| //===- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a pass that expands pseudo instructions into target |
| // instructions to allow proper scheduling and other late optimizations. This |
| // pass should be run after register allocation but before the post-regalloc |
| // scheduling pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64InstrInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "Utils/AArch64BaseInfo.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/LivePhysRegs.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define AARCH64_EXPAND_PSEUDO_NAME "AArch64 pseudo instruction expansion pass" |
| |
| namespace { |
| |
| class AArch64ExpandPseudo : public MachineFunctionPass { |
| public: |
| const AArch64InstrInfo *TII; |
| |
| static char ID; |
| |
| AArch64ExpandPseudo() : MachineFunctionPass(ID) { |
| initializeAArch64ExpandPseudoPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &Fn) override; |
| |
| StringRef getPassName() const override { return AARCH64_EXPAND_PSEUDO_NAME; } |
| |
| private: |
| bool expandMBB(MachineBasicBlock &MBB); |
| bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
| MachineBasicBlock::iterator &NextMBBI); |
| bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
| unsigned BitSize); |
| bool expandMOVImmSimple(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| unsigned BitSize, |
| unsigned OneChunks, |
| unsigned ZeroChunks); |
| |
| bool expandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
| unsigned LdarOp, unsigned StlrOp, unsigned CmpOp, |
| unsigned ExtendImm, unsigned ZeroReg, |
| MachineBasicBlock::iterator &NextMBBI); |
| bool expandCMP_SWAP_128(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| MachineBasicBlock::iterator &NextMBBI); |
| }; |
| |
| } // end anonymous namespace |
| |
| char AArch64ExpandPseudo::ID = 0; |
| |
| INITIALIZE_PASS(AArch64ExpandPseudo, "aarch64-expand-pseudo", |
| AARCH64_EXPAND_PSEUDO_NAME, false, false) |
| |
| /// Transfer implicit operands on the pseudo instruction to the |
| /// instructions created from the expansion. |
| static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI, |
| MachineInstrBuilder &DefMI) { |
| const MCInstrDesc &Desc = OldMI.getDesc(); |
| for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e; |
| ++i) { |
| const MachineOperand &MO = OldMI.getOperand(i); |
| assert(MO.isReg() && MO.getReg()); |
| if (MO.isUse()) |
| UseMI.add(MO); |
| else |
| DefMI.add(MO); |
| } |
| } |
| |
| /// Helper function which extracts the specified 16-bit chunk from a |
| /// 64-bit value. |
| static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) { |
| assert(ChunkIdx < 4 && "Out of range chunk index specified!"); |
| |
| return (Imm >> (ChunkIdx * 16)) & 0xFFFF; |
| } |
| |
| /// Check whether the given 16-bit chunk replicated to full 64-bit width |
| /// can be materialized with an ORR instruction. |
| static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) { |
| Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk; |
| |
| return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding); |
| } |
| |
| /// Check for identical 16-bit chunks within the constant and if so |
| /// materialize them with a single ORR instruction. The remaining one or two |
| /// 16-bit chunks will be materialized with MOVK instructions. |
| /// |
| /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order |
| /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with |
| /// an ORR instruction. |
| static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &MBBI, |
| const AArch64InstrInfo *TII) { |
| using CountMap = DenseMap<uint64_t, unsigned>; |
| |
| CountMap Counts; |
| |
| // Scan the constant and count how often every chunk occurs. |
| for (unsigned Idx = 0; Idx < 4; ++Idx) |
| ++Counts[getChunk(UImm, Idx)]; |
| |
| // Traverse the chunks to find one which occurs more than once. |
| for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end(); |
| Chunk != End; ++Chunk) { |
| const uint64_t ChunkVal = Chunk->first; |
| const unsigned Count = Chunk->second; |
| |
| uint64_t Encoding = 0; |
| |
| // We are looking for chunks which have two or three instances and can be |
| // materialized with an ORR instruction. |
| if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding)) |
