm : VecStoreLane0Pat<am_indexed64, store, v2i64, i64, dsub, uimm12s8, STRDui>;
defm : VecStoreLane0Pat<am_indexed64, store, v2f64, f64, dsub, uimm12s8, STRDui>;
}
//---
// (unscaled immediate)
defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
[(store GPR64z:$Rt,
(am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
[(store GPR32z:$Rt,
(am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
[(store FPR8Op:$Rt,
(am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
[(store (f16 FPR16Op:$Rt),
(am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
[(store (f32 FPR32Op:$Rt),
(am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
[(store (f64 FPR64Op:$Rt),
(am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
[(store (f128 FPR128Op:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
[(truncstorei16 GPR32z:$Rt,
(am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
[(truncstorei8 GPR32z:$Rt,
(am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
// Armv8.4 LDAPR & STLR with Immediate Offset instruction
let Predicates = [HasV8_4a] in {
defm STLURB : BaseStoreUnscaleV84<"stlurb", 0b00, 0b00, GPR32>;
defm STLURH : BaseStoreUnscaleV84<"stlurh", 0b01, 0b00, GPR32>;
defm STLURW : BaseStoreUnscaleV84<"stlur", 0b10, 0b00, GPR32>;
defm STLURX : BaseStoreUnscaleV84<"stlur", 0b11, 0b00, GPR64>;
defm LDAPURB : BaseLoadUnscaleV84<"ldapurb", 0b00, 0b01, GPR32>;
defm LDAPURSBW : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
defm LDAPURSBX : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
defm LDAPURH : BaseLoadUnscaleV84<"ldapurh", 0b01, 0b01, GPR32>;
defm LDAPURSHW : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
defm LDAPURSHX : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
defm LDAPUR : BaseLoadUnscaleV84<"ldapur", 0b10, 0b01, GPR32>;
defm LDAPURSW : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
defm LDAPURX : BaseLoadUnscaleV84<"ldapur", 0b11, 0b01, GPR64>;
}
// Match all store 64 bits width whose type is compatible with FPR64
def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
let AddedComplexity = 10 in {
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v2f32 FPR64:$Rt),
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v8i8 FPR64:$Rt),
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v4i16 FPR64:$Rt),
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v2i32 FPR64:$Rt),
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v4f16 FPR64:$Rt),
(am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
(STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
}
// Match all store 128 bits width whose type is compatible with FPR128
def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
let Predicates = [IsLE] in {
// We must use ST1 to store vectors in big-endian.
def : Pat<(store (v4f32 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v2f64 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v16i8 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v8i16 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v4i32 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v2i64 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v2f64 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v8f16 FPR128:$Rt),
(am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
(STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
}
} // AddedComplexity = 10
// unscaled i64 truncating stores
def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
(STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
(STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
(STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
// Match stores from lane 0 to the appropriate subreg's store.
multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
ValueType VTy, ValueType STy,
SubRegIndex SubRegIdx, Instruction STR> {
defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
}
let AddedComplexity = 19 in {
defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
defm : VecStoreULane0Pat<store, v8f16, f16, hsub, STURHi>;
defm : VecStoreULane0Pat<store, v4i32, i32, ssub, STURSi>;
defm : VecStoreULane0Pat<store, v4f32, f32, ssub, STURSi>;
defm : VecStoreULane0Pat<store, v2i64, i64, dsub, STURDi>;
defm : VecStoreULane0Pat<store, v2f64, f64, dsub, STURDi>;
}
//---
// STR mnemonics fall back to STUR for negative or unaligned offsets.
def : InstAlias<"str $Rt, [$Rn, $offset]",
(STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
(STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
(STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
(STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
(STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
(STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
(STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
def : InstAlias<"strb $Rt, [$Rn, $offset]",
(STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"strh $Rt, [$Rn, $offset]",
(STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
//---
// (unscaled immediate, unprivileged)
defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
//---
// (immediate pre-indexed)
def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str", pre_store, i32>;
def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str", pre_store, i64>;
def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op, "str", pre_store, untyped>;
def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str", pre_store, f16>;
def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str", pre_store, f32>;
def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str", pre_store, f64>;
def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;
def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8, i32>;
def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;
// truncstore i64
def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
(STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
simm9:$off)>;
def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
(STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
simm9:$off)>;
def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
(STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
simm9:$off)>;
def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
//---
// (immediate post-indexed)
def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z, "str", post_store, i32>;
def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z, "str", post_store, i64>;
def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op, "str", post_store, untyped>;
def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op, "str", post_store, f16>;
def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op, "str", post_store, f32>;
def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op, "str", post_store, f64>;
def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;
def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;
// truncstore i64
def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
(STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
simm9:$off)>;
def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
(STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
simm9:$off)>;
def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
(STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
simm9:$off)>;
def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
(STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
(STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
//===----------------------------------------------------------------------===//
// Load/store exclusive instructions.
//===----------------------------------------------------------------------===//
def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">;
def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">;
def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">;
def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">;
def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
let Predicates = [HasV8_1a] in {
// v8.1a "Limited Order Region" extension load-acquire instructions
def LDLARW : LoadAcquire <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
def LDLARX : LoadAcquire <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
def LDLARB : LoadAcquire <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
def LDLARH : LoadAcquire <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
// v8.1a "Limited Order Region" extension store-release instructions
def STLLRW : StoreRelease <0b10, 1, 0, 0, 0, GPR32, "stllr">;
def STLLRX : StoreRelease <0b11, 1, 0, 0, 0, GPR64, "stllr">;
def STLLRB : StoreRelease <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
def STLLRH : StoreRelease <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
}
//===----------------------------------------------------------------------===//
// Scaled floating point to integer conversion instructions.
//===----------------------------------------------------------------------===//
defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
(!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
(!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
(!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
(!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
(!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
(!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
}
defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
def : Pat<(i32 (to_int (round f32:$Rn))),
(!cast<Instruction>(INST # UWSr) f32:$Rn)>;
def : Pat<(i64 (to_int (round f32:$Rn))),
(!cast<Instruction>(INST # UXSr) f32:$Rn)>;
def : Pat<(i32 (to_int (round f64:$Rn))),
(!cast<Instruction>(INST # UWDr) f64:$Rn)>;
def : Pat<(i64 (to_int (round f64:$Rn))),
(!cast<Instruction>(INST # UXDr) f64:$Rn)>;
}
defm : FPToIntegerPats<fp_to_sint, fceil, "FCVTPS">;
defm : FPToIntegerPats<fp_to_uint, fceil, "FCVTPU">;
defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
defm : FPToIntegerPats<fp_to_sint, fround, "FCVTAS">;
defm : FPToIntegerPats<fp_to_uint, fround, "FCVTAU">;
//===----------------------------------------------------------------------===//
// Scaled integer to floating point conversion instructions.
//===----------------------------------------------------------------------===//
defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
//===----------------------------------------------------------------------===//
// Unscaled integer to floating point conversion instruction.
//===----------------------------------------------------------------------===//
defm FMOV : UnscaledConversion<"fmov">;
// Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
Sched<[WriteF]>, Requires<[HasFullFP16]>;
def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
Sched<[WriteF]>;
def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
Sched<[WriteF]>;
}
// Similarly add aliases
def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
Requires<[HasFullFP16]>;
def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;
//===----------------------------------------------------------------------===//
// Floating point conversion instruction.
//===----------------------------------------------------------------------===//
defm FCVT : FPConversion<"fcvt">;
//===----------------------------------------------------------------------===//
// Floating point single operand instructions.
//===----------------------------------------------------------------------===//
defm FABS : SingleOperandFPData<0b0001, "fabs", fabs>;
defm FMOV : SingleOperandFPData<0b0000, "fmov">;
defm FNEG : SingleOperandFPData<0b0010, "fneg", fneg>;
defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
(FRINTNDr FPR64:$Rn)>;
defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
let SchedRW = [WriteFDiv] in {
defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
}
//===----------------------------------------------------------------------===//
// Floating point two operand instructions.
//===----------------------------------------------------------------------===//
defm FADD : TwoOperandFPData<0b0010, "fadd", fadd>;
let SchedRW = [WriteFDiv] in {
defm FDIV : TwoOperandFPData<0b0001, "fdiv", fdiv>;
}
defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
defm FMAX : TwoOperandFPData<0b0100, "fmax", fmaxnan>;
defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
defm FMIN : TwoOperandFPData<0b0101, "fmin", fminnan>;
let SchedRW = [WriteFMul] in {
defm FMUL : TwoOperandFPData<0b0000, "fmul", fmul>;
defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
}
defm FSUB : TwoOperandFPData<0b0011, "fsub", fsub>;
def : Pat<(v1f64 (fmaxnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (fminnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FMINDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
//===----------------------------------------------------------------------===//
// Floating point three operand instructions.
