| #include "blake3_impl.h" |
| |
| #include <immintrin.h> |
| |
| #define _mm_shuffle_ps2(a, b, c) \ |
| (_mm_castps_si128( \ |
| _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c)))) |
| |
| INLINE __m128i loadu_128(const uint8_t src[16]) { |
| return _mm_loadu_si128((const __m128i *)src); |
| } |
| |
| INLINE __m256i loadu_256(const uint8_t src[32]) { |
| return _mm256_loadu_si256((const __m256i *)src); |
| } |
| |
| INLINE __m512i loadu_512(const uint8_t src[64]) { |
| return _mm512_loadu_si512((const __m512i *)src); |
| } |
| |
| INLINE void storeu_128(__m128i src, uint8_t dest[16]) { |
| _mm_storeu_si128((__m128i *)dest, src); |
| } |
| |
| INLINE void storeu_256(__m256i src, uint8_t dest[16]) { |
| _mm256_storeu_si256((__m256i *)dest, src); |
| } |
| |
| INLINE __m128i add_128(__m128i a, __m128i b) { return _mm_add_epi32(a, b); } |
| |
| INLINE __m256i add_256(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); } |
| |
| INLINE __m512i add_512(__m512i a, __m512i b) { return _mm512_add_epi32(a, b); } |
| |
| INLINE __m128i xor_128(__m128i a, __m128i b) { return _mm_xor_si128(a, b); } |
| |
| INLINE __m256i xor_256(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); } |
| |
| INLINE __m512i xor_512(__m512i a, __m512i b) { return _mm512_xor_si512(a, b); } |
| |
| INLINE __m128i set1_128(uint32_t x) { return _mm_set1_epi32((int32_t)x); } |
| |
| INLINE __m256i set1_256(uint32_t x) { return _mm256_set1_epi32((int32_t)x); } |
| |
| INLINE __m512i set1_512(uint32_t x) { return _mm512_set1_epi32((int32_t)x); } |
| |
| INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { |
| return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d); |
| } |
| |
| INLINE __m128i rot16_128(__m128i x) { return _mm_ror_epi32(x, 16); } |
| |
| INLINE __m256i rot16_256(__m256i x) { return _mm256_ror_epi32(x, 16); } |
| |
| INLINE __m512i rot16_512(__m512i x) { return _mm512_ror_epi32(x, 16); } |
| |
| INLINE __m128i rot12_128(__m128i x) { return _mm_ror_epi32(x, 12); } |
| |
| INLINE __m256i rot12_256(__m256i x) { return _mm256_ror_epi32(x, 12); } |
| |
| INLINE __m512i rot12_512(__m512i x) { return _mm512_ror_epi32(x, 12); } |
| |
| INLINE __m128i rot8_128(__m128i x) { return _mm_ror_epi32(x, 8); } |
| |
| INLINE __m256i rot8_256(__m256i x) { return _mm256_ror_epi32(x, 8); } |
| |
| INLINE __m512i rot8_512(__m512i x) { return _mm512_ror_epi32(x, 8); } |
| |
| INLINE __m128i rot7_128(__m128i x) { return _mm_ror_epi32(x, 7); } |
| |
| INLINE __m256i rot7_256(__m256i x) { return _mm256_ror_epi32(x, 7); } |
| |
| INLINE __m512i rot7_512(__m512i x) { return _mm512_ror_epi32(x, 7); } |
| |
| /* |
| * ---------------------------------------------------------------------------- |
| * compress_avx512 |
| * ---------------------------------------------------------------------------- |
| */ |
| |
| INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, |
| __m128i m) { |
| *row0 = add_128(add_128(*row0, m), *row1); |
| *row3 = xor_128(*row3, *row0); |
| *row3 = rot16_128(*row3); |
| *row2 = add_128(*row2, *row3); |
| *row1 = xor_128(*row1, *row2); |
| *row1 = rot12_128(*row1); |
| } |
| |
| INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, |
| __m128i m) { |
| *row0 = add_128(add_128(*row0, m), *row1); |
| *row3 = xor_128(*row3, *row0); |
| *row3 = rot8_128(*row3); |
| *row2 = add_128(*row2, *row3); |
| *row1 = xor_128(*row1, *row2); |
| *row1 = rot7_128(*row1); |
| } |
| |
| // Note the optimization here of leaving row1 as the unrotated row, rather than |
| // row0. All the message loads below are adjusted to compensate for this. See |
| // discussion at https://github.com/sneves/blake2-avx2/pull/4 |
| INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { |
| *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3)); |
| *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); |
| *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1)); |
| } |
| |
| INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { |
| *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1)); |
| *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); |
| *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3)); |
| } |
| |
| INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], |
| const uint8_t block[BLAKE3_BLOCK_LEN], |
| uint8_t block_len, uint64_t counter, uint8_t flags) { |
| rows[0] = loadu_128((uint8_t *)&cv[0]); |
| rows[1] = loadu_128((uint8_t *)&cv[4]); |
| rows[2] = set4(IV[0], IV[1], IV[2], IV[3]); |
| rows[3] = set4(counter_low(counter), counter_high(counter), |
| (uint32_t)block_len, (uint32_t)flags); |
| |
| __m128i m0 = loadu_128(&block[sizeof(__m128i) * 0]); |
| __m128i m1 = loadu_128(&block[sizeof(__m128i) * 1]); |
| __m128i m2 = loadu_128(&block[sizeof(__m128i) * 2]); |
| __m128i m3 = loadu_128(&block[sizeof(__m128i) * 3]); |
| |
| __m128i t0, t1, t2, t3, tt; |
| |
| // Round 1. The first round permutes the message words from the original |
| // input order, into the groups that get mixed in parallel. |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0 |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1 |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8 |
| t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14 |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9 |
| t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15 |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 2. This round and all following rounds apply a fixed permutation |