| continue; |
| |
| const bool CountThree = Count == 3; |
| // Create the ORR-immediate instruction. |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri)) |
| .add(MI.getOperand(0)) |
| .addReg(AArch64::XZR) |
| .addImm(Encoding); |
| |
| const unsigned DstReg = MI.getOperand(0).getReg(); |
| const bool DstIsDead = MI.getOperand(0).isDead(); |
| |
| unsigned ShiftAmt = 0; |
| uint64_t Imm16 = 0; |
| // Find the first chunk not materialized with the ORR instruction. |
| for (; ShiftAmt < 64; ShiftAmt += 16) { |
| Imm16 = (UImm >> ShiftAmt) & 0xFFFF; |
| |
| if (Imm16 != ChunkVal) |
| break; |
| } |
| |
| // Create the first MOVK instruction. |
| MachineInstrBuilder MIB1 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) |
| .addReg(DstReg, |
| RegState::Define | getDeadRegState(DstIsDead && CountThree)) |
| .addReg(DstReg) |
| .addImm(Imm16) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt)); |
| |
| // In case we have three instances the whole constant is now materialized |
| // and we can exit. |
| if (CountThree) { |
| transferImpOps(MI, MIB, MIB1); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| // Find the remaining chunk which needs to be materialized. |
| for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) { |
| Imm16 = (UImm >> ShiftAmt) & 0xFFFF; |
| |
| if (Imm16 != ChunkVal) |
| break; |
| } |
| |
| // Create the second MOVK instruction. |
| MachineInstrBuilder MIB2 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) |
| .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) |
| .addReg(DstReg) |
| .addImm(Imm16) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt)); |
| |
| transferImpOps(MI, MIB, MIB2); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Check whether this chunk matches the pattern '1...0...'. This pattern |
| /// starts a contiguous sequence of ones if we look at the bits from the LSB |
| /// towards the MSB. |
| static bool isStartChunk(uint64_t Chunk) { |
| if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) |
| return false; |
| |
| return isMask_64(~Chunk); |
| } |
| |
| /// Check whether this chunk matches the pattern '0...1...' This pattern |
| /// ends a contiguous sequence of ones if we look at the bits from the LSB |
| /// towards the MSB. |
| static bool isEndChunk(uint64_t Chunk) { |
| if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max()) |
| return false; |
| |
| return isMask_64(Chunk); |
| } |
| |
| /// Clear or set all bits in the chunk at the given index. |
| static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) { |
| const uint64_t Mask = 0xFFFF; |
| |
| if (Clear) |
| // Clear chunk in the immediate. |
| Imm &= ~(Mask << (Idx * 16)); |
| else |
| // Set all bits in the immediate for the particular chunk. |
| Imm |= Mask << (Idx * 16); |
| |
| return Imm; |
| } |
| |
| /// Check whether the constant contains a sequence of contiguous ones, |
| /// which might be interrupted by one or two chunks. If so, materialize the |
| /// sequence of contiguous ones with an ORR instruction. |
| /// Materialize the chunks which are either interrupting the sequence or outside |
| /// of the sequence with a MOVK instruction. |
| /// |
| /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk |
| /// which ends the sequence (0...1...). Then we are looking for constants which |
| /// contain at least one S and E chunk. |
| /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|. |
| /// |
| /// We are also looking for constants like |S|A|B|E| where the contiguous |
| /// sequence of ones wraps around the MSB into the LSB. |
| static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &MBBI, |
| const AArch64InstrInfo *TII) { |
| const int NotSet = -1; |
| const uint64_t Mask = 0xFFFF; |
| |
| int StartIdx = NotSet; |
| int EndIdx = NotSet; |
| // Try to find the chunks which start/end a contiguous sequence of ones. |
| for (int Idx = 0; Idx < 4; ++Idx) { |
| int64_t Chunk = getChunk(UImm, Idx); |
| // Sign extend the 16-bit chunk to 64-bit. |
| Chunk = (Chunk << 48) >> 48; |
| |
| if (isStartChunk(Chunk)) |
| StartIdx = Idx; |
| else if (isEndChunk(Chunk)) |
| EndIdx = Idx; |
| } |
| |
| // Early exit in case we can't find a start/end chunk. |
| if (StartIdx == NotSet || EndIdx == NotSet) |