//===----------------------------------------------------------------------===//
defm FMADD : ThreeOperandFPData<0, 0, "fmadd", fma>;
defm FMSUB : ThreeOperandFPData<0, 1, "fmsub",
TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
// The following def pats catch the case where the LHS of an FMA is negated.
// The TriOpFrag above catches the case where the middle operand is negated.
// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
// the NEON variant.
def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
(FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
(FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
// We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and
// "(-a) + b*(-c)".
def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
(FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
(FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
(FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
(FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
//===----------------------------------------------------------------------===//
// Floating point comparison instructions.
//===----------------------------------------------------------------------===//
defm FCMPE : FPComparison<1, "fcmpe">;
defm FCMP : FPComparison<0, "fcmp", AArch64fcmp>;
//===----------------------------------------------------------------------===//
// Floating point conditional comparison instructions.
//===----------------------------------------------------------------------===//
defm FCCMPE : FPCondComparison<1, "fccmpe">;
defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>;
//===----------------------------------------------------------------------===//
// Floating point conditional select instruction.
//===----------------------------------------------------------------------===//
defm FCSEL : FPCondSelect<"fcsel">;
// CSEL instructions providing f128 types need to be handled by a
// pseudo-instruction since the eventual code will need to introduce basic
// blocks and control flow.
def F128CSEL : Pseudo<(outs FPR128:$Rd),
(ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
[(set (f128 FPR128:$Rd),
(AArch64csel FPR128:$Rn, FPR128:$Rm,
(i32 imm:$cond), NZCV))]> {
let Uses = [NZCV];
let usesCustomInserter = 1;
let hasNoSchedulingInfo = 1;
}
//===----------------------------------------------------------------------===//
// Floating point immediate move.
//===----------------------------------------------------------------------===//
let isReMaterializable = 1 in {
defm FMOV : FPMoveImmediate<"fmov">;
}
//===----------------------------------------------------------------------===//
// Advanced SIMD two vector instructions.
//===----------------------------------------------------------------------===//
defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
int_aarch64_neon_uabd>;
// Match UABDL in log2-shuffle patterns.
def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
(zext (v8i8 V64:$opB))))),
(UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
(v8i16 (add (sub (zext (v8i8 V64:$opA)),
(zext (v8i8 V64:$opB))),
(AArch64vashr v8i16:$src, (i32 15))))),
(UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
(zext (extract_high_v16i8 V128:$opB))))),
(UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
(v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
(zext (extract_high_v16i8 V128:$opB))),
(AArch64vashr v8i16:$src, (i32 15))))),
(UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
(zext (v4i16 V64:$opB))))),
(UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
(zext (extract_high_v8i16 V128:$opB))))),
(UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
(zext (v2i32 V64:$opB))))),
(UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
(zext (extract_high_v4i32 V128:$opB))))),
(UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
defm FABS : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
(FCVTLv4i16 V64:$Rn)>;
def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
(i64 4)))),
(FCVTLv8i16 V128:$Rn)>;
def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
def : Pat<(v2f64 (fpextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
(i64 2))))),
(FCVTLv4i32 V128:$Rn)>;
def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
def : Pat<(v4f32 (fpextend (v4f16 (extract_subvector (v8f16 V128:$Rn),
(i64 4))))),
(FCVTLv8i16 V128:$Rn)>;
defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
(FCVTNv4i16 V128:$Rn)>;
def : Pat<(concat_vectors V64:$Rd,
(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
(FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
(FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
int_aarch64_neon_fcvtxn>;
defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
defm FNEG : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg",
UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
// Aliases for MVN -> NOT.
def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
(NOTv8i8 V64:$Vd, V64:$Vn)>;
def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
(NOTv16i8 V128:$Vd, V128:$Vn)>;
def : Pat<(AArch64neg (v8i8 V64:$Rn)), (NEGv8i8 V64:$Rn)>;
def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
def : Pat<(AArch64neg (v4i16 V64:$Rn)), (NEGv4i16 V64:$Rn)>;
def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
def : Pat<(AArch64neg (v2i32 V64:$Rn)), (NEGv2i32 V64:$Rn)>;
def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
def : Pat<(AArch64not (v8i8 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(AArch64not (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(AArch64not (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(AArch64not (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>;
def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
defm SHLL : SIMDVectorLShiftLongBySizeBHS;
defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
int_aarch64_neon_uaddlp>;
defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
// Patterns for vector long shift (by element width). These need to match all
// three of zext, sext and anyext so it's easier to pull the patterns out of the
// definition.
multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
(SHLLv8i8 V64:$Rn)>;
def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
(SHLLv16i8 V128:$Rn)>;
def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
(SHLLv4i16 V64:$Rn)>;
def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
(SHLLv8i16 V128:$Rn)>;
def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
(SHLLv2i32 V64:$Rn)>;
def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
(SHLLv4i32 V128:$Rn)>;
}
defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
//===----------------------------------------------------------------------===//
// Advanced SIMD three vector instructions.
//===----------------------------------------------------------------------===//
defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>;
defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
defm FABD : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
let Predicates = [HasNEON] in {
foreach VT = [ v2f32, v4f32, v2f64 ] in
def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
}
let Predicates = [HasNEON, HasFullFP16] in {
foreach VT = [ v4f16, v8f16 ] in
def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
}
defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
defm FADDP : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_addp>;
defm FADD : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
defm FDIV : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
defm FMAXP : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
defm FMAX : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaxnan>;
defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
defm FMINNM : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
defm FMINP : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
defm FMIN : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminnan>;
// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
// instruction expects the addend first, while the fma intrinsic puts it last.
defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
// The following def pats catch the case where the LHS of an FMA is negated.
// The TriOpFrag above catches the case where the middle operand is negated.
def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
(FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
(FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
(FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
defm FMULX : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
defm FMUL : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
defm FRECPS : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
defm FSUB : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla",
TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >;
defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls",
TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >;
defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>;
defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>;
defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>;
defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
int_aarch64_neon_sqadd>;
defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
int_aarch64_neon_sqsub>;
defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
(BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
(BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
(BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
(BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
(BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
(BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
(BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
(BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
(ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
(ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
"|cmls.8b\t$dst, $src1, $src2}",
(CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
"|cmls.16b\t$dst, $src1, $src2}",
(CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
"|cmls.4h\t$dst, $src1, $src2}",
(CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
"|cmls.8h\t$dst, $src1, $src2}",
(CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
"|cmls.2s\t$dst, $src1, $src2}",
(CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
"|cmls.4s\t$dst, $src1, $src2}",
(CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
"|cmls.2d\t$dst, $src1, $src2}",
(CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
"|cmlo.8b\t$dst, $src1, $src2}",
(CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
"|cmlo.16b\t$dst, $src1, $src2}",
(CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
"|cmlo.4h\t$dst, $src1, $src2}",
(CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
"|cmlo.8h\t$dst, $src1, $src2}",
(CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
"|cmlo.2s\t$dst, $src1, $src2}",
(CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
"|cmlo.4s\t$dst, $src1, $src2}",
(CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
"|cmlo.2d\t$dst, $src1, $src2}",
(CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
"|cmle.8b\t$dst, $src1, $src2}",
(CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
"|cmle.16b\t$dst, $src1, $src2}",
(CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
"|cmle.4h\t$dst, $src1, $src2}",
(CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
"|cmle.8h\t$dst, $src1, $src2}",
(CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
"|cmle.2s\t$dst, $src1, $src2}",
(CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
"|cmle.4s\t$dst, $src1, $src2}",
(CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
"|cmle.2d\t$dst, $src1, $src2}",
(CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
"|cmlt.8b\t$dst, $src1, $src2}",
(CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
"|cmlt.16b\t$dst, $src1, $src2}",
(CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
"|cmlt.4h\t$dst, $src1, $src2}",
(CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
"|cmlt.8h\t$dst, $src1, $src2}",
(CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
"|cmlt.2s\t$dst, $src1, $src2}",
(CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
"|cmlt.4s\t$dst, $src1, $src2}",
(CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
"|cmlt.2d\t$dst, $src1, $src2}",
(CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
"|fcmle.4h\t$dst, $src1, $src2}",
(FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
"|fcmle.8h\t$dst, $src1, $src2}",
(FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
}
def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
"|fcmle.2s\t$dst, $src1, $src2}",
(FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
"|fcmle.4s\t$dst, $src1, $src2}",
(FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
"|fcmle.2d\t$dst, $src1, $src2}",
(FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
"|fcmlt.4h\t$dst, $src1, $src2}",
(FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
"|fcmlt.8h\t$dst, $src1, $src2}",
(FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
}
def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
"|fcmlt.2s\t$dst, $src1, $src2}",
(FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
"|fcmlt.4s\t$dst, $src1, $src2}",
(FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
"|fcmlt.2d\t$dst, $src1, $src2}",
(FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
"|facle.4h\t$dst, $src1, $src2}",
(FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
"|facle.8h\t$dst, $src1, $src2}",
(FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
}
def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
"|facle.2s\t$dst, $src1, $src2}",
(FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
"|facle.4s\t$dst, $src1, $src2}",
(FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
"|facle.2d\t$dst, $src1, $src2}",
(FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
"|faclt.4h\t$dst, $src1, $src2}",
(FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
"|faclt.8h\t$dst, $src1, $src2}",
(FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
}
def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
"|faclt.2s\t$dst, $src1, $src2}",
(FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
"|faclt.4s\t$dst, $src1, $src2}",
(FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
"|faclt.2d\t$dst, $src1, $src2}",
(FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
//===----------------------------------------------------------------------===//
// Advanced SIMD three scalar instructions.
