| //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the AArch64 implementation of TargetFrameLowering class. |
| // |
| // On AArch64, stack frames are structured as follows: |
| // |
| // The stack grows downward. |
| // |
| // All of the individual frame areas on the frame below are optional, i.e. it's |
| // possible to create a function so that the particular area isn't present |
| // in the frame. |
| // |
| // At function entry, the "frame" looks as follows: |
| // |
| // | | Higher address |
| // |-----------------------------------| |
| // | | |
| // | arguments passed on the stack | |
| // | | |
| // |-----------------------------------| <- sp |
| // | | Lower address |
| // |
| // |
| // After the prologue has run, the frame has the following general structure. |
| // Note that this doesn't depict the case where a red-zone is used. Also, |
| // technically the last frame area (VLAs) doesn't get created until in the |
| // main function body, after the prologue is run. However, it's depicted here |
| // for completeness. |
| // |
| // | | Higher address |
| // |-----------------------------------| |
| // | | |
| // | arguments passed on the stack | |
| // | | |
| // |-----------------------------------| |
| // | | |
| // | (Win64 only) varargs from reg | |
| // | | |
| // |-----------------------------------| |
| // | | |
| // | prev_fp, prev_lr | |
| // | (a.k.a. "frame record") | |
| // |-----------------------------------| <- fp(=x29) |
| // | | |
| // | other callee-saved registers | |
| // | | |
| // |-----------------------------------| |
| // |.empty.space.to.make.part.below....| |
| // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at |
| // |.the.standard.16-byte.alignment....| compile time; if present) |
| // |-----------------------------------| |
| // | | |
| // | local variables of fixed size | |
| // | including spill slots | |
| // |-----------------------------------| <- bp(not defined by ABI, |
| // |.variable-sized.local.variables....| LLVM chooses X19) |
| // |.(VLAs)............................| (size of this area is unknown at |
| // |...................................| compile time) |
| // |-----------------------------------| <- sp |
| // | | Lower address |
| // |
| // |
| // To access the data in a frame, at-compile time, a constant offset must be |
| // computable from one of the pointers (fp, bp, sp) to access it. The size |
| // of the areas with a dotted background cannot be computed at compile-time |
| // if they are present, making it required to have all three of fp, bp and |
| // sp to be set up to be able to access all contents in the frame areas, |
| // assuming all of the frame areas are non-empty. |
| // |
| // For most functions, some of the frame areas are empty. For those functions, |
| // it may not be necessary to set up fp or bp: |
| // * A base pointer is definitely needed when there are both VLAs and local |
| // variables with more-than-default alignment requirements. |
| // * A frame pointer is definitely needed when there are local variables with |
| // more-than-default alignment requirements. |
| // |
| // In some cases when a base pointer is not strictly needed, it is generated |
| // anyway when offsets from the frame pointer to access local variables become |
| // so large that the offset can't be encoded in the immediate fields of loads |
| // or stores. |
| // |
| // FIXME: also explain the redzone concept. |
| // FIXME: also explain the concept of reserved call frames. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64FrameLowering.h" |
| #include "AArch64InstrInfo.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64RegisterInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "AArch64TargetMachine.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/LivePhysRegs.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/MC/MCDwarf.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "frame-info" |
| |
| static cl::opt<bool> EnableRedZone("aarch64-redzone", |
| cl::desc("enable use of redzone on AArch64"), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> |
| ReverseCSRRestoreSeq("reverse-csr-restore-seq", |
| cl::desc("reverse the CSR restore sequence"), |
| cl::init(false), cl::Hidden); |
| |
| STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); |
| |
| /// This is the biggest offset to the stack pointer we can encode in aarch64 |
| /// instructions (without using a separate calculation and a temp register). |
| /// Note that the exception here are vector stores/loads which cannot encode any |
| /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). |
| static const unsigned DefaultSafeSPDisplacement = 255; |
| |
| /// Look at each instruction that references stack frames and return the stack |
| /// size limit beyond which some of these instructions will require a scratch |
| /// register during their expansion later. |
| static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { |
| // FIXME: For now, just conservatively guestimate based on unscaled indexing |
| // range. We'll end up allocating an unnecessary spill slot a lot, but |
| // realistically that's not a big deal at this stage of the game. |
| for (MachineBasicBlock &MBB : MF) { |
| for (MachineInstr &MI : MBB) { |
| if (MI.isDebugInstr() || MI.isPseudo() || |
| MI.getOpcode() == AArch64::ADDXri || |
| MI.getOpcode() == AArch64::ADDSXri) |
| continue; |
| |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isFI()) |
| continue; |
| |
| int Offset = 0; |
| if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == |
| AArch64FrameOffsetCannotUpdate) |
| return 0; |
| } |
| } |
| } |
| return DefaultSafeSPDisplacement; |
| } |
| |
| bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { |
| if (!EnableRedZone) |
| return false; |
| // Don't use the red zone if the function explicitly asks us not to. |
| // This is typically used for kernel code. |
| if (MF.getFunction().hasFnAttribute(Attribute::NoRedZone)) |
| return false; |
| |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| unsigned NumBytes = AFI->getLocalStackSize(); |
| |
| return !(MFI.hasCalls() || hasFP(MF) || NumBytes > 128); |
| } |
| |
| /// hasFP - Return true if the specified function should have a dedicated frame |
| /// pointer register. |
| bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); |
| // Retain behavior of always omitting the FP for leaf functions when possible. |
| if (MFI.hasCalls() && MF.getTarget().Options.DisableFramePointerElim(MF)) |
| return true; |
| if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || |
| MFI.hasStackMap() || MFI.hasPatchPoint() || |
| RegInfo->needsStackRealignment(MF)) |
| return true; |
| // With large callframes around we may need to use FP to access the scavenging |
| // emergency spillslot. |
| // |
| // Unfortunately some calls to hasFP() like machine verifier -> |
| // getReservedReg() -> hasFP in the middle of global isel are too early |
| // to know the max call frame size. Hopefully conservatively returning "true" |
| // in those cases is fine. |
| // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. |
| if (!MFI.isMaxCallFrameSizeComputed() || |
| MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) |
| return true; |
| |
| return false; |
| } |
| |
| /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is |
| /// not required, we reserve argument space for call sites in the function |
| /// immediately on entry to the current function. This eliminates the need for |
| /// add/sub sp brackets around call sites. Returns true if the call frame is |
| /// included as part of the stack frame. |
| bool |
| AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { |
| return !MF.getFrameInfo().hasVarSizedObjects(); |
| } |
| |
| MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( |
| MachineFunction &MF, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) const { |
| const AArch64InstrInfo *TII = |
| static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); |
| DebugLoc DL = I->getDebugLoc(); |
| unsigned Opc = I->getOpcode(); |
| bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); |
| uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; |
| |
| const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); |
| if (!TFI->hasReservedCallFrame(MF)) { |
| unsigned Align = getStackAlignment(); |
| |
| int64_t Amount = I->getOperand(0).getImm(); |
| Amount = alignTo(Amount, Align); |
| if (!IsDestroy) |
| Amount = -Amount; |
| |
| // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it |
| // doesn't have to pop anything), then the first operand will be zero too so |
| // this adjustment is a no-op. |
| if (CalleePopAmount == 0) { |
| // FIXME: in-function stack adjustment for calls is limited to 24-bits |
| // because there's no guaranteed temporary register available. |
| // |
| // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. |
| // 1) For offset <= 12-bit, we use LSL #0 |
| // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses |
| // LSL #0, and the other uses LSL #12. |
| // |
| // Most call frames will be allocated at the start of a function so |
| // this is OK, but it is a limitation that needs dealing with. |
| assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); |
| emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII); |
| } |
| } else if (CalleePopAmount != 0) { |
| // If the calling convention demands that the callee pops arguments from the |
| // stack, we want to add it back if we have a reserved call frame. |
| assert(CalleePopAmount < 0xffffff && "call frame too large"); |
| emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount, |
| TII); |
| } |
| return MBB.erase(I); |
| } |
| |
| void AArch64FrameLowering::emitCalleeSavedFrameMoves( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const TargetSubtargetInfo &STI = MF.getSubtarget(); |
| const MCRegisterInfo *MRI = STI.getRegisterInfo(); |
| const TargetInstrInfo *TII = STI.getInstrInfo(); |
| DebugLoc DL = MBB.findDebugLoc(MBBI); |
| |
| // Add callee saved registers to move list. |
| const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); |
| if (CSI.empty()) |
| return; |
| |
| for (const auto &Info : CSI) { |
| unsigned Reg = Info.getReg(); |
| int64_t Offset = |
| MFI.getObjectOffset(Info.getFrameIdx()) - getOffsetOfLocalArea(); |
| unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); |
| unsigned CFIIndex = MF.addFrameInst( |
| MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); |
| BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) |
| .addCFIIndex(CFIIndex) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| } |
| |
| // Find a scratch register that we can use at the start of the prologue to |
| // re-align the stack pointer. We avoid using callee-save registers since they |
| // may appear to be free when this is called from canUseAsPrologue (during |
| // shrink wrapping), but then no longer be free when this is called from |
| // emitPrologue. |
| // |
| // FIXME: This is a bit conservative, since in the above case we could use one |
| // of the callee-save registers as a scratch temp to re-align the stack pointer, |
| // but we would then have to make sure that we were in fact saving at least one |
| // callee-save register in the prologue, which is additional complexity that |
| // doesn't seem worth the benefit. |
| static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { |
| MachineFunction *MF = MBB->getParent(); |
| |
| // If MBB is an entry block, use X9 as the scratch register |
| if (&MF->front() == MBB) |
| return AArch64::X9; |
| |
| const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); |
| const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); |
| LivePhysRegs LiveRegs(TRI); |
| LiveRegs.addLiveIns(*MBB); |
| |
| // Mark callee saved registers as used so we will not choose them. |
| const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(MF); |
| for (unsigned i = 0; CSRegs[i]; ++i) |
| LiveRegs.addReg(CSRegs[i]); |
| |
| // Prefer X9 since it was historically used for the prologue scratch reg. |
| const MachineRegisterInfo &MRI = MF->getRegInfo(); |
| if (LiveRegs.available(MRI, AArch64::X9)) |
| return AArch64::X9; |
| |
| for (unsigned Reg : AArch64::GPR64RegClass) { |
| if (LiveRegs.available(MRI, Reg)) |
| return Reg; |
| } |
| return AArch64::NoRegister; |
| } |
| |
| bool AArch64FrameLowering::canUseAsPrologue( |
| const MachineBasicBlock &MBB) const { |
| const MachineFunction *MF = MBB.getParent(); |
| MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); |
| const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); |
| const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| |
| // Don't need a scratch register if we're not going to re-align the stack. |
| if (!RegInfo->needsStackRealignment(*MF)) |
| return true; |
| // Otherwise, we can use any block as long as it has a scratch register |
| // available. |
| return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; |
| } |
| |
| static bool windowsRequiresStackProbe(MachineFunction &MF, |
| unsigned StackSizeInBytes) { |
| const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); |
| if (!Subtarget.isTargetWindows()) |
| return false; |
| const Function &F = MF.getFunction(); |
| // TODO: When implementing stack protectors, take that into account |
| // for the probe threshold. |
| unsigned StackProbeSize = 4096; |
| if (F.hasFnAttribute("stack-probe-size")) |
| F.getFnAttribute("stack-probe-size") |
| .getValueAsString() |
| .getAsInteger(0, StackProbeSize); |
| return (StackSizeInBytes >= StackProbeSize) && |
| !F.hasFnAttribute("no-stack-arg-probe"); |
| } |
| |
| bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( |
| MachineFunction &MF, unsigned StackBumpBytes) const { |
| AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); |
| const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| |
| if (AFI->getLocalStackSize() == 0) |
| return false; |
| |
| // 512 is the maximum immediate for stp/ldp that will be used for |
| // callee-save save/restores |
| if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) |