| return false; |
| |
| // Outside of the contiguous sequence of ones everything needs to be zero. |
| uint64_t Outside = 0; |
| // Chunks between the start and end chunk need to have all their bits set. |
| uint64_t Inside = Mask; |
| |
| // If our contiguous sequence of ones wraps around from the MSB into the LSB, |
| // just swap indices and pretend we are materializing a contiguous sequence |
| // of zeros surrounded by a contiguous sequence of ones. |
| if (StartIdx > EndIdx) { |
| std::swap(StartIdx, EndIdx); |
| std::swap(Outside, Inside); |
| } |
| |
| uint64_t OrrImm = UImm; |
| int FirstMovkIdx = NotSet; |
| int SecondMovkIdx = NotSet; |
| |
| // Find out which chunks we need to patch up to obtain a contiguous sequence |
| // of ones. |
| for (int Idx = 0; Idx < 4; ++Idx) { |
| const uint64_t Chunk = getChunk(UImm, Idx); |
| |
| // Check whether we are looking at a chunk which is not part of the |
| // contiguous sequence of ones. |
| if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) { |
| OrrImm = updateImm(OrrImm, Idx, Outside == 0); |
| |
| // Remember the index we need to patch. |
| if (FirstMovkIdx == NotSet) |
| FirstMovkIdx = Idx; |
| else |
| SecondMovkIdx = Idx; |
| |
| // Check whether we are looking a chunk which is part of the contiguous |
| // sequence of ones. |
| } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) { |
| OrrImm = updateImm(OrrImm, Idx, Inside != Mask); |
| |
| // Remember the index we need to patch. |
| if (FirstMovkIdx == NotSet) |
| FirstMovkIdx = Idx; |
| else |
| SecondMovkIdx = Idx; |
| } |
| } |
| assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!"); |
| |
| // Create the ORR-immediate instruction. |
| uint64_t Encoding = 0; |
| AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding); |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri)) |
| .add(MI.getOperand(0)) |
| .addReg(AArch64::XZR) |
| .addImm(Encoding); |
| |
| const unsigned DstReg = MI.getOperand(0).getReg(); |
| const bool DstIsDead = MI.getOperand(0).isDead(); |
| |
| const bool SingleMovk = SecondMovkIdx == NotSet; |
| // Create the first MOVK instruction. |
| MachineInstrBuilder MIB1 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) |
| .addReg(DstReg, |
| RegState::Define | getDeadRegState(DstIsDead && SingleMovk)) |
| .addReg(DstReg) |
| .addImm(getChunk(UImm, FirstMovkIdx)) |
| .addImm( |
| AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16)); |
| |
| // Early exit in case we only need to emit a single MOVK instruction. |
| if (SingleMovk) { |
| transferImpOps(MI, MIB, MIB1); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| // Create the second MOVK instruction. |
| MachineInstrBuilder MIB2 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) |
| .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) |
| .addReg(DstReg) |
| .addImm(getChunk(UImm, SecondMovkIdx)) |
| .addImm( |
| AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16)); |
| |
| transferImpOps(MI, MIB, MIB2); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| /// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more |
| /// real move-immediate instructions to synthesize the immediate. |
| bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| unsigned BitSize) { |
| MachineInstr &MI = *MBBI; |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| uint64_t Imm = MI.getOperand(1).getImm(); |
| const unsigned Mask = 0xFFFF; |
| |
| if (DstReg == AArch64::XZR || DstReg == AArch64::WZR) { |
| // Useless def, and we don't want to risk creating an invalid ORR (which |
| // would really write to sp). |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| // Scan the immediate and count the number of 16-bit chunks which are either |
| // all ones or all zeros. |
| unsigned OneChunks = 0; |
| unsigned ZeroChunks = 0; |
| for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { |
| const unsigned Chunk = (Imm >> Shift) & Mask; |
| if (Chunk == Mask) |
| OneChunks++; |
| else if (Chunk == 0) |
| ZeroChunks++; |
| } |
| |
| // FIXME: Prefer MOVZ/MOVN over ORR because of the rules for the "mov" |
| // alias. |
| |
| // Try a single ORR. |
| uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize); |
| uint64_t Encoding; |
| if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) { |
| unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri); |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)) |
| .add(MI.getOperand(0)) |
| .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR) |
| .addImm(Encoding); |
| transferImpOps(MI, MIB, MIB); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| // Two instruction sequences. |
| // |
| // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the |
| // fastest sequence with fast literal generation. |
| if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) |
| return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks); |
| |
| assert(BitSize == 64 && "All 32-bit immediates can be expanded with a" |
| "MOVZ/MOVK pair"); |
| |
| // Try other two-instruction sequences. |
| |
| // 64-bit ORR followed by MOVK. |
| // We try to construct the ORR immediate in three different ways: either we |
| // zero out the chunk which will be replaced, we fill the chunk which will |
| // be replaced with ones, or we take the bit pattern from the other half of |
| // the 64-bit immediate. This is comprehensive because of the way ORR |
| // immediates are constructed. |
| for (unsigned Shift = 0; Shift < BitSize; Shift += 16) { |
| uint64_t ShiftedMask = (0xFFFFULL << Shift); |
| uint64_t ZeroChunk = UImm & ~ShiftedMask; |
| uint64_t OneChunk = UImm | ShiftedMask; |
| uint64_t RotatedImm = (UImm << 32) | (UImm >> 32); |
| uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask); |
| if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) || |
| AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) || |
| AArch64_AM::processLogicalImmediate(ReplicateChunk, |
| BitSize, Encoding)) { |
| // Create the ORR-immediate instruction. |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri)) |
| .add(MI.getOperand(0)) |
| .addReg(AArch64::XZR) |
| .addImm(Encoding); |
| |
| // Create the MOVK instruction. |
| const unsigned Imm16 = getChunk(UImm, Shift / 16); |
| const unsigned DstReg = MI.getOperand(0).getReg(); |
| const bool DstIsDead = MI.getOperand(0).isDead(); |
| MachineInstrBuilder MIB1 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi)) |
| .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead)) |
| .addReg(DstReg) |
| .addImm(Imm16) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift)); |
| |
| transferImpOps(MI, MIB, MIB1); |
| MI.eraseFromParent(); |
| return true; |
| } |
| } |
| |
| // FIXME: Add more two-instruction sequences. |
| |
| // Three instruction sequences. |
| // |
| // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly |
| // the fastest sequence with fast literal generation. (If neither MOVK is |
| // part of a fast literal generation pair, it could be slower than the |
| // four-instruction sequence, but we won't worry about that for now.) |
| if (OneChunks || ZeroChunks) |
| return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks); |
| |
| // Check for identical 16-bit chunks within the constant and if so materialize |
| // them with a single ORR instruction. The remaining one or two 16-bit chunks |
| // will be materialized with MOVK instructions. |
| if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII)) |
| return true; |
| |
| // Check whether the constant contains a sequence of contiguous ones, which |
| // might be interrupted by one or two chunks. If so, materialize the sequence |
| // of contiguous ones with an ORR instruction. Materialize the chunks which |
| // are either interrupting the sequence or outside of the sequence with a |
| // MOVK instruction. |
| if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII)) |
| return true; |
| |
| // We found no possible two or three instruction sequence; use the general |
| // four-instruction sequence. |
| return expandMOVImmSimple(MBB, MBBI, BitSize, OneChunks, ZeroChunks); |
| } |
| |
| /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a |
| /// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions. |
| bool AArch64ExpandPseudo::expandMOVImmSimple(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| unsigned BitSize, |
| unsigned OneChunks, |
| unsigned ZeroChunks) { |
| MachineInstr &MI = *MBBI; |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| uint64_t Imm = MI.getOperand(1).getImm(); |