//===----------------------------------------------------------------------===//
defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>;
defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
defm FABD : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
(FABD64 FPR64:$Rn, FPR64:$Rm)>;
let Predicates = [HasFullFP16] in {
def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
}
def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
int_aarch64_neon_facge>;
defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
int_aarch64_neon_facgt>;
defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
defm FMULX : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
defm FRECPS : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
defm FRSQRTS : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_aarch64_neon_srshl>;
defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_aarch64_neon_sshl>;
defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>;
defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_aarch64_neon_urshl>;
defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_aarch64_neon_ushl>;
let Predicates = [HasRDM] in {
defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
def : Pat<(i32 (int_aarch64_neon_sqadd
(i32 FPR32:$Rd),
(i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
(i32 FPR32:$Rm))))),
(SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(i32 (int_aarch64_neon_sqsub
(i32 FPR32:$Rd),
(i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
(i32 FPR32:$Rm))))),
(SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
}
def : InstAlias<"cmls $dst, $src1, $src2",
(CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"cmle $dst, $src1, $src2",
(CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"cmlo $dst, $src1, $src2",
(CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"cmlt $dst, $src1, $src2",
(CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"fcmle $dst, $src1, $src2",
(FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
def : InstAlias<"fcmle $dst, $src1, $src2",
(FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"fcmlt $dst, $src1, $src2",
(FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
def : InstAlias<"fcmlt $dst, $src1, $src2",
(FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"facle $dst, $src1, $src2",
(FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
def : InstAlias<"facle $dst, $src1, $src2",
(FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"faclt $dst, $src1, $src2",
(FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
def : InstAlias<"faclt $dst, $src1, $src2",
(FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
//===----------------------------------------------------------------------===//
// Advanced SIMD three scalar instructions (mixed operands).
//===----------------------------------------------------------------------===//
defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
int_aarch64_neon_sqdmulls_scalar>;
defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
(i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
(i32 FPR32:$Rm))))),
(SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
(i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
(i32 FPR32:$Rm))))),
(SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
//===----------------------------------------------------------------------===//
// Advanced SIMD two scalar instructions.
//===----------------------------------------------------------------------===//
defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", abs>;
defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
defm FCMEQ : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
defm FCMGE : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
defm FCMGT : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
defm FCMLE : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
defm FCMLT : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
defm FCVTAS : SIMDFPTwoScalar< 0, 0, 0b11100, "fcvtas">;
defm FCVTAU : SIMDFPTwoScalar< 1, 0, 0b11100, "fcvtau">;
defm FCVTMS : SIMDFPTwoScalar< 0, 0, 0b11011, "fcvtms">;
defm FCVTMU : SIMDFPTwoScalar< 1, 0, 0b11011, "fcvtmu">;
defm FCVTNS : SIMDFPTwoScalar< 0, 0, 0b11010, "fcvtns">;
defm FCVTNU : SIMDFPTwoScalar< 1, 0, 0b11010, "fcvtnu">;
defm FCVTPS : SIMDFPTwoScalar< 0, 1, 0b11010, "fcvtps">;
defm FCVTPU : SIMDFPTwoScalar< 1, 1, 0b11010, "fcvtpu">;
def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
defm FCVTZS : SIMDFPTwoScalar< 0, 1, 0b11011, "fcvtzs">;
defm FCVTZU : SIMDFPTwoScalar< 1, 1, 0b11011, "fcvtzu">;
defm FRECPE : SIMDFPTwoScalar< 0, 1, 0b11101, "frecpe">;
defm FRECPX : SIMDFPTwoScalar< 0, 1, 0b11111, "frecpx">;
defm FRSQRTE : SIMDFPTwoScalar< 1, 1, 0b11101, "frsqrte">;
defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg",
UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
defm SCVTF : SIMDFPTwoScalarCVT< 0, 0, 0b11101, "scvtf", AArch64sitof>;
defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
int_aarch64_neon_suqadd>;
defm UCVTF : SIMDFPTwoScalarCVT< 1, 0, 0b11101, "ucvtf", AArch64uitof>;
defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
int_aarch64_neon_usqadd>;
def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
(FCVTASv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
(FCVTAUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
(FCVTMSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
(FCVTMUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
(FCVTNSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
(FCVTNUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
(FCVTPSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
(FCVTPUv1i64 FPR64:$Rn)>;
def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
(FRECPEv1f16 FPR16:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
(FRECPEv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
(FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
(FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
(FRECPEv1i32 FPR32:$Rn)>;
def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
(FRECPEv2f32 V64:$Rn)>;
def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
(FRECPEv4f32 FPR128:$Rn)>;
def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
(FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
(FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
(FRECPEv2f64 FPR128:$Rn)>;
def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
(FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
(FRECPSv2f32 V64:$Rn, V64:$Rm)>;
def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
(FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
(FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
(FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;
def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
(FRECPXv1f16 FPR16:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
(FRECPXv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
(FRECPXv1i64 FPR64:$Rn)>;
def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
(FRSQRTEv1f16 FPR16:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
(FRSQRTEv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
(FRSQRTEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
(FRSQRTEv1i64 FPR64:$Rn)>;
def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
(FRSQRTEv1i32 FPR32:$Rn)>;
def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
(FRSQRTEv2f32 V64:$Rn)>;
def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
(FRSQRTEv4f32 FPR128:$Rn)>;
def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
(FRSQRTEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
(FRSQRTEv1i64 FPR64:$Rn)>;
def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
(FRSQRTEv2f64 FPR128:$Rn)>;
def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
(FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
(FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
(FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
(FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
(FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;
// If an integer is about to be converted to a floating point value,
// just load it on the floating point unit.
// Here are the patterns for 8 and 16-bits to float.
// 8-bits -> float.
multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
SDPatternOperator loadop, Instruction UCVTF,
ROAddrMode ro, Instruction LDRW, Instruction LDRX,
SubRegIndex sub> {
def : Pat<(DstTy (uint_to_fp (SrcTy
(loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
ro.Wext:$extend))))),
(UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
(LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
sub))>;
def : Pat<(DstTy (uint_to_fp (SrcTy
(loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
ro.Wext:$extend))))),
(UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
(LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
sub))>;
}
defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
def : Pat <(f32 (uint_to_fp (i32
(zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
def : Pat <(f32 (uint_to_fp (i32
(zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
// 16-bits -> float.
defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
def : Pat <(f32 (uint_to_fp (i32
(zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
def : Pat <(f32 (uint_to_fp (i32
(zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
(UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
(LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
// 32-bits are handled in target specific dag combine:
// performIntToFpCombine.
// 64-bits integer to 32-bits floating point, not possible with
// UCVTF on floating point registers (both source and destination
// must have the same size).
// Here are the patterns for 8, 16, 32, and 64-bits to double.
// 8-bits -> double.
defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
def : Pat <(f64 (uint_to_fp (i32
(zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
def : Pat <(f64 (uint_to_fp (i32
(zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
// 16-bits -> double.
defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
def : Pat <(f64 (uint_to_fp (i32
(zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
def : Pat <(f64 (uint_to_fp (i32
(zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
// 32-bits -> double.
defm : UIntToFPROLoadPat<f64, i32, load,
UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
def : Pat <(f64 (uint_to_fp (i32
(load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
def : Pat <(f64 (uint_to_fp (i32
(load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
(UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
(LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
// 64-bits -> double are handled in target specific dag combine:
// performIntToFpCombine.
//===----------------------------------------------------------------------===//
// Advanced SIMD three different-sized vector instructions.