| return false; |
| |
| if (MFI.hasVarSizedObjects()) |
| return false; |
| |
| if (RegInfo->needsStackRealignment(MF)) |
| return false; |
| |
| // This isn't strictly necessary, but it simplifies things a bit since the |
| // current RedZone handling code assumes the SP is adjusted by the |
| // callee-save save/restore code. |
| if (canUseRedZone(MF)) |
| return false; |
| |
| return true; |
| } |
| |
| // Convert callee-save register save/restore instruction to do stack pointer |
| // decrement/increment to allocate/deallocate the callee-save stack area by |
| // converting store/load to use pre/post increment version. |
| static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
| const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc) { |
| // Ignore instructions that do not operate on SP, i.e. shadow call stack |
| // instructions. |
| while (MBBI->getOpcode() == AArch64::STRXpost || |
| MBBI->getOpcode() == AArch64::LDRXpre) { |
| assert(MBBI->getOperand(0).getReg() != AArch64::SP); |
| ++MBBI; |
| } |
| |
| unsigned NewOpc; |
| bool NewIsUnscaled = false; |
| switch (MBBI->getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected callee-save save/restore opcode!"); |
| case AArch64::STPXi: |
| NewOpc = AArch64::STPXpre; |
| break; |
| case AArch64::STPDi: |
| NewOpc = AArch64::STPDpre; |
| break; |
| case AArch64::STRXui: |
| NewOpc = AArch64::STRXpre; |
| NewIsUnscaled = true; |
| break; |
| case AArch64::STRDui: |
| NewOpc = AArch64::STRDpre; |
| NewIsUnscaled = true; |
| break; |
| case AArch64::LDPXi: |
| NewOpc = AArch64::LDPXpost; |
| break; |
| case AArch64::LDPDi: |
| NewOpc = AArch64::LDPDpost; |
| break; |
| case AArch64::LDRXui: |
| NewOpc = AArch64::LDRXpost; |
| NewIsUnscaled = true; |
| break; |
| case AArch64::LDRDui: |
| NewOpc = AArch64::LDRDpost; |
| NewIsUnscaled = true; |
| break; |
| } |
| |
| MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); |
| MIB.addReg(AArch64::SP, RegState::Define); |
| |
| // Copy all operands other than the immediate offset. |
| unsigned OpndIdx = 0; |
| for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; |
| ++OpndIdx) |
| MIB.add(MBBI->getOperand(OpndIdx)); |
| |
| assert(MBBI->getOperand(OpndIdx).getImm() == 0 && |
| "Unexpected immediate offset in first/last callee-save save/restore " |
| "instruction!"); |
| assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && |
| "Unexpected base register in callee-save save/restore instruction!"); |
| // Last operand is immediate offset that needs fixing. |
| assert(CSStackSizeInc % 8 == 0); |
| int64_t CSStackSizeIncImm = CSStackSizeInc; |
| if (!NewIsUnscaled) |
| CSStackSizeIncImm /= 8; |
| MIB.addImm(CSStackSizeIncImm); |
| |
| MIB.setMIFlags(MBBI->getFlags()); |
| MIB.setMemRefs(MBBI->memoperands_begin(), MBBI->memoperands_end()); |
| |
| return std::prev(MBB.erase(MBBI)); |
| } |
| |
| // Fixup callee-save register save/restore instructions to take into account |
| // combined SP bump by adding the local stack size to the stack offsets. |
| static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, |
| unsigned LocalStackSize) { |
| unsigned Opc = MI.getOpcode(); |
| |
| // Ignore instructions that do not operate on SP, i.e. shadow call stack |
| // instructions. |
| if (Opc == AArch64::STRXpost || Opc == AArch64::LDRXpre) { |
| assert(MI.getOperand(0).getReg() != AArch64::SP); |
| return; |
| } |
| |
| (void)Opc; |
| assert((Opc == AArch64::STPXi || Opc == AArch64::STPDi || |
| Opc == AArch64::STRXui || Opc == AArch64::STRDui || |
| Opc == AArch64::LDPXi || Opc == AArch64::LDPDi || |
| Opc == AArch64::LDRXui || Opc == AArch64::LDRDui) && |
| "Unexpected callee-save save/restore opcode!"); |
| |
| unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; |
| assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && |
| "Unexpected base register in callee-save save/restore instruction!"); |
| // Last operand is immediate offset that needs fixing. |
| MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); |
| // All generated opcodes have scaled offsets. |
| assert(LocalStackSize % 8 == 0); |
| OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / 8); |
| } |
| |
| static void adaptForLdStOpt(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator FirstSPPopI, |
| MachineBasicBlock::iterator LastPopI) { |
| // Sometimes (when we restore in the same order as we save), we can end up |
| // with code like this: |
| // |
| // ldp x26, x25, [sp] |
| // ldp x24, x23, [sp, #16] |
| // ldp x22, x21, [sp, #32] |
| // ldp x20, x19, [sp, #48] |
| // add sp, sp, #64 |
| // |
| // In this case, it is always better to put the first ldp at the end, so |
| // that the load-store optimizer can run and merge the ldp and the add into |
| // a post-index ldp. |
| // If we managed to grab the first pop instruction, move it to the end. |
| if (ReverseCSRRestoreSeq) |
| MBB.splice(FirstSPPopI, &MBB, LastPopI); |
| // We should end up with something like this now: |
| // |
| // ldp x24, x23, [sp, #16] |
| // ldp x22, x21, [sp, #32] |
| // ldp x20, x19, [sp, #48] |
| // ldp x26, x25, [sp] |
| // add sp, sp, #64 |
| // |
| // and the load-store optimizer can merge the last two instructions into: |
| // |
| // ldp x26, x25, [sp], #64 |
| // |
| } |
| |
| void AArch64FrameLowering::emitPrologue(MachineFunction &MF, |
| MachineBasicBlock &MBB) const { |
| MachineBasicBlock::iterator MBBI = MBB.begin(); |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const Function &F = MF.getFunction(); |
| const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); |
| const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| MachineModuleInfo &MMI = MF.getMMI(); |
| AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| bool needsFrameMoves = MMI.hasDebugInfo() || F.needsUnwindTableEntry(); |
| bool HasFP = hasFP(MF); |
| |
| // At this point, we're going to decide whether or not the function uses a |
| // redzone. In most cases, the function doesn't have a redzone so let's |
| // assume that's false and set it to true in the case that there's a redzone. |
| AFI->setHasRedZone(false); |
| |
| // Debug location must be unknown since the first debug location is used |
| // to determine the end of the prologue. |
| DebugLoc DL; |
| |
| // All calls are tail calls in GHC calling conv, and functions have no |
| // prologue/epilogue. |
| if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| return; |
| |
| int NumBytes = (int)MFI.getStackSize(); |
| if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { |
| assert(!HasFP && "unexpected function without stack frame but with FP"); |
| |
| // All of the stack allocation is for locals. |
| AFI->setLocalStackSize(NumBytes); |
| |
| if (!NumBytes) |
| return; |
| // REDZONE: If the stack size is less than 128 bytes, we don't need |
| // to actually allocate. |
| if (canUseRedZone(MF)) { |
| AFI->setHasRedZone(true); |
| ++NumRedZoneFunctions; |
| } else { |
| emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII, |
| MachineInstr::FrameSetup); |
| |