| const unsigned Mask = 0xFFFF; |
| |
| // Use a MOVZ or MOVN instruction to set the high bits, followed by one or |
| // more MOVK instructions to insert additional 16-bit portions into the |
| // lower bits. |
| bool isNeg = false; |
| |
| // Use MOVN to materialize the high bits if we have more all one chunks |
| // than all zero chunks. |
| if (OneChunks > ZeroChunks) { |
| isNeg = true; |
| Imm = ~Imm; |
| } |
| |
| unsigned FirstOpc; |
| if (BitSize == 32) { |
| Imm &= (1LL << 32) - 1; |
| FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi); |
| } else { |
| FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi); |
| } |
| unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN |
| unsigned LastShift = 0; // LSL amount for last MOVK |
| if (Imm != 0) { |
| unsigned LZ = countLeadingZeros(Imm); |
| unsigned TZ = countTrailingZeros(Imm); |
| Shift = (TZ / 16) * 16; |
| LastShift = ((63 - LZ) / 16) * 16; |
| } |
| unsigned Imm16 = (Imm >> Shift) & Mask; |
| bool DstIsDead = MI.getOperand(0).isDead(); |
| MachineInstrBuilder MIB1 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc)) |
| .addReg(DstReg, RegState::Define | |
| getDeadRegState(DstIsDead && Shift == LastShift)) |
| .addImm(Imm16) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift)); |
| |
| // If a MOVN was used for the high bits of a negative value, flip the rest |
| // of the bits back for use with MOVK. |
| if (isNeg) |
| Imm = ~Imm; |
| |
| if (Shift == LastShift) { |
| transferImpOps(MI, MIB1, MIB1); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| MachineInstrBuilder MIB2; |
| unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi); |
| while (Shift < LastShift) { |
| Shift += 16; |
| Imm16 = (Imm >> Shift) & Mask; |
| if (Imm16 == (isNeg ? Mask : 0)) |
| continue; // This 16-bit portion is already set correctly. |
| MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)) |
| .addReg(DstReg, |
| RegState::Define | |
| getDeadRegState(DstIsDead && Shift == LastShift)) |
| .addReg(DstReg) |
| .addImm(Imm16) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift)); |
| } |
| |
| transferImpOps(MI, MIB1, MIB2); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64ExpandPseudo::expandCMP_SWAP( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdarOp, |
| unsigned StlrOp, unsigned CmpOp, unsigned ExtendImm, unsigned ZeroReg, |
| MachineBasicBlock::iterator &NextMBBI) { |
| MachineInstr &MI = *MBBI; |
| DebugLoc DL = MI.getDebugLoc(); |
| const MachineOperand &Dest = MI.getOperand(0); |
| unsigned StatusReg = MI.getOperand(1).getReg(); |
| bool StatusDead = MI.getOperand(1).isDead(); |
| // Duplicating undef operands into 2 instructions does not guarantee the same |
| // value on both; However undef should be replaced by xzr anyway. |
| assert(!MI.getOperand(2).isUndef() && "cannot handle undef"); |
| unsigned AddrReg = MI.getOperand(2).getReg(); |
| unsigned DesiredReg = MI.getOperand(3).getReg(); |
| unsigned NewReg = MI.getOperand(4).getReg(); |
| |
| MachineFunction *MF = MBB.getParent(); |
| auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); |
| auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); |
| auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); |
| |
| MF->insert(++MBB.getIterator(), LoadCmpBB); |
| MF->insert(++LoadCmpBB->getIterator(), StoreBB); |
| MF->insert(++StoreBB->getIterator(), DoneBB); |
| |
| // .Lloadcmp: |
| // mov wStatus, 0 |
| // ldaxr xDest, [xAddr] |
| // cmp xDest, xDesired |
| // b.ne .Ldone |
| if (!StatusDead) |
| BuildMI(LoadCmpBB, DL, TII->get(AArch64::MOVZWi), StatusReg) |
| .addImm(0).addImm(0); |
| BuildMI(LoadCmpBB, DL, TII->get(LdarOp), Dest.getReg()) |
| .addReg(AddrReg); |
| BuildMI(LoadCmpBB, DL, TII->get(CmpOp), ZeroReg) |
| .addReg(Dest.getReg(), getKillRegState(Dest.isDead())) |
| .addReg(DesiredReg) |
| .addImm(ExtendImm); |
| BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc)) |
| .addImm(AArch64CC::NE) |
| .addMBB(DoneBB) |
| .addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill); |
| LoadCmpBB->addSuccessor(DoneBB); |
| LoadCmpBB->addSuccessor(StoreBB); |
| |
| // .Lstore: |
| // stlxr wStatus, xNew, [xAddr] |
| // cbnz wStatus, .Lloadcmp |
| BuildMI(StoreBB, DL, TII->get(StlrOp), StatusReg) |
| .addReg(NewReg) |