| // to the message words from the round before. |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 3 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 4 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 5 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 6 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| m0 = t0; |
| m1 = t1; |
| m2 = t2; |
| m3 = t3; |
| |
| // Round 7 |
| t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); |
| t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); |
| t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); |
| tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); |
| t1 = _mm_blend_epi16(tt, t1, 0xCC); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); |
| diagonalize(&rows[0], &rows[2], &rows[3]); |
| t2 = _mm_unpacklo_epi64(m3, m1); |
| tt = _mm_blend_epi16(t2, m2, 0xC0); |
| t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); |
| g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); |
| t3 = _mm_unpackhi_epi32(m1, m3); |
| tt = _mm_unpacklo_epi32(m2, t3); |
| t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); |
| g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); |
| undiagonalize(&rows[0], &rows[2], &rows[3]); |
| } |
| |
| void blake3_compress_xof_avx512(const uint32_t cv[8], |
| const uint8_t block[BLAKE3_BLOCK_LEN], |
| uint8_t block_len, uint64_t counter, |
| uint8_t flags, uint8_t out[64]) { |
| __m128i rows[4]; |
| compress_pre(rows, cv, block, block_len, counter, flags); |
| storeu_128(xor_128(rows[0], rows[2]), &out[0]); |
| storeu_128(xor_128(rows[1], rows[3]), &out[16]); |
| storeu_128(xor_128(rows[2], loadu_128((uint8_t *)&cv[0])), &out[32]); |
| storeu_128(xor_128(rows[3], loadu_128((uint8_t *)&cv[4])), &out[48]); |
| } |
| |
| void blake3_compress_in_place_avx512(uint32_t cv[8], |
| const uint8_t block[BLAKE3_BLOCK_LEN], |
| uint8_t block_len, uint64_t counter, |
| uint8_t flags) { |
| __m128i rows[4]; |
| compress_pre(rows, cv, block, block_len, counter, flags); |
| storeu_128(xor_128(rows[0], rows[2]), (uint8_t *)&cv[0]); |
| storeu_128(xor_128(rows[1], rows[3]), (uint8_t *)&cv[4]); |
| } |
| |
| /* |
| * ---------------------------------------------------------------------------- |
| * hash4_avx512 |
| * ---------------------------------------------------------------------------- |
| */ |
| |
| INLINE void round_fn4(__m128i v[16], __m128i m[16], size_t r) { |
| v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); |
| v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); |
| v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); |
| v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); |
| v[0] = add_128(v[0], v[4]); |
| v[1] = add_128(v[1], v[5]); |
| v[2] = add_128(v[2], v[6]); |
| v[3] = add_128(v[3], v[7]); |
| v[12] = xor_128(v[12], v[0]); |
| v[13] = xor_128(v[13], v[1]); |
| v[14] = xor_128(v[14], v[2]); |
| v[15] = xor_128(v[15], v[3]); |
| v[12] = rot16_128(v[12]); |
| v[13] = rot16_128(v[13]); |
| v[14] = rot16_128(v[14]); |
| v[15] = rot16_128(v[15]); |
| v[8] = add_128(v[8], v[12]); |
| v[9] = add_128(v[9], v[13]); |
| v[10] = add_128(v[10], v[14]); |
| v[11] = add_128(v[11], v[15]); |
| v[4] = xor_128(v[4], v[8]); |
| v[5] = xor_128(v[5], v[9]); |
| v[6] = xor_128(v[6], v[10]); |
| v[7] = xor_128(v[7], v[11]); |
| v[4] = rot12_128(v[4]); |
| v[5] = rot12_128(v[5]); |
| v[6] = rot12_128(v[6]); |
| v[7] = rot12_128(v[7]); |
| v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); |
| v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); |
| v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); |
| v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); |
| v[0] = add_128(v[0], v[4]); |
| v[1] = add_128(v[1], v[5]); |
| v[2] = add_128(v[2], v[6]); |
| v[3] = add_128(v[3], v[7]); |
| v[12] = xor_128(v[12], v[0]); |
| v[13] = xor_128(v[13], v[1]); |
| v[14] = xor_128(v[14], v[2]); |
| v[15] = xor_128(v[15], v[3]); |
| v[12] = rot8_128(v[12]); |
| v[13] = rot8_128(v[13]); |
| v[14] = rot8_128(v[14]); |
| v[15] = rot8_128(v[15]); |
| v[8] = add_128(v[8], v[12]); |
| v[9] = add_128(v[9], v[13]); |
| v[10] = add_128(v[10], v[14]); |
| v[11] = add_128(v[11], v[15]); |
| v[4] = xor_128(v[4], v[8]); |
| v[5] = xor_128(v[5], v[9]); |
| v[6] = xor_128(v[6], v[10]); |
| v[7] = xor_128(v[7], v[11]); |
| v[4] = rot7_128(v[4]); |
| v[5] = rot7_128(v[5]); |
| v[6] = rot7_128(v[6]); |
| v[7] = rot7_128(v[7]); |
| |
| v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); |
| v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); |
| v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); |
| v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); |
| v[0] = add_128(v[0], v[5]); |
| v[1] = add_128(v[1], v[6]); |
| v[2] = add_128(v[2], v[7]); |
| v[3] = add_128(v[3], v[4]); |
| v[15] = xor_128(v[15], v[0]); |
| v[12] = xor_128(v[12], v[1]); |
| v[13] = xor_128(v[13], v[2]); |
| v[14] = xor_128(v[14], v[3]); |
| v[15] = rot16_128(v[15]); |
| v[12] = rot16_128(v[12]); |
| v[13] = rot16_128(v[13]); |
| v[14] = rot16_128(v[14]); |
| v[10] = add_128(v[10], v[15]); |
| v[11] = add_128(v[11], v[12]); |
| v[8] = add_128(v[8], v[13]); |
| v[9] = add_128(v[9], v[14]); |
| v[5] = xor_128(v[5], v[10]); |
| v[6] = xor_128(v[6], v[11]); |
| v[7] = xor_128(v[7], v[8]); |
| v[4] = xor_128(v[4], v[9]); |
| v[5] = rot12_128(v[5]); |
| v[6] = rot12_128(v[6]); |
| v[7] = rot12_128(v[7]); |
| v[4] = rot12_128(v[4]); |
| v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); |
| v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); |
| v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); |
