| //===- llvm/Support/Unix/Program.inc ----------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Unix specific portion of the Program class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| //=== WARNING: Implementation here must contain only generic UNIX |
| //=== code that is guaranteed to work on *all* UNIX variants. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/Program.h" |
| |
| #include "Unix.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Config/config.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/StringSaver.h" |
| #include "llvm/Support/raw_ostream.h" |
| #if HAVE_SYS_STAT_H |
| #include <sys/stat.h> |
| #endif |
| #if HAVE_SYS_RESOURCE_H |
| #include <sys/resource.h> |
| #endif |
| #if HAVE_SIGNAL_H |
| #include <signal.h> |
| #endif |
| #if HAVE_FCNTL_H |
| #include <fcntl.h> |
| #endif |
| #if HAVE_UNISTD_H |
| #include <unistd.h> |
| #endif |
| #ifdef HAVE_POSIX_SPAWN |
| #include <spawn.h> |
| |
| #if defined(__APPLE__) |
| #include <TargetConditionals.h> |
| #endif |
| |
| #if defined(__APPLE__) && !(defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE) |
| #define USE_NSGETENVIRON 1 |
| #else |
| #define USE_NSGETENVIRON 0 |
| #endif |
| |
| #if !USE_NSGETENVIRON |
| extern char **environ; |
| #else |
| #include <crt_externs.h> // _NSGetEnviron |
| #endif |
| #endif |
| |
| using namespace llvm; |
| using namespace sys; |
| |
| ProcessInfo::ProcessInfo() : Pid(0), ReturnCode(0) {} |
| |
| ErrorOr<std::string> sys::findProgramByName(StringRef Name, |
| ArrayRef<StringRef> Paths) { |
| assert(!Name.empty() && "Must have a name!"); |
| // Use the given path verbatim if it contains any slashes; this matches |
| // the behavior of sh(1) and friends. |
| if (Name.contains('/')) |
| return std::string(Name); |
| |
| SmallVector<StringRef, 16> EnvironmentPaths; |
| if (Paths.empty()) |
| if (const char *PathEnv = std::getenv("PATH")) { |
| SplitString(PathEnv, EnvironmentPaths, ":"); |
| Paths = EnvironmentPaths; |
| } |
| |
| for (auto Path : Paths) { |
| if (Path.empty()) |
| continue; |
| |
| // Check to see if this first directory contains the executable... |
| SmallString<128> FilePath(Path); |
| sys::path::append(FilePath, Name); |
| if (sys::fs::can_execute(FilePath.c_str())) |
| return std::string(FilePath.str()); // Found the executable! |
| } |
| return errc::no_such_file_or_directory; |
| } |
| |
| static bool RedirectIO(std::optional<StringRef> Path, int FD, std::string *ErrMsg) { |
| if (!Path) // Noop |
| return false; |
| std::string File; |
| if (Path->empty()) |
| // Redirect empty paths to /dev/null |
| File = "/dev/null"; |
| else |
| File = std::string(*Path); |
| |
| // Open the file |
| int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666); |
| if (InFD == -1) { |
| MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for " + |
| (FD == 0 ? "input" : "output")); |
| return true; |
| } |
| |
| // Install it as the requested FD |
| if (dup2(InFD, FD) == -1) { |
| MakeErrMsg(ErrMsg, "Cannot dup2"); |
| close(InFD); |
| return true; |
| } |
| close(InFD); // Close the original FD |
| return false; |
| } |
| |
| #ifdef HAVE_POSIX_SPAWN |
| static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg, |
| posix_spawn_file_actions_t *FileActions) { |
| if (!Path) // Noop |
| return false; |
| const char *File; |
| if (Path->empty()) |
| // Redirect empty paths to /dev/null |
| File = "/dev/null"; |
| else |
| File = Path->c_str(); |
| |