| .addReg(AddrReg); |
| BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW)) |
| .addReg(StatusReg, getKillRegState(StatusDead)) |
| .addMBB(LoadCmpBB); |
| StoreBB->addSuccessor(LoadCmpBB); |
| StoreBB->addSuccessor(DoneBB); |
| |
| DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end()); |
| DoneBB->transferSuccessors(&MBB); |
| |
| MBB.addSuccessor(LoadCmpBB); |
| |
| NextMBBI = MBB.end(); |
| MI.eraseFromParent(); |
| |
| // Recompute livein lists. |
| LivePhysRegs LiveRegs; |
| computeAndAddLiveIns(LiveRegs, *DoneBB); |
| computeAndAddLiveIns(LiveRegs, *StoreBB); |
| computeAndAddLiveIns(LiveRegs, *LoadCmpBB); |
| // Do an extra pass around the loop to get loop carried registers right. |
| StoreBB->clearLiveIns(); |
| computeAndAddLiveIns(LiveRegs, *StoreBB); |
| LoadCmpBB->clearLiveIns(); |
| computeAndAddLiveIns(LiveRegs, *LoadCmpBB); |
| |
| return true; |
| } |
| |
| bool AArch64ExpandPseudo::expandCMP_SWAP_128( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
| MachineBasicBlock::iterator &NextMBBI) { |
| MachineInstr &MI = *MBBI; |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineOperand &DestLo = MI.getOperand(0); |
| MachineOperand &DestHi = MI.getOperand(1); |
| unsigned StatusReg = MI.getOperand(2).getReg(); |
| bool StatusDead = MI.getOperand(2).isDead(); |
| // Duplicating undef operands into 2 instructions does not guarantee the same |
| // value on both; However undef should be replaced by xzr anyway. |
| assert(!MI.getOperand(3).isUndef() && "cannot handle undef"); |
| unsigned AddrReg = MI.getOperand(3).getReg(); |
| unsigned DesiredLoReg = MI.getOperand(4).getReg(); |
| unsigned DesiredHiReg = MI.getOperand(5).getReg(); |
| unsigned NewLoReg = MI.getOperand(6).getReg(); |
| unsigned NewHiReg = MI.getOperand(7).getReg(); |
| |
| MachineFunction *MF = MBB.getParent(); |
| auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); |
| auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); |
| auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock()); |
| |
| MF->insert(++MBB.getIterator(), LoadCmpBB); |
| MF->insert(++LoadCmpBB->getIterator(), StoreBB); |
| MF->insert(++StoreBB->getIterator(), DoneBB); |
| |
| // .Lloadcmp: |
| // ldaxp xDestLo, xDestHi, [xAddr] |
| // cmp xDestLo, xDesiredLo |
| // sbcs xDestHi, xDesiredHi |
| // b.ne .Ldone |
| BuildMI(LoadCmpBB, DL, TII->get(AArch64::LDAXPX)) |
| .addReg(DestLo.getReg(), RegState::Define) |
| .addReg(DestHi.getReg(), RegState::Define) |
| .addReg(AddrReg); |
| BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR) |
| .addReg(DestLo.getReg(), getKillRegState(DestLo.isDead())) |
| .addReg(DesiredLoReg) |
| .addImm(0); |
| BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg) |
| .addUse(AArch64::WZR) |
| .addUse(AArch64::WZR) |
| .addImm(AArch64CC::EQ); |
| BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR) |
| .addReg(DestHi.getReg(), getKillRegState(DestHi.isDead())) |
| .addReg(DesiredHiReg) |
| .addImm(0); |
| BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg) |
| .addUse(StatusReg, RegState::Kill) |
| .addUse(StatusReg, RegState::Kill) |
| .addImm(AArch64CC::EQ); |
| BuildMI(LoadCmpBB, DL, TII->get(AArch64::CBNZW)) |
| .addUse(StatusReg, getKillRegState(StatusDead)) |
| .addMBB(DoneBB); |
| LoadCmpBB->addSuccessor(DoneBB); |
| LoadCmpBB->addSuccessor(StoreBB); |
| |
| // .Lstore: |
| // stlxp wStatus, xNewLo, xNewHi, [xAddr] |
| // cbnz wStatus, .Lloadcmp |
| BuildMI(StoreBB, DL, TII->get(AArch64::STLXPX), StatusReg) |
| .addReg(NewLoReg) |
| .addReg(NewHiReg) |
| .addReg(AddrReg); |
| BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW)) |
| .addReg(StatusReg, getKillRegState(StatusDead)) |
| .addMBB(LoadCmpBB); |
| StoreBB->addSuccessor(LoadCmpBB); |
| StoreBB->addSuccessor(DoneBB); |
| |
| DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end()); |
| DoneBB->transferSuccessors(&MBB); |
| |
| MBB.addSuccessor(LoadCmpBB); |
| |
| NextMBBI = MBB.end(); |
| MI.eraseFromParent(); |
| |
| // Recompute liveness bottom up. |
| LivePhysRegs LiveRegs; |
| computeAndAddLiveIns(LiveRegs, *DoneBB); |
| computeAndAddLiveIns(LiveRegs, *StoreBB); |
| computeAndAddLiveIns(LiveRegs, *LoadCmpBB); |
| // Do an extra pass in the loop to get the loop carried dependencies right. |