| v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); |
| v[0] = add_128(v[0], v[5]); |
| v[1] = add_128(v[1], v[6]); |
| v[2] = add_128(v[2], v[7]); |
| v[3] = add_128(v[3], v[4]); |
| v[15] = xor_128(v[15], v[0]); |
| v[12] = xor_128(v[12], v[1]); |
| v[13] = xor_128(v[13], v[2]); |
| v[14] = xor_128(v[14], v[3]); |
| v[15] = rot8_128(v[15]); |
| v[12] = rot8_128(v[12]); |
| v[13] = rot8_128(v[13]); |
| v[14] = rot8_128(v[14]); |
| v[10] = add_128(v[10], v[15]); |
| v[11] = add_128(v[11], v[12]); |
| v[8] = add_128(v[8], v[13]); |
| v[9] = add_128(v[9], v[14]); |
| v[5] = xor_128(v[5], v[10]); |
| v[6] = xor_128(v[6], v[11]); |
| v[7] = xor_128(v[7], v[8]); |
| v[4] = xor_128(v[4], v[9]); |
| v[5] = rot7_128(v[5]); |
| v[6] = rot7_128(v[6]); |
| v[7] = rot7_128(v[7]); |
| v[4] = rot7_128(v[4]); |
| } |
| |
| INLINE void transpose_vecs_128(__m128i vecs[4]) { |
| // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is |
| // 22/33. Note that this doesn't split the vector into two lanes, as the |
| // AVX2 counterparts do. |
| __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); |
| __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); |
| __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); |
| __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); |
| |
| // Interleave 64-bit lanes. |
| __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); |
| __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); |
| __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); |
| __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); |
| |
| vecs[0] = abcd_0; |
| vecs[1] = abcd_1; |
| vecs[2] = abcd_2; |
| vecs[3] = abcd_3; |
| } |
| |
| INLINE void transpose_msg_vecs4(const uint8_t *const *inputs, |
| size_t block_offset, __m128i out[16]) { |
| out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(__m128i)]); |
| out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(__m128i)]); |
| out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(__m128i)]); |
| out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(__m128i)]); |
| out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(__m128i)]); |
| out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(__m128i)]); |
| out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(__m128i)]); |
| out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(__m128i)]); |
| out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(__m128i)]); |
| out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(__m128i)]); |
| out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(__m128i)]); |
| out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(__m128i)]); |
| out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(__m128i)]); |
| out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(__m128i)]); |
| out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(__m128i)]); |
| out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(__m128i)]); |
| for (size_t i = 0; i < 4; ++i) { |
| _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); |
| } |
| transpose_vecs_128(&out[0]); |
| transpose_vecs_128(&out[4]); |
| transpose_vecs_128(&out[8]); |
| transpose_vecs_128(&out[12]); |
| } |
| |
| INLINE void load_counters4(uint64_t counter, bool increment_counter, |
| __m128i *out_lo, __m128i *out_hi) { |
| uint64_t mask = (increment_counter ? ~0 : 0); |
| __m256i mask_vec = _mm256_set1_epi64x(mask); |
| __m256i deltas = _mm256_setr_epi64x(0, 1, 2, 3); |
| deltas = _mm256_and_si256(mask_vec, deltas); |
| __m256i counters = |
| _mm256_add_epi64(_mm256_set1_epi64x((int64_t)counter), deltas); |
| *out_lo = _mm256_cvtepi64_epi32(counters); |
| *out_hi = _mm256_cvtepi64_epi32(_mm256_srli_epi64(counters, 32)); |
| } |
| |
| static |
| void blake3_hash4_avx512(const uint8_t *const *inputs, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| bool increment_counter, uint8_t flags, |
| uint8_t flags_start, uint8_t flags_end, uint8_t *out) { |
| __m128i h_vecs[8] = { |
| set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]), |
| set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]), |
| }; |
| __m128i counter_low_vec, counter_high_vec; |
| load_counters4(counter, increment_counter, &counter_low_vec, |
| &counter_high_vec); |
| uint8_t block_flags = flags | flags_start; |
| |
| for (size_t block = 0; block < blocks; block++) { |
| if (block + 1 == blocks) { |
| block_flags |= flags_end; |
| } |
| __m128i block_len_vec = set1_128(BLAKE3_BLOCK_LEN); |
| __m128i block_flags_vec = set1_128(block_flags); |
| __m128i msg_vecs[16]; |
| transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); |
| |
| __m128i v[16] = { |
| h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
| h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
| set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]), |
| counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, |
| }; |
| round_fn4(v, msg_vecs, 0); |
| round_fn4(v, msg_vecs, 1); |
| round_fn4(v, msg_vecs, 2); |
| round_fn4(v, msg_vecs, 3); |
| round_fn4(v, msg_vecs, 4); |
| round_fn4(v, msg_vecs, 5); |
| round_fn4(v, msg_vecs, 6); |
| h_vecs[0] = xor_128(v[0], v[8]); |
| h_vecs[1] = xor_128(v[1], v[9]); |
| h_vecs[2] = xor_128(v[2], v[10]); |
| h_vecs[3] = xor_128(v[3], v[11]); |
| h_vecs[4] = xor_128(v[4], v[12]); |
| h_vecs[5] = xor_128(v[5], v[13]); |
| h_vecs[6] = xor_128(v[6], v[14]); |
| h_vecs[7] = xor_128(v[7], v[15]); |
| |
| block_flags = flags; |
| } |
| |
| transpose_vecs_128(&h_vecs[0]); |
| transpose_vecs_128(&h_vecs[4]); |
