| #include "blake3_impl.h" |
| |
| #include <immintrin.h> |
| |
| #define DEGREE 4 |
| |
| #define _mm_shuffle_ps2(a, b, c) \ |
| (_mm_castps_si128( \ |
| _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c)))) |
| |
| INLINE __m128i loadu(const uint8_t src[16]) { |
| return _mm_loadu_si128((const __m128i *)src); |
| } |
| |
| INLINE void storeu(__m128i src, uint8_t dest[16]) { |
| _mm_storeu_si128((__m128i *)dest, src); |
| } |
| |
| INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); } |
| |
| // Note that clang-format doesn't like the name "xor" for some reason. |
| INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); } |
| |
| INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); } |
| |
| INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { |
| return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d); |
| } |
| |
| INLINE __m128i rot16(__m128i x) { |
| return _mm_shuffle_epi8( |
| x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2)); |
| } |
| |
| INLINE __m128i rot12(__m128i x) { |
| return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12)); |
| } |
| |
| INLINE __m128i rot8(__m128i x) { |
| return _mm_shuffle_epi8( |
| x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)); |
| } |
| |
| INLINE __m128i rot7(__m128i x) { |
| return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7)); |
| } |
| |
| INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, |
| __m128i m) { |
| *row0 = addv(addv(*row0, m), *row1); |
| *row3 = xorv(*row3, *row0); |
| *row3 = rot16(*row3); |
| *row2 = addv(*row2, *row3); |
| *row1 = xorv(*row1, *row2); |
| *row1 = rot12(*row1); |
| } |
| |
| INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, |
| __m128i m) { |
| *row0 = addv(addv(*row0, m), *row1); |
| *row3 = xorv(*row3, *row0); |
| *row3 = rot8(*row3); |
| *row2 = addv(*row2, *row3); |
| *row1 = xorv(*row1, *row2); |
| *row1 = rot7(*row1); |
| } |
| |
| // Note the optimization here of leaving row1 as the unrotated row, rather than |
| // row0. All the message loads below are adjusted to compensate for this. See |
| // discussion at https://github.com/sneves/blake2-avx2/pull/4 |
| INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { |
| *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3)); |
| *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); |
| *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1)); |
| } |
| |
| INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { |
| *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1)); |
| *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); |
| *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3)); |
| } |
| |
| INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], |
| const uint8_t block[BLAKE3_BLOCK_LEN], |
| uint8_t block_len, uint64_t counter, uint8_t flags) { |
| rows[0] = loadu((uint8_t *)&cv[0]); |
| rows[1] = loadu((uint8_t *)&cv[4]); |
| rows[2] = set4(IV[0], IV[1], IV[2], IV[3]); |
| rows[3] = set4(counter_low(counter), counter_high(counter), |
| (uint32_t)block_len, (uint32_t)flags); |
| |
| __m128i m0 = loadu(&block[sizeof(__m128i) * 0]); |
| __m128i m1 = loadu(&block[sizeof(__m128i) * 1]); |
| __m128i m2 = loadu(&block[sizeof(__m128i) * 2]); |
| __m128i m3 = loadu(&block[sizeof(__m128i) * 3]); |
| |
| __m128i t0, t1, t2, t3, tt; |
| |
| // Round 1. The first round permutes the message words from the original |
| // input order, into the groups that get mixed in parallel. |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0 |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1 |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8 |
| t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14 |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9 |
| t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15 |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 2. This round and all following rounds apply a fixed permutation |
| // to the message words from the round before. |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 3 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 4 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 5 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 6 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 7 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| } |
| |
| void blake3_compress_in_place_sse41(uint32_t cv[8], |
| const uint8_t block[BLAKE3_BLOCK_LEN], |
| uint8_t block_len, uint64_t counter, |
| uint8_t flags) { |
| __m128i rows[4]; |
| compress_pre(rows, cv, block, block_len, counter, flags); |
| storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]); |
| storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]); |
| } |
| |
| void blake3_compress_xof_sse41(const uint32_t cv[8], |
| const uint8_t block[BLAKE3_BLOCK_LEN], |
| uint8_t block_len, uint64_t counter, |
| uint8_t flags, uint8_t out[64]) { |
| __m128i rows[4]; |
| compress_pre(rows, cv, block, block_len, counter, flags); |
| storeu(xorv(rows[0], rows[2]), &out[0]); |
| storeu(xorv(rows[1], rows[3]), &out[16]); |
| storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]); |
| storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]); |
| } |
| |
| INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) { |
| v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); |
| v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); |
| v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); |
| v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); |
| v[0] = addv(v[0], v[4]); |
| v[1] = addv(v[1], v[5]); |
| v[2] = addv(v[2], v[6]); |
| v[3] = addv(v[3], v[7]); |
| v[12] = xorv(v[12], v[0]); |
| v[13] = xorv(v[13], v[1]); |
| v[14] = xorv(v[14], v[2]); |
| v[15] = xorv(v[15], v[3]); |
| v[12] = rot16(v[12]); |
| v[13] = rot16(v[13]); |
| v[14] = rot16(v[14]); |
| v[15] = rot16(v[15]); |
| v[8] = addv(v[8], v[12]); |
| v[9] = addv(v[9], v[13]); |
| v[10] = addv(v[10], v[14]); |
| v[11] = addv(v[11], v[15]); |
| v[4] = xorv(v[4], v[8]); |
| v[5] = xorv(v[5], v[9]); |
| v[6] = xorv(v[6], v[10]); |
| v[7] = xorv(v[7], v[11]); |
| v[4] = rot12(v[4]); |
| v[5] = rot12(v[5]); |
| v[6] = rot12(v[6]); |
| v[7] = rot12(v[7]); |
| v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); |
| v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); |
| v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); |
| v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); |
| v[0] = addv(v[0], v[4]); |
| v[1] = addv(v[1], v[5]); |
| v[2] = addv(v[2], v[6]); |
| v[3] = addv(v[3], v[7]); |
| v[12] = xorv(v[12], v[0]); |
| v[13] = xorv(v[13], v[1]); |
| v[14] = xorv(v[14], v[2]); |
| v[15] = xorv(v[15], v[3]); |
| v[12] = rot8(v[12]); |
| v[13] = rot8(v[13]); |
| v[14] = rot8(v[14]); |
| v[15] = rot8(v[15]); |
| v[8] = addv(v[8], v[12]); |
| v[9] = addv(v[9], v[13]); |
| v[10] = addv(v[10], v[14]); |
| v[11] = addv(v[11], v[15]); |
| v[4] = xorv(v[4], v[8]); |
| v[5] = xorv(v[5], v[9]); |
| v[6] = xorv(v[6], v[10]); |
| v[7] = xorv(v[7], v[11]); |
| v[4] = rot7(v[4]); |
| v[5] = rot7(v[5]); |
| v[6] = rot7(v[6]); |
| v[7] = rot7(v[7]); |
| |
| v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); |
| v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); |
| v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); |
| v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); |
| v[0] = addv(v[0], v[5]); |
| v[1] = addv(v[1], v[6]); |
| v[2] = addv(v[2], v[7]); |
| v[3] = addv(v[3], v[4]); |
| v[15] = xorv(v[15], v[0]); |
| v[12] = xorv(v[12], v[1]); |
| v[13] = xorv(v[13], v[2]); |
| v[14] = xorv(v[14], v[3]); |
| v[15] = rot16(v[15]); |
| v[12] = rot16(v[12]); |
| v[13] = rot16(v[13]); |
| v[14] = rot16(v[14]); |
| v[10] = addv(v[10], v[15]); |
| v[11] = addv(v[11], v[12]); |
| v[8] = addv(v[8], v[13]); |
| v[9] = addv(v[9], v[14]); |
| v[5] = xorv(v[5], v[10]); |
| v[6] = xorv(v[6], v[11]); |
| v[7] = xorv(v[7], v[8]); |
| v[4] = xorv(v[4], v[9]); |
| v[5] = rot12(v[5]); |
| v[6] = rot12(v[6]); |
| v[7] = rot12(v[7]); |
| v[4] = rot12(v[4]); |
| v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); |
| v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); |
| v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); |
| v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); |
| v[0] = addv(v[0], v[5]); |
| v[1] = addv(v[1], v[6]); |
| v[2] = addv(v[2], v[7]); |
| v[3] = addv(v[3], v[4]); |
| v[15] = xorv(v[15], v[0]); |
| v[12] = xorv(v[12], v[1]); |
| v[13] = xorv(v[13], v[2]); |
| v[14] = xorv(v[14], v[3]); |
| v[15] = rot8(v[15]); |
| v[12] = rot8(v[12]); |
| v[13] = rot8(v[13]); |
| v[14] = rot8(v[14]); |
| v[10] = addv(v[10], v[15]); |
| v[11] = addv(v[11], v[12]); |
| v[8] = addv(v[8], v[13]); |
| v[9] = addv(v[9], v[14]); |
| v[5] = xorv(v[5], v[10]); |
| v[6] = xorv(v[6], v[11]); |
| v[7] = xorv(v[7], v[8]); |
| v[4] = xorv(v[4], v[9]); |
| v[5] = rot7(v[5]); |
| v[6] = rot7(v[6]); |
| v[7] = rot7(v[7]); |
| v[4] = rot7(v[4]); |
| } |
| |
| INLINE void transpose_vecs(__m128i vecs[DEGREE]) { |
| // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is |
| // 22/33. Note that this doesn't split the vector into two lanes, as the |
| // AVX2 counterparts do. |
| __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); |
| __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); |
| __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); |
| __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); |
| |
| // Interleave 64-bit lanes. |
| __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); |
| __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); |
| __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); |
| __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); |
| |
| vecs[0] = abcd_0; |
| vecs[1] = abcd_1; |
| vecs[2] = abcd_2; |
| vecs[3] = abcd_3; |
| } |
| |
| INLINE void transpose_msg_vecs(const uint8_t *const *inputs, |
| size_t block_offset, __m128i out[16]) { |
| out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]); |
| out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]); |
| out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]); |
| out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]); |
| out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]); |