| if (int Err = posix_spawn_file_actions_addopen( |
| FileActions, FD, File, FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666)) |
| return MakeErrMsg(ErrMsg, "Cannot posix_spawn_file_actions_addopen", Err); |
| return false; |
| } |
| #endif |
| |
| static void TimeOutHandler(int Sig) {} |
| |
| static void SetMemoryLimits(unsigned size) { |
| #if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT |
| struct rlimit r; |
| __typeof__(r.rlim_cur) limit = (__typeof__(r.rlim_cur))(size)*1048576; |
| |
| // Heap size |
| getrlimit(RLIMIT_DATA, &r); |
| r.rlim_cur = limit; |
| setrlimit(RLIMIT_DATA, &r); |
| #ifdef RLIMIT_RSS |
| // Resident set size. |
| getrlimit(RLIMIT_RSS, &r); |
| r.rlim_cur = limit; |
| setrlimit(RLIMIT_RSS, &r); |
| #endif |
| #endif |
| } |
| |
| static std::vector<const char *> |
| toNullTerminatedCStringArray(ArrayRef<StringRef> Strings, StringSaver &Saver) { |
| std::vector<const char *> Result; |
| for (StringRef S : Strings) |
| Result.push_back(Saver.save(S).data()); |
| Result.push_back(nullptr); |
| return Result; |
| } |
| |
| static bool Execute(ProcessInfo &PI, StringRef Program, |
| ArrayRef<StringRef> Args, std::optional<ArrayRef<StringRef>> Env, |
| ArrayRef<std::optional<StringRef>> Redirects, |
| unsigned MemoryLimit, std::string *ErrMsg, |
| BitVector *AffinityMask) { |
| if (!llvm::sys::fs::exists(Program)) { |
| if (ErrMsg) |
| *ErrMsg = std::string("Executable \"") + Program.str() + |
| std::string("\" doesn't exist!"); |
| return false; |
| } |
| |
| assert(!AffinityMask && "Starting a process with an affinity mask is " |
| "currently not supported on Unix!"); |
| |
| BumpPtrAllocator Allocator; |
| StringSaver Saver(Allocator); |
| std::vector<const char *> ArgVector, EnvVector; |
| const char **Argv = nullptr; |
| const char **Envp = nullptr; |
| ArgVector = toNullTerminatedCStringArray(Args, Saver); |
| Argv = ArgVector.data(); |
| if (Env) { |
| EnvVector = toNullTerminatedCStringArray(*Env, Saver); |
| Envp = EnvVector.data(); |
| } |
| |
| // If this OS has posix_spawn and there is no memory limit being implied, use |
| // posix_spawn. It is more efficient than fork/exec. |
| #ifdef HAVE_POSIX_SPAWN |
| if (MemoryLimit == 0) { |
| posix_spawn_file_actions_t FileActionsStore; |
| posix_spawn_file_actions_t *FileActions = nullptr; |
| |
| // If we call posix_spawn_file_actions_addopen we have to make sure the |
| // c strings we pass to it stay alive until the call to posix_spawn, |
| // so we copy any StringRefs into this variable. |
| std::string RedirectsStorage[3]; |
| |
| if (!Redirects.empty()) { |
| assert(Redirects.size() == 3); |
| std::string *RedirectsStr[3] = {nullptr, nullptr, nullptr}; |
| for (int I = 0; I < 3; ++I) { |
| if (Redirects[I]) { |
| RedirectsStorage[I] = std::string(*Redirects[I]); |
| RedirectsStr[I] = &RedirectsStorage[I]; |
| } |
| } |
| |
| FileActions = &FileActionsStore; |
| posix_spawn_file_actions_init(FileActions); |
| |
| // Redirect stdin/stdout. |
| if (RedirectIO_PS(RedirectsStr[0], 0, ErrMsg, FileActions) || |
| RedirectIO_PS(RedirectsStr[1], 1, ErrMsg, FileActions)) |
| return false; |
| if (!Redirects[1] || !Redirects[2] || *Redirects[1] != *Redirects[2]) { |
| // Just redirect stderr |
| if (RedirectIO_PS(RedirectsStr[2], 2, ErrMsg, FileActions)) |
| return false; |
| } else { |
| // If stdout and stderr should go to the same place, redirect stderr |
| // to the FD already open for stdout. |
| if (int Err = posix_spawn_file_actions_adddup2(FileActions, 1, 2)) |