| // The first four vecs now contain the first half of each output, and the |
| // second four vecs contain the second half of each output. |
| storeu_128(h_vecs[0], &out[0 * sizeof(__m128i)]); |
| storeu_128(h_vecs[4], &out[1 * sizeof(__m128i)]); |
| storeu_128(h_vecs[1], &out[2 * sizeof(__m128i)]); |
| storeu_128(h_vecs[5], &out[3 * sizeof(__m128i)]); |
| storeu_128(h_vecs[2], &out[4 * sizeof(__m128i)]); |
| storeu_128(h_vecs[6], &out[5 * sizeof(__m128i)]); |
| storeu_128(h_vecs[3], &out[6 * sizeof(__m128i)]); |
| storeu_128(h_vecs[7], &out[7 * sizeof(__m128i)]); |
| } |
| |
| /* |
| * ---------------------------------------------------------------------------- |
| * hash8_avx512 |
| * ---------------------------------------------------------------------------- |
| */ |
| |
| INLINE void round_fn8(__m256i v[16], __m256i m[16], size_t r) { |
| v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); |
| v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); |
| v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); |
| v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); |
| v[0] = add_256(v[0], v[4]); |
| v[1] = add_256(v[1], v[5]); |
| v[2] = add_256(v[2], v[6]); |
| v[3] = add_256(v[3], v[7]); |
| v[12] = xor_256(v[12], v[0]); |
| v[13] = xor_256(v[13], v[1]); |
| v[14] = xor_256(v[14], v[2]); |
| v[15] = xor_256(v[15], v[3]); |
| v[12] = rot16_256(v[12]); |
| v[13] = rot16_256(v[13]); |
| v[14] = rot16_256(v[14]); |
| v[15] = rot16_256(v[15]); |
| v[8] = add_256(v[8], v[12]); |
| v[9] = add_256(v[9], v[13]); |
| v[10] = add_256(v[10], v[14]); |
| v[11] = add_256(v[11], v[15]); |
| v[4] = xor_256(v[4], v[8]); |
| v[5] = xor_256(v[5], v[9]); |
| v[6] = xor_256(v[6], v[10]); |
| v[7] = xor_256(v[7], v[11]); |
| v[4] = rot12_256(v[4]); |
| v[5] = rot12_256(v[5]); |
| v[6] = rot12_256(v[6]); |
| v[7] = rot12_256(v[7]); |
| v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); |
| v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); |
| v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); |
| v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); |
| v[0] = add_256(v[0], v[4]); |
| v[1] = add_256(v[1], v[5]); |
| v[2] = add_256(v[2], v[6]); |
| v[3] = add_256(v[3], v[7]); |
| v[12] = xor_256(v[12], v[0]); |
| v[13] = xor_256(v[13], v[1]); |
| v[14] = xor_256(v[14], v[2]); |
| v[15] = xor_256(v[15], v[3]); |
| v[12] = rot8_256(v[12]); |
| v[13] = rot8_256(v[13]); |
| v[14] = rot8_256(v[14]); |
| v[15] = rot8_256(v[15]); |
| v[8] = add_256(v[8], v[12]); |
| v[9] = add_256(v[9], v[13]); |
| v[10] = add_256(v[10], v[14]); |
| v[11] = add_256(v[11], v[15]); |
| v[4] = xor_256(v[4], v[8]); |
| v[5] = xor_256(v[5], v[9]); |
| v[6] = xor_256(v[6], v[10]); |
| v[7] = xor_256(v[7], v[11]); |
| v[4] = rot7_256(v[4]); |
| v[5] = rot7_256(v[5]); |
| v[6] = rot7_256(v[6]); |
| v[7] = rot7_256(v[7]); |
| |
| v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); |
| v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); |
| v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); |
| v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); |
| v[0] = add_256(v[0], v[5]); |
| v[1] = add_256(v[1], v[6]); |
| v[2] = add_256(v[2], v[7]); |
| v[3] = add_256(v[3], v[4]); |
| v[15] = xor_256(v[15], v[0]); |
| v[12] = xor_256(v[12], v[1]); |
| v[13] = xor_256(v[13], v[2]); |
| v[14] = xor_256(v[14], v[3]); |
| v[15] = rot16_256(v[15]); |
| v[12] = rot16_256(v[12]); |
| v[13] = rot16_256(v[13]); |
| v[14] = rot16_256(v[14]); |
| v[10] = add_256(v[10], v[15]); |
| v[11] = add_256(v[11], v[12]); |
| v[8] = add_256(v[8], v[13]); |
| v[9] = add_256(v[9], v[14]); |
| v[5] = xor_256(v[5], v[10]); |
| v[6] = xor_256(v[6], v[11]); |
| v[7] = xor_256(v[7], v[8]); |
| v[4] = xor_256(v[4], v[9]); |
| v[5] = rot12_256(v[5]); |
| v[6] = rot12_256(v[6]); |
| v[7] = rot12_256(v[7]); |
| v[4] = rot12_256(v[4]); |
| v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); |
| v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); |
| v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); |
| v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); |
| v[0] = add_256(v[0], v[5]); |
| v[1] = add_256(v[1], v[6]); |
| v[2] = add_256(v[2], v[7]); |
| v[3] = add_256(v[3], v[4]); |
| v[15] = xor_256(v[15], v[0]); |
| v[12] = xor_256(v[12], v[1]); |
| v[13] = xor_256(v[13], v[2]); |
| v[14] = xor_256(v[14], v[3]); |
| v[15] = rot8_256(v[15]); |
| v[12] = rot8_256(v[12]); |
| v[13] = rot8_256(v[13]); |
| v[14] = rot8_256(v[14]); |
| v[10] = add_256(v[10], v[15]); |
| v[11] = add_256(v[11], v[12]); |
| v[8] = add_256(v[8], v[13]); |
| v[9] = add_256(v[9], v[14]); |
| v[5] = xor_256(v[5], v[10]); |
| v[6] = xor_256(v[6], v[11]); |
| v[7] = xor_256(v[7], v[8]); |
| v[4] = xor_256(v[4], v[9]); |
| v[5] = rot7_256(v[5]); |
| v[6] = rot7_256(v[6]); |
| v[7] = rot7_256(v[7]); |
| v[4] = rot7_256(v[4]); |
| } |
| |
| INLINE void transpose_vecs_256(__m256i vecs[8]) { |
| // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high |
| // is 22/33/66/77. |
| __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]); |
| __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]); |
| __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]); |
| __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]); |
| __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]); |
| __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]); |
| __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]); |
| __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]); |
| |
| // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is |