| // Label used to tie together the PROLOG_LABEL and the MachineMoves. |
| MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); |
| // Encode the stack size of the leaf function. |
| unsigned CFIIndex = MF.addFrameInst( |
| MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes)); |
| BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) |
| .addCFIIndex(CFIIndex) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| return; |
| } |
| |
| bool IsWin64 = |
| Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); |
| unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0; |
| |
| auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; |
| // All of the remaining stack allocations are for locals. |
| AFI->setLocalStackSize(NumBytes - PrologueSaveSize); |
| |
| bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); |
| if (CombineSPBump) { |
| emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII, |
| MachineInstr::FrameSetup); |
| NumBytes = 0; |
| } else if (PrologueSaveSize != 0) { |
| MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(MBB, MBBI, DL, TII, |
| -PrologueSaveSize); |
| NumBytes -= PrologueSaveSize; |
| } |
| assert(NumBytes >= 0 && "Negative stack allocation size!?"); |
| |
| // Move past the saves of the callee-saved registers, fixing up the offsets |
| // and pre-inc if we decided to combine the callee-save and local stack |
| // pointer bump above. |
| MachineBasicBlock::iterator End = MBB.end(); |
| while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup)) { |
| if (CombineSPBump) |
| fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize()); |
| ++MBBI; |
| } |
| if (HasFP) { |
| // Only set up FP if we actually need to. Frame pointer is fp = |
| // sp - fixedobject - 16. |
| int FPOffset = AFI->getCalleeSavedStackSize() - 16; |
| if (CombineSPBump) |
| FPOffset += AFI->getLocalStackSize(); |
| |
| // Issue sub fp, sp, FPOffset or |
| // mov fp,sp when FPOffset is zero. |
| // Note: All stores of callee-saved registers are marked as "FrameSetup". |
| // This code marks the instruction(s) that set the FP also. |
| emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII, |
| MachineInstr::FrameSetup); |
| } |
| |
| if (windowsRequiresStackProbe(MF, NumBytes)) { |
| uint32_t NumWords = NumBytes >> 4; |
| |
| BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) |
| .addImm(NumWords) |
| .setMIFlags(MachineInstr::FrameSetup); |
| |
| switch (MF.getTarget().getCodeModel()) { |
| case CodeModel::Small: |
| case CodeModel::Medium: |
| case CodeModel::Kernel: |
| BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) |
| .addExternalSymbol("__chkstk") |
| .addReg(AArch64::X15, RegState::Implicit) |
| .setMIFlags(MachineInstr::FrameSetup); |
| break; |
| case CodeModel::Large: |
| BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) |
| .addReg(AArch64::X16, RegState::Define) |
| .addExternalSymbol("__chkstk") |
| .addExternalSymbol("__chkstk") |
| .setMIFlags(MachineInstr::FrameSetup); |
| |
| BuildMI(MBB, MBBI, DL, TII->get(AArch64::BLR)) |
| .addReg(AArch64::X16, RegState::Kill) |
| .addReg(AArch64::X15, RegState::Implicit | RegState::Define) |
| .setMIFlags(MachineInstr::FrameSetup); |
| break; |
| } |
| |
| BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) |
| .addReg(AArch64::SP, RegState::Kill) |
| .addReg(AArch64::X15, RegState::Kill) |
| .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) |
| .setMIFlags(MachineInstr::FrameSetup); |
| NumBytes = 0; |
| } |
| |
| // Allocate space for the rest of the frame. |
| if (NumBytes) { |
| const bool NeedsRealignment = RegInfo->needsStackRealignment(MF); |
| unsigned scratchSPReg = AArch64::SP; |
| |
| if (NeedsRealignment) { |
| scratchSPReg = findScratchNonCalleeSaveRegister(&MBB); |
| assert(scratchSPReg != AArch64::NoRegister); |
| } |
| |
| // If we're a leaf function, try using the red zone. |
| if (!canUseRedZone(MF)) |
| // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have |
| // the correct value here, as NumBytes also includes padding bytes, |
| // which shouldn't be counted here. |
| emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, -NumBytes, TII, |
| MachineInstr::FrameSetup); |
| |
| if (NeedsRealignment) { |
| const unsigned Alignment = MFI.getMaxAlignment(); |
| const unsigned NrBitsToZero = countTrailingZeros(Alignment); |
| assert(NrBitsToZero > 1); |
| assert(scratchSPReg != AArch64::SP); |
| |
| // SUB X9, SP, NumBytes |
| // -- X9 is temporary register, so shouldn't contain any live data here, |
| // -- free to use. This is already produced by emitFrameOffset above. |
| // AND SP, X9, 0b11111...0000 |
| // The logical immediates have a non-trivial encoding. The following |
| // formula computes the encoded immediate with all ones but |
| // NrBitsToZero zero bits as least significant bits. |
| uint32_t andMaskEncoded = (1 << 12) // = N |
| | ((64 - NrBitsToZero) << 6) // immr |
| | ((64 - NrBitsToZero - 1) << 0); // imms |
| |
| BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) |
| .addReg(scratchSPReg, RegState::Kill) |
| .addImm(andMaskEncoded); |
| AFI->setStackRealigned(true); |
| } |
| } |
| |
| // If we need a base pointer, set it up here. It's whatever the value of the |
| // stack pointer is at this point. Any variable size objects will be allocated |
| // after this, so we can still use the base pointer to reference locals. |
| // |
| // FIXME: Clarify FrameSetup flags here. |
| // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is |
| // needed. |
| if (RegInfo->hasBasePointer(MF)) { |
| TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, |
| false); |
| } |
| |
| if (needsFrameMoves) { |
| const DataLayout &TD = MF.getDataLayout(); |
| const int StackGrowth = -TD.getPointerSize(0); |
| unsigned FramePtr = RegInfo->getFrameRegister(MF); |
| // An example of the prologue: |
| // |
| // .globl __foo |
| // .align 2 |
| // __foo: |
| // Ltmp0: |
| // .cfi_startproc |
| // .cfi_personality 155, ___gxx_personality_v0 |
| // Leh_func_begin: |
| // .cfi_lsda 16, Lexception33 |
| // |
| // stp xa,bx, [sp, -#offset]! |
| // ... |
| // stp x28, x27, [sp, #offset-32] |
| // stp fp, lr, [sp, #offset-16] |
| // add fp, sp, #offset - 16 |
| // sub sp, sp, #1360 |
| // |
| // The Stack: |
| // +-------------------------------------------+ |
| // 10000 | ........ | ........ | ........ | ........ | |
| // 10004 | ........ | ........ | ........ | ........ | |
| // +-------------------------------------------+ |
| // 10008 | ........ | ........ | ........ | ........ | |
| // 1000c | ........ | ........ | ........ | ........ | |
| // +===========================================+ |
| // 10010 | X28 Register | |
| // 10014 | X28 Register | |
| // +-------------------------------------------+ |
| // 10018 | X27 Register | |
| // 1001c | X27 Register | |
| // +===========================================+ |
| // 10020 | Frame Pointer | |
| // 10024 | Frame Pointer | |
| // +-------------------------------------------+ |
| // 10028 | Link Register | |
| // 1002c | Link Register | |