| return !MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout", Err); |
| } |
| } |
| |
| if (!Envp) |
| #if !USE_NSGETENVIRON |
| Envp = const_cast<const char **>(environ); |
| #else |
| // environ is missing in dylibs. |
| Envp = const_cast<const char **>(*_NSGetEnviron()); |
| #endif |
| |
| constexpr int maxRetries = 8; |
| int retries = 0; |
| pid_t PID; |
| int Err; |
| do { |
| PID = 0; // Make Valgrind happy. |
| Err = posix_spawn(&PID, Program.str().c_str(), FileActions, |
| /*attrp*/ nullptr, const_cast<char **>(Argv), |
| const_cast<char **>(Envp)); |
| } while (Err == EINTR && ++retries < maxRetries); |
| |
| if (FileActions) |
| posix_spawn_file_actions_destroy(FileActions); |
| |
| if (Err) |
| return !MakeErrMsg(ErrMsg, "posix_spawn failed", Err); |
| |
| PI.Pid = PID; |
| PI.Process = PID; |
| |
| return true; |
| } |
| #endif |
| |
| // Create a child process. |
| int child = fork(); |
| switch (child) { |
| // An error occurred: Return to the caller. |
| case -1: |
| MakeErrMsg(ErrMsg, "Couldn't fork"); |
| return false; |
| |
| // Child process: Execute the program. |
| case 0: { |
| // Redirect file descriptors... |
| if (!Redirects.empty()) { |
| // Redirect stdin |
| if (RedirectIO(Redirects[0], 0, ErrMsg)) { |
| return false; |
| } |
| // Redirect stdout |
| if (RedirectIO(Redirects[1], 1, ErrMsg)) { |
| return false; |
| } |
| if (Redirects[1] && Redirects[2] && *Redirects[1] == *Redirects[2]) { |
| // If stdout and stderr should go to the same place, redirect stderr |
| // to the FD already open for stdout. |
| if (-1 == dup2(1, 2)) { |
| MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout"); |
| return false; |
| } |
| } else { |
| // Just redirect stderr |
| if (RedirectIO(Redirects[2], 2, ErrMsg)) { |
| return false; |
| } |
| } |
| } |
| |
| // Set memory limits |
| if (MemoryLimit != 0) { |
| SetMemoryLimits(MemoryLimit); |
| } |
| |
| // Execute! |
| std::string PathStr = std::string(Program); |
| if (Envp != nullptr) |
| execve(PathStr.c_str(), const_cast<char **>(Argv), |
| const_cast<char **>(Envp)); |
| else |
| execv(PathStr.c_str(), const_cast<char **>(Argv)); |
| // If the execve() failed, we should exit. Follow Unix protocol and |
| // return 127 if the executable was not found, and 126 otherwise. |
| // Use _exit rather than exit so that atexit functions and static |
| // object destructors cloned from the parent process aren't |
| // redundantly run, and so that any data buffered in stdio buffers |
| // cloned from the parent aren't redundantly written out. |
| _exit(errno == ENOENT ? 127 : 126); |
| } |
| |
| // Parent process: Break out of the switch to do our processing. |
| default: |
| break; |
| } |
| |
| PI.Pid = child; |
| PI.Process = child; |
| |
| return true; |
| } |
| |
| namespace llvm { |
| namespace sys { |
| |
| #ifndef _AIX |
| using ::wait4; |
| #else |
| static pid_t(wait4)(pid_t pid, int *status, int options, struct rusage *usage); |
| #endif |
| |
| } // namespace sys |
| } // namespace llvm |
| |
| #ifdef _AIX |
| #ifndef _ALL_SOURCE |
| extern "C" pid_t(wait4)(pid_t pid, int *status, int options, |
| struct rusage *usage); |
| #endif |
| pid_t(llvm::sys::wait4)(pid_t pid, int *status, int options, |
| struct rusage *usage) { |
| assert(pid > 0 && "Only expecting to handle actual PID values!"); |
| assert((options & ~WNOHANG) == 0 && "Expecting WNOHANG at most!"); |
| assert(usage && "Expecting usage collection!"); |
