blob: b3c2b182e76c48f7cff0d92fbbc98f99e941ffa3 [file] [log] [blame]
//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's and llvm's instrumentation based
// code coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <string>
#include <system_error>
#include <utility>
#include <vector>
using namespace llvm;
using namespace coverage;
#define DEBUG_TYPE "coverage-mapping"
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
auto It = ExpressionIndices.find(E);
if (It != ExpressionIndices.end())
return Counter::getExpression(It->second);
unsigned I = Expressions.size();
Expressions.push_back(E);
ExpressionIndices[E] = I;
return Counter::getExpression(I);
}
void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
SmallVectorImpl<Term> &Terms) {
switch (C.getKind()) {
case Counter::Zero:
break;
case Counter::CounterValueReference:
Terms.emplace_back(C.getCounterID(), Factor);
break;
case Counter::Expression:
const auto &E = Expressions[C.getExpressionID()];
extractTerms(E.LHS, Factor, Terms);
extractTerms(
E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
break;
}
}
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
// Gather constant terms.
SmallVector<Term, 32> Terms;
extractTerms(ExpressionTree, +1, Terms);
// If there are no terms, this is just a zero. The algorithm below assumes at
// least one term.
if (Terms.size() == 0)
return Counter::getZero();
// Group the terms by counter ID.
llvm::sort(Terms.begin(), Terms.end(), [](const Term &LHS, const Term &RHS) {
return LHS.CounterID < RHS.CounterID;
});
// Combine terms by counter ID to eliminate counters that sum to zero.
auto Prev = Terms.begin();
for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
if (I->CounterID == Prev->CounterID) {
Prev->Factor += I->Factor;
continue;
}
++Prev;
*Prev = *I;
}
Terms.erase(++Prev, Terms.end());
Counter C;
// Create additions. We do this before subtractions to avoid constructs like
// ((0 - X) + Y), as opposed to (Y - X).
for (auto T : Terms) {
if (T.Factor <= 0)
continue;
for (int I = 0; I < T.Factor; ++I)
if (C.isZero())
C = Counter::getCounter(T.CounterID);
else
C = get(CounterExpression(CounterExpression::Add, C,
Counter::getCounter(T.CounterID)));
}
// Create subtractions.
for (auto T : Terms) {
if (T.Factor >= 0)
continue;
for (int I = 0; I < -T.Factor; ++I)
C = get(CounterExpression(CounterExpression::Subtract, C,
Counter::getCounter(T.CounterID)));
}
return C;
}
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
}
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
return simplify(
get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
}
void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
switch (C.getKind()) {
case Counter::Zero:
OS << '0';
return;
case Counter::CounterValueReference:
OS << '#' << C.getCounterID();
break;
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return;
const auto &E = Expressions[C.getExpressionID()];
OS << '(';
dump(E.LHS, OS);
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
dump(E.RHS, OS);
OS << ')';
break;
}
}
if (CounterValues.empty())
return;
Expected<int64_t> Value = evaluate(C);
if (auto E = Value.takeError()) {
consumeError(std::move(E));
return;
}
OS << '[' << *Value << ']';
}
Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
switch (C.getKind()) {
case Counter::Zero:
return 0;
case Counter::CounterValueReference:
if (C.getCounterID() >= CounterValues.size())
return errorCodeToError(errc::argument_out_of_domain);
return CounterValues[C.getCounterID()];
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return errorCodeToError(errc::argument_out_of_domain);
const auto &E = Expressions[C.getExpressionID()];
Expected<int64_t> LHS = evaluate(E.LHS);
if (!LHS)
return LHS;
Expected<int64_t> RHS = evaluate(E.RHS);
if (!RHS)
return RHS;
return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
}
}
llvm_unreachable("Unhandled CounterKind");
}
void FunctionRecordIterator::skipOtherFiles() {
while (Current != Records.end() && !Filename.empty() &&
Filename != Current->Filenames[0])
++Current;
if (Current == Records.end())
*this = FunctionRecordIterator();
}
Error CoverageMapping::loadFunctionRecord(
const CoverageMappingRecord &Record,
IndexedInstrProfReader &ProfileReader) {
StringRef OrigFuncName = Record.FunctionName;
if (OrigFuncName.empty())
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (Record.Filenames.empty())
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
else
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
// Don't load records for (filenames, function) pairs we've already seen.
auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
Record.Filenames.end());
if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
return Error::success();
CounterMappingContext Ctx(Record.Expressions);
std::vector<uint64_t> Counts;
if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
Record.FunctionHash, Counts)) {
instrprof_error IPE = InstrProfError::take(std::move(E));
if (IPE == instrprof_error::hash_mismatch) {
FuncHashMismatches.emplace_back(Record.FunctionName, Record.FunctionHash);
return Error::success();
} else if (IPE != instrprof_error::unknown_function)
return make_error<InstrProfError>(IPE);
Counts.assign(Record.MappingRegions.size(), 0);
}
Ctx.setCounts(Counts);
assert(!Record.MappingRegions.empty() && "Function has no regions");
FunctionRecord Function(OrigFuncName, Record.Filenames);
for (const auto &Region : Record.MappingRegions) {
Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
if (auto E = ExecutionCount.takeError()) {
consumeError(std::move(E));
return Error::success();
}
Function.pushRegion(Region, *ExecutionCount);
}
if (Function.CountedRegions.size() != Record.MappingRegions.size()) {
FuncCounterMismatches.emplace_back(Record.FunctionName,
Function.CountedRegions.size());
return Error::success();
}
Functions.push_back(std::move(Function));
return Error::success();
}
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader) {
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
for (const auto &CoverageReader : CoverageReaders) {
for (auto RecordOrErr : *CoverageReader) {
if (Error E = RecordOrErr.takeError())
return std::move(E);
const auto &Record = *RecordOrErr;
if (Error E = Coverage->loadFunctionRecord(Record, ProfileReader))
return std::move(E);
}
}
return std::move(Coverage);
}
Expected<std::unique_ptr<CoverageMapping>>
CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
StringRef ProfileFilename, ArrayRef<StringRef> Arches) {
auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
if (Error E = ProfileReaderOrErr.takeError())
return std::move(E);
auto ProfileReader = std::move(ProfileReaderOrErr.get());
SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
for (const auto &File : llvm::enumerate(ObjectFilenames)) {
auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(File.value());
if (std::error_code EC = CovMappingBufOrErr.getError())
return errorCodeToError(EC);
StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
auto CoverageReaderOrErr =
BinaryCoverageReader::create(CovMappingBufOrErr.get(), Arch);
if (Error E = CoverageReaderOrErr.takeError())
return std::move(E);
Readers.push_back(std::move(CoverageReaderOrErr.get()));
Buffers.push_back(std::move(CovMappingBufOrErr.get()));
}
return load(Readers, *ProfileReader);
}
namespace {
/// Distributes functions into instantiation sets.
///
/// An instantiation set is a collection of functions that have the same source
/// code, ie, template functions specializations.
class FunctionInstantiationSetCollector {
using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
MapT InstantiatedFunctions;
public:
void insert(const FunctionRecord &Function, unsigned FileID) {
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
while (I != E && I->FileID != FileID)
++I;
assert(I != E && "function does not cover the given file");
auto &Functions = InstantiatedFunctions[I->startLoc()];
Functions.push_back(&Function);
}
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
MapT::iterator end() { return InstantiatedFunctions.end(); }
};
class SegmentBuilder {
std::vector<CoverageSegment> &Segments;
SmallVector<const CountedRegion *, 8> ActiveRegions;
SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
/// Emit a segment with the count from \p Region starting at \p StartLoc.
//
/// \p IsRegionEntry: The segment is at the start of a new non-gap region.
/// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
void startSegment(const CountedRegion &Region, LineColPair StartLoc,
bool IsRegionEntry, bool EmitSkippedRegion = false) {
bool HasCount = !EmitSkippedRegion &&
(Region.Kind != CounterMappingRegion::SkippedRegion);
// If the new segment wouldn't affect coverage rendering, skip it.
if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
const auto &Last = Segments.back();
if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
!Last.IsRegionEntry)
return;
}
if (HasCount)
Segments.emplace_back(StartLoc.first, StartLoc.second,
Region.ExecutionCount, IsRegionEntry,
Region.Kind == CounterMappingRegion::GapRegion);
else
Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
LLVM_DEBUG({
const auto &Last = Segments.back();
dbgs() << "Segment at " << Last.Line << ":" << Last.Col
<< " (count = " << Last.Count << ")"
<< (Last.IsRegionEntry ? ", RegionEntry" : "")
<< (!Last.HasCount ? ", Skipped" : "")
<< (Last.IsGapRegion ? ", Gap" : "") << "\n";
});
}
/// Emit segments for active regions which end before \p Loc.
///
/// \p Loc: The start location of the next region. If None, all active
/// regions are completed.
/// \p FirstCompletedRegion: Index of the first completed region.
void completeRegionsUntil(Optional<LineColPair> Loc,
unsigned FirstCompletedRegion) {
// Sort the completed regions by end location. This makes it simple to
// emit closing segments in sorted order.
auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
[](const CountedRegion *L, const CountedRegion *R) {
return L->endLoc() < R->endLoc();
});
// Emit segments for all completed regions.
for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
++I) {
const auto *CompletedRegion = ActiveRegions[I];
assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
"Completed region ends after start of new region");
const auto *PrevCompletedRegion = ActiveRegions[I - 1];
auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
// Don't emit any more segments if they start where the new region begins.
if (Loc && CompletedSegmentLoc == *Loc)
break;
// Don't emit a segment if the next completed region ends at the same
// location as this one.
if (CompletedSegmentLoc == CompletedRegion->endLoc())
continue;
// Use the count from the last completed region which ends at this loc.
for (unsigned J = I + 1; J < E; ++J)
if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
CompletedRegion = ActiveRegions[J];
startSegment(*CompletedRegion, CompletedSegmentLoc, false);
}
auto Last = ActiveRegions.back();
if (FirstCompletedRegion && Last->endLoc() != *Loc) {
// If there's a gap after the end of the last completed region and the
// start of the new region, use the last active region to fill the gap.
startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
false);
} else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
// Emit a skipped segment if there are no more active regions. This
// ensures that gaps between functions are marked correctly.
startSegment(*Last, Last->endLoc(), false, true);
}
// Pop the completed regions.
ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
}
void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
for (const auto &CR : enumerate(Regions)) {
auto CurStartLoc = CR.value().startLoc();
// Active regions which end before the current region need to be popped.
auto CompletedRegions =
std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
[&](const CountedRegion *Region) {
return !(Region->endLoc() <= CurStartLoc);
});
if (CompletedRegions != ActiveRegions.end()) {
unsigned FirstCompletedRegion =
std::distance(ActiveRegions.begin(), CompletedRegions);
completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
}
bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
// Try to emit a segment for the current region.
if (CurStartLoc == CR.value().endLoc()) {
// Avoid making zero-length regions active. If it's the last region,
// emit a skipped segment. Otherwise use its predecessor's count.
const bool Skipped = (CR.index() + 1) == Regions.size();
startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
CurStartLoc, !GapRegion, Skipped);
continue;
}
if (CR.index() + 1 == Regions.size() ||
CurStartLoc != Regions[CR.index() + 1].startLoc()) {
// Emit a segment if the next region doesn't start at the same location
// as this one.
startSegment(CR.value(), CurStartLoc, !GapRegion);
}
// This region is active (i.e not completed).
ActiveRegions.push_back(&CR.value());
}
// Complete any remaining active regions.
if (!ActiveRegions.empty())
completeRegionsUntil(None, 0);
}
/// Sort a nested sequence of regions from a single file.
static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
llvm::sort(Regions.begin(), Regions.end(), [](const CountedRegion &LHS,
const CountedRegion &RHS) {
if (LHS.startLoc() != RHS.startLoc())
return LHS.startLoc() < RHS.startLoc();
if (LHS.endLoc() != RHS.endLoc())
// When LHS completely contains RHS, we sort LHS first.