| // +===========================================+ |
| // 10030 | ........ | ........ | ........ | ........ | |
| // 10034 | ........ | ........ | ........ | ........ | |
| // +-------------------------------------------+ |
| // 10038 | ........ | ........ | ........ | ........ | |
| // 1003c | ........ | ........ | ........ | ........ | |
| // +-------------------------------------------+ |
| // |
| // [sp] = 10030 :: >>initial value<< |
| // sp = 10020 :: stp fp, lr, [sp, #-16]! |
| // fp = sp == 10020 :: mov fp, sp |
| // [sp] == 10020 :: stp x28, x27, [sp, #-16]! |
| // sp == 10010 :: >>final value<< |
| // |
| // The frame pointer (w29) points to address 10020. If we use an offset of |
| // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 |
| // for w27, and -32 for w28: |
| // |
| // Ltmp1: |
| // .cfi_def_cfa w29, 16 |
| // Ltmp2: |
| // .cfi_offset w30, -8 |
| // Ltmp3: |
| // .cfi_offset w29, -16 |
| // Ltmp4: |
| // .cfi_offset w27, -24 |
| // Ltmp5: |
| // .cfi_offset w28, -32 |
| |
| if (HasFP) { |
| // Define the current CFA rule to use the provided FP. |
| unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true); |
| unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( |
| nullptr, Reg, 2 * StackGrowth - FixedObject)); |
| BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) |
| .addCFIIndex(CFIIndex) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } else { |
| // Encode the stack size of the leaf function. |
| unsigned CFIIndex = MF.addFrameInst( |
| MCCFIInstruction::createDefCfaOffset(nullptr, -MFI.getStackSize())); |
| BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) |
| .addCFIIndex(CFIIndex) |
| .setMIFlags(MachineInstr::FrameSetup); |
| } |
| |
| // Now emit the moves for whatever callee saved regs we have (including FP, |
| // LR if those are saved). |
| emitCalleeSavedFrameMoves(MBB, MBBI); |
| } |
| } |
| |
| void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, |
| MachineBasicBlock &MBB) const { |
| MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); |
| const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| DebugLoc DL; |
| bool IsTailCallReturn = false; |
| if (MBB.end() != MBBI) { |
| DL = MBBI->getDebugLoc(); |
| unsigned RetOpcode = MBBI->getOpcode(); |
| IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi || |
| RetOpcode == AArch64::TCRETURNri; |
| } |
| int NumBytes = MFI.getStackSize(); |
| const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| |
| // All calls are tail calls in GHC calling conv, and functions have no |
| // prologue/epilogue. |
| if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| return; |
| |
| // Initial and residual are named for consistency with the prologue. Note that |
| // in the epilogue, the residual adjustment is executed first. |
| uint64_t ArgumentPopSize = 0; |
| if (IsTailCallReturn) { |
| MachineOperand &StackAdjust = MBBI->getOperand(1); |
| |
| // For a tail-call in a callee-pops-arguments environment, some or all of |
| // the stack may actually be in use for the call's arguments, this is |
| // calculated during LowerCall and consumed here... |
| ArgumentPopSize = StackAdjust.getImm(); |
| } else { |
| // ... otherwise the amount to pop is *all* of the argument space, |
| // conveniently stored in the MachineFunctionInfo by |
| // LowerFormalArguments. This will, of course, be zero for the C calling |
| // convention. |
| ArgumentPopSize = AFI->getArgumentStackToRestore(); |
| } |
| |
| // The stack frame should be like below, |
| // |
| // ---------------------- --- |
| // | | | |
| // | BytesInStackArgArea| CalleeArgStackSize |
| // | (NumReusableBytes) | (of tail call) |
| // | | --- |
| // | | | |
| // ---------------------| --- | |
| // | | | | |
| // | CalleeSavedReg | | | |
| // | (CalleeSavedStackSize)| | | |
| // | | | | |
| // ---------------------| | NumBytes |
| // | | StackSize (StackAdjustUp) |
| // | LocalStackSize | | | |
| // | (covering callee | | | |
| // | args) | | | |
| // | | | | |
| // ---------------------- --- --- |
| // |
| // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize |
| // = StackSize + ArgumentPopSize |
| // |
| // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps |
| // it as the 2nd argument of AArch64ISD::TC_RETURN. |
| |
| bool IsWin64 = |
| Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); |
| unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0; |
| |
| uint64_t AfterCSRPopSize = ArgumentPopSize; |
| auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; |
| bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); |
| // Assume we can't combine the last pop with the sp restore. |
| |
| if (!CombineSPBump && PrologueSaveSize != 0) { |
| MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); |
| // Converting the last ldp to a post-index ldp is valid only if the last |
| // ldp's offset is 0. |
| const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); |
| // If the offset is 0, convert it to a post-index ldp. |
| if (OffsetOp.getImm() == 0) { |
| convertCalleeSaveRestoreToSPPrePostIncDec(MBB, Pop, DL, TII, |
| PrologueSaveSize); |
| } else { |
| // If not, make sure to emit an add after the last ldp. |
| // We're doing this by transfering the size to be restored from the |
| // adjustment *before* the CSR pops to the adjustment *after* the CSR |
| // pops. |
| AfterCSRPopSize += PrologueSaveSize; |
| } |
| } |
| |
| // Move past the restores of the callee-saved registers. |
| // If we plan on combining the sp bump of the local stack size and the callee |
| // save stack size, we might need to adjust the CSR save and restore offsets. |
| MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); |
| MachineBasicBlock::iterator Begin = MBB.begin(); |
| while (LastPopI != Begin) { |
| --LastPopI; |
| if (!LastPopI->getFlag(MachineInstr::FrameDestroy)) { |
| ++LastPopI; |
| break; |
| } else if (CombineSPBump) |
| fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize()); |
| } |
| |
| // If there is a single SP update, insert it before the ret and we're done. |
| if (CombineSPBump) { |
| emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, |
| NumBytes + AfterCSRPopSize, TII, |
| MachineInstr::FrameDestroy); |
| return; |
| } |
| |
| NumBytes -= PrologueSaveSize; |
| assert(NumBytes >= 0 && "Negative stack allocation size!?"); |
| |
| if (!hasFP(MF)) { |
| bool RedZone = canUseRedZone(MF); |
| // If this was a redzone leaf function, we don't need to restore the |
| // stack pointer (but we may need to pop stack args for fastcc). |
| if (RedZone && AfterCSRPopSize == 0) |
| return; |
| |
| bool NoCalleeSaveRestore = PrologueSaveSize == 0; |
| int StackRestoreBytes = RedZone ? 0 : NumBytes; |
| if (NoCalleeSaveRestore) |
| StackRestoreBytes += AfterCSRPopSize; |
| |
| // If we were able to combine the local stack pop with the argument pop, |
| // then we're done. |
| bool Done = NoCalleeSaveRestore || AfterCSRPopSize == 0; |
| |
| // If we're done after this, make sure to help the load store optimizer. |
| if (Done) |