| out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]); |
| out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]); |
| out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]); |
| out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]); |
| out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]); |
| out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]); |
| out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]); |
| out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]); |
| out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]); |
| out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]); |
| out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]); |
| for (size_t i = 0; i < 4; ++i) { |
| _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); |
| } |
| transpose_vecs(&out[0]); |
| transpose_vecs(&out[4]); |
| transpose_vecs(&out[8]); |
| transpose_vecs(&out[12]); |
| } |
| |
| INLINE void load_counters(uint64_t counter, bool increment_counter, |
| __m128i *out_lo, __m128i *out_hi) { |
| const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter); |
| const __m128i add0 = _mm_set_epi32(3, 2, 1, 0); |
| const __m128i add1 = _mm_and_si128(mask, add0); |
| __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1); |
| __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)), |
| _mm_xor_si128( l, _mm_set1_epi32(0x80000000))); |
| __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry); |
| *out_lo = l; |
| *out_hi = h; |
| } |
| |
| static |
| void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| bool increment_counter, uint8_t flags, |
| uint8_t flags_start, uint8_t flags_end, uint8_t *out) { |
| __m128i h_vecs[8] = { |
| set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]), |
| set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]), |
| }; |
| __m128i counter_low_vec, counter_high_vec; |
| load_counters(counter, increment_counter, &counter_low_vec, |
| &counter_high_vec); |
| uint8_t block_flags = flags | flags_start; |
| |
| for (size_t block = 0; block < blocks; block++) { |
| if (block + 1 == blocks) { |
| block_flags |= flags_end; |
| } |
| __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN); |
| __m128i block_flags_vec = set1(block_flags); |
| __m128i msg_vecs[16]; |
| transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); |
| |
| __m128i v[16] = { |
| h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
| h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
| set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]), |
| counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, |
| }; |
| round_fn(v, msg_vecs, 0); |
| round_fn(v, msg_vecs, 1); |
| round_fn(v, msg_vecs, 2); |
| round_fn(v, msg_vecs, 3); |
| round_fn(v, msg_vecs, 4); |
| round_fn(v, msg_vecs, 5); |
| round_fn(v, msg_vecs, 6); |
| h_vecs[0] = xorv(v[0], v[8]); |
| h_vecs[1] = xorv(v[1], v[9]); |
| h_vecs[2] = xorv(v[2], v[10]); |
| h_vecs[3] = xorv(v[3], v[11]); |
| h_vecs[4] = xorv(v[4], v[12]); |
| h_vecs[5] = xorv(v[5], v[13]); |
| h_vecs[6] = xorv(v[6], v[14]); |
| h_vecs[7] = xorv(v[7], v[15]); |
| |
| block_flags = flags; |
| } |
| |
| transpose_vecs(&h_vecs[0]); |
| transpose_vecs(&h_vecs[4]); |
| // The first four vecs now contain the first half of each output, and the |
| // second four vecs contain the second half of each output. |
| storeu(h_vecs[0], &out[0 * sizeof(__m128i)]); |
| storeu(h_vecs[4], &out[1 * sizeof(__m128i)]); |
| storeu(h_vecs[1], &out[2 * sizeof(__m128i)]); |
| storeu(h_vecs[5], &out[3 * sizeof(__m128i)]); |
| storeu(h_vecs[2], &out[4 * sizeof(__m128i)]); |
| storeu(h_vecs[6], &out[5 * sizeof(__m128i)]); |
| storeu(h_vecs[3], &out[6 * sizeof(__m128i)]); |
| storeu(h_vecs[7], &out[7 * sizeof(__m128i)]); |
| } |
| |
| INLINE void hash_one_sse41(const uint8_t *input, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| uint8_t flags, uint8_t flags_start, |
| uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { |
| uint32_t cv[8]; |
| memcpy(cv, key, BLAKE3_KEY_LEN); |
| uint8_t block_flags = flags | flags_start; |
| while (blocks > 0) { |
| if (blocks == 1) { |
| block_flags |= flags_end; |
| } |
| blake3_compress_in_place_sse41(cv, input, BLAKE3_BLOCK_LEN, counter, |
| block_flags); |
| input = &input[BLAKE3_BLOCK_LEN]; |
| blocks -= 1; |
| block_flags = flags; |
| } |
| memcpy(out, cv, BLAKE3_OUT_LEN); |
| } |
| |
| void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs, |
| size_t blocks, const uint32_t key[8], |
| uint64_t counter, bool increment_counter, |
| uint8_t flags, uint8_t flags_start, |
| uint8_t flags_end, uint8_t *out) { |
| while (num_inputs >= DEGREE) { |
| blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags, |
| flags_start, flags_end, out); |
| if (increment_counter) { |
| counter += DEGREE; |
| } |
| inputs += DEGREE; |
| num_inputs -= DEGREE; |
| out = &out[DEGREE * BLAKE3_OUT_LEN]; |
| } |
| while (num_inputs > 0) { |
| hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start, |
| flags_end, out); |
| if (increment_counter) { |
| counter += 1; |
| } |
| inputs += 1; |
| num_inputs -= 1; |
| out = &out[BLAKE3_OUT_LEN]; |
| } |
| } |