return RHS.endLoc() < LHS.endLoc();
// If LHS and RHS cover the same area, we need to sort them according
// to their kinds so that the most suitable region will become "active"
// in combineRegions(). Because we accumulate counter values only from
// regions of the same kind as the first region of the area, prefer
// CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
static_assert(CounterMappingRegion::CodeRegion <
CounterMappingRegion::ExpansionRegion &&
CounterMappingRegion::ExpansionRegion <
CounterMappingRegion::SkippedRegion,
"Unexpected order of region kind values");
return LHS.Kind < RHS.Kind;
});
}
/// Combine counts of regions which cover the same area.
static ArrayRef<CountedRegion>
combineRegions(MutableArrayRef<CountedRegion> Regions) {
if (Regions.empty())
return Regions;
auto Active = Regions.begin();
auto End = Regions.end();
for (auto I = Regions.begin() + 1; I != End; ++I) {
if (Active->startLoc() != I->startLoc() ||
Active->endLoc() != I->endLoc()) {
// Shift to the next region.
++Active;
if (Active != I)
*Active = *I;
continue;
}
// Merge duplicate region.
// If CodeRegions and ExpansionRegions cover the same area, it's probably
// a macro which is fully expanded to another macro. In that case, we need
// to accumulate counts only from CodeRegions, or else the area will be
// counted twice.
// On the other hand, a macro may have a nested macro in its body. If the
// outer macro is used several times, the ExpansionRegion for the nested
// macro will also be added several times. These ExpansionRegions cover
// the same source locations and have to be combined to reach the correct
// value for that area.
// We add counts of the regions of the same kind as the active region
// to handle the both situations.
if (I->Kind == Active->Kind)
Active->ExecutionCount += I->ExecutionCount;
}
return Regions.drop_back(std::distance(++Active, End));
}
public:
/// Build a sorted list of CoverageSegments from a list of Regions.
static std::vector<CoverageSegment>
buildSegments(MutableArrayRef<CountedRegion> Regions) {
std::vector<CoverageSegment> Segments;
SegmentBuilder Builder(Segments);
sortNestedRegions(Regions);
ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
LLVM_DEBUG({
dbgs() << "Combined regions:\n";
for (const auto &CR : CombinedRegions)
dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
<< CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n";
});
Builder.buildSegmentsImpl(CombinedRegions);
#ifndef NDEBUG
for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
const auto &L = Segments[I - 1];
const auto &R = Segments[I];
if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
<< " followed by " << R.Line << ":" << R.Col << "\n");
assert(false && "Coverage segments not unique or sorted");
}
}
#endif
return Segments;
}
};
} // end anonymous namespace
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
std::vector<StringRef> Filenames;
for (const auto &Function : getCoveredFunctions())
Filenames.insert(Filenames.end(), Function.Filenames.begin(),
Function.Filenames.end());
llvm::sort(Filenames.begin(), Filenames.end());
auto Last = std::unique(Filenames.begin(), Filenames.end());
Filenames.erase(Last, Filenames.end());
return Filenames;
}
static SmallBitVector gatherFileIDs(StringRef SourceFile,
const FunctionRecord &Function) {
SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
FilenameEquivalence[I] = true;
return FilenameEquivalence;
}
/// Return the ID of the file where the definition of the function is located.
static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
IsNotExpandedFile[CR.ExpandedFileID] = false;
int I = IsNotExpandedFile.find_first();
if (I == -1)
return None;
return I;
}
/// Check if SourceFile is the file that contains the definition of
/// the Function. Return the ID of the file in that case or None otherwise.
