| #include "blake3_impl.h" |
| |
| #if BLAKE3_USE_NEON |
| |
| #include <arm_neon.h> |
| |
| #ifdef __ARM_BIG_ENDIAN |
| #error "This implementation only supports little-endian ARM." |
| // It might be that all we need for big-endian support here is to get the loads |
| // and stores right, but step zero would be finding a way to test it in CI. |
| #endif |
| |
| INLINE uint32x4_t loadu_128(const uint8_t src[16]) { |
| // vld1q_u32 has alignment requirements. Don't use it. |
| uint32x4_t x; |
| memcpy(&x, src, 16); |
| return x; |
| } |
| |
| INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) { |
| // vst1q_u32 has alignment requirements. Don't use it. |
| memcpy(dest, &src, 16); |
| } |
| |
| INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) { |
| return vaddq_u32(a, b); |
| } |
| |
| INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) { |
| return veorq_u32(a, b); |
| } |
| |
| INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); } |
| |
| INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { |
| uint32_t array[4] = {a, b, c, d}; |
| return vld1q_u32(array); |
| } |
| |
| INLINE uint32x4_t rot16_128(uint32x4_t x) { |
| return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16)); |
| } |
| |
| INLINE uint32x4_t rot12_128(uint32x4_t x) { |
| return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12)); |
| } |
| |
| INLINE uint32x4_t rot8_128(uint32x4_t x) { |
| return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8)); |
| } |
| |
| INLINE uint32x4_t rot7_128(uint32x4_t x) { |
| return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7)); |
| } |
| |
| // TODO: compress_neon |
| |
| // TODO: hash2_neon |
| |
| /* |
| * ---------------------------------------------------------------------------- |
| * hash4_neon |
| * ---------------------------------------------------------------------------- |
| */ |
| |
| INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) { |
| v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); |
| v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); |
| v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); |
| v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); |
| v[0] = add_128(v[0], v[4]); |
| v[1] = add_128(v[1], v[5]); |
| v[2] = add_128(v[2], v[6]); |
| v[3] = add_128(v[3], v[7]); |
| v[12] = xor_128(v[12], v[0]); |
| v[13] = xor_128(v[13], v[1]); |
| v[14] = xor_128(v[14], v[2]); |
| v[15] = xor_128(v[15], v[3]); |
| v[12] = rot16_128(v[12]); |
| v[13] = rot16_128(v[13]); |
| v[14] = rot16_128(v[14]); |
| v[15] = rot16_128(v[15]); |
| v[8] = add_128(v[8], v[12]); |
| v[9] = add_128(v[9], v[13]); |
| v[10] = add_128(v[10], v[14]); |
| v[11] = add_128(v[11], v[15]); |
| v[4] = xor_128(v[4], v[8]); |
| v[5] = xor_128(v[5], v[9]); |
| v[6] = xor_128(v[6], v[10]); |
| v[7] = xor_128(v[7], v[11]); |
| v[4] = rot12_128(v[4]); |
| v[5] = rot12_128(v[5]); |
| v[6] = rot12_128(v[6]); |
| v[7] = rot12_128(v[7]); |
| v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); |
| v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); |
| v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); |
| v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); |
| v[0] = add_128(v[0], v[4]); |
| v[1] = add_128(v[1], v[5]); |
| v[2] = add_128(v[2], v[6]); |
| v[3] = add_128(v[3], v[7]); |
| v[12] = xor_128(v[12], v[0]); |
| v[13] = xor_128(v[13], v[1]); |
| v[14] = xor_128(v[14], v[2]); |
| v[15] = xor_128(v[15], v[3]); |
| v[12] = rot8_128(v[12]); |
| v[13] = rot8_128(v[13]); |
| v[14] = rot8_128(v[14]); |
| v[15] = rot8_128(v[15]); |
| v[8] = add_128(v[8], v[12]); |
| v[9] = add_128(v[9], v[13]); |
| v[10] = add_128(v[10], v[14]); |
| v[11] = add_128(v[11], v[15]); |
| v[4] = xor_128(v[4], v[8]); |
| v[5] = xor_128(v[5], v[9]); |
| v[6] = xor_128(v[6], v[10]); |
| v[7] = xor_128(v[7], v[11]); |
| v[4] = rot7_128(v[4]); |
| v[5] = rot7_128(v[5]); |
| v[6] = rot7_128(v[6]); |
| v[7] = rot7_128(v[7]); |
| |
| v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); |
| v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); |
| v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); |
| v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); |
| v[0] = add_128(v[0], v[5]); |
| v[1] = add_128(v[1], v[6]); |