//===----------------------------------------------------------------------===//
defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
int_aarch64_neon_sabd>;
defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
int_aarch64_neon_sabd>;
defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl",
BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw",
BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
int_aarch64_neon_sqadd>;
defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
int_aarch64_neon_sqsub>;
defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
int_aarch64_neon_sqdmull>;
defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
int_aarch64_neon_uabd>;
defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw",
BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
// Additional patterns for SMULL and UMULL
multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
Instruction INST8B, Instruction INST4H, Instruction INST2S> {
def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
(INST8B V64:$Rn, V64:$Rm)>;
def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
(INST4H V64:$Rn, V64:$Rm)>;
def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
(INST2S V64:$Rn, V64:$Rm)>;
}
defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
// Patterns for smull2/umull2.
multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
Instruction INST8B, Instruction INST4H, Instruction INST2S> {
def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
(extract_high_v16i8 V128:$Rm))),
(INST8B V128:$Rn, V128:$Rm)>;
def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
(extract_high_v8i16 V128:$Rm))),
(INST4H V128:$Rn, V128:$Rm)>;
def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
(extract_high_v4i32 V128:$Rm))),
(INST2S V128:$Rn, V128:$Rm)>;
}
defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
UMULLv8i16_v4i32, UMULLv4i32_v2i64>;
// Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
Instruction INST8B, Instruction INST4H, Instruction INST2S> {
def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
(INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
(INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
(INST2S V128:$Rd, V64:$Rn, V64:$Rm)>;
}
defm : Neon_mulacc_widen_patterns<
TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
defm : Neon_mulacc_widen_patterns<
TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
defm : Neon_mulacc_widen_patterns<
TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
defm : Neon_mulacc_widen_patterns<
TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
// Patterns for 64-bit pmull
def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
(PMULLv1i64 V64:$Rn, V64:$Rm)>;
def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
(extractelt (v2i64 V128:$Rm), (i64 1))),
(PMULLv2i64 V128:$Rn, V128:$Rm)>;
// CodeGen patterns for addhn and subhn instructions, which can actually be
// written in LLVM IR without too much difficulty.
// ADDHN
def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
(ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
(i32 16))))),
(ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
(i32 32))))),
(ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v8i8 V64:$Rd),
(trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
(i32 8))))),
(ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd),
(trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
(i32 16))))),
(ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd),
(trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
(i32 32))))),
(ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
// SUBHN
def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
(SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
(i32 16))))),
(SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
(i32 32))))),
(SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v8i8 V64:$Rd),
(trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
(i32 8))))),
(SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd),
(trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
(i32 16))))),
(SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd),
(trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
(i32 32))))),
(SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
V128:$Rn, V128:$Rm)>;
//----------------------------------------------------------------------------
// AdvSIMD bitwise extract from vector instruction.
//----------------------------------------------------------------------------
defm EXT : SIMDBitwiseExtract<"ext">;
def : Pat<(v4i16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
(EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
def : Pat<(v8i16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v2i32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
(EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
def : Pat<(v2f32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
(EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
def : Pat<(v4i32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v4f32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
def : Pat<(v4f16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
(EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
def : Pat<(v8f16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
(EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
// We use EXT to handle extract_subvector to copy the upper 64-bits of a
// 128-bit vector.
def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 8))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 4))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
(EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
//----------------------------------------------------------------------------
// AdvSIMD zip vector
//----------------------------------------------------------------------------
defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
//----------------------------------------------------------------------------
// AdvSIMD TBL/TBX instructions
//----------------------------------------------------------------------------
defm TBL : SIMDTableLookup< 0, "tbl">;
defm TBX : SIMDTableLookupTied<1, "tbx">;
def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
(TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
(TBLv16i8One V128:$Ri, V128:$Rn)>;
def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
(v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
(TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
(v16i8 V128:$Ri), (v16i8 V128:$Rn))),
(TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
//----------------------------------------------------------------------------
// AdvSIMD scalar CPY instruction
//----------------------------------------------------------------------------
defm CPY : SIMDScalarCPY<"cpy">;
//----------------------------------------------------------------------------
// AdvSIMD scalar pairwise instructions
//----------------------------------------------------------------------------
defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">;
defm FADDP : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
defm FMAXP : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
defm FMINP : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
(FADDPv2i32p V64:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
(FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
(FADDPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
(FMAXNMPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
(FMAXNMPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
(FMAXPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
(FMAXPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
(FMINNMPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
(FMINNMPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
(FMINPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
(FMINPv2i64p V128:$Rn)>;
//----------------------------------------------------------------------------
// AdvSIMD INS/DUP instructions
//----------------------------------------------------------------------------
def DUPv8i8gpr : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
def DUPv2i64lane : SIMDDup64FromElement;
def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
(v2f32 (DUPv2i32lane
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
(i64 0)))>;
def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
(v4f32 (DUPv4i32lane
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
(i64 0)))>;
def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
(v2f64 (DUPv2i64lane
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
(i64 0)))>;
def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
(v4f16 (DUPv4i16lane
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
(i64 0)))>;
def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
(v8f16 (DUPv8i16lane
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
(i64 0)))>;
def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
(DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
(DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
(DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
(DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
(DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
// instruction even if the types don't match: we just have to remap the lane
// carefully. N.b. this trick only applies to truncations.
def VecIndex_x2 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
}]>;
def VecIndex_x4 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
}]>;
def VecIndex_x8 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
}]>;
multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
ValueType Src128VT, ValueType ScalVT,
Instruction DUP, SDNodeXForm IdxXFORM> {
def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
imm:$idx)))),
(DUP V128:$Rn, (IdxXFORM imm:$idx))>;
def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
imm:$idx)))),
(DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
}
defm : DUPWithTruncPats<v8i8, v4i16, v8i16, i32, DUPv8i8lane, VecIndex_x2>;
defm : DUPWithTruncPats<v8i8, v2i32, v4i32, i32, DUPv8i8lane, VecIndex_x4>;
defm : DUPWithTruncPats<v4i16, v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
defm : DUPWithTruncPats<v16i8, v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
defm : DUPWithTruncPats<v16i8, v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
defm : DUPWithTruncPats<v8i16, v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
SDNodeXForm IdxXFORM> {
def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
imm:$idx))))),
(DUP V128:$Rn, (IdxXFORM imm:$idx))>;
def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
imm:$idx))))),
(DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
}
defm : DUPWithTrunci64Pats<v8i8, DUPv8i8lane, VecIndex_x8>;
defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane, VecIndex_x4>;
defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane, VecIndex_x2>;
defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
// SMOV and UMOV definitions, with some extra patterns for convenience
defm SMOV : SMov;
defm UMOV : UMov;
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
(i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
(i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
(i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
(i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
VectorIndexB:$idx)))), i8),
(i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
VectorIndexH:$idx)))), i16),
(i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
// Extracting i8 or i16 elements will have the zero-extend transformed to
// an 'and' mask by type legalization since neither i8 nor i16 are legal types
// for AArch64. Match these patterns here since UMOV already zeroes out the high
// bits of the destination register.
def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
(i32 0xff)),
(i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
(i32 0xffff)),
(i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
defm INS : SIMDIns;
def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
(SUBREG_TO_REG (i32 0),
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
(SUBREG_TO_REG (i32 0),
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
(SUBREG_TO_REG (i32 0),
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
(SUBREG_TO_REG (i32 0),
(f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
(INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
(INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
(v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
(i32 FPR32:$Rn), ssub))>;
def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
(v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(i32 FPR32:$Rn), ssub))>;
def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
(v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
(i64 FPR64:$Rn), dsub))>;
def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
(INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
(INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
(INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
(f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
(EXTRACT_SUBREG
(INSvi16lane
(v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
VectorIndexS:$imm,
(v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
(i64 0)),
dsub)>;
def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
(f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
(INSvi16lane
V128:$Rn, VectorIndexH:$imm,
(v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
(i64 0))>;
def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
(f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
(EXTRACT_SUBREG
(INSvi32lane
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
VectorIndexS:$imm,
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
(i64 0)),
dsub)>;
def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
(f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
(INSvi32lane
V128:$Rn, VectorIndexS:$imm,
(v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
(i64 0))>;
def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
(f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
(INSvi64lane
V128:$Rn, VectorIndexD:$imm,
(v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
(i64 0))>;
// Copy an element at a constant index in one vector into a constant indexed
// element of another.
// FIXME refactor to a shared class/dev parameterized on vector type, vector
// index type and INS extension
def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
(v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
VectorIndexB:$idx2)),
(v16i8 (INSvi8lane
V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
)>;
def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
(v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
VectorIndexH:$idx2)),
(v8i16 (INSvi16lane
V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
)>;
def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
(v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
VectorIndexS:$idx2)),
(v4i32 (INSvi32lane
V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
)>;
def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
(v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
VectorIndexD:$idx2)),
(v2i64 (INSvi64lane
V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
)>;
multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
ValueType VTScal, Instruction INS> {
def : Pat<(VT128 (vector_insert V128:$src,
(VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
imm:$Immd)),
(INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
def : Pat<(VT128 (vector_insert V128:$src,
(VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
imm:$Immd)),
(INS V128:$src, imm:$Immd,
(SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
def : Pat<(VT64 (vector_insert V64:$src,
(VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
imm:$Immd)),
(EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
imm:$Immd, V128:$Rn, imm:$Immn),
dsub)>;
def : Pat<(VT64 (vector_insert V64:$src,
(VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
imm:$Immd)),
(EXTRACT_SUBREG
(INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
(SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
dsub)>;
}
defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
// Floating point vector extractions are codegen'd as either a sequence of
// subregister extractions, or a MOV (aka CPY here, alias for DUP) if
// the lane number is anything other than zero.
def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
(f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
(f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
(f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
(f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
(f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
(f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
// All concat_vectors operations are canonicalised to act on i64 vectors for
// AArch64. In the general case we need an instruction, which had just as well be
// INS.
class ConcatPat<ValueType DstTy, ValueType SrcTy>
: Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
(INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
def : ConcatPat<v2i64, v1i64>;
def : ConcatPat<v2f64, v1f64>;
def : ConcatPat<v4i32, v2i32>;
def : ConcatPat<v4f32, v2f32>;
def : ConcatPat<v8i16, v4i16>;
def : ConcatPat<v8f16, v4f16>;
def : ConcatPat<v16i8, v8i8>;
// If the high lanes are undef, though, we can just ignore them:
class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
: Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
(INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
def : ConcatUndefPat<v2i64, v1i64>;
def : ConcatUndefPat<v2f64, v1f64>;
def : ConcatUndefPat<v4i32, v2i32>;
def : ConcatUndefPat<v4f32, v2f32>;
def : ConcatUndefPat<v8i16, v4i16>;
def : ConcatUndefPat<v16i8, v8i8>;
//----------------------------------------------------------------------------
// AdvSIMD across lanes instructions
//----------------------------------------------------------------------------
defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
defm FMAXV : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
defm FMINV : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
// Patterns for across-vector intrinsics, that have a node equivalent, that
// returns a vector (with only the low lane defined) instead of a scalar.