| // 11/33. |
| __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145); |
| __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145); |
| __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367); |
| __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367); |
| __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145); |
| __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145); |
| __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367); |
| __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367); |
| |
| // Interleave 128-bit lanes. |
| vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20); |
| vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20); |
| vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20); |
| vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20); |
| vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31); |
| vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31); |
| vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31); |
| vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31); |
| } |
| |
| INLINE void transpose_msg_vecs8(const uint8_t *const *inputs, |
| size_t block_offset, __m256i out[16]) { |
| out[0] = loadu_256(&inputs[0][block_offset + 0 * sizeof(__m256i)]); |
| out[1] = loadu_256(&inputs[1][block_offset + 0 * sizeof(__m256i)]); |
| out[2] = loadu_256(&inputs[2][block_offset + 0 * sizeof(__m256i)]); |
| out[3] = loadu_256(&inputs[3][block_offset + 0 * sizeof(__m256i)]); |
| out[4] = loadu_256(&inputs[4][block_offset + 0 * sizeof(__m256i)]); |
| out[5] = loadu_256(&inputs[5][block_offset + 0 * sizeof(__m256i)]); |
| out[6] = loadu_256(&inputs[6][block_offset + 0 * sizeof(__m256i)]); |
| out[7] = loadu_256(&inputs[7][block_offset + 0 * sizeof(__m256i)]); |
| out[8] = loadu_256(&inputs[0][block_offset + 1 * sizeof(__m256i)]); |
| out[9] = loadu_256(&inputs[1][block_offset + 1 * sizeof(__m256i)]); |
| out[10] = loadu_256(&inputs[2][block_offset + 1 * sizeof(__m256i)]); |
| out[11] = loadu_256(&inputs[3][block_offset + 1 * sizeof(__m256i)]); |
| out[12] = loadu_256(&inputs[4][block_offset + 1 * sizeof(__m256i)]); |
| out[13] = loadu_256(&inputs[5][block_offset + 1 * sizeof(__m256i)]); |
| out[14] = loadu_256(&inputs[6][block_offset + 1 * sizeof(__m256i)]); |
| out[15] = loadu_256(&inputs[7][block_offset + 1 * sizeof(__m256i)]); |
| for (size_t i = 0; i < 8; ++i) { |
| _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); |
| } |
| transpose_vecs_256(&out[0]); |
| transpose_vecs_256(&out[8]); |
| } |
| |
| INLINE void load_counters8(uint64_t counter, bool increment_counter, |
| __m256i *out_lo, __m256i *out_hi) { |
| uint64_t mask = (increment_counter ? ~0 : 0); |
| __m512i mask_vec = _mm512_set1_epi64(mask); |
| __m512i deltas = _mm512_setr_epi64(0, 1, 2, 3, 4, 5, 6, 7); |
| deltas = _mm512_and_si512(mask_vec, deltas); |
| __m512i counters = |
| _mm512_add_epi64(_mm512_set1_epi64((int64_t)counter), deltas); |
| *out_lo = _mm512_cvtepi64_epi32(counters); |
| *out_hi = _mm512_cvtepi64_epi32(_mm512_srli_epi64(counters, 32)); |
| } |
| |
| static |
| void blake3_hash8_avx512(const uint8_t *const *inputs, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| bool increment_counter, uint8_t flags, |
| uint8_t flags_start, uint8_t flags_end, uint8_t *out) { |
| __m256i h_vecs[8] = { |
| set1_256(key[0]), set1_256(key[1]), set1_256(key[2]), set1_256(key[3]), |
| set1_256(key[4]), set1_256(key[5]), set1_256(key[6]), set1_256(key[7]), |
| }; |
| __m256i counter_low_vec, counter_high_vec; |
| load_counters8(counter, increment_counter, &counter_low_vec, |
| &counter_high_vec); |
| uint8_t block_flags = flags | flags_start; |
| |
| for (size_t block = 0; block < blocks; block++) { |
| if (block + 1 == blocks) { |
| block_flags |= flags_end; |
| } |
| __m256i block_len_vec = set1_256(BLAKE3_BLOCK_LEN); |
| __m256i block_flags_vec = set1_256(block_flags); |
| __m256i msg_vecs[16]; |
| transpose_msg_vecs8(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); |
| |
| __m256i v[16] = { |
| h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
| h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
| set1_256(IV[0]), set1_256(IV[1]), set1_256(IV[2]), set1_256(IV[3]), |
| counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, |
| }; |
| round_fn8(v, msg_vecs, 0); |
| round_fn8(v, msg_vecs, 1); |
| round_fn8(v, msg_vecs, 2); |
| round_fn8(v, msg_vecs, 3); |
| round_fn8(v, msg_vecs, 4); |
| round_fn8(v, msg_vecs, 5); |
| round_fn8(v, msg_vecs, 6); |
| h_vecs[0] = xor_256(v[0], v[8]); |
| h_vecs[1] = xor_256(v[1], v[9]); |
| h_vecs[2] = xor_256(v[2], v[10]); |
| h_vecs[3] = xor_256(v[3], v[11]); |
| h_vecs[4] = xor_256(v[4], v[12]); |
| h_vecs[5] = xor_256(v[5], v[13]); |
| h_vecs[6] = xor_256(v[6], v[14]); |
| h_vecs[7] = xor_256(v[7], v[15]); |
| |
| block_flags = flags; |
| } |
| |
| transpose_vecs_256(h_vecs); |
| storeu_256(h_vecs[0], &out[0 * sizeof(__m256i)]); |
| storeu_256(h_vecs[1], &out[1 * sizeof(__m256i)]); |
| storeu_256(h_vecs[2], &out[2 * sizeof(__m256i)]); |
| storeu_256(h_vecs[3], &out[3 * sizeof(__m256i)]); |
| storeu_256(h_vecs[4], &out[4 * sizeof(__m256i)]); |
| storeu_256(h_vecs[5], &out[5 * sizeof(__m256i)]); |
| storeu_256(h_vecs[6], &out[6 * sizeof(__m256i)]); |
| storeu_256(h_vecs[7], &out[7 * sizeof(__m256i)]); |
| } |
| |
| /* |
| * ---------------------------------------------------------------------------- |
| * hash16_avx512 |
| * ---------------------------------------------------------------------------- |
| */ |
| |