| StoreBB->clearLiveIns(); |
| computeAndAddLiveIns(LiveRegs, *StoreBB); |
| LoadCmpBB->clearLiveIns(); |
| computeAndAddLiveIns(LiveRegs, *LoadCmpBB); |
| |
| return true; |
| } |
| |
| /// If MBBI references a pseudo instruction that should be expanded here, |
| /// do the expansion and return true. Otherwise return false. |
| bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MBBI, |
| MachineBasicBlock::iterator &NextMBBI) { |
| MachineInstr &MI = *MBBI; |
| unsigned Opcode = MI.getOpcode(); |
| switch (Opcode) { |
| default: |
| break; |
| |
| case AArch64::ADDWrr: |
| case AArch64::SUBWrr: |
| case AArch64::ADDXrr: |
| case AArch64::SUBXrr: |
| case AArch64::ADDSWrr: |
| case AArch64::SUBSWrr: |
| case AArch64::ADDSXrr: |
| case AArch64::SUBSXrr: |
| case AArch64::ANDWrr: |
| case AArch64::ANDXrr: |
| case AArch64::BICWrr: |
| case AArch64::BICXrr: |
| case AArch64::ANDSWrr: |
| case AArch64::ANDSXrr: |
| case AArch64::BICSWrr: |
| case AArch64::BICSXrr: |
| case AArch64::EONWrr: |
| case AArch64::EONXrr: |
| case AArch64::EORWrr: |
| case AArch64::EORXrr: |
| case AArch64::ORNWrr: |
| case AArch64::ORNXrr: |
| case AArch64::ORRWrr: |
| case AArch64::ORRXrr: { |
| unsigned Opcode; |
| switch (MI.getOpcode()) { |
| default: |
| return false; |
| case AArch64::ADDWrr: Opcode = AArch64::ADDWrs; break; |
| case AArch64::SUBWrr: Opcode = AArch64::SUBWrs; break; |
| case AArch64::ADDXrr: Opcode = AArch64::ADDXrs; break; |
| case AArch64::SUBXrr: Opcode = AArch64::SUBXrs; break; |
| case AArch64::ADDSWrr: Opcode = AArch64::ADDSWrs; break; |
| case AArch64::SUBSWrr: Opcode = AArch64::SUBSWrs; break; |
| case AArch64::ADDSXrr: Opcode = AArch64::ADDSXrs; break; |
| case AArch64::SUBSXrr: Opcode = AArch64::SUBSXrs; break; |
| case AArch64::ANDWrr: Opcode = AArch64::ANDWrs; break; |
| case AArch64::ANDXrr: Opcode = AArch64::ANDXrs; break; |
| case AArch64::BICWrr: Opcode = AArch64::BICWrs; break; |
| case AArch64::BICXrr: Opcode = AArch64::BICXrs; break; |
| case AArch64::ANDSWrr: Opcode = AArch64::ANDSWrs; break; |
| case AArch64::ANDSXrr: Opcode = AArch64::ANDSXrs; break; |
| case AArch64::BICSWrr: Opcode = AArch64::BICSWrs; break; |
| case AArch64::BICSXrr: Opcode = AArch64::BICSXrs; break; |
| case AArch64::EONWrr: Opcode = AArch64::EONWrs; break; |
| case AArch64::EONXrr: Opcode = AArch64::EONXrs; break; |
| case AArch64::EORWrr: Opcode = AArch64::EORWrs; break; |
| case AArch64::EORXrr: Opcode = AArch64::EORXrs; break; |
| case AArch64::ORNWrr: Opcode = AArch64::ORNWrs; break; |
| case AArch64::ORNXrr: Opcode = AArch64::ORNXrs; break; |
| case AArch64::ORRWrr: Opcode = AArch64::ORRWrs; break; |
| case AArch64::ORRXrr: Opcode = AArch64::ORRXrs; break; |
| } |
| MachineInstrBuilder MIB1 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode), |
| MI.getOperand(0).getReg()) |
| .add(MI.getOperand(1)) |
| .add(MI.getOperand(2)) |
| .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); |
| transferImpOps(MI, MIB1, MIB1); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| case AArch64::LOADgot: { |
| // Expand into ADRP + LDR. |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| const MachineOperand &MO1 = MI.getOperand(1); |
| unsigned Flags = MO1.getTargetFlags(); |
| MachineInstrBuilder MIB1 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg); |
| MachineInstrBuilder MIB2 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui)) |
| .add(MI.getOperand(0)) |
| .addReg(DstReg); |
| |
| if (MO1.isGlobal()) { |
| MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE); |
| MIB2.addGlobalAddress(MO1.getGlobal(), 0, |
| Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| } else if (MO1.isSymbol()) { |
| MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE); |
| MIB2.addExternalSymbol(MO1.getSymbolName(), |
| Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| } else { |
| assert(MO1.isCPI() && |
| "Only expect globals, externalsymbols, or constant pools"); |
| MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(), |
| Flags | AArch64II::MO_PAGE); |
| MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(), |
| Flags | AArch64II::MO_PAGEOFF | |
| AArch64II::MO_NC); |
| } |
| |
| transferImpOps(MI, MIB1, MIB2); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| case AArch64::MOVaddr: |