// In effect, opNode is the same as (scalar_to_vector (IntNode)).
multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
SDPatternOperator opNode> {
// If a lane instruction caught the vector_extract around opNode, we can
// directly match the latter to the instruction.
def : Pat<(v8i8 (opNode V64:$Rn)),
(INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
def : Pat<(v16i8 (opNode V128:$Rn)),
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
def : Pat<(v4i16 (opNode V64:$Rn)),
(INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
def : Pat<(v8i16 (opNode V128:$Rn)),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
def : Pat<(v4i32 (opNode V128:$Rn)),
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
// If none did, fallback to the explicit patterns, consuming the vector_extract.
def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
(i32 0)), (i64 0))),
(EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
bsub), ssub)>;
def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
(EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
bsub), ssub)>;
def : Pat<(i32 (vector_extract (insert_subvector undef,
(v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
(EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
hsub), ssub)>;
def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
(EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
hsub), ssub)>;
def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
(EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
ssub), ssub)>;
}
multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
SDPatternOperator opNode>
: SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
// If there is a sign extension after this intrinsic, consume it as smov already
// performed it
def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
(opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
(i32 (SMOVvi8to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
(i64 0)))>;
def : Pat<(i32 (sext_inreg (i32 (vector_extract
(opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
(i32 (SMOVvi8to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
(i64 0)))>;
def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
(opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
(i64 0)))>;
def : Pat<(i32 (sext_inreg (i32 (vector_extract
(opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
(i64 0)))>;
}
multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
SDPatternOperator opNode>
: SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
// If there is a masking operation keeping only what has been actually
// generated, consume it.
def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
(opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
ssub))>;
def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
maski8_or_more)),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
ssub))>;
def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
(opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
ssub))>;
def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
maski16_or_more)),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
ssub))>;
}
defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", AArch64saddv>;
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
(ADDPv2i32 V64:$Rn, V64:$Rn)>;
defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
(ADDPv2i32 V64:$Rn, V64:$Rn)>;
defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
(SMAXPv2i32 V64:$Rn, V64:$Rn)>;
defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
(SMINPv2i32 V64:$Rn, V64:$Rn)>;
defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
(UMAXPv2i32 V64:$Rn, V64:$Rn)>;
defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
(UMINPv2i32 V64:$Rn, V64:$Rn)>;
multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
(i32 (SMOVvi16to32
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
(i64 0)))>;
def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
ssub))>;
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
ssub))>;
def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
(i64 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
dsub))>;
}
multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
Intrinsic intOp> {
def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
ssub))>;
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
ssub))>;
def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
ssub))>;
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
(i32 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
ssub))>;
def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
(i64 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
dsub))>;
}
defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
// The vaddlv_s32 intrinsic gets mapped to SADDLP.
def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
(i64 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(SADDLPv2i32_v1i64 V64:$Rn), dsub),
dsub))>;
// The vaddlv_u32 intrinsic gets mapped to UADDLP.
def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
(i64 (EXTRACT_SUBREG
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
(UADDLPv2i32_v1i64 V64:$Rn), dsub),
dsub))>;
//------------------------------------------------------------------------------
// AdvSIMD modified immediate instructions
//------------------------------------------------------------------------------
// AdvSIMD BIC
defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
// AdvSIMD ORR
defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
// AdvSIMD FMOV
def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
"fmov", ".2d",
[(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64, fpimm8,
"fmov", ".2s",
[(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
"fmov", ".4s",
[(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
let Predicates = [HasNEON, HasFullFP16] in {
def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64, fpimm8,
"fmov", ".4h",
[(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
"fmov", ".8h",
[(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
} // Predicates = [HasNEON, HasFullFP16]
// AdvSIMD MOVI
// EDIT byte mask: scalar
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
[(set FPR64:$Rd, simdimmtype10:$imm8)]>;
// The movi_edit node has the immediate value already encoded, so we use
// a plain imm0_255 here.
def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
(MOVID imm0_255:$shift)>;
def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>;
def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>;
def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>;
def : Pat<(v8i8 immAllZerosV), (MOVID (i32 0))>;
def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>;
def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>;
def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>;
def : Pat<(v8i8 immAllOnesV), (MOVID (i32 255))>;
// EDIT byte mask: 2d
// The movi_edit node has the immediate value already encoded, so we use
// a plain imm0_255 in the pattern
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
simdimmtype10,
"movi", ".2d",
[(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
// EDIT per word & halfword: 2s, 4h, 4s, & 8h
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
(MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
(MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
(MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
(MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
// EDIT per word: 2s & 4s with MSL shifter
def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
[(set (v2i32 V64:$Rd),
(AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
[(set (v4i32 V128:$Rd),
(AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
// Per byte: 8b & 16b
def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64, imm0_255,
"movi", ".8b",
[(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
"movi", ".16b",
[(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
}
// AdvSIMD MVNI
// EDIT per word & halfword: 2s, 4h, 4s, & 8h
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
(MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
(MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
(MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
(MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
// EDIT per word: 2s & 4s with MSL shifter
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
[(set (v2i32 V64:$Rd),
(AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
[(set (v4i32 V128:$Rd),
(AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
}
//----------------------------------------------------------------------------
// AdvSIMD indexed element
//----------------------------------------------------------------------------
let hasSideEffects = 0 in {
defm FMLA : SIMDFPIndexedTied<0, 0b0001, "fmla">;
defm FMLS : SIMDFPIndexedTied<0, 0b0101, "fmls">;
}
// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
// instruction expects the addend first, while the intrinsic expects it last.
// On the other hand, there are quite a few valid combinatorial options due to
// the commutativity of multiplication and the fact that (-x) * y = x * (-y).
defm : SIMDFPIndexedTiedPatterns<"FMLA",
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
defm : SIMDFPIndexedTiedPatterns<"FMLA",
TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
defm : SIMDFPIndexedTiedPatterns<"FMLS",
TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
defm : SIMDFPIndexedTiedPatterns<"FMLS",
TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
defm : SIMDFPIndexedTiedPatterns<"FMLS",
TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
defm : SIMDFPIndexedTiedPatterns<"FMLS",
TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
// 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
// and DUP scalar.
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
(AArch64duplane32 (v4f32 (fneg V128:$Rm)),
VectorIndexS:$idx))),
(FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
(v2f32 (AArch64duplane32
(v4f32 (insert_subvector undef,
(v2f32 (fneg V64:$Rm)),
(i32 0))),
VectorIndexS:$idx)))),
(FMLSv2i32_indexed V64:$Rd, V64:$Rn,
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
VectorIndexS:$idx)>;
def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
(AArch64dup (f32 (fneg FPR32Op:$Rm))))),
(FMLSv2i32_indexed V64:$Rd, V64:$Rn,
(SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
// 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
// and DUP scalar.