| INLINE void round_fn16(__m512i v[16], __m512i m[16], size_t r) { |
| v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); |
| v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); |
| v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); |
| v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); |
| v[0] = add_512(v[0], v[4]); |
| v[1] = add_512(v[1], v[5]); |
| v[2] = add_512(v[2], v[6]); |
| v[3] = add_512(v[3], v[7]); |
| v[12] = xor_512(v[12], v[0]); |
| v[13] = xor_512(v[13], v[1]); |
| v[14] = xor_512(v[14], v[2]); |
| v[15] = xor_512(v[15], v[3]); |
| v[12] = rot16_512(v[12]); |
| v[13] = rot16_512(v[13]); |
| v[14] = rot16_512(v[14]); |
| v[15] = rot16_512(v[15]); |
| v[8] = add_512(v[8], v[12]); |
| v[9] = add_512(v[9], v[13]); |
| v[10] = add_512(v[10], v[14]); |
| v[11] = add_512(v[11], v[15]); |
| v[4] = xor_512(v[4], v[8]); |
| v[5] = xor_512(v[5], v[9]); |
| v[6] = xor_512(v[6], v[10]); |
| v[7] = xor_512(v[7], v[11]); |
| v[4] = rot12_512(v[4]); |
| v[5] = rot12_512(v[5]); |
| v[6] = rot12_512(v[6]); |
| v[7] = rot12_512(v[7]); |
| v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); |
| v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); |
| v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); |
| v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); |
| v[0] = add_512(v[0], v[4]); |
| v[1] = add_512(v[1], v[5]); |
| v[2] = add_512(v[2], v[6]); |
| v[3] = add_512(v[3], v[7]); |
| v[12] = xor_512(v[12], v[0]); |
| v[13] = xor_512(v[13], v[1]); |
| v[14] = xor_512(v[14], v[2]); |
| v[15] = xor_512(v[15], v[3]); |
| v[12] = rot8_512(v[12]); |
| v[13] = rot8_512(v[13]); |
| v[14] = rot8_512(v[14]); |
| v[15] = rot8_512(v[15]); |
| v[8] = add_512(v[8], v[12]); |
| v[9] = add_512(v[9], v[13]); |
| v[10] = add_512(v[10], v[14]); |
| v[11] = add_512(v[11], v[15]); |
| v[4] = xor_512(v[4], v[8]); |
| v[5] = xor_512(v[5], v[9]); |
| v[6] = xor_512(v[6], v[10]); |
| v[7] = xor_512(v[7], v[11]); |
| v[4] = rot7_512(v[4]); |
| v[5] = rot7_512(v[5]); |
| v[6] = rot7_512(v[6]); |
| v[7] = rot7_512(v[7]); |
| |
| v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); |
| v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); |
| v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); |
| v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); |
| v[0] = add_512(v[0], v[5]); |
| v[1] = add_512(v[1], v[6]); |
| v[2] = add_512(v[2], v[7]); |
| v[3] = add_512(v[3], v[4]); |
| v[15] = xor_512(v[15], v[0]); |
| v[12] = xor_512(v[12], v[1]); |
| v[13] = xor_512(v[13], v[2]); |
| v[14] = xor_512(v[14], v[3]); |
| v[15] = rot16_512(v[15]); |
| v[12] = rot16_512(v[12]); |
| v[13] = rot16_512(v[13]); |
| v[14] = rot16_512(v[14]); |
| v[10] = add_512(v[10], v[15]); |
| v[11] = add_512(v[11], v[12]); |
| v[8] = add_512(v[8], v[13]); |
| v[9] = add_512(v[9], v[14]); |
| v[5] = xor_512(v[5], v[10]); |
| v[6] = xor_512(v[6], v[11]); |
| v[7] = xor_512(v[7], v[8]); |
| v[4] = xor_512(v[4], v[9]); |
| v[5] = rot12_512(v[5]); |
| v[6] = rot12_512(v[6]); |
| v[7] = rot12_512(v[7]); |
| v[4] = rot12_512(v[4]); |
| v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); |
| v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); |
| v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); |
| v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); |
| v[0] = add_512(v[0], v[5]); |
| v[1] = add_512(v[1], v[6]); |
| v[2] = add_512(v[2], v[7]); |
| v[3] = add_512(v[3], v[4]); |
| v[15] = xor_512(v[15], v[0]); |
| v[12] = xor_512(v[12], v[1]); |
| v[13] = xor_512(v[13], v[2]); |
| v[14] = xor_512(v[14], v[3]); |
| v[15] = rot8_512(v[15]); |
| v[12] = rot8_512(v[12]); |
| v[13] = rot8_512(v[13]); |
| v[14] = rot8_512(v[14]); |
| v[10] = add_512(v[10], v[15]); |
| v[11] = add_512(v[11], v[12]); |
| v[8] = add_512(v[8], v[13]); |
| v[9] = add_512(v[9], v[14]); |
| v[5] = xor_512(v[5], v[10]); |
| v[6] = xor_512(v[6], v[11]); |
| v[7] = xor_512(v[7], v[8]); |
| v[4] = xor_512(v[4], v[9]); |
| v[5] = rot7_512(v[5]); |
| v[6] = rot7_512(v[6]); |
| v[7] = rot7_512(v[7]); |
| v[4] = rot7_512(v[4]); |
| } |
| |
| // 0b10001000, or lanes a0/a2/b0/b2 in little-endian order |
| #define LO_IMM8 0x88 |
| |
| INLINE __m512i unpack_lo_128(__m512i a, __m512i b) { |
| return _mm512_shuffle_i32x4(a, b, LO_IMM8); |
| } |
| |
| // 0b11011101, or lanes a1/a3/b1/b3 in little-endian order |
| #define HI_IMM8 0xdd |
| |
| INLINE __m512i unpack_hi_128(__m512i a, __m512i b) { |
| return _mm512_shuffle_i32x4(a, b, HI_IMM8); |
| } |
| |
| INLINE void transpose_vecs_512(__m512i vecs[16]) { |
| // Interleave 32-bit lanes. The _0 unpack is lanes |
| // 0/0/1/1/4/4/5/5/8/8/9/9/12/12/13/13, and the _2 unpack is lanes |
| // 2/2/3/3/6/6/7/7/10/10/11/11/14/14/15/15. |
| __m512i ab_0 = _mm512_unpacklo_epi32(vecs[0], vecs[1]); |
| __m512i ab_2 = _mm512_unpackhi_epi32(vecs[0], vecs[1]); |
| __m512i cd_0 = _mm512_unpacklo_epi32(vecs[2], vecs[3]); |
| __m512i cd_2 = _mm512_unpackhi_epi32(vecs[2], vecs[3]); |
| __m512i ef_0 = _mm512_unpacklo_epi32(vecs[4], vecs[5]); |
| __m512i ef_2 = _mm512_unpackhi_epi32(vecs[4], vecs[5]); |
| __m512i gh_0 = _mm512_unpacklo_epi32(vecs[6], vecs[7]); |
| __m512i gh_2 = _mm512_unpackhi_epi32(vecs[6], vecs[7]); |
| __m512i ij_0 = _mm512_unpacklo_epi32(vecs[8], vecs[9]); |
| __m512i ij_2 = _mm512_unpackhi_epi32(vecs[8], vecs[9]); |
| __m512i kl_0 = _mm512_unpacklo_epi32(vecs[10], vecs[11]); |
| __m512i kl_2 = _mm512_unpackhi_epi32(vecs[10], vecs[11]); |
| __m512i mn_0 = _mm512_unpacklo_epi32(vecs[12], vecs[13]); |