| v[2] = add_128(v[2], v[7]); |
| v[3] = add_128(v[3], v[4]); |
| v[15] = xor_128(v[15], v[0]); |
| v[12] = xor_128(v[12], v[1]); |
| v[13] = xor_128(v[13], v[2]); |
| v[14] = xor_128(v[14], v[3]); |
| v[15] = rot16_128(v[15]); |
| v[12] = rot16_128(v[12]); |
| v[13] = rot16_128(v[13]); |
| v[14] = rot16_128(v[14]); |
| v[10] = add_128(v[10], v[15]); |
| v[11] = add_128(v[11], v[12]); |
| v[8] = add_128(v[8], v[13]); |
| v[9] = add_128(v[9], v[14]); |
| v[5] = xor_128(v[5], v[10]); |
| v[6] = xor_128(v[6], v[11]); |
| v[7] = xor_128(v[7], v[8]); |
| v[4] = xor_128(v[4], v[9]); |
| v[5] = rot12_128(v[5]); |
| v[6] = rot12_128(v[6]); |
| v[7] = rot12_128(v[7]); |
| v[4] = rot12_128(v[4]); |
| v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); |
| v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); |
| v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); |
| v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); |
| v[0] = add_128(v[0], v[5]); |
| v[1] = add_128(v[1], v[6]); |
| v[2] = add_128(v[2], v[7]); |
| v[3] = add_128(v[3], v[4]); |
| v[15] = xor_128(v[15], v[0]); |
| v[12] = xor_128(v[12], v[1]); |
| v[13] = xor_128(v[13], v[2]); |
| v[14] = xor_128(v[14], v[3]); |
| v[15] = rot8_128(v[15]); |
| v[12] = rot8_128(v[12]); |
| v[13] = rot8_128(v[13]); |
| v[14] = rot8_128(v[14]); |
| v[10] = add_128(v[10], v[15]); |
| v[11] = add_128(v[11], v[12]); |
| v[8] = add_128(v[8], v[13]); |
| v[9] = add_128(v[9], v[14]); |
| v[5] = xor_128(v[5], v[10]); |
| v[6] = xor_128(v[6], v[11]); |
| v[7] = xor_128(v[7], v[8]); |
| v[4] = xor_128(v[4], v[9]); |
| v[5] = rot7_128(v[5]); |
| v[6] = rot7_128(v[6]); |
| v[7] = rot7_128(v[7]); |
| v[4] = rot7_128(v[4]); |
| } |
| |
| INLINE void transpose_vecs_128(uint32x4_t vecs[4]) { |
| // Individually transpose the four 2x2 sub-matrices in each corner. |
| uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]); |
| uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]); |
| |
| // Swap the top-right and bottom-left 2x2s (which just got transposed). |
| vecs[0] = |
| vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0])); |
| vecs[1] = |
| vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1])); |
| vecs[2] = |
| vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0])); |
| vecs[3] = |
| vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1])); |
| } |
| |
| INLINE void transpose_msg_vecs4(const uint8_t *const *inputs, |
| size_t block_offset, uint32x4_t out[16]) { |
| out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]); |
| out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]); |
| out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]); |
| out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]); |
| out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]); |
| out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]); |
| out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]); |
| out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]); |
| out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]); |
| out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]); |
| out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]); |
| out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]); |
| out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]); |
| out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]); |
| out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]); |
| out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]); |
| transpose_vecs_128(&out[0]); |
| transpose_vecs_128(&out[4]); |
| transpose_vecs_128(&out[8]); |
| transpose_vecs_128(&out[12]); |
| } |
| |
| INLINE void load_counters4(uint64_t counter, bool increment_counter, |
| uint32x4_t *out_low, uint32x4_t *out_high) { |
| uint64_t mask = (increment_counter ? ~0 : 0); |
| *out_low = set4( |
| counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)), |
| counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3))); |
| *out_high = set4( |
| counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)), |
| counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3))); |
| } |
| |
| static |
| void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| bool increment_counter, uint8_t flags, |
