blob: 31461e31c65ce0f461d0380bc392a2aae164dd56 [file] [log] [blame]
//==-- llvm/Support/ThreadPool.cpp - A ThreadPool implementation -*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a crude C++11 based thread pool.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ThreadPool.h"
#include "llvm/Config/llvm-config.h"
#if LLVM_ENABLE_THREADS
#include "llvm/Support/Threading.h"
#else
#include "llvm/Support/raw_ostream.h"
#endif
using namespace llvm;
#if LLVM_ENABLE_THREADS
// A note on thread groups: Tasks are by default in no group (represented
// by nullptr ThreadPoolTaskGroup pointer in the Tasks queue) and functionality
// here normally works on all tasks regardless of their group (functions
// in that case receive nullptr ThreadPoolTaskGroup pointer as argument).
// A task in a group has a pointer to that ThreadPoolTaskGroup in the Tasks
// queue, and functions called to work only on tasks from one group take that
// pointer.
ThreadPool::ThreadPool(ThreadPoolStrategy S)
: Strategy(S), MaxThreadCount(S.compute_thread_count()) {}
void ThreadPool::grow(int requested) {
llvm::sys::ScopedWriter LockGuard(ThreadsLock);
if (Threads.size() >= MaxThreadCount)
return; // Already hit the max thread pool size.
int newThreadCount = std::min<int>(requested, MaxThreadCount);
while (static_cast<int>(Threads.size()) < newThreadCount) {
int ThreadID = Threads.size();
Threads.emplace_back([this, ThreadID] {
Strategy.apply_thread_strategy(ThreadID);
processTasks(nullptr);
});
}
}
#ifndef NDEBUG
// The group of the tasks run by the current thread.
static LLVM_THREAD_LOCAL std::vector<ThreadPoolTaskGroup *>
*CurrentThreadTaskGroups = nullptr;
#endif
// WaitingForGroup == nullptr means all tasks regardless of their group.
void ThreadPool::processTasks(ThreadPoolTaskGroup *WaitingForGroup) {
while (true) {
std::function<void()> Task;
ThreadPoolTaskGroup *GroupOfTask;
{
std::unique_lock<std::mutex> LockGuard(QueueLock);
bool workCompletedForGroup = false; // Result of workCompletedUnlocked()
// Wait for tasks to be pushed in the queue
QueueCondition.wait(LockGuard, [&] {
return !EnableFlag || !Tasks.empty() ||
(WaitingForGroup != nullptr &&
(workCompletedForGroup =
workCompletedUnlocked(WaitingForGroup)));
});
// Exit condition
if (!EnableFlag && Tasks.empty())
return;
if (WaitingForGroup != nullptr && workCompletedForGroup)
return;
// Yeah, we have a task, grab it and release the lock on the queue
// We first need to signal that we are active before popping the queue
// in order for wait() to properly detect that even if the queue is
// empty, there is still a task in flight.
++ActiveThreads;
Task = std::move(Tasks.front().first);
GroupOfTask = Tasks.front().second;
// Need to count active threads in each group separately, ActiveThreads
// would never be 0 if waiting for another group inside a wait.
if (GroupOfTask != nullptr)
++ActiveGroups[GroupOfTask]; // Increment or set to 1 if new item
Tasks.pop_front();
}
#ifndef NDEBUG
if (CurrentThreadTaskGroups == nullptr)
CurrentThreadTaskGroups = new std::vector<ThreadPoolTaskGroup *>;
CurrentThreadTaskGroups->push_back(GroupOfTask);
#endif
// Run the task we just grabbed
Task();
#ifndef NDEBUG
CurrentThreadTaskGroups->pop_back();
if (CurrentThreadTaskGroups->empty()) {
delete CurrentThreadTaskGroups;
CurrentThreadTaskGroups = nullptr;
}
#endif
bool Notify;
bool NotifyGroup;
{
// Adjust `ActiveThreads`, in case someone waits on ThreadPool::wait()
std::lock_guard<std::mutex> LockGuard(QueueLock);
--ActiveThreads;
if (GroupOfTask != nullptr) {
auto A = ActiveGroups.find(GroupOfTask);
if (--(A->second) == 0)
ActiveGroups.erase(A);
}
Notify = workCompletedUnlocked(GroupOfTask);
NotifyGroup = GroupOfTask != nullptr && Notify;
}
// Notify task completion if this is the last active thread, in case
// someone waits on ThreadPool::wait().
if (Notify)
CompletionCondition.notify_all();
// If this was a task in a group, notify also threads waiting for tasks
// in this function on QueueCondition, to make a recursive wait() return
// after the group it's been waiting for has finished.
if (NotifyGroup)
QueueCondition.notify_all();
}
}
bool ThreadPool::workCompletedUnlocked(ThreadPoolTaskGroup *Group) const {
if (Group == nullptr)
return !ActiveThreads && Tasks.empty();
return ActiveGroups.count(Group) == 0 &&
!llvm::any_of(Tasks,
[Group](const auto &T) { return T.second == Group; });
}
void ThreadPool::wait() {
assert(!isWorkerThread()); // Would deadlock waiting for itself.
// Wait for all threads to complete and the queue to be empty
std::unique_lock<std::mutex> LockGuard(QueueLock);
CompletionCondition.wait(LockGuard,
[&] { return workCompletedUnlocked(nullptr); });
}
void ThreadPool::wait(ThreadPoolTaskGroup &Group) {
// Wait for all threads in the group to complete.
if (!isWorkerThread()) {
std::unique_lock<std::mutex> LockGuard(QueueLock);
CompletionCondition.wait(LockGuard,
[&] { return workCompletedUnlocked(&Group); });
return;
}
// Make sure to not deadlock waiting for oneself.
assert(CurrentThreadTaskGroups == nullptr ||
!llvm::is_contained(*CurrentThreadTaskGroups, &Group));
// Handle the case of recursive call from another task in a different group,
// in which case process tasks while waiting to keep the thread busy and avoid
// possible deadlock.
processTasks(&Group);
}
bool ThreadPool::isWorkerThread() const {
llvm::sys::ScopedReader LockGuard(ThreadsLock);
llvm::thread::id CurrentThreadId = llvm::this_thread::get_id();
for (const llvm::thread &Thread : Threads)
if (CurrentThreadId == Thread.get_id())
return true;
return false;
}
// The destructor joins all threads, waiting for completion.
ThreadPool::~ThreadPool() {
{
std::unique_lock<std::mutex> LockGuard(QueueLock);
EnableFlag = false;
}
QueueCondition.notify_all();
llvm::sys::ScopedReader LockGuard(ThreadsLock);
for (auto &Worker : Threads)
Worker.join();
}
#else // LLVM_ENABLE_THREADS Disabled
// No threads are launched, issue a warning if ThreadCount is not 0
ThreadPool::ThreadPool(ThreadPoolStrategy S) : MaxThreadCount(1) {
int ThreadCount = S.compute_thread_count();
if (ThreadCount != 1) {
errs() << "Warning: request a ThreadPool with " << ThreadCount
<< " threads, but LLVM_ENABLE_THREADS has been turned off\n";
}
}
void ThreadPool::wait() {
// Sequential implementation running the tasks
while (!Tasks.empty()) {
auto Task = std::move(Tasks.front().first);
Tasks.pop_front();
Task();
}
}
void ThreadPool::wait(ThreadPoolTaskGroup &) {
// Simply wait for all, this works even if recursive (the running task
// is already removed from the queue).
wait();
}
bool ThreadPool::isWorkerThread() const {
report_fatal_error("LLVM compiled without multithreading");
}
ThreadPool::~ThreadPool() { wait(); }
#endif