| __m512i mn_2 = _mm512_unpackhi_epi32(vecs[12], vecs[13]); |
| __m512i op_0 = _mm512_unpacklo_epi32(vecs[14], vecs[15]); |
| __m512i op_2 = _mm512_unpackhi_epi32(vecs[14], vecs[15]); |
| |
| // Interleave 64-bit lates. The _0 unpack is lanes |
| // 0/0/0/0/4/4/4/4/8/8/8/8/12/12/12/12, the _1 unpack is lanes |
| // 1/1/1/1/5/5/5/5/9/9/9/9/13/13/13/13, the _2 unpack is lanes |
| // 2/2/2/2/6/6/6/6/10/10/10/10/14/14/14/14, and the _3 unpack is lanes |
| // 3/3/3/3/7/7/7/7/11/11/11/11/15/15/15/15. |
| __m512i abcd_0 = _mm512_unpacklo_epi64(ab_0, cd_0); |
| __m512i abcd_1 = _mm512_unpackhi_epi64(ab_0, cd_0); |
| __m512i abcd_2 = _mm512_unpacklo_epi64(ab_2, cd_2); |
| __m512i abcd_3 = _mm512_unpackhi_epi64(ab_2, cd_2); |
| __m512i efgh_0 = _mm512_unpacklo_epi64(ef_0, gh_0); |
| __m512i efgh_1 = _mm512_unpackhi_epi64(ef_0, gh_0); |
| __m512i efgh_2 = _mm512_unpacklo_epi64(ef_2, gh_2); |
| __m512i efgh_3 = _mm512_unpackhi_epi64(ef_2, gh_2); |
| __m512i ijkl_0 = _mm512_unpacklo_epi64(ij_0, kl_0); |
| __m512i ijkl_1 = _mm512_unpackhi_epi64(ij_0, kl_0); |
| __m512i ijkl_2 = _mm512_unpacklo_epi64(ij_2, kl_2); |
| __m512i ijkl_3 = _mm512_unpackhi_epi64(ij_2, kl_2); |
| __m512i mnop_0 = _mm512_unpacklo_epi64(mn_0, op_0); |
| __m512i mnop_1 = _mm512_unpackhi_epi64(mn_0, op_0); |
| __m512i mnop_2 = _mm512_unpacklo_epi64(mn_2, op_2); |
| __m512i mnop_3 = _mm512_unpackhi_epi64(mn_2, op_2); |
| |
| // Interleave 128-bit lanes. The _0 unpack is |
| // 0/0/0/0/8/8/8/8/0/0/0/0/8/8/8/8, the _1 unpack is |
| // 1/1/1/1/9/9/9/9/1/1/1/1/9/9/9/9, and so on. |
| __m512i abcdefgh_0 = unpack_lo_128(abcd_0, efgh_0); |
| __m512i abcdefgh_1 = unpack_lo_128(abcd_1, efgh_1); |
| __m512i abcdefgh_2 = unpack_lo_128(abcd_2, efgh_2); |
| __m512i abcdefgh_3 = unpack_lo_128(abcd_3, efgh_3); |
| __m512i abcdefgh_4 = unpack_hi_128(abcd_0, efgh_0); |
| __m512i abcdefgh_5 = unpack_hi_128(abcd_1, efgh_1); |
| __m512i abcdefgh_6 = unpack_hi_128(abcd_2, efgh_2); |
| __m512i abcdefgh_7 = unpack_hi_128(abcd_3, efgh_3); |
| __m512i ijklmnop_0 = unpack_lo_128(ijkl_0, mnop_0); |
| __m512i ijklmnop_1 = unpack_lo_128(ijkl_1, mnop_1); |
| __m512i ijklmnop_2 = unpack_lo_128(ijkl_2, mnop_2); |
| __m512i ijklmnop_3 = unpack_lo_128(ijkl_3, mnop_3); |
| __m512i ijklmnop_4 = unpack_hi_128(ijkl_0, mnop_0); |
| __m512i ijklmnop_5 = unpack_hi_128(ijkl_1, mnop_1); |
| __m512i ijklmnop_6 = unpack_hi_128(ijkl_2, mnop_2); |
| __m512i ijklmnop_7 = unpack_hi_128(ijkl_3, mnop_3); |
| |
| // Interleave 128-bit lanes again for the final outputs. |
| vecs[0] = unpack_lo_128(abcdefgh_0, ijklmnop_0); |
| vecs[1] = unpack_lo_128(abcdefgh_1, ijklmnop_1); |
| vecs[2] = unpack_lo_128(abcdefgh_2, ijklmnop_2); |
| vecs[3] = unpack_lo_128(abcdefgh_3, ijklmnop_3); |
| vecs[4] = unpack_lo_128(abcdefgh_4, ijklmnop_4); |
| vecs[5] = unpack_lo_128(abcdefgh_5, ijklmnop_5); |
| vecs[6] = unpack_lo_128(abcdefgh_6, ijklmnop_6); |
| vecs[7] = unpack_lo_128(abcdefgh_7, ijklmnop_7); |
| vecs[8] = unpack_hi_128(abcdefgh_0, ijklmnop_0); |
| vecs[9] = unpack_hi_128(abcdefgh_1, ijklmnop_1); |
| vecs[10] = unpack_hi_128(abcdefgh_2, ijklmnop_2); |
| vecs[11] = unpack_hi_128(abcdefgh_3, ijklmnop_3); |
| vecs[12] = unpack_hi_128(abcdefgh_4, ijklmnop_4); |
| vecs[13] = unpack_hi_128(abcdefgh_5, ijklmnop_5); |
| vecs[14] = unpack_hi_128(abcdefgh_6, ijklmnop_6); |
| vecs[15] = unpack_hi_128(abcdefgh_7, ijklmnop_7); |
| } |
| |
| INLINE void transpose_msg_vecs16(const uint8_t *const *inputs, |
| size_t block_offset, __m512i out[16]) { |
| out[0] = loadu_512(&inputs[0][block_offset]); |
| out[1] = loadu_512(&inputs[1][block_offset]); |
| out[2] = loadu_512(&inputs[2][block_offset]); |
| out[3] = loadu_512(&inputs[3][block_offset]); |
| out[4] = loadu_512(&inputs[4][block_offset]); |
| out[5] = loadu_512(&inputs[5][block_offset]); |
| out[6] = loadu_512(&inputs[6][block_offset]); |
| out[7] = loadu_512(&inputs[7][block_offset]); |
| out[8] = loadu_512(&inputs[8][block_offset]); |
| out[9] = loadu_512(&inputs[9][block_offset]); |
| out[10] = loadu_512(&inputs[10][block_offset]); |
| out[11] = loadu_512(&inputs[11][block_offset]); |
| out[12] = loadu_512(&inputs[12][block_offset]); |
| out[13] = loadu_512(&inputs[13][block_offset]); |
| out[14] = loadu_512(&inputs[14][block_offset]); |
| out[15] = loadu_512(&inputs[15][block_offset]); |
| for (size_t i = 0; i < 16; ++i) { |
| _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); |
| } |
| transpose_vecs_512(out); |
| } |
| |
| INLINE void load_counters16(uint64_t counter, bool increment_counter, |
| __m512i *out_lo, __m512i *out_hi) { |
| const __m512i mask = _mm512_set1_epi32(-(int32_t)increment_counter); |
| const __m512i add0 = _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); |
| const __m512i add1 = _mm512_and_si512(mask, add0); |
| __m512i l = _mm512_add_epi32(_mm512_set1_epi32((int32_t)counter), add1); |
| __mmask16 carry = _mm512_cmp_epu32_mask(l, add1, _MM_CMPINT_LT); |
| __m512i h = _mm512_mask_add_epi32(_mm512_set1_epi32((int32_t)(counter >> 32)), carry, _mm512_set1_epi32((int32_t)(counter >> 32)), _mm512_set1_epi32(1)); |
| *out_lo = l; |
| *out_hi = h; |
| } |
| |
| static |
| void blake3_hash16_avx512(const uint8_t *const *inputs, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| bool increment_counter, uint8_t flags, |
| uint8_t flags_start, uint8_t flags_end, |
| uint8_t *out) { |
| __m512i h_vecs[8] = { |
| set1_512(key[0]), set1_512(key[1]), set1_512(key[2]), set1_512(key[3]), |
| set1_512(key[4]), set1_512(key[5]), set1_512(key[6]), set1_512(key[7]), |
| }; |
| __m512i counter_low_vec, counter_high_vec; |