| adaptForLdStOpt(MBB, MBB.getFirstTerminator(), LastPopI); |
| |
| emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, |
| StackRestoreBytes, TII, MachineInstr::FrameDestroy); |
| if (Done) |
| return; |
| |
| NumBytes = 0; |
| } |
| |
| // Restore the original stack pointer. |
| // FIXME: Rather than doing the math here, we should instead just use |
| // non-post-indexed loads for the restores if we aren't actually going to |
| // be able to save any instructions. |
| if (MFI.hasVarSizedObjects() || AFI->isStackRealigned()) |
| emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP, |
| -AFI->getCalleeSavedStackSize() + 16, TII, |
| MachineInstr::FrameDestroy); |
| else if (NumBytes) |
| emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes, TII, |
| MachineInstr::FrameDestroy); |
| |
| // This must be placed after the callee-save restore code because that code |
| // assumes the SP is at the same location as it was after the callee-save save |
| // code in the prologue. |
| if (AfterCSRPopSize) { |
| // Find an insertion point for the first ldp so that it goes before the |
| // shadow call stack epilog instruction. This ensures that the restore of |
| // lr from x18 is placed after the restore from sp. |
| auto FirstSPPopI = MBB.getFirstTerminator(); |
| while (FirstSPPopI != Begin) { |
| auto Prev = std::prev(FirstSPPopI); |
| if (Prev->getOpcode() != AArch64::LDRXpre || |
| Prev->getOperand(0).getReg() == AArch64::SP) |
| break; |
| FirstSPPopI = Prev; |
| } |
| |
| adaptForLdStOpt(MBB, FirstSPPopI, LastPopI); |
| |
| emitFrameOffset(MBB, FirstSPPopI, DL, AArch64::SP, AArch64::SP, |
| AfterCSRPopSize, TII, MachineInstr::FrameDestroy); |
| } |
| } |
| |
| /// getFrameIndexReference - Provide a base+offset reference to an FI slot for |
| /// debug info. It's the same as what we use for resolving the code-gen |
| /// references for now. FIXME: This can go wrong when references are |
| /// SP-relative and simple call frames aren't used. |
| int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, |
| int FI, |
| unsigned &FrameReg) const { |
| return resolveFrameIndexReference(MF, FI, FrameReg); |
| } |
| |
| int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF, |
| int FI, unsigned &FrameReg, |
| bool PreferFP) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( |
| MF.getSubtarget().getRegisterInfo()); |
| const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); |
| bool IsWin64 = |
| Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()); |
| unsigned FixedObject = IsWin64 ? alignTo(AFI->getVarArgsGPRSize(), 16) : 0; |
| int FPOffset = MFI.getObjectOffset(FI) + FixedObject + 16; |
| int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); |
| bool isFixed = MFI.isFixedObjectIndex(FI); |
| bool isCSR = !isFixed && MFI.getObjectOffset(FI) >= |
| -((int)AFI->getCalleeSavedStackSize()); |
| |
| // Use frame pointer to reference fixed objects. Use it for locals if |
| // there are VLAs or a dynamically realigned SP (and thus the SP isn't |
| // reliable as a base). Make sure useFPForScavengingIndex() does the |
| // right thing for the emergency spill slot. |
| bool UseFP = false; |
| if (AFI->hasStackFrame()) { |
| // Note: Keeping the following as multiple 'if' statements rather than |
| // merging to a single expression for readability. |
| // |
| // Argument access should always use the FP. |
| if (isFixed) { |
| UseFP = hasFP(MF); |
| } else if (isCSR && RegInfo->needsStackRealignment(MF)) { |
| // References to the CSR area must use FP if we're re-aligning the stack |
| // since the dynamically-sized alignment padding is between the SP/BP and |
| // the CSR area. |
| assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); |
| UseFP = true; |
| } else if (hasFP(MF) && !RegInfo->needsStackRealignment(MF)) { |
| // If the FPOffset is negative, we have to keep in mind that the |
| // available offset range for negative offsets is smaller than for |
| // positive ones. If an offset is |
| // available via the FP and the SP, use whichever is closest. |
| bool FPOffsetFits = FPOffset >= -256; |
| PreferFP |= Offset > -FPOffset; |
| |
| if (MFI.hasVarSizedObjects()) { |
| // If we have variable sized objects, we can use either FP or BP, as the |
| // SP offset is unknown. We can use the base pointer if we have one and |
| // FP is not preferred. If not, we're stuck with using FP. |
| bool CanUseBP = RegInfo->hasBasePointer(MF); |
| if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. |
| UseFP = PreferFP; |
| else if (!CanUseBP) // Can't use BP. Forced to use FP. |
| UseFP = true; |
| // else we can use BP and FP, but the offset from FP won't fit. |
| // That will make us scavenge registers which we can probably avoid by |
| // using BP. If it won't fit for BP either, we'll scavenge anyway. |
| } else if (FPOffset >= 0) { |
| // Use SP or FP, whichever gives us the best chance of the offset |
| // being in range for direct access. If the FPOffset is positive, |
| // that'll always be best, as the SP will be even further away. |
| UseFP = true; |
| } else { |
| // We have the choice between FP and (SP or BP). |
| if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. |
| UseFP = true; |
| } |
| } |
| } |
| |
| assert(((isFixed || isCSR) || !RegInfo->needsStackRealignment(MF) || !UseFP) && |
| "In the presence of dynamic stack pointer realignment, " |
| "non-argument/CSR objects cannot be accessed through the frame pointer"); |
| |
| if (UseFP) { |
| FrameReg = RegInfo->getFrameRegister(MF); |
| return FPOffset; |
| } |
| |
| // Use the base pointer if we have one. |
| if (RegInfo->hasBasePointer(MF)) |
| FrameReg = RegInfo->getBaseRegister(); |
| else { |
| assert(!MFI.hasVarSizedObjects() && |
| "Can't use SP when we have var sized objects."); |
| FrameReg = AArch64::SP; |
| // If we're using the red zone for this function, the SP won't actually |
| // be adjusted, so the offsets will be negative. They're also all |
| // within range of the signed 9-bit immediate instructions. |
| if (canUseRedZone(MF)) |
| Offset -= AFI->getLocalStackSize(); |
| } |
| |
| return Offset; |
| } |
| |
| static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { |
| // Do not set a kill flag on values that are also marked as live-in. This |
| // happens with the @llvm-returnaddress intrinsic and with arguments passed in |
| // callee saved registers. |
| // Omitting the kill flags is conservatively correct even if the live-in |
| // is not used after all. |
| bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); |
| return getKillRegState(!IsLiveIn); |
| } |
| |
| static bool produceCompactUnwindFrame(MachineFunction &MF) { |
| const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); |
| AttributeList Attrs = MF.getFunction().getAttributes(); |
| return Subtarget.isTargetMachO() && |
| !(Subtarget.getTargetLowering()->supportSwiftError() && |
| Attrs.hasAttrSomewhere(Attribute::SwiftError)); |
| } |
| |
| namespace { |
| |
| struct RegPairInfo { |
| unsigned Reg1 = AArch64::NoRegister; |
| unsigned Reg2 = AArch64::NoRegister; |
| int FrameIdx; |
| int Offset; |
| bool IsGPR; |
| |
| RegPairInfo() = default; |
| |
| bool isPaired() const { return Reg2 != AArch64::NoRegister; } |
| }; |
| |
| } // end anonymous namespace |
| |
| static void computeCalleeSaveRegisterPairs( |
| MachineFunction &MF, const std::vector<CalleeSavedInfo> &CSI, |
| const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, |
| bool &NeedShadowCallStackProlog) { |
| |
| if (CSI.empty()) |
| return; |
| |
| AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| CallingConv::ID CC = MF.getFunction().getCallingConv(); |
| unsigned Count = CSI.size(); |
| (void)CC; |
| // MachO's compact unwind format relies on all registers being stored in |
| // pairs. |
| assert((!produceCompactUnwindFrame(MF) || |
| CC == CallingConv::PreserveMost || |
| (Count & 1) == 0) && |
| "Odd number of callee-saved regs to spill!"); |
| int Offset = AFI->getCalleeSavedStackSize(); |
| |
| for (unsigned i = 0; i < Count; ++i) { |
| RegPairInfo RPI; |
| RPI.Reg1 = CSI[i].getReg(); |
| |
| assert(AArch64::GPR64RegClass.contains(RPI.Reg1) || |
| AArch64::FPR64RegClass.contains(RPI.Reg1)); |
| RPI.IsGPR = AArch64::GPR64RegClass.contains(RPI.Reg1); |
| |
| // Add the next reg to the pair if it is in the same register class. |
| if (i + 1 < Count) { |
| unsigned NextReg = CSI[i + 1].getReg(); |
| if ((RPI.IsGPR && AArch64::GPR64RegClass.contains(NextReg)) || |
| (!RPI.IsGPR && AArch64::FPR64RegClass.contains(NextReg))) |
| RPI.Reg2 = NextReg; |
| } |
| |
| // If either of the registers to be saved is the lr register, it means that |
| // we also need to save lr in the shadow call stack. |
| if ((RPI.Reg1 == AArch64::LR || RPI.Reg2 == AArch64::LR) && |
| MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) { |
| if (!MF.getSubtarget<AArch64Subtarget>().isX18Reserved()) |
| report_fatal_error("Must reserve x18 to use shadow call stack"); |
| NeedShadowCallStackProlog = true; |
| } |
| |
| // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI |
| // list to come in sorted by frame index so that we can issue the store |
| // pair instructions directly. Assert if we see anything otherwise. |
| // |
| // The order of the registers in the list is controlled by |
| // getCalleeSavedRegs(), so they will always be in-order, as well. |
| assert((!RPI.isPaired() || |
| (CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx())) && |
| "Out of order callee saved regs!"); |
| |
| // MachO's compact unwind format relies on all registers being stored in |
| // adjacent register pairs. |
| assert((!produceCompactUnwindFrame(MF) || |
| CC == CallingConv::PreserveMost || |
| (RPI.isPaired() && |
| ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || |
| RPI.Reg1 + 1 == RPI.Reg2))) && |
| "Callee-save registers not saved as adjacent register pair!"); |
| |
| RPI.FrameIdx = CSI[i].getFrameIdx(); |
| |
| if (Count * 8 != AFI->getCalleeSavedStackSize() && !RPI.isPaired()) { |
| // Round up size of non-pair to pair size if we need to pad the |
| // callee-save area to ensure 16-byte alignment. |
| Offset -= 16; |
| assert(MFI.getObjectAlignment(RPI.FrameIdx) <= 16); |
| MFI.setObjectAlignment(RPI.FrameIdx, 16); |
| AFI->setCalleeSaveStackHasFreeSpace(true); |
| } else |
| Offset -= RPI.isPaired() ? 16 : 8; |
| assert(Offset % 8 == 0); |
| RPI.Offset = Offset / 8; |
| assert((RPI.Offset >= -64 && RPI.Offset <= 63) && |
| "Offset out of bounds for LDP/STP immediate"); |
| |
| RegPairs.push_back(RPI); |
| if (RPI.isPaired()) |
| ++i; |
| } |
| } |
| |
| bool AArch64FrameLowering::spillCalleeSavedRegisters( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| const std::vector<CalleeSavedInfo> &CSI, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| DebugLoc DL; |
| SmallVector<RegPairInfo, 8> RegPairs; |
| |
| bool NeedShadowCallStackProlog = false; |
| computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, |
| NeedShadowCallStackProlog); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| if (NeedShadowCallStackProlog) { |
| // Shadow call stack prolog: str x30, [x18], #8 |
| BuildMI(MBB, MI, DL, TII.get(AArch64::STRXpost)) |
| .addReg(AArch64::X18, RegState::Define) |
| .addReg(AArch64::LR) |
| .addReg(AArch64::X18) |
| .addImm(8) |
| .setMIFlag(MachineInstr::FrameSetup); |
| |
| // This instruction also makes x18 live-in to the entry block. |
| MBB.addLiveIn(AArch64::X18); |
| } |
| |
| for (auto RPII = RegPairs.rbegin(), RPIE = RegPairs.rend(); RPII != RPIE; |
| ++RPII) { |
| RegPairInfo RPI = *RPII; |
| unsigned Reg1 = RPI.Reg1; |
| unsigned Reg2 = RPI.Reg2; |
| unsigned StrOpc; |
| |
| // Issue sequence of spills for cs regs. The first spill may be converted |
| // to a pre-decrement store later by emitPrologue if the callee-save stack |
| // area allocation can't be combined with the local stack area allocation. |
| // For example: |
| // stp x22, x21, [sp, #0] // addImm(+0) |
| // stp x20, x19, [sp, #16] // addImm(+2) |
| // stp fp, lr, [sp, #32] // addImm(+4) |
| // Rationale: This sequence saves uop updates compared to a sequence of |
| // pre-increment spills like stp xi,xj,[sp,#-16]! |
| // Note: Similar rationale and sequence for restores in epilog. |
| if (RPI.IsGPR) |
| StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; |
| else |
| StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; |
| LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); |
| if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); |
| dbgs() << ") -> fi#(" << RPI.FrameIdx; |
| if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; |
| dbgs() << ")\n"); |
| |
| MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); |
| if (!MRI.isReserved(Reg1)) |
| MBB.addLiveIn(Reg1); |
| if (RPI.isPaired()) { |
| if (!MRI.isReserved(Reg2)) |
| MBB.addLiveIn(Reg2); |
| MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); |
| MIB.addMemOperand(MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx + 1), |
| MachineMemOperand::MOStore, 8, 8)); |
| } |
| MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) |
| .addReg(AArch64::SP) |
| .addImm(RPI.Offset) // [sp, #offset*8], where factor*8 is implicit |
| .setMIFlag(MachineInstr::FrameSetup); |
| MIB.addMemOperand(MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx), |
| MachineMemOperand::MOStore, 8, 8)); |
| } |
| return true; |
| } |
| |
| bool AArch64FrameLowering::restoreCalleeSavedRegisters( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| std::vector<CalleeSavedInfo> &CSI, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| DebugLoc DL; |
| SmallVector<RegPairInfo, 8> RegPairs; |
| |
| if (MI != MBB.end()) |
| DL = MI->getDebugLoc(); |
| |
| bool NeedShadowCallStackProlog = false; |
| computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, |
| NeedShadowCallStackProlog); |
| |
| auto EmitMI = [&](const RegPairInfo &RPI) { |
| unsigned Reg1 = RPI.Reg1; |
| unsigned Reg2 = RPI.Reg2; |
| |
| // Issue sequence of restores for cs regs. The last restore may be converted |
| // to a post-increment load later by emitEpilogue if the callee-save stack |