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
(AArch64duplane32 (v4f32 (fneg V128:$Rm)),
VectorIndexS:$idx))),
(FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
VectorIndexS:$idx)>;
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
(v4f32 (AArch64duplane32
(v4f32 (insert_subvector undef,
(v2f32 (fneg V64:$Rm)),
(i32 0))),
VectorIndexS:$idx)))),
(FMLSv4i32_indexed V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
VectorIndexS:$idx)>;
def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
(AArch64dup (f32 (fneg FPR32Op:$Rm))))),
(FMLSv4i32_indexed V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
// 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
// (DUPLANE from 64-bit would be trivial).
def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
(AArch64duplane64 (v2f64 (fneg V128:$Rm)),
VectorIndexD:$idx))),
(FMLSv2i64_indexed
V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
(AArch64dup (f64 (fneg FPR64Op:$Rm))))),
(FMLSv2i64_indexed V128:$Rd, V128:$Rn,
(SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
// 2 variants for 32-bit scalar version: extract from .2s or from .4s
def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
(vector_extract (v4f32 (fneg V128:$Rm)),
VectorIndexS:$idx))),
(FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
V128:$Rm, VectorIndexS:$idx)>;
def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
(vector_extract (v4f32 (insert_subvector undef,
(v2f32 (fneg V64:$Rm)),
(i32 0))),
VectorIndexS:$idx))),
(FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
(SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
// 1 variant for 64-bit scalar version: extract from .1d or from .2d
def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
(vector_extract (v2f64 (fneg V128:$Rm)),
VectorIndexS:$idx))),
(FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
V128:$Rm, VectorIndexS:$idx)>;
}
defm : FMLSIndexedAfterNegPatterns<
TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
defm : FMLSIndexedAfterNegPatterns<
TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
defm FMUL : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
(FMULv2i32_indexed V64:$Rn,
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
(i64 0))>;
def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
(FMULv4i32_indexed V128:$Rn,
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
(i64 0))>;
def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
(FMULv2i64_indexed V128:$Rn,
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
(i64 0))>;
defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla",
TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>;
defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls",
TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>;
defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
int_aarch64_neon_smull>;
defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
int_aarch64_neon_sqadd>;
defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
int_aarch64_neon_sqsub>;
defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
int_aarch64_neon_sqadd>;
defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
int_aarch64_neon_sqsub>;
defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
int_aarch64_neon_umull>;
// A scalar sqdmull with the second operand being a vector lane can be
// handled directly with the indexed instruction encoding.
def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
(vector_extract (v4i32 V128:$Vm),
VectorIndexS:$idx)),
(SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
//----------------------------------------------------------------------------
// AdvSIMD scalar shift instructions
//----------------------------------------------------------------------------
defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
defm SCVTF : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
defm UCVTF : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
// Codegen patterns for the above. We don't put these directly on the
// instructions because TableGen's type inference can't handle the truth.
// Having the same base pattern for fp <--> int totally freaks it out.
def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
(FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
(FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
(FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
(FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
vecshiftR64:$imm)),
(FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
vecshiftR64:$imm)),
(FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
(UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
(UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
vecshiftR64:$imm)),
(SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
(SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
vecshiftR64:$imm)),
(UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
(SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
// Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.
def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
(SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
(SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
(and FPR32:$Rn, (i32 65535)),
vecshiftR16:$imm)),
(UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
(UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
(UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
(i32 (INSERT_SUBREG
(i32 (IMPLICIT_DEF)),
(FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
hsub))>;
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
(i64 (INSERT_SUBREG
(i64 (IMPLICIT_DEF)),
(FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
hsub))>;
def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
(i32 (INSERT_SUBREG
(i32 (IMPLICIT_DEF)),
(FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
hsub))>;
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
(i64 (INSERT_SUBREG
(i64 (IMPLICIT_DEF)),
(FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
hsub))>;
defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", AArch64vshl>;
defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
int_aarch64_neon_sqrshrn>;
defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
int_aarch64_neon_sqrshrun>;
defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
int_aarch64_neon_sqshrn>;
defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
int_aarch64_neon_sqshrun>;
defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">;
defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", AArch64srshri>;
defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra",
TriOpFrag<(add node:$LHS,
(AArch64srshri node:$MHS, node:$RHS))>>;
defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", AArch64vashr>;
defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra",
TriOpFrag<(add node:$LHS,
(AArch64vashr node:$MHS, node:$RHS))>>;
defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
int_aarch64_neon_uqrshrn>;
defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
int_aarch64_neon_uqshrn>;
defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", AArch64urshri>;
defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra",
TriOpFrag<(add node:$LHS,
(AArch64urshri node:$MHS, node:$RHS))>>;
defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", AArch64vlshr>;
defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra",
TriOpFrag<(add node:$LHS,
(AArch64vlshr node:$MHS, node:$RHS))>>;
//----------------------------------------------------------------------------
// AdvSIMD vector shift instructions
//----------------------------------------------------------------------------
defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
int_aarch64_neon_vcvtfxs2fp>;
defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
int_aarch64_neon_rshrn>;
defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>;
def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
(i32 vecshiftL64:$imm))),
(SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
int_aarch64_neon_sqrshrn>;
defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
int_aarch64_neon_sqrshrun>;
defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
int_aarch64_neon_sqshrn>;
defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
int_aarch64_neon_sqshrun>;
defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>;
def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
(i32 vecshiftR64:$imm))),
(SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
TriOpFrag<(add node:$LHS,
(AArch64srshri node:$MHS, node:$RHS))> >;
defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
defm UCVTF : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
int_aarch64_neon_vcvtfxu2fp>;
defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
int_aarch64_neon_uqrshrn>;
defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
int_aarch64_neon_uqshrn>;
defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
TriOpFrag<(add node:$LHS,
(AArch64urshri node:$MHS, node:$RHS))> >;
defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
// SHRN patterns for when a logical right shift was used instead of arithmetic
// (the immediate guarantees no sign bits actually end up in the result so it
// doesn't matter).
def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
(SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
(SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
(SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
(trunc (AArch64vlshr (v8i16 V128:$Rn),
vecshiftR16Narrow:$imm)))),
(SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR16Narrow:$imm)>;
def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
(trunc (AArch64vlshr (v4i32 V128:$Rn),
vecshiftR32Narrow:$imm)))),
(SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR32Narrow:$imm)>;
def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
(trunc (AArch64vlshr (v2i64 V128:$Rn),
vecshiftR64Narrow:$imm)))),
(SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
V128:$Rn, vecshiftR32Narrow:$imm)>;
// Vector sign and zero extensions are implemented with SSHLL and USSHLL.
// Anyexts are implemented as zexts.
def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>;
def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
// Also match an extend from the upper half of a 128 bit source register.
def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
(USHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v8i16 (zext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
(USHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v8i16 (sext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
(SSHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
(USHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (zext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
(USHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (sext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
(SSHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
(USHLLv4i32_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (zext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
(USHLLv4i32_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (sext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
(SSHLLv4i32_shift V128:$Rn, (i32 0))>;
// Vector shift sxtl aliases
def : InstAlias<"sxtl.8h $dst, $src1",
(SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.8h, $src1.8b",
(SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl.4s $dst, $src1",
(SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.4s, $src1.4h",
(SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl.2d $dst, $src1",
(SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.2d, $src1.2s",
(SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
// Vector shift sxtl2 aliases
def : InstAlias<"sxtl2.8h $dst, $src1",
(SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
(SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2.4s $dst, $src1",
(SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
(SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2.2d $dst, $src1",
(SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
(SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
// Vector shift uxtl aliases
def : InstAlias<"uxtl.8h $dst, $src1",
(USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.8h, $src1.8b",
(USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl.4s $dst, $src1",
(USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.4s, $src1.4h",
(USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl.2d $dst, $src1",
(USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.2d, $src1.2s",
(USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
// Vector shift uxtl2 aliases
def : InstAlias<"uxtl2.8h $dst, $src1",
(USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
(USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2.4s $dst, $src1",
(USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
(USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2.2d $dst, $src1",
(USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
(USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
// If an integer is about to be converted to a floating point value,
// just load it on the floating point unit.
// These patterns are more complex because floating point loads do not
// support sign extension.
// The sign extension has to be explicitly added and is only supported for
// one step: byte-to-half, half-to-word, word-to-doubleword.
// SCVTF GPR -> FPR is 9 cycles.
// SCVTF FPR -> FPR is 4 cyclces.
// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
// and still being faster.
// However, this is not good for code size.
// 8-bits -> float. 2 sizes step-up.
class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
: Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
(SSHLLv4i16_shift
(f64
(EXTRACT_SUBREG
(SSHLLv8i8_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
INST,
bsub),
0),
dsub)),
0),
ssub)))>,
Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
(LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
(LDRBroX GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
(LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
(LDURBi GPR64sp:$Rn, simm9:$offset)>;
// 16-bits -> float. 1 size step-up.
class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
: Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
(SCVTFv1i32 (f32 (EXTRACT_SUBREG
(SSHLLv4i16_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
INST,
hsub),
0),
ssub)))>, Requires<[NotForCodeSize]>;
def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
(LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
(LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
(LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
(LDURHi GPR64sp:$Rn, simm9:$offset)>;
// 32-bits to 32-bits are handled in target specific dag combine:
// performIntToFpCombine.
// 64-bits integer to 32-bits floating point, not possible with
// SCVTF on floating point registers (both source and destination
// must have the same size).
// Here are the patterns for 8, 16, 32, and 64-bits to double.
// 8-bits -> double. 3 size step-up: give up.
// 16-bits -> double. 2 size step.
class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
: Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
(SSHLLv2i32_shift
(f64
(EXTRACT_SUBREG
(SSHLLv4i16_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
INST,
hsub),
0),
dsub)),
0),
dsub)))>,
Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
(LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
(LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
(LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
(LDURHi GPR64sp:$Rn, simm9:$offset)>;
// 32-bits -> double. 1 size step-up.
class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
: Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
(SCVTFv1i64 (f64 (EXTRACT_SUBREG
(SSHLLv2i32_shift
(INSERT_SUBREG (f64 (IMPLICIT_DEF)),
INST,
ssub),
0),
dsub)))>, Requires<[NotForCodeSize]>;
def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
(LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
(LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
(LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
(LDURSi GPR64sp:$Rn, simm9:$offset)>;
// 64-bits -> double are handled in target specific dag combine:
// performIntToFpCombine.
//----------------------------------------------------------------------------
// AdvSIMD Load-Store Structure
//----------------------------------------------------------------------------
defm LD1 : SIMDLd1Multiple<"ld1">;
defm LD2 : SIMDLd2Multiple<"ld2">;
defm LD3 : SIMDLd3Multiple<"ld3">;
defm LD4 : SIMDLd4Multiple<"ld4">;
defm ST1 : SIMDSt1Multiple<"st1">;
defm ST2 : SIMDSt2Multiple<"st2">;
defm ST3 : SIMDSt3Multiple<"st3">;
defm ST4 : SIMDSt4Multiple<"st4">;
class Ld1Pat<ValueType ty, Instruction INST>
: Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
def : Ld1Pat<v16i8, LD1Onev16b>;
def : Ld1Pat<v8i16, LD1Onev8h>;
def : Ld1Pat<v4i32, LD1Onev4s>;
def : Ld1Pat<v2i64, LD1Onev2d>;
def : Ld1Pat<v8i8, LD1Onev8b>;
def : Ld1Pat<v4i16, LD1Onev4h>;
def : Ld1Pat<v2i32, LD1Onev2s>;
def : Ld1Pat<v1i64, LD1Onev1d>;
class St1Pat<ValueType ty, Instruction INST>
: Pat<(store ty:$Vt, GPR64sp:$Rn),
(INST ty:$Vt, GPR64sp:$Rn)>;
def : St1Pat<v16i8, ST1Onev16b>;
def : St1Pat<v8i16, ST1Onev8h>;
def : St1Pat<v4i32, ST1Onev4s>;
def : St1Pat<v2i64, ST1Onev2d>;
def : St1Pat<v8i8, ST1Onev8b>;
def : St1Pat<v4i16, ST1Onev4h>;
def : St1Pat<v2i32, ST1Onev2s>;
def : St1Pat<v1i64, ST1Onev1d>;
//---
// Single-element
//---
defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
let mayLoad = 1, hasSideEffects = 0 in {
defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>;
defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>;
defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>;
defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>;
defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>;
defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>;
defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>;
defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>;
defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>;
defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>;
defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>;
defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>;
defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>;
defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>;
}
def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
(LD1Rv8b GPR64sp:$Rn)>;
def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
(LD1Rv16b GPR64sp:$Rn)>;
def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
(LD1Rv4h GPR64sp:$Rn)>;
def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
(LD1Rv8h GPR64sp:$Rn)>;
def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
(LD1Rv2s GPR64sp:$Rn)>;
def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
(LD1Rv4s GPR64sp:$Rn)>;
def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
(LD1Rv2d GPR64sp:$Rn)>;
def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
(LD1Rv1d GPR64sp:$Rn)>;
// Grab the floating point version too
def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
(LD1Rv2s GPR64sp:$Rn)>;
def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
(LD1Rv4s GPR64sp:$Rn)>;
def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
(LD1Rv2d GPR64sp:$Rn)>;
def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
(LD1Rv1d GPR64sp:$Rn)>;
def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
(LD1Rv4h GPR64sp:$Rn)>;
def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
(LD1Rv8h GPR64sp:$Rn)>;
class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction LD1>
: Pat<(vector_insert (VTy VecListOne128:$Rd),
(STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
(LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
def : Ld1Lane128Pat<extloadi8, VectorIndexB, v16i8, i32, LD1i8>;
def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>;
def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>;
def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>;
def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>;
def : Ld1Lane128Pat<load, VectorIndexH, v8f16, f16, LD1i16>;
class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction LD1>
: Pat<(vector_insert (VTy VecListOne64:$Rd),
(STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
(EXTRACT_SUBREG
(LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
VecIndex:$idx, GPR64sp:$Rn),
dsub)>;
def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>;
def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>;
def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>;
def : Ld1Lane64Pat<load, VectorIndexH, v4f16, f16, LD1i16>;
defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
// Stores
defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>;
defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>;
defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
let AddedComplexity = 19 in
class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1>
: Pat<(scalar_store
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
GPR64sp:$Rn),
(ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
def : St1Lane128Pat<truncstorei8, VectorIndexB, v16i8, i32, ST1i8>;
def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>;
def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>;
def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>;
def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>;
def : St1Lane128Pat<store, VectorIndexH, v8f16, f16, ST1i16>;
let AddedComplexity = 19 in
class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1>
: Pat<(scalar_store
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
GPR64sp:$Rn),
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
VecIndex:$idx, GPR64sp:$Rn)>;
def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>;
def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>;
def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>;
def : St1Lane64Pat<store, VectorIndexH, v4f16, f16, ST1i16>;
multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1,
int offset> {
def : Pat<(scalar_store
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
GPR64sp:$Rn, offset),
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
VecIndex:$idx, GPR64sp:$Rn, XZR)>;
def : Pat<(scalar_store
(STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
GPR64sp:$Rn, GPR64:$Rm),
(ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
}
defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
2>;
defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
ValueType VTy, ValueType STy, Instruction ST1,
int offset> {
def : Pat<(scalar_store
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
GPR64sp:$Rn, offset),
(ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
def : Pat<(scalar_store
(STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
GPR64sp:$Rn, GPR64:$Rm),
(ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
}
defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
1>;
defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
2>;
defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
let mayStore = 1, hasSideEffects = 0 in {
defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>;
defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>;
defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>;
defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>;
defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>;
defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>;
defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>;
defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>;
defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>;
defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>;
}
defm ST1 : SIMDLdSt1SingleAliases<"st1">;
defm ST2 : SIMDLdSt2SingleAliases<"st2">;
defm ST3 : SIMDLdSt3SingleAliases<"st3">;
defm ST4 : SIMDLdSt4SingleAliases<"st4">;
//----------------------------------------------------------------------------
// Crypto extensions
//----------------------------------------------------------------------------
let Predicates = [HasAES] in {
def AESErr : AESTiedInst<0b0100, "aese", int_aarch64_crypto_aese>;
def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>;
def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>;
def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>;
}
// Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
// for AES fusion on some CPUs.
let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
Sched<[WriteV]>;
def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
Sched<[WriteV]>;
}
// Only use constrained versions of AES(I)MC instructions if they are paired with
// AESE/AESD.
def : Pat<(v16i8 (int_aarch64_crypto_aesmc
(v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
(v16i8 V128:$src2))))),
(v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
(v16i8 V128:$src2)))))>,
Requires<[HasFuseAES]>;
def : Pat<(v16i8 (int_aarch64_crypto_aesimc
(v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
(v16i8 V128:$src2))))),
(v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
(v16i8 V128:$src2)))))>,
Requires<[HasFuseAES]>;
let Predicates = [HasSHA2] in {
def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>;
def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>;
def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>;
def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_aarch64_crypto_sha1h>;
def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_aarch64_crypto_sha1su1>;
def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
}
//----------------------------------------------------------------------------
// Compiler-pseudos
//----------------------------------------------------------------------------
// FIXME: Like for X86, these should go in their own separate .td file.
def def32 : PatLeaf<(i32 GPR32:$src), [{
return isDef32(*N);
}]>;
// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
// For an anyext, we don't care what the high bits are, so we can perform an
// INSERT_SUBREF into an IMPLICIT_DEF.
def : Pat<(i64 (anyext GPR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
// When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
// then assert the extension has happened.
def : Pat<(i64 (zext GPR32:$src)),
(SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
// To sign extend, we use a signed bitfield move instruction (SBFM) on the
// containing super-reg.
def : Pat<(i64 (sext GPR32:$src)),
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>;
def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
(SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
(i64 (i32shift_sext_i8 imm0_31:$imm)))>;
def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
(SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
(i64 (i64shift_sext_i8 imm0_63:$imm)))>;
def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
(SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
(i64 (i32shift_sext_i16 imm0_31:$imm)))>;
def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
(SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
(i64 (i64shift_sext_i16 imm0_63:$imm)))>;
def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
(i64 (i64shift_a imm0_63:$imm)),
(i64 (i64shift_sext_i32 imm0_63:$imm)))>;
// sra patterns have an AddedComplexity of 10, so make sure we have a higher
// AddedComplexity for the following patterns since we want to match sext + sra
// patterns before we attempt to match a single sra node.
let AddedComplexity = 20 in {
// We support all sext + sra combinations which preserve at least one bit of the
// original value which is to be sign extended. E.g. we support shifts up to
// bitwidth-1 bits.
def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
(SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
(SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
(SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
(SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
(SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
(i64 imm0_31:$imm), 31)>;
} // AddedComplexity = 20
// To truncate, we can simply extract from a subregister.
def : Pat<(i32 (trunc GPR64sp:$src)),
(i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
// __builtin_trap() uses the BRK instruction on AArch64.
def : Pat<(trap), (BRK 1)>;
// Conversions within AdvSIMD types in the same register size are free.