| load_counters16(counter, increment_counter, &counter_low_vec, |
| &counter_high_vec); |
| uint8_t block_flags = flags | flags_start; |
| |
| for (size_t block = 0; block < blocks; block++) { |
| if (block + 1 == blocks) { |
| block_flags |= flags_end; |
| } |
| __m512i block_len_vec = set1_512(BLAKE3_BLOCK_LEN); |
| __m512i block_flags_vec = set1_512(block_flags); |
| __m512i msg_vecs[16]; |
| transpose_msg_vecs16(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); |
| |
| __m512i v[16] = { |
| h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
| h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
| set1_512(IV[0]), set1_512(IV[1]), set1_512(IV[2]), set1_512(IV[3]), |
| counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, |
| }; |
| round_fn16(v, msg_vecs, 0); |
| round_fn16(v, msg_vecs, 1); |
| round_fn16(v, msg_vecs, 2); |
| round_fn16(v, msg_vecs, 3); |
| round_fn16(v, msg_vecs, 4); |
| round_fn16(v, msg_vecs, 5); |
| round_fn16(v, msg_vecs, 6); |
| h_vecs[0] = xor_512(v[0], v[8]); |
| h_vecs[1] = xor_512(v[1], v[9]); |
| h_vecs[2] = xor_512(v[2], v[10]); |
| h_vecs[3] = xor_512(v[3], v[11]); |
| h_vecs[4] = xor_512(v[4], v[12]); |
| h_vecs[5] = xor_512(v[5], v[13]); |
| h_vecs[6] = xor_512(v[6], v[14]); |
| h_vecs[7] = xor_512(v[7], v[15]); |
| |
| block_flags = flags; |
| } |
| |
| // transpose_vecs_512 operates on a 16x16 matrix of words, but we only have 8 |
| // state vectors. Pad the matrix with zeros. After transposition, store the |
| // lower half of each vector. |
| __m512i padded[16] = { |
| h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
| h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
| set1_512(0), set1_512(0), set1_512(0), set1_512(0), |
| set1_512(0), set1_512(0), set1_512(0), set1_512(0), |
| }; |
| transpose_vecs_512(padded); |
| _mm256_mask_storeu_epi32(&out[0 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[0])); |
| _mm256_mask_storeu_epi32(&out[1 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[1])); |
| _mm256_mask_storeu_epi32(&out[2 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[2])); |
| _mm256_mask_storeu_epi32(&out[3 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[3])); |
| _mm256_mask_storeu_epi32(&out[4 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[4])); |
| _mm256_mask_storeu_epi32(&out[5 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[5])); |
| _mm256_mask_storeu_epi32(&out[6 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[6])); |
| _mm256_mask_storeu_epi32(&out[7 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[7])); |
| _mm256_mask_storeu_epi32(&out[8 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[8])); |
| _mm256_mask_storeu_epi32(&out[9 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[9])); |
| _mm256_mask_storeu_epi32(&out[10 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[10])); |
| _mm256_mask_storeu_epi32(&out[11 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[11])); |
| _mm256_mask_storeu_epi32(&out[12 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[12])); |
| _mm256_mask_storeu_epi32(&out[13 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[13])); |
| _mm256_mask_storeu_epi32(&out[14 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[14])); |
| _mm256_mask_storeu_epi32(&out[15 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[15])); |
| } |
| |
| /* |
| * ---------------------------------------------------------------------------- |
| * hash_many_avx512 |
| * ---------------------------------------------------------------------------- |
| */ |
| |
| INLINE void hash_one_avx512(const uint8_t *input, size_t blocks, |
| const uint32_t key[8], uint64_t counter, |
| uint8_t flags, uint8_t flags_start, |
| uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { |
| uint32_t cv[8]; |
| memcpy(cv, key, BLAKE3_KEY_LEN); |
| uint8_t block_flags = flags | flags_start; |
| while (blocks > 0) { |
| if (blocks == 1) { |
| block_flags |= flags_end; |
| } |
| blake3_compress_in_place_avx512(cv, input, BLAKE3_BLOCK_LEN, counter, |
| block_flags); |
| input = &input[BLAKE3_BLOCK_LEN]; |
| blocks -= 1; |
| block_flags = flags; |
| } |
| memcpy(out, cv, BLAKE3_OUT_LEN); |
| } |
| |
| void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs, |
| size_t blocks, const uint32_t key[8], |
| uint64_t counter, bool increment_counter, |
| uint8_t flags, uint8_t flags_start, |
| uint8_t flags_end, uint8_t *out) { |
| while (num_inputs >= 16) { |
| blake3_hash16_avx512(inputs, blocks, key, counter, increment_counter, flags, |
| flags_start, flags_end, out); |
| if (increment_counter) { |
| counter += 16; |
| } |
| inputs += 16; |
| num_inputs -= 16; |
| out = &out[16 * BLAKE3_OUT_LEN]; |
| } |
| while (num_inputs >= 8) { |
| blake3_hash8_avx512(inputs, blocks, key, counter, increment_counter, flags, |
| flags_start, flags_end, out); |
| if (increment_counter) { |
| counter += 8; |
| } |
| inputs += 8; |
| num_inputs -= 8; |
| out = &out[8 * BLAKE3_OUT_LEN]; |
| } |
| while (num_inputs >= 4) { |
| blake3_hash4_avx512(inputs, blocks, key, counter, increment_counter, flags, |
| flags_start, flags_end, out); |
| if (increment_counter) { |
| counter += 4; |
| } |
| inputs += 4; |
| num_inputs -= 4; |
| out = &out[4 * BLAKE3_OUT_LEN]; |
| } |
| while (num_inputs > 0) { |
| hash_one_avx512(inputs[0], blocks, key, counter, flags, flags_start, |
| flags_end, out); |
| if (increment_counter) { |
| counter += 1; |
| } |
| inputs += 1; |
| num_inputs -= 1; |
| out = &out[BLAKE3_OUT_LEN]; |
| } |
| } |