| // area allocation can't be combined with the local stack area allocation. |
| // For example: |
| // ldp fp, lr, [sp, #32] // addImm(+4) |
| // ldp x20, x19, [sp, #16] // addImm(+2) |
| // ldp x22, x21, [sp, #0] // addImm(+0) |
| // Note: see comment in spillCalleeSavedRegisters() |
| unsigned LdrOpc; |
| if (RPI.IsGPR) |
| LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; |
| else |
| LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; |
| LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); |
| if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); |
| dbgs() << ") -> fi#(" << RPI.FrameIdx; |
| if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; |
| dbgs() << ")\n"); |
| |
| MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc)); |
| if (RPI.isPaired()) { |
| MIB.addReg(Reg2, getDefRegState(true)); |
| MIB.addMemOperand(MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx + 1), |
| MachineMemOperand::MOLoad, 8, 8)); |
| } |
| MIB.addReg(Reg1, getDefRegState(true)) |
| .addReg(AArch64::SP) |
| .addImm(RPI.Offset) // [sp, #offset*8] where the factor*8 is implicit |
| .setMIFlag(MachineInstr::FrameDestroy); |
| MIB.addMemOperand(MF.getMachineMemOperand( |
| MachinePointerInfo::getFixedStack(MF, RPI.FrameIdx), |
| MachineMemOperand::MOLoad, 8, 8)); |
| }; |
| |
| if (ReverseCSRRestoreSeq) |
| for (const RegPairInfo &RPI : reverse(RegPairs)) |
| EmitMI(RPI); |
| else |
| for (const RegPairInfo &RPI : RegPairs) |
| EmitMI(RPI); |
| |
| if (NeedShadowCallStackProlog) { |
| // Shadow call stack epilog: ldr x30, [x18, #-8]! |
| BuildMI(MBB, MI, DL, TII.get(AArch64::LDRXpre)) |
| .addReg(AArch64::X18, RegState::Define) |
| .addReg(AArch64::LR, RegState::Define) |
| .addReg(AArch64::X18) |
| .addImm(-8) |
| .setMIFlag(MachineInstr::FrameDestroy); |
| } |
| |
| return true; |
| } |
| |
| void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, |
| BitVector &SavedRegs, |
| RegScavenger *RS) const { |
| // All calls are tail calls in GHC calling conv, and functions have no |
| // prologue/epilogue. |
| if (MF.getFunction().getCallingConv() == CallingConv::GHC) |
| return; |
| |
| TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); |
| const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( |
| MF.getSubtarget().getRegisterInfo()); |
| AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| unsigned UnspilledCSGPR = AArch64::NoRegister; |
| unsigned UnspilledCSGPRPaired = AArch64::NoRegister; |
| |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); |
| |
| unsigned BasePointerReg = RegInfo->hasBasePointer(MF) |
| ? RegInfo->getBaseRegister() |
| : (unsigned)AArch64::NoRegister; |
| |
| unsigned SpillEstimate = SavedRegs.count(); |
| for (unsigned i = 0; CSRegs[i]; ++i) { |
| unsigned Reg = CSRegs[i]; |
| unsigned PairedReg = CSRegs[i ^ 1]; |
| if (Reg == BasePointerReg) |
| SpillEstimate++; |
| if (produceCompactUnwindFrame(MF) && !SavedRegs.test(PairedReg)) |
| SpillEstimate++; |
| } |
| SpillEstimate += 2; // Conservatively include FP+LR in the estimate |
| unsigned StackEstimate = MFI.estimateStackSize(MF) + 8 * SpillEstimate; |
| |
| // The frame record needs to be created by saving the appropriate registers |
| if (hasFP(MF) || windowsRequiresStackProbe(MF, StackEstimate)) { |
| SavedRegs.set(AArch64::FP); |
| SavedRegs.set(AArch64::LR); |
| } |
| |
| unsigned ExtraCSSpill = 0; |
| // Figure out which callee-saved registers to save/restore. |
| for (unsigned i = 0; CSRegs[i]; ++i) { |
| const unsigned Reg = CSRegs[i]; |
| |
| // Add the base pointer register to SavedRegs if it is callee-save. |
| if (Reg == BasePointerReg) |
| SavedRegs.set(Reg); |
| |
| bool RegUsed = SavedRegs.test(Reg); |
| unsigned PairedReg = CSRegs[i ^ 1]; |
| if (!RegUsed) { |
| if (AArch64::GPR64RegClass.contains(Reg) && |
| !RegInfo->isReservedReg(MF, Reg)) { |
| UnspilledCSGPR = Reg; |
| UnspilledCSGPRPaired = PairedReg; |
| } |
| continue; |
| } |
| |
| // MachO's compact unwind format relies on all registers being stored in |
| // pairs. |
| // FIXME: the usual format is actually better if unwinding isn't needed. |
| if (produceCompactUnwindFrame(MF) && !SavedRegs.test(PairedReg)) { |
| SavedRegs.set(PairedReg); |
| if (AArch64::GPR64RegClass.contains(PairedReg) && |
| !RegInfo->isReservedReg(MF, PairedReg)) |
| ExtraCSSpill = PairedReg; |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nUsed CSRs:"; |
| for (unsigned Reg |
| : SavedRegs.set_bits()) dbgs() |
| << ' ' << printReg(Reg, RegInfo); |
| dbgs() << "\n";); |
| |
| // If any callee-saved registers are used, the frame cannot be eliminated. |
| unsigned NumRegsSpilled = SavedRegs.count(); |
| bool CanEliminateFrame = NumRegsSpilled == 0; |
| |
| // The CSR spill slots have not been allocated yet, so estimateStackSize |
| // won't include them. |
| unsigned CFSize = MFI.estimateStackSize(MF) + 8 * NumRegsSpilled; |
| LLVM_DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n"); |
| unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); |
| bool BigStack = (CFSize > EstimatedStackSizeLimit); |
| if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) |
| AFI->setHasStackFrame(true); |
| |
| // Estimate if we might need to scavenge a register at some point in order |
| // to materialize a stack offset. If so, either spill one additional |
| // callee-saved register or reserve a special spill slot to facilitate |
| // register scavenging. If we already spilled an extra callee-saved register |
| // above to keep the number of spills even, we don't need to do anything else |
| // here. |
| if (BigStack) { |
| if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { |
| LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) |
| << " to get a scratch register.\n"); |
| SavedRegs.set(UnspilledCSGPR); |
| // MachO's compact unwind format relies on all registers being stored in |
| // pairs, so if we need to spill one extra for BigStack, then we need to |
| // store the pair. |
| if (produceCompactUnwindFrame(MF)) |
| SavedRegs.set(UnspilledCSGPRPaired); |
| ExtraCSSpill = UnspilledCSGPRPaired; |
| NumRegsSpilled = SavedRegs.count(); |
| } |
| |
| // If we didn't find an extra callee-saved register to spill, create |
| // an emergency spill slot. |
| if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| const TargetRegisterClass &RC = AArch64::GPR64RegClass; |
| unsigned Size = TRI->getSpillSize(RC); |
| unsigned Align = TRI->getSpillAlignment(RC); |
| int FI = MFI.CreateStackObject(Size, Align, false); |
| RS->addScavengingFrameIndex(FI); |
| LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI |
| << " as the emergency spill slot.\n"); |
| } |
| } |
| |
| // Round up to register pair alignment to avoid additional SP adjustment |
| // instructions. |
| AFI->setCalleeSavedStackSize(alignTo(8 * NumRegsSpilled, 16)); |
| } |
| |
| bool AArch64FrameLowering::enableStackSlotScavenging( |
| const MachineFunction &MF) const { |
| const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); |
| return AFI->hasCalleeSaveStackFreeSpace(); |
| } |