| |
| // AIX wait4 does not work well with WNOHANG. |
| if (!(options & WNOHANG)) |
| return ::wait4(pid, status, options, usage); |
| |
| // For WNOHANG, we use waitid (which supports WNOWAIT) until the child process |
| // has terminated. |
| siginfo_t WaitIdInfo; |
| WaitIdInfo.si_pid = 0; |
| int WaitIdRetVal = |
| waitid(P_PID, pid, &WaitIdInfo, WNOWAIT | WEXITED | options); |
| |
| if (WaitIdRetVal == -1 || WaitIdInfo.si_pid == 0) |
| return WaitIdRetVal; |
| |
| assert(WaitIdInfo.si_pid == pid); |
| |
| // The child has already terminated, so a blocking wait on it is okay in the |
| // absence of indiscriminate `wait` calls from the current process (which |
| // would cause the call here to fail with ECHILD). |
| return ::wait4(pid, status, options & ~WNOHANG, usage); |
| } |
| #endif |
| |
| ProcessInfo llvm::sys::Wait(const ProcessInfo &PI, |
| std::optional<unsigned> SecondsToWait, |
| std::string *ErrMsg, |
| std::optional<ProcessStatistics> *ProcStat, |
| bool Polling) { |
| struct sigaction Act, Old; |
| assert(PI.Pid && "invalid pid to wait on, process not started?"); |
| |
| int WaitPidOptions = 0; |
| pid_t ChildPid = PI.Pid; |
| bool WaitUntilTerminates = false; |
| if (!SecondsToWait) { |
| WaitUntilTerminates = true; |
| } else { |
| if (*SecondsToWait == 0) |
| WaitPidOptions = WNOHANG; |
| |
| // Install a timeout handler. The handler itself does nothing, but the |
| // simple fact of having a handler at all causes the wait below to return |
| // with EINTR, unlike if we used SIG_IGN. |
| memset(&Act, 0, sizeof(Act)); |
| Act.sa_handler = TimeOutHandler; |
| sigemptyset(&Act.sa_mask); |
| sigaction(SIGALRM, &Act, &Old); |
| // FIXME The alarm signal may be delivered to another thread. |
| alarm(*SecondsToWait); |
| } |
| |
| // Parent process: Wait for the child process to terminate. |
| int status = 0; |
| ProcessInfo WaitResult; |
| rusage Info; |
| if (ProcStat) |
| ProcStat->reset(); |
| |
| do { |
| WaitResult.Pid = sys::wait4(ChildPid, &status, WaitPidOptions, &Info); |
| } while (WaitUntilTerminates && WaitResult.Pid == -1 && errno == EINTR); |
| |
| if (WaitResult.Pid != PI.Pid) { |
| if (WaitResult.Pid == 0) { |
| // Non-blocking wait. |
| return WaitResult; |
| } else { |
| if (SecondsToWait && errno == EINTR && !Polling) { |
| // Kill the child. |
| kill(PI.Pid, SIGKILL); |
| |
| // Turn off the alarm and restore the signal handler |
| alarm(0); |
| sigaction(SIGALRM, &Old, nullptr); |
| |
| // Wait for child to die |
| // FIXME This could grab some other child process out from another |
| // waiting thread and then leave a zombie anyway. |
| if (wait(&status) != ChildPid) |
| MakeErrMsg(ErrMsg, "Child timed out but wouldn't die"); |
| else |
| MakeErrMsg(ErrMsg, "Child timed out", 0); |
| |
| WaitResult.ReturnCode = -2; // Timeout detected |
| return WaitResult; |
| } else if (errno != EINTR) { |
| MakeErrMsg(ErrMsg, "Error waiting for child process"); |
| WaitResult.ReturnCode = -1; |
| return WaitResult; |
| } |
| } |
| } |
| |
| // We exited normally without timeout, so turn off the timer. |
| if (SecondsToWait && !WaitUntilTerminates) { |
| alarm(0); |
| sigaction(SIGALRM, &Old, nullptr); |
| } |
| |
| if (ProcStat) { |
| std::chrono::microseconds UserT = toDuration(Info.ru_utime); |
| std::chrono::microseconds KernelT = toDuration(Info.ru_stime); |
| uint64_t PeakMemory = 0; |
| #ifndef __HAIKU__ |
| PeakMemory = static_cast<uint64_t>(Info.ru_maxrss); |
| #endif |