| uint8_t flags_start, uint8_t flags_end, uint8_t *out) { |
| uint32x4_t h_vecs[8] = { |
| set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]), |
| set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]), |
| }; |
| uint32x4_t counter_low_vec, counter_high_vec; |
| load_counters4(counter, increment_counter, &counter_low_vec, |
| &counter_high_vec); |
| uint8_t block_flags = flags | flags_start; |
| |
| for (size_t block = 0; block < blocks; block++) { |
| if (block + 1 == blocks) { |
| block_flags |= flags_end; |
| } |
| uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN); |
| uint32x4_t block_flags_vec = set1_128(block_flags); |
| uint32x4_t msg_vecs[16]; |
| transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); |
| |
| uint32x4_t v[16] = { |
| h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
| h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
| set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]), |
| counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, |
| }; |
| round_fn4(v, msg_vecs, 0); |
| round_fn4(v, msg_vecs, 1); |
| round_fn4(v, msg_vecs, 2); |
| round_fn4(v, msg_vecs, 3); |
| round_fn4(v, msg_vecs, 4); |
| round_fn4(v, msg_vecs, 5); |
| round_fn4(v, msg_vecs, 6); |
| h_vecs[0] = xor_128(v[0], v[8]); |
| h_vecs[1] = xor_128(v[1], v[9]); |
| h_vecs[2] = xor_128(v[2], v[10]); |
| h_vecs[3] = xor_128(v[3], v[11]); |
| h_vecs[4] = xor_128(v[4], v[12]); |
| h_vecs[5] = xor_128(v[5], v[13]); |
| h_vecs[6] = xor_128(v[6], v[14]); |
| h_vecs[7] = xor_128(v[7], v[15]); |
| |
| block_flags = flags; |
| } |
| |
| transpose_vecs_128(&h_vecs[0]); |
| transpose_vecs_128(&h_vecs[4]); |
| // The first four vecs now contain the first half of each output, and the |
| // second four vecs contain the second half of each output. |
| storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]); |
| storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]); |
| storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]); |
| storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]); |
| storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]); |
| storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]); |
| storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]); |
| storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]); |
| } |
| |
| /* |
| * ---------------------------------------------------------------------------- |
| * hash_many_neon |
| * ---------------------------------------------------------------------------- |
| */ |
| |
| void blake3_compress_in_place_portable(uint32_t cv[8], |
| const uint8_t block[BLAKE3_BLOCK_LEN], |
| uint8_t block_len, uint64_t counter, |
| uint8_t flags); |
| |
| INLINE void hash_one_neon(const uint8_t *input, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| uint8_t flags, uint8_t flags_start, uint8_t flags_end, |
| uint8_t out[BLAKE3_OUT_LEN]) { |
| uint32_t cv[8]; |
| memcpy(cv, key, BLAKE3_KEY_LEN); |
| uint8_t block_flags = flags | flags_start; |
| while (blocks > 0) { |
| if (blocks == 1) { |
| block_flags |= flags_end; |
| } |
| // TODO: Implement compress_neon. However note that according to |
| // https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227, |
| // compress_neon might not be any faster than compress_portable. |
| blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter, |
| block_flags); |
| input = &input[BLAKE3_BLOCK_LEN]; |
| blocks -= 1; |
| block_flags = flags; |
| } |
| memcpy(out, cv, BLAKE3_OUT_LEN); |
| } |
| |
| void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs, |
| size_t blocks, const uint32_t key[8], |
| uint64_t counter, bool increment_counter, |
| uint8_t flags, uint8_t flags_start, |
| uint8_t flags_end, uint8_t *out) { |
| while (num_inputs >= 4) { |
| blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags, |
| flags_start, flags_end, out); |
| if (increment_counter) { |
| counter += 4; |
| } |
| inputs += 4; |
| num_inputs -= 4; |
| out = &out[4 * BLAKE3_OUT_LEN]; |
| } |
| while (num_inputs > 0) { |
| hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start, |
| flags_end, out); |
| if (increment_counter) { |
| counter += 1; |
| } |
| inputs += 1; |
| num_inputs -= 1; |
| out = &out[BLAKE3_OUT_LEN]; |
| } |
| } |
| |
| #endif // BLAKE3_USE_NEON |