static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
const FunctionRecord &Function) {
Optional<unsigned> I = findMainViewFileID(Function);
if (I && SourceFile == Function.Filenames[*I])
return I;
return None;
}
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
}
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
CoverageData FileCoverage(Filename);
std::vector<CountedRegion> Regions;
for (const auto &Function : Functions) {
auto MainFileID = findMainViewFileID(Filename, Function);
auto FileIDs = gatherFileIDs(Filename, Function);
for (const auto &CR : Function.CountedRegions)
if (FileIDs.test(CR.FileID)) {
Regions.push_back(CR);
if (MainFileID && isExpansion(CR, *MainFileID))
FileCoverage.Expansions.emplace_back(CR, Function);
}
}
LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return FileCoverage;
}
std::vector<InstantiationGroup>
CoverageMapping::getInstantiationGroups(StringRef Filename) const {
FunctionInstantiationSetCollector InstantiationSetCollector;
for (const auto &Function : Functions) {
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
InstantiationSetCollector.insert(Function, *MainFileID);
}
std::vector<InstantiationGroup> Result;
for (auto &InstantiationSet : InstantiationSetCollector) {
InstantiationGroup IG{InstantiationSet.first.first,
InstantiationSet.first.second,
std::move(InstantiationSet.second)};
Result.emplace_back(std::move(IG));
}
return Result;
}
CoverageData
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
auto MainFileID = findMainViewFileID(Function);
if (!MainFileID)
return CoverageData();
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
std::vector<CountedRegion> Regions;
for (const auto &CR : Function.CountedRegions)
if (CR.FileID == *MainFileID) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FunctionCoverage.Expansions.emplace_back(CR, Function);
}
LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
<< "\n");
FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return FunctionCoverage;
}
CoverageData CoverageMapping::getCoverageForExpansion(
const ExpansionRecord &Expansion) const {
CoverageData ExpansionCoverage(
Expansion.Function.Filenames[Expansion.FileID]);
std::vector<CountedRegion> Regions;
for (const auto &CR : Expansion.Function.CountedRegions)
if (CR.FileID == Expansion.FileID) {
Regions.push_back(CR);
if (isExpansion(CR, Expansion.FileID))
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
}
LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
<< Expansion.FileID << "\n");
ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return ExpansionCoverage;
}
LineCoverageStats::LineCoverageStats(
ArrayRef<const CoverageSegment *> LineSegments,
const CoverageSegment *WrappedSegment, unsigned Line)
: ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
// Find the minimum number of regions which start in this line.
unsigned MinRegionCount = 0;
auto isStartOfRegion = [](const CoverageSegment *S) {
return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
};
for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
if (isStartOfRegion(LineSegments[I]))
++MinRegionCount;
bool StartOfSkippedRegion = !LineSegments.empty() &&
!LineSegments.front()->HasCount &&
LineSegments.front()->IsRegionEntry;
HasMultipleRegions = MinRegionCount > 1;
Mapped =
!StartOfSkippedRegion &&
((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
if (!Mapped)
return;
// Pick the max count from the non-gap, region entry segments and the
// wrapped count.
if (WrappedSegment)
ExecutionCount = WrappedSegment->Count;
if (!MinRegionCount)
return;
for (const auto *LS : LineSegments)
if (isStartOfRegion(LS))
ExecutionCount = std::max(ExecutionCount, LS->Count);
}
LineCoverageIterator &LineCoverageIterator::operator++() {
if (Next == CD.end()) {
Stats = LineCoverageStats();
Ended = true;
return *this;
}
if (Segments.size())
WrappedSegment = Segments.back();
Segments.clear();
while (Next != CD.end() && Next->Line == Line)
Segments.push_back(&*Next++);
Stats = LineCoverageStats(Segments, WrappedSegment, Line);
++Line;
return *this;
}
static std::string getCoverageMapErrString(coveragemap_error Err) {
switch (Err) {
case coveragemap_error::success:
return "Success";
case coveragemap_error::eof:
return "End of File";
case coveragemap_error::no_data_found:
return "No coverage data found";
case coveragemap_error::unsupported_version:
return "Unsupported coverage format version";
case coveragemap_error::truncated:
return "Truncated coverage data";
case coveragemap_error::malformed:
return "Malformed coverage data";
}
llvm_unreachable("A value of coveragemap_error has no message.");
}
namespace {
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class CoverageMappingErrorCategoryType : public std::error_category {
const char *name() const noexcept override { return "llvm.coveragemap"; }
std::string message(int IE) const override {
return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
}
};
} // end anonymous namespace
std::string CoverageMapError::message() const {
return getCoverageMapErrString(Err);
}
static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
const std::error_category &llvm::coverage::coveragemap_category() {
return *ErrorCategory;
}
char CoverageMapError::ID = 0;