// But because we need a consistent lane ordering, in big endian many
// conversions require one or more REV instructions.
//
// Consider a simple memory load followed by a bitconvert then a store.
// v0 = load v2i32
// v1 = BITCAST v2i32 v0 to v4i16
// store v4i16 v2
//
// In big endian mode every memory access has an implicit byte swap. LDR and
// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
// is, they treat the vector as a sequence of elements to be byte-swapped.
// The two pairs of instructions are fundamentally incompatible. We've decided
// to use LD1/ST1 only to simplify compiler implementation.
//
// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
// the original code sequence:
// v0 = load v2i32
// v1 = REV v2i32 (implicit)
// v2 = BITCAST v2i32 v1 to v4i16
// v3 = REV v4i16 v2 (implicit)
// store v4i16 v3
//
// But this is now broken - the value stored is different to the value loaded
// due to lane reordering. To fix this, on every BITCAST we must perform two
// other REVs:
// v0 = load v2i32
// v1 = REV v2i32 (implicit)
// v2 = REV v2i32
// v3 = BITCAST v2i32 v2 to v4i16
// v4 = REV v4i16
// v5 = REV v4i16 v4 (implicit)
// store v4i16 v5
//
// This means an extra two instructions, but actually in most cases the two REV
// instructions can be combined into one. For example:
// (REV64_2s (REV64_4h X)) === (REV32_4h X)
//
// There is also no 128-bit REV instruction. This must be synthesized with an
// EXT instruction.
//
// Most bitconverts require some sort of conversion. The only exceptions are:
// a) Identity conversions - vNfX <-> vNiX
// b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
//
// Natural vector casts (64 bit)
def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
// Natural vector casts (128 bit)
def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i8 (bitconvert GPR64:$Xn)),
(REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
(REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
(REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
(REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
(REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))),
(REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
(REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
(REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
(REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
(REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
}
def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
(COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
(COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
(COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
(COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
(COPY_TO_REGCLASS V64:$Vn, GPR64)>;
let Predicates = [IsLE] in {
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
(v1i64 (REV64v2i32 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
(v1i64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))),
(v1i64 (REV64v8i8 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
(v1i64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
(v1i64 (REV64v2i32 FPR64:$src))>;
}
def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
(v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
(v2i32 (REV32v4i16 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))),
(v2i32 (REV32v8i8 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))),
(v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
(v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
(v2i32 (REV32v4i16 FPR64:$src))>;
}
def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
(v4i16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
(v4i16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))),
(v4i16 (REV16v8i8 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))),
(v4i16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
(v4i16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
(v4i16 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
(v4f16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
(v4f16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))),
(v4f16 (REV16v8i8 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))),
(v4f16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
(v4f16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
(v4f16 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))),
(v8i8 (REV64v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))),
(v8i8 (REV32v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))),
(v8i8 (REV16v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))),
(v8i8 (REV64v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))),
(v8i8 (REV32v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))),
(v8i8 (REV64v8i8 FPR64:$src))>;
def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))),
(v8i8 (REV16v8i8 FPR64:$src))>;
}
let Predicates = [IsLE] in {
def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))),
(f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))),
(f64 (REV64v4i16 FPR64:$src))>;
def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))),
(f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))),
(f64 (REV64v8i8 FPR64:$src))>;
def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))),
(f64 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>;
def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
(v1f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
(v1f64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))),
(v1f64 (REV64v8i8 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
(v1f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
(v1f64 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
(v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
(v2f32 (REV32v4i16 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))),
(v2f32 (REV32v8i8 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
(v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))),
(v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
(v2f32 (REV32v4i16 FPR64:$src))>;
}
def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
let Predicates = [IsLE] in {
def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
(f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
(f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
(REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
(f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
(REV64v8i16 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
(f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
(REV64v8i16 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
(f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
(f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
(REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
(f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
(REV64v16i8 FPR128:$src), (i32 8)))>;
}
let Predicates = [IsLE] in {
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))),
(v2f64 (EXTv16i8 FPR128:$src,
FPR128:$src, (i32 8)))>;
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
(v2f64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
(v2f64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
(v2f64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
(v2f64 (REV64v16i8 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
(v2f64 (REV64v4i32 FPR128:$src))>;
}
def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))),
(v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
(REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
(v4f32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
(v4f32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
(v4f32 (REV32v16i8 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
(v4f32 (REV64v4i32 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
(v4f32 (REV64v4i32 FPR128:$src))>;
}
def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))),
(v2i64 (EXTv16i8 FPR128:$src,
FPR128:$src, (i32 8)))>;
def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
(v2i64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
(v2i64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
(v2i64 (REV64v16i8 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
(v2i64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
(v2i64 (REV64v8i16 FPR128:$src))>;
}
def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))),
(v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
(REV64v4i32 FPR128:$src),
(i32 8)))>;
def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
(v4i32 (REV64v4i32 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
(v4i32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
(v4i32 (REV32v16i8 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
(v4i32 (REV64v4i32 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
(v4i32 (REV32v8i16 FPR128:$src))>;
}
def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))),
(v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
(REV64v8i16 FPR128:$src),
(i32 8)))>;
def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
(v8i16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
(v8i16 (REV32v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
(v8i16 (REV16v16i8 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
(v8i16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
(v8i16 (REV32v8i16 FPR128:$src))>;
}
def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))),
(v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
(REV64v8i16 FPR128:$src),
(i32 8)))>;
def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
(v8f16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
(v8f16 (REV32v8i16 FPR128:$src))>;
def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
(v8f16 (REV16v16i8 FPR128:$src))>;
def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
(v8f16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
(v8f16 (REV32v8i16 FPR128:$src))>;
}
def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
let Predicates = [IsLE] in {
def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))),
(v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
(REV64v16i8 FPR128:$src),
(i32 8)))>;
def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
(v16i8 (REV64v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
(v16i8 (REV32v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
(v16i8 (REV16v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
(v16i8 (REV64v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
(v16i8 (REV32v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
(v16i8 (REV16v16i8 FPR128:$src))>;
}
def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
(EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
(EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
(EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
(EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
(EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
(EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
(EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
(EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
// A 64-bit subvector insert to the first 128-bit vector position
// is a subregister copy that needs no instruction.
multiclass InsertSubvectorUndef<ValueType Ty> {
def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
(INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
(INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
(INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
(INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
(INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
(INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
(INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
}
defm : InsertSubvectorUndef<i32>;
defm : InsertSubvectorUndef<i64>;
// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
// or v2f32.
def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
(vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
(i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
(vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
(f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
// vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
// so we match on v4f32 here, not v2f32. This will also catch adding
// the low two lanes of a true v4f32 vector.
def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
(vector_extract (v4f32 FPR128:$Rn), (i64 1))),
(f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
// Scalar 64-bit shifts in FPR64 registers.
def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
(URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
// Patterns for nontemporal/no-allocate stores.
// We have to resort to tricks to turn a single-input store into a store pair,
// because there is no single-input nontemporal store, only STNP.
let Predicates = [IsLE] in {
let AddedComplexity = 15 in {
class NTStore128Pat<ValueType VT> :
Pat<(nontemporalstore (VT FPR128:$Rt),
(am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
(STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
(CPYi64 FPR128:$Rt, (i64 1)),
GPR64sp:$Rn, simm7s8:$offset)>;
def : NTStore128Pat<v2i64>;
def : NTStore128Pat<v4i32>;
def : NTStore128Pat<v8i16>;
def : NTStore128Pat<v16i8>;
class NTStore64Pat<ValueType VT> :
Pat<(nontemporalstore (VT FPR64:$Rt),
(am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
(STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
(CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
GPR64sp:$Rn, simm7s4:$offset)>;
// FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
def : NTStore64Pat<v1f64>;
def : NTStore64Pat<v1i64>;
def : NTStore64Pat<v2i32>;
def : NTStore64Pat<v4i16>;
def : NTStore64Pat<v8i8>;
def : Pat<(nontemporalstore GPR64:$Rt,
(am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
(STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
(EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
GPR64sp:$Rn, simm7s4:$offset)>;
} // AddedComplexity=10
} // Predicates = [IsLE]
// Tail call return handling. These are all compiler pseudo-instructions,
// so no encoding information or anything like that.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
Sched<[WriteBrReg]>;
def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
Sched<[WriteBrReg]>;
}
def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
(TCRETURNri tcGPR64:$dst, imm:$FPDiff)>;
def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
(TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
(TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
include "AArch64InstrAtomics.td"
include "AArch64SVEInstrInfo.td"