| case AArch64::MOVaddrJT: |
| case AArch64::MOVaddrCP: |
| case AArch64::MOVaddrBA: |
| case AArch64::MOVaddrTLS: |
| case AArch64::MOVaddrEXT: { |
| // Expand into ADRP + ADD. |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| MachineInstrBuilder MIB1 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg) |
| .add(MI.getOperand(1)); |
| |
| MachineInstrBuilder MIB2 = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri)) |
| .add(MI.getOperand(0)) |
| .addReg(DstReg) |
| .add(MI.getOperand(2)) |
| .addImm(0); |
| |
| transferImpOps(MI, MIB1, MIB2); |
| MI.eraseFromParent(); |
| return true; |
| } |
| case AArch64::ADDlowTLS: |
| // Produce a plain ADD |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri)) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)) |
| .add(MI.getOperand(2)) |
| .addImm(0); |
| MI.eraseFromParent(); |
| return true; |
| |
| case AArch64::MOVbaseTLS: { |
| unsigned DstReg = MI.getOperand(0).getReg(); |
| auto SysReg = AArch64SysReg::TPIDR_EL0; |
| MachineFunction *MF = MBB.getParent(); |
| if (MF->getTarget().getTargetTriple().isOSFuchsia() && |
| MF->getTarget().getCodeModel() == CodeModel::Kernel) |
| SysReg = AArch64SysReg::TPIDR_EL1; |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MRS), DstReg) |
| .addImm(SysReg); |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| case AArch64::MOVi32imm: |
| return expandMOVImm(MBB, MBBI, 32); |
| case AArch64::MOVi64imm: |
| return expandMOVImm(MBB, MBBI, 64); |
| case AArch64::RET_ReallyLR: { |
| // Hiding the LR use with RET_ReallyLR may lead to extra kills in the |
| // function and missing live-ins. We are fine in practice because callee |
| // saved register handling ensures the register value is restored before |
| // RET, but we need the undef flag here to appease the MachineVerifier |
| // liveness checks. |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET)) |
| .addReg(AArch64::LR, RegState::Undef); |
| transferImpOps(MI, MIB, MIB); |
| MI.eraseFromParent(); |
| return true; |
| } |
| case AArch64::CMP_SWAP_8: |
| return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRB, AArch64::STLXRB, |
| AArch64::SUBSWrx, |
| AArch64_AM::getArithExtendImm(AArch64_AM::UXTB, 0), |
| AArch64::WZR, NextMBBI); |
| case AArch64::CMP_SWAP_16: |
| return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRH, AArch64::STLXRH, |
| AArch64::SUBSWrx, |
| AArch64_AM::getArithExtendImm(AArch64_AM::UXTH, 0), |
| AArch64::WZR, NextMBBI); |
| case AArch64::CMP_SWAP_32: |
| return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRW, AArch64::STLXRW, |
| AArch64::SUBSWrs, |
| AArch64_AM::getShifterImm(AArch64_AM::LSL, 0), |
| AArch64::WZR, NextMBBI); |
| case AArch64::CMP_SWAP_64: |
| return expandCMP_SWAP(MBB, MBBI, |
| AArch64::LDAXRX, AArch64::STLXRX, AArch64::SUBSXrs, |
| AArch64_AM::getShifterImm(AArch64_AM::LSL, 0), |
| AArch64::XZR, NextMBBI); |
| case AArch64::CMP_SWAP_128: |
| return expandCMP_SWAP_128(MBB, MBBI, NextMBBI); |
| |
| case AArch64::AESMCrrTied: |
| case AArch64::AESIMCrrTied: { |
| MachineInstrBuilder MIB = |
| BuildMI(MBB, MBBI, MI.getDebugLoc(), |
| TII->get(Opcode == AArch64::AESMCrrTied ? AArch64::AESMCrr : |
| AArch64::AESIMCrr)) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)); |
| transferImpOps(MI, MIB, MIB); |
| MI.eraseFromParent(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Iterate over the instructions in basic block MBB and expand any |
| /// pseudo instructions. Return true if anything was modified. |
| bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) { |
| bool Modified = false; |
| |
| MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); |
| while (MBBI != E) { |
| MachineBasicBlock::iterator NMBBI = std::next(MBBI); |
| Modified |= expandMI(MBB, MBBI, NMBBI); |
| MBBI = NMBBI; |
| } |
| |
| return Modified; |
| } |
| |
| bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) { |
| TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); |
| |
| bool Modified = false; |
| for (auto &MBB : MF) |
| Modified |= expandMBB(MBB); |
| return Modified; |
| } |
| |
| /// Returns an instance of the pseudo instruction expansion pass. |
| FunctionPass *llvm::createAArch64ExpandPseudoPass() { |
| return new AArch64ExpandPseudo(); |
| } |