| *ProcStat = ProcessStatistics{UserT + KernelT, UserT, PeakMemory}; |
| } |
| |
| // Return the proper exit status. Detect error conditions |
| // so we can return -1 for them and set ErrMsg informatively. |
| int result = 0; |
| if (WIFEXITED(status)) { |
| result = WEXITSTATUS(status); |
| WaitResult.ReturnCode = result; |
| |
| if (result == 127) { |
| if (ErrMsg) |
| *ErrMsg = llvm::sys::StrError(ENOENT); |
| WaitResult.ReturnCode = -1; |
| return WaitResult; |
| } |
| if (result == 126) { |
| if (ErrMsg) |
| *ErrMsg = "Program could not be executed"; |
| WaitResult.ReturnCode = -1; |
| return WaitResult; |
| } |
| } else if (WIFSIGNALED(status)) { |
| if (ErrMsg) { |
| *ErrMsg = strsignal(WTERMSIG(status)); |
| #ifdef WCOREDUMP |
| if (WCOREDUMP(status)) |
| *ErrMsg += " (core dumped)"; |
| #endif |
| } |
| // Return a special value to indicate that the process received an unhandled |
| // signal during execution as opposed to failing to execute. |
| WaitResult.ReturnCode = -2; |
| } |
| return WaitResult; |
| } |
| |
| std::error_code llvm::sys::ChangeStdinMode(fs::OpenFlags Flags) { |
| if (!(Flags & fs::OF_Text)) |
| return ChangeStdinToBinary(); |
| return std::error_code(); |
| } |
| |
| std::error_code llvm::sys::ChangeStdoutMode(fs::OpenFlags Flags) { |
| if (!(Flags & fs::OF_Text)) |
| return ChangeStdoutToBinary(); |
| return std::error_code(); |
| } |
| |
| std::error_code llvm::sys::ChangeStdinToBinary() { |
| // Do nothing, as Unix doesn't differentiate between text and binary. |
| return std::error_code(); |
| } |
| |
| std::error_code llvm::sys::ChangeStdoutToBinary() { |
| // Do nothing, as Unix doesn't differentiate between text and binary. |
| return std::error_code(); |
| } |
| |
| std::error_code |
| llvm::sys::writeFileWithEncoding(StringRef FileName, StringRef Contents, |
| WindowsEncodingMethod Encoding /*unused*/) { |
| std::error_code EC; |
| llvm::raw_fd_ostream OS(FileName, EC, |
| llvm::sys::fs::OpenFlags::OF_TextWithCRLF); |
| |
| if (EC) |
| return EC; |
| |
| OS << Contents; |
| |
| if (OS.has_error()) |
| return make_error_code(errc::io_error); |
| |
| return EC; |
| } |
| |
| bool llvm::sys::commandLineFitsWithinSystemLimits(StringRef Program, |
| ArrayRef<StringRef> Args) { |
| static long ArgMax = sysconf(_SC_ARG_MAX); |
| // POSIX requires that _POSIX_ARG_MAX is 4096, which is the lowest possible |
| // value for ARG_MAX on a POSIX compliant system. |
| static long ArgMin = _POSIX_ARG_MAX; |
| |
| // This the same baseline used by xargs. |
| long EffectiveArgMax = 128 * 1024; |
| |
| if (EffectiveArgMax > ArgMax) |
| EffectiveArgMax = ArgMax; |
| else if (EffectiveArgMax < ArgMin) |
| EffectiveArgMax = ArgMin; |
| |
| // System says no practical limit. |
| if (ArgMax == -1) |
| return true; |
| |
| // Conservatively account for space required by environment variables. |
| long HalfArgMax = EffectiveArgMax / 2; |
| |
| size_t ArgLength = Program.size() + 1; |
| for (StringRef Arg : Args) { |
| // Ensure that we do not exceed the MAX_ARG_STRLEN constant on Linux, which |
| // does not have a constant unlike what the man pages would have you |
| // believe. Since this limit is pretty high, perform the check |
| // unconditionally rather than trying to be aggressive and limiting it to |
| // Linux only. |
| if (Arg.size() >= (32 * 4096)) |
| return false; |
| |
| ArgLength += Arg.size() + 1; |
| if (ArgLength > size_t(HalfArgMax)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |