|  | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "LLVMReactor.hpp" | 
|  |  | 
|  | #include "CPUID.hpp" | 
|  | #include "Debug.hpp" | 
|  | #include "LLVMReactorDebugInfo.hpp" | 
|  | #include "Print.hpp" | 
|  | #include "Reactor.hpp" | 
|  | #include "x86.hpp" | 
|  |  | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/IntrinsicsX86.h" | 
|  | #include "llvm/IR/LegacyPassManager.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Alignment.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Transforms/Coroutines.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  |  | 
|  | #include <fstream> | 
|  | #include <iostream> | 
|  | #include <mutex> | 
|  | #include <numeric> | 
|  | #include <thread> | 
|  | #include <unordered_map> | 
|  |  | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | #	include <xmmintrin.h> | 
|  | #endif | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #if defined(__x86_64__) && defined(_WIN32) | 
|  | extern "C" void X86CompilationCallback() | 
|  | { | 
|  | UNIMPLEMENTED_NO_BUG("X86CompilationCallback"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if !LLVM_ENABLE_THREADS | 
|  | #	error "LLVM_ENABLE_THREADS needs to be enabled" | 
|  | #endif | 
|  |  | 
|  | #if LLVM_VERSION_MAJOR < 11 | 
|  | namespace llvm { | 
|  | using FixedVectorType = VectorType; | 
|  | }  // namespace llvm | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Used to automatically invoke llvm_shutdown() when driver is unloaded | 
|  | llvm::llvm_shutdown_obj llvmShutdownObj; | 
|  |  | 
|  | // This has to be a raw pointer because glibc 2.17 doesn't support __cxa_thread_atexit_impl | 
|  | // for destructing objects at exit. See crbug.com/1074222 | 
|  | thread_local rr::JITBuilder *jit = nullptr; | 
|  |  | 
|  | // Default configuration settings. Must be accessed under mutex lock. | 
|  | std::mutex defaultConfigLock; | 
|  | rr::Config &defaultConfig() | 
|  | { | 
|  | // This uses a static in a function to avoid the cost of a global static | 
|  | // initializer. See http://neugierig.org/software/chromium/notes/2011/08/static-initializers.html | 
|  | static rr::Config config = rr::Config::Edit() | 
|  | .add(rr::Optimization::Pass::ScalarReplAggregates) | 
|  | .add(rr::Optimization::Pass::InstructionCombining) | 
|  | .apply({}); | 
|  | return config; | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerPAVG(llvm::Value *x, llvm::Value *y) | 
|  | { | 
|  | llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); | 
|  |  | 
|  | llvm::VectorType *extTy = | 
|  | llvm::VectorType::getExtendedElementVectorType(ty); | 
|  | x = jit->builder->CreateZExt(x, extTy); | 
|  | y = jit->builder->CreateZExt(y, extTy); | 
|  |  | 
|  | // (x + y + 1) >> 1 | 
|  | llvm::Constant *one = llvm::ConstantInt::get(extTy, 1); | 
|  | llvm::Value *res = jit->builder->CreateAdd(x, y); | 
|  | res = jit->builder->CreateAdd(res, one); | 
|  | res = jit->builder->CreateLShr(res, one); | 
|  | return jit->builder->CreateTrunc(res, ty); | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerPMINMAX(llvm::Value *x, llvm::Value *y, | 
|  | llvm::ICmpInst::Predicate pred) | 
|  | { | 
|  | return jit->builder->CreateSelect(jit->builder->CreateICmp(pred, x, y), x, y); | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerPCMP(llvm::ICmpInst::Predicate pred, llvm::Value *x, | 
|  | llvm::Value *y, llvm::Type *dstTy) | 
|  | { | 
|  | return jit->builder->CreateSExt(jit->builder->CreateICmp(pred, x, y), dstTy, ""); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerPFMINMAX(llvm::Value *x, llvm::Value *y, | 
|  | llvm::FCmpInst::Predicate pred) | 
|  | { | 
|  | return jit->builder->CreateSelect(jit->builder->CreateFCmp(pred, x, y), x, y); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerRound(llvm::Value *x) | 
|  | { | 
|  | llvm::Function *nearbyint = llvm::Intrinsic::getDeclaration( | 
|  | jit->module.get(), llvm::Intrinsic::nearbyint, { x->getType() }); | 
|  | return jit->builder->CreateCall(nearbyint, { x }); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerRoundInt(llvm::Value *x, llvm::Type *ty) | 
|  | { | 
|  | return jit->builder->CreateFPToSI(lowerRound(x), ty); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerFloor(llvm::Value *x) | 
|  | { | 
|  | llvm::Function *floor = llvm::Intrinsic::getDeclaration( | 
|  | jit->module.get(), llvm::Intrinsic::floor, { x->getType() }); | 
|  | return jit->builder->CreateCall(floor, { x }); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerTrunc(llvm::Value *x) | 
|  | { | 
|  | llvm::Function *trunc = llvm::Intrinsic::getDeclaration( | 
|  | jit->module.get(), llvm::Intrinsic::trunc, { x->getType() }); | 
|  | return jit->builder->CreateCall(trunc, { x }); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerSQRT(llvm::Value *x) | 
|  | { | 
|  | llvm::Function *sqrt = llvm::Intrinsic::getDeclaration( | 
|  | jit->module.get(), llvm::Intrinsic::sqrt, { x->getType() }); | 
|  | return jit->builder->CreateCall(sqrt, { x }); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerRCP(llvm::Value *x) | 
|  | { | 
|  | llvm::Type *ty = x->getType(); | 
|  | llvm::Constant *one; | 
|  | if(llvm::FixedVectorType *vectorTy = llvm::dyn_cast<llvm::FixedVectorType>(ty)) | 
|  | { | 
|  | one = llvm::ConstantVector::getSplat( | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | vectorTy->getElementCount(), | 
|  | #else | 
|  | vectorTy->getNumElements(), | 
|  | #endif | 
|  | llvm::ConstantFP::get(vectorTy->getElementType(), 1)); | 
|  | } | 
|  | else | 
|  | { | 
|  | one = llvm::ConstantFP::get(ty, 1); | 
|  | } | 
|  | return jit->builder->CreateFDiv(one, x); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerRSQRT(llvm::Value *x) | 
|  | { | 
|  | return lowerRCP(lowerSQRT(x)); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerVectorShl(llvm::Value *x, uint64_t scalarY) | 
|  | { | 
|  | llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); | 
|  | llvm::Value *y = llvm::ConstantVector::getSplat( | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | ty->getElementCount(), | 
|  | #else | 
|  | ty->getNumElements(), | 
|  | #endif | 
|  | llvm::ConstantInt::get(ty->getElementType(), scalarY)); | 
|  | return jit->builder->CreateShl(x, y); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerVectorAShr(llvm::Value *x, uint64_t scalarY) | 
|  | { | 
|  | llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); | 
|  | llvm::Value *y = llvm::ConstantVector::getSplat( | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | ty->getElementCount(), | 
|  | #else | 
|  | ty->getNumElements(), | 
|  | #endif | 
|  | llvm::ConstantInt::get(ty->getElementType(), scalarY)); | 
|  | return jit->builder->CreateAShr(x, y); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerVectorLShr(llvm::Value *x, uint64_t scalarY) | 
|  | { | 
|  | llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); | 
|  | llvm::Value *y = llvm::ConstantVector::getSplat( | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | ty->getElementCount(), | 
|  | #else | 
|  | ty->getNumElements(), | 
|  | #endif | 
|  | llvm::ConstantInt::get(ty->getElementType(), scalarY)); | 
|  | return jit->builder->CreateLShr(x, y); | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerShuffleVector(llvm::Value *v1, llvm::Value *v2, llvm::ArrayRef<int> select) | 
|  | { | 
|  | int size = select.size(); | 
|  | const int maxSize = 16; | 
|  | llvm::Constant *swizzle[maxSize]; | 
|  | ASSERT(size <= maxSize); | 
|  |  | 
|  | for(int i = 0; i < size; i++) | 
|  | { | 
|  | swizzle[i] = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*jit->context), select[i]); | 
|  | } | 
|  |  | 
|  | llvm::Value *shuffle = llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant *>(swizzle, size)); | 
|  |  | 
|  | return jit->builder->CreateShuffleVector(v1, v2, shuffle); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerMulAdd(llvm::Value *x, llvm::Value *y) | 
|  | { | 
|  | llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); | 
|  | llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty); | 
|  |  | 
|  | llvm::Value *extX = jit->builder->CreateSExt(x, extTy); | 
|  | llvm::Value *extY = jit->builder->CreateSExt(y, extTy); | 
|  | llvm::Value *mult = jit->builder->CreateMul(extX, extY); | 
|  |  | 
|  | llvm::Value *undef = llvm::UndefValue::get(extTy); | 
|  |  | 
|  | llvm::SmallVector<int, 16> evenIdx; | 
|  | llvm::SmallVector<int, 16> oddIdx; | 
|  | for(uint64_t i = 0, n = ty->getNumElements(); i < n; i += 2) | 
|  | { | 
|  | evenIdx.push_back(i); | 
|  | oddIdx.push_back(i + 1); | 
|  | } | 
|  |  | 
|  | llvm::Value *lhs = lowerShuffleVector(mult, undef, evenIdx); | 
|  | llvm::Value *rhs = lowerShuffleVector(mult, undef, oddIdx); | 
|  | return jit->builder->CreateAdd(lhs, rhs); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerPack(llvm::Value *x, llvm::Value *y, bool isSigned) | 
|  | { | 
|  | llvm::FixedVectorType *srcTy = llvm::cast<llvm::FixedVectorType>(x->getType()); | 
|  | llvm::VectorType *dstTy = llvm::VectorType::getTruncatedElementVectorType(srcTy); | 
|  |  | 
|  | llvm::IntegerType *dstElemTy = | 
|  | llvm::cast<llvm::IntegerType>(dstTy->getElementType()); | 
|  |  | 
|  | uint64_t truncNumBits = dstElemTy->getIntegerBitWidth(); | 
|  | ASSERT_MSG(truncNumBits < 64, "shift 64 must be handled separately. truncNumBits: %d", int(truncNumBits)); | 
|  | llvm::Constant *max, *min; | 
|  | if(isSigned) | 
|  | { | 
|  | max = llvm::ConstantInt::get(srcTy, (1LL << (truncNumBits - 1)) - 1, true); | 
|  | min = llvm::ConstantInt::get(srcTy, (-1LL << (truncNumBits - 1)), true); | 
|  | } | 
|  | else | 
|  | { | 
|  | max = llvm::ConstantInt::get(srcTy, (1ULL << truncNumBits) - 1, false); | 
|  | min = llvm::ConstantInt::get(srcTy, 0, false); | 
|  | } | 
|  |  | 
|  | x = lowerPMINMAX(x, min, llvm::ICmpInst::ICMP_SGT); | 
|  | x = lowerPMINMAX(x, max, llvm::ICmpInst::ICMP_SLT); | 
|  | y = lowerPMINMAX(y, min, llvm::ICmpInst::ICMP_SGT); | 
|  | y = lowerPMINMAX(y, max, llvm::ICmpInst::ICMP_SLT); | 
|  |  | 
|  | x = jit->builder->CreateTrunc(x, dstTy); | 
|  | y = jit->builder->CreateTrunc(y, dstTy); | 
|  |  | 
|  | llvm::SmallVector<int, 16> index(srcTy->getNumElements() * 2); | 
|  | std::iota(index.begin(), index.end(), 0); | 
|  |  | 
|  | return lowerShuffleVector(x, y, index); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerSignMask(llvm::Value *x, llvm::Type *retTy) | 
|  | { | 
|  | llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); | 
|  | llvm::Constant *zero = llvm::ConstantInt::get(ty, 0); | 
|  | llvm::Value *cmp = jit->builder->CreateICmpSLT(x, zero); | 
|  |  | 
|  | llvm::Value *ret = jit->builder->CreateZExt( | 
|  | jit->builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy); | 
|  | for(uint64_t i = 1, n = ty->getNumElements(); i < n; ++i) | 
|  | { | 
|  | llvm::Value *elem = jit->builder->CreateZExt( | 
|  | jit->builder->CreateExtractElement(cmp, i), retTy); | 
|  | ret = jit->builder->CreateOr(ret, jit->builder->CreateShl(elem, i)); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] llvm::Value *lowerFPSignMask(llvm::Value *x, llvm::Type *retTy) | 
|  | { | 
|  | llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); | 
|  | llvm::Constant *zero = llvm::ConstantFP::get(ty, 0); | 
|  | llvm::Value *cmp = jit->builder->CreateFCmpULT(x, zero); | 
|  |  | 
|  | llvm::Value *ret = jit->builder->CreateZExt( | 
|  | jit->builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy); | 
|  | for(uint64_t i = 1, n = ty->getNumElements(); i < n; ++i) | 
|  | { | 
|  | llvm::Value *elem = jit->builder->CreateZExt( | 
|  | jit->builder->CreateExtractElement(cmp, i), retTy); | 
|  | ret = jit->builder->CreateOr(ret, jit->builder->CreateShl(elem, i)); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerPUADDSAT(llvm::Value *x, llvm::Value *y) | 
|  | { | 
|  | return jit->builder->CreateBinaryIntrinsic(llvm::Intrinsic::uadd_sat, x, y); | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerPSADDSAT(llvm::Value *x, llvm::Value *y) | 
|  | { | 
|  | return jit->builder->CreateBinaryIntrinsic(llvm::Intrinsic::sadd_sat, x, y); | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerPUSUBSAT(llvm::Value *x, llvm::Value *y) | 
|  | { | 
|  | return jit->builder->CreateBinaryIntrinsic(llvm::Intrinsic::usub_sat, x, y); | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerPSSUBSAT(llvm::Value *x, llvm::Value *y) | 
|  | { | 
|  | return jit->builder->CreateBinaryIntrinsic(llvm::Intrinsic::ssub_sat, x, y); | 
|  | } | 
|  |  | 
|  | llvm::Value *lowerMulHigh(llvm::Value *x, llvm::Value *y, bool sext) | 
|  | { | 
|  | llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); | 
|  | llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty); | 
|  |  | 
|  | llvm::Value *extX, *extY; | 
|  | if(sext) | 
|  | { | 
|  | extX = jit->builder->CreateSExt(x, extTy); | 
|  | extY = jit->builder->CreateSExt(y, extTy); | 
|  | } | 
|  | else | 
|  | { | 
|  | extX = jit->builder->CreateZExt(x, extTy); | 
|  | extY = jit->builder->CreateZExt(y, extTy); | 
|  | } | 
|  |  | 
|  | llvm::Value *mult = jit->builder->CreateMul(extX, extY); | 
|  |  | 
|  | llvm::IntegerType *intTy = llvm::cast<llvm::IntegerType>(ty->getElementType()); | 
|  | llvm::Value *mulh = jit->builder->CreateAShr(mult, intTy->getBitWidth()); | 
|  | return jit->builder->CreateTrunc(mulh, ty); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | namespace rr { | 
|  |  | 
|  | std::string Caps::backendName() | 
|  | { | 
|  | return std::string("LLVM ") + LLVM_VERSION_STRING; | 
|  | } | 
|  |  | 
|  | bool Caps::coroutinesSupported() | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Caps::fmaIsFast() | 
|  | { | 
|  | static bool AVX2 = CPUID::supportsAVX2();  // Also checks for FMA support | 
|  |  | 
|  | // If x86 FMA instructions are supported, assume LLVM will emit them instead of making calls to std::fma(). | 
|  | return AVX2; | 
|  | } | 
|  |  | 
|  | // The abstract Type* types are implemented as LLVM types, except that | 
|  | // 64-bit vectors are emulated using 128-bit ones to avoid use of MMX in x86 | 
|  | // and VFP in ARM, and eliminate the overhead of converting them to explicit | 
|  | // 128-bit ones. LLVM types are pointers, so we can represent emulated types | 
|  | // as abstract pointers with small enum values. | 
|  | enum InternalType : uintptr_t | 
|  | { | 
|  | // Emulated types: | 
|  | Type_v2i32, | 
|  | Type_v4i16, | 
|  | Type_v2i16, | 
|  | Type_v8i8, | 
|  | Type_v4i8, | 
|  | Type_v2f32, | 
|  | EmulatedTypeCount, | 
|  | // Returned by asInternalType() to indicate that the abstract Type* | 
|  | // should be interpreted as LLVM type pointer: | 
|  | Type_LLVM | 
|  | }; | 
|  |  | 
|  | inline InternalType asInternalType(Type *type) | 
|  | { | 
|  | InternalType t = static_cast<InternalType>(reinterpret_cast<uintptr_t>(type)); | 
|  | return (t < EmulatedTypeCount) ? t : Type_LLVM; | 
|  | } | 
|  |  | 
|  | llvm::Type *T(Type *t) | 
|  | { | 
|  | // Use 128-bit vectors to implement logically shorter ones. | 
|  | switch(asInternalType(t)) | 
|  | { | 
|  | case Type_v2i32: return T(Int4::type()); | 
|  | case Type_v4i16: return T(Short8::type()); | 
|  | case Type_v2i16: return T(Short8::type()); | 
|  | case Type_v8i8: return T(Byte16::type()); | 
|  | case Type_v4i8: return T(Byte16::type()); | 
|  | case Type_v2f32: return T(Float4::type()); | 
|  | case Type_LLVM: return reinterpret_cast<llvm::Type *>(t); | 
|  | default: | 
|  | UNREACHABLE("asInternalType(t): %d", int(asInternalType(t))); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Type *T(InternalType t) | 
|  | { | 
|  | return reinterpret_cast<Type *>(t); | 
|  | } | 
|  |  | 
|  | inline const std::vector<llvm::Type *> &T(const std::vector<Type *> &t) | 
|  | { | 
|  | return reinterpret_cast<const std::vector<llvm::Type *> &>(t); | 
|  | } | 
|  |  | 
|  | inline llvm::BasicBlock *B(BasicBlock *t) | 
|  | { | 
|  | return reinterpret_cast<llvm::BasicBlock *>(t); | 
|  | } | 
|  |  | 
|  | inline BasicBlock *B(llvm::BasicBlock *t) | 
|  | { | 
|  | return reinterpret_cast<BasicBlock *>(t); | 
|  | } | 
|  |  | 
|  | static size_t typeSize(Type *type) | 
|  | { | 
|  | switch(asInternalType(type)) | 
|  | { | 
|  | case Type_v2i32: return 8; | 
|  | case Type_v4i16: return 8; | 
|  | case Type_v2i16: return 4; | 
|  | case Type_v8i8: return 8; | 
|  | case Type_v4i8: return 4; | 
|  | case Type_v2f32: return 8; | 
|  | case Type_LLVM: | 
|  | { | 
|  | llvm::Type *t = T(type); | 
|  |  | 
|  | if(t->isPointerTy()) | 
|  | { | 
|  | return sizeof(void *); | 
|  | } | 
|  |  | 
|  | // At this point we should only have LLVM 'primitive' types. | 
|  | unsigned int bits = t->getPrimitiveSizeInBits(); | 
|  | ASSERT_MSG(bits != 0, "bits: %d", int(bits)); | 
|  |  | 
|  | // TODO(capn): Booleans are 1 bit integers in LLVM's SSA type system, | 
|  | // but are typically stored as one byte. The DataLayout structure should | 
|  | // be used here and many other places if this assumption fails. | 
|  | return (bits + 7) / 8; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE("asInternalType(type): %d", int(asInternalType(type))); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int elementCount(Type *type) | 
|  | { | 
|  | switch(asInternalType(type)) | 
|  | { | 
|  | case Type_v2i32: return 2; | 
|  | case Type_v4i16: return 4; | 
|  | case Type_v2i16: return 2; | 
|  | case Type_v8i8: return 8; | 
|  | case Type_v4i8: return 4; | 
|  | case Type_v2f32: return 2; | 
|  | case Type_LLVM: return llvm::cast<llvm::FixedVectorType>(T(type))->getNumElements(); | 
|  | default: | 
|  | UNREACHABLE("asInternalType(type): %d", int(asInternalType(type))); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static llvm::Function *createFunction(const char *name, llvm::Type *retTy, const std::vector<llvm::Type *> ¶ms) | 
|  | { | 
|  | llvm::FunctionType *functionType = llvm::FunctionType::get(retTy, params, false); | 
|  | auto func = llvm::Function::Create(functionType, llvm::GlobalValue::InternalLinkage, name, jit->module.get()); | 
|  |  | 
|  | func->setLinkage(llvm::GlobalValue::ExternalLinkage); | 
|  | func->setDoesNotThrow(); | 
|  | func->setCallingConv(llvm::CallingConv::C); | 
|  |  | 
|  | if(__has_feature(memory_sanitizer)) | 
|  | { | 
|  | func->addFnAttr(llvm::Attribute::SanitizeMemory); | 
|  | } | 
|  |  | 
|  | return func; | 
|  | } | 
|  |  | 
|  | Nucleus::Nucleus() | 
|  | { | 
|  | #if !__has_feature(memory_sanitizer) | 
|  | // thread_local variables in shared libraries are initialized at load-time, | 
|  | // but this is not observed by MemorySanitizer if the loader itself was not | 
|  | // instrumented, leading to false-positive uninitialized variable errors. | 
|  | ASSERT(jit == nullptr); | 
|  | ASSERT(Variable::unmaterializedVariables == nullptr); | 
|  | #endif | 
|  |  | 
|  | jit = new JITBuilder(Nucleus::getDefaultConfig()); | 
|  | Variable::unmaterializedVariables = new Variable::UnmaterializedVariables(); | 
|  | } | 
|  |  | 
|  | Nucleus::~Nucleus() | 
|  | { | 
|  | delete Variable::unmaterializedVariables; | 
|  | Variable::unmaterializedVariables = nullptr; | 
|  |  | 
|  | delete jit; | 
|  | jit = nullptr; | 
|  | } | 
|  |  | 
|  | void Nucleus::setDefaultConfig(const Config &cfg) | 
|  | { | 
|  | std::unique_lock<std::mutex> lock(::defaultConfigLock); | 
|  | ::defaultConfig() = cfg; | 
|  | } | 
|  |  | 
|  | void Nucleus::adjustDefaultConfig(const Config::Edit &cfgEdit) | 
|  | { | 
|  | std::unique_lock<std::mutex> lock(::defaultConfigLock); | 
|  | auto &config = ::defaultConfig(); | 
|  | config = cfgEdit.apply(config); | 
|  | } | 
|  |  | 
|  | Config Nucleus::getDefaultConfig() | 
|  | { | 
|  | std::unique_lock<std::mutex> lock(::defaultConfigLock); | 
|  | return ::defaultConfig(); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<Routine> Nucleus::acquireRoutine(const char *name, const Config::Edit *cfgEdit /* = nullptr */) | 
|  | { | 
|  | if(jit->builder->GetInsertBlock()->empty() || !jit->builder->GetInsertBlock()->back().isTerminator()) | 
|  | { | 
|  | llvm::Type *type = jit->function->getReturnType(); | 
|  |  | 
|  | if(type->isVoidTy()) | 
|  | { | 
|  | createRetVoid(); | 
|  | } | 
|  | else | 
|  | { | 
|  | createRet(V(llvm::UndefValue::get(type))); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::shared_ptr<Routine> routine; | 
|  |  | 
|  | auto acquire = [&](rr::JITBuilder *jit) { | 
|  | // ::jit is thread-local, so when this is executed on a separate thread (see JIT_IN_SEPARATE_THREAD) | 
|  | // it needs to only use the jit variable passed in as an argument. | 
|  |  | 
|  | Config cfg = jit->config; | 
|  | if(cfgEdit) | 
|  | { | 
|  | cfg = cfgEdit->apply(jit->config); | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_RR_DEBUG_INFO | 
|  | if(jit->debugInfo != nullptr) | 
|  | { | 
|  | jit->debugInfo->Finalize(); | 
|  | } | 
|  | #endif  // ENABLE_RR_DEBUG_INFO | 
|  |  | 
|  | if(false) | 
|  | { | 
|  | std::error_code error; | 
|  | llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-unopt.txt", error); | 
|  | jit->module->print(file, 0); | 
|  | } | 
|  |  | 
|  | #if defined(ENABLE_RR_LLVM_IR_VERIFICATION) || !defined(NDEBUG) | 
|  | { | 
|  | llvm::legacy::PassManager pm; | 
|  | pm.add(llvm::createVerifierPass()); | 
|  | pm.run(*jit->module); | 
|  | } | 
|  | #endif  // defined(ENABLE_RR_LLVM_IR_VERIFICATION) || !defined(NDEBUG) | 
|  |  | 
|  | jit->optimize(cfg); | 
|  |  | 
|  | if(false) | 
|  | { | 
|  | std::error_code error; | 
|  | llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-opt.txt", error); | 
|  | jit->module->print(file, 0); | 
|  | } | 
|  |  | 
|  | routine = jit->acquireRoutine(name, &jit->function, 1, cfg); | 
|  | }; | 
|  |  | 
|  | #ifdef JIT_IN_SEPARATE_THREAD | 
|  | // Perform optimizations and codegen in a separate thread to avoid stack overflow. | 
|  | // FIXME(b/149829034): This is not a long-term solution. Reactor has no control | 
|  | // over the threading and stack sizes of its users, so this should be addressed | 
|  | // at a higher level instead. | 
|  | std::thread thread(acquire, jit); | 
|  | thread.join(); | 
|  | #else | 
|  | acquire(jit); | 
|  | #endif | 
|  |  | 
|  | return routine; | 
|  | } | 
|  |  | 
|  | Value *Nucleus::allocateStackVariable(Type *type, int arraySize) | 
|  | { | 
|  | // Need to allocate it in the entry block for mem2reg to work | 
|  | llvm::BasicBlock &entryBlock = jit->function->getEntryBlock(); | 
|  |  | 
|  | llvm::Instruction *declaration; | 
|  |  | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | auto align = jit->module->getDataLayout().getPrefTypeAlign(T(type)); | 
|  | #else | 
|  | auto align = llvm::MaybeAlign(jit->module->getDataLayout().getPrefTypeAlignment(T(type))); | 
|  | #endif | 
|  |  | 
|  | if(arraySize) | 
|  | { | 
|  | Value *size = (sizeof(size_t) == 8) ? Nucleus::createConstantLong(arraySize) : Nucleus::createConstantInt(arraySize); | 
|  | declaration = new llvm::AllocaInst(T(type), 0, V(size), align); | 
|  | } | 
|  | else | 
|  | { | 
|  | declaration = new llvm::AllocaInst(T(type), 0, (llvm::Value *)nullptr, align); | 
|  | } | 
|  |  | 
|  | entryBlock.getInstList().push_front(declaration); | 
|  |  | 
|  | return V(declaration); | 
|  | } | 
|  |  | 
|  | BasicBlock *Nucleus::createBasicBlock() | 
|  | { | 
|  | return B(llvm::BasicBlock::Create(*jit->context, "", jit->function)); | 
|  | } | 
|  |  | 
|  | BasicBlock *Nucleus::getInsertBlock() | 
|  | { | 
|  | return B(jit->builder->GetInsertBlock()); | 
|  | } | 
|  |  | 
|  | void Nucleus::setInsertBlock(BasicBlock *basicBlock) | 
|  | { | 
|  | // assert(jit->builder->GetInsertBlock()->back().isTerminator()); | 
|  |  | 
|  | jit->builder->SetInsertPoint(B(basicBlock)); | 
|  | } | 
|  |  | 
|  | void Nucleus::createFunction(Type *ReturnType, const std::vector<Type *> &Params) | 
|  | { | 
|  | jit->function = rr::createFunction("", T(ReturnType), T(Params)); | 
|  |  | 
|  | #ifdef ENABLE_RR_DEBUG_INFO | 
|  | jit->debugInfo = std::make_unique<DebugInfo>(jit->builder.get(), jit->context.get(), jit->module.get(), jit->function); | 
|  | #endif  // ENABLE_RR_DEBUG_INFO | 
|  |  | 
|  | jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "", jit->function)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::getArgument(unsigned int index) | 
|  | { | 
|  | llvm::Function::arg_iterator args = jit->function->arg_begin(); | 
|  |  | 
|  | while(index) | 
|  | { | 
|  | args++; | 
|  | index--; | 
|  | } | 
|  |  | 
|  | return V(&*args); | 
|  | } | 
|  |  | 
|  | void Nucleus::createRetVoid() | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  |  | 
|  | ASSERT_MSG(jit->function->getReturnType() == T(Void::type()), "Return type mismatch"); | 
|  |  | 
|  | // Code generated after this point is unreachable, so any variables | 
|  | // being read can safely return an undefined value. We have to avoid | 
|  | // materializing variables after the terminator ret instruction. | 
|  | Variable::killUnmaterialized(); | 
|  |  | 
|  | jit->builder->CreateRetVoid(); | 
|  | } | 
|  |  | 
|  | void Nucleus::createRet(Value *v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  |  | 
|  | ASSERT_MSG(jit->function->getReturnType() == V(v)->getType(), "Return type mismatch"); | 
|  |  | 
|  | // Code generated after this point is unreachable, so any variables | 
|  | // being read can safely return an undefined value. We have to avoid | 
|  | // materializing variables after the terminator ret instruction. | 
|  | Variable::killUnmaterialized(); | 
|  |  | 
|  | jit->builder->CreateRet(V(v)); | 
|  | } | 
|  |  | 
|  | void Nucleus::createBr(BasicBlock *dest) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Variable::materializeAll(); | 
|  |  | 
|  | jit->builder->CreateBr(B(dest)); | 
|  | } | 
|  |  | 
|  | void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Variable::materializeAll(); | 
|  | jit->builder->CreateCondBr(V(cond), B(ifTrue), B(ifFalse)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAdd(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAdd(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createSub(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateSub(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createMul(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateMul(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createUDiv(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateUDiv(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createSDiv(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateSDiv(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFAdd(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFAdd(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFSub(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFSub(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFMul(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFMul(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFDiv(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFDiv(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createURem(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateURem(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createSRem(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateSRem(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFRem(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFRem(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs) | 
|  | { | 
|  | return RValue<Float4>(Nucleus::createFRem(lhs.value(), rhs.value())); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createShl(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateShl(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createLShr(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateLShr(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAShr(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAShr(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAnd(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAnd(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createOr(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateOr(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createXor(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateXor(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createNeg(Value *v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateNeg(V(v))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFNeg(Value *v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFNeg(V(v))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createNot(Value *v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateNot(V(v))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int alignment, bool atomic, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | switch(asInternalType(type)) | 
|  | { | 
|  | case Type_v2i32: | 
|  | case Type_v4i16: | 
|  | case Type_v8i8: | 
|  | case Type_v2f32: | 
|  | return createBitCast( | 
|  | createInsertElement( | 
|  | V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::type()), 2, false))), | 
|  | createLoad(createBitCast(ptr, Pointer<Long>::type()), Long::type(), isVolatile, alignment, atomic, memoryOrder), | 
|  | 0), | 
|  | type); | 
|  | case Type_v2i16: | 
|  | case Type_v4i8: | 
|  | if(alignment != 0)  // Not a local variable (all vectors are 128-bit). | 
|  | { | 
|  | Value *u = V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::type()), 2, false))); | 
|  | Value *i = createLoad(createBitCast(ptr, Pointer<Int>::type()), Int::type(), isVolatile, alignment, atomic, memoryOrder); | 
|  | i = createZExt(i, Long::type()); | 
|  | Value *v = createInsertElement(u, i, 0); | 
|  | return createBitCast(v, type); | 
|  | } | 
|  | // Fallthrough to non-emulated case. | 
|  | case Type_LLVM: | 
|  | { | 
|  | auto elTy = T(type); | 
|  | ASSERT(V(ptr)->getType()->getContainedType(0) == elTy); | 
|  |  | 
|  | if(!atomic) | 
|  | { | 
|  | return V(jit->builder->CreateAlignedLoad(elTy, V(ptr), llvm::MaybeAlign(alignment), isVolatile)); | 
|  | } | 
|  | else if(elTy->isIntegerTy() || elTy->isPointerTy()) | 
|  | { | 
|  | // Integers and pointers can be atomically loaded by setting | 
|  | // the ordering constraint on the load instruction. | 
|  | auto load = jit->builder->CreateAlignedLoad(elTy, V(ptr), llvm::MaybeAlign(alignment), isVolatile); | 
|  | load->setAtomic(atomicOrdering(atomic, memoryOrder)); | 
|  | return V(load); | 
|  | } | 
|  | else if(elTy->isFloatTy() || elTy->isDoubleTy()) | 
|  | { | 
|  | // LLVM claims to support atomic loads of float types as | 
|  | // above, but certain backends cannot deal with this. | 
|  | // Load as an integer and bitcast. See b/136037244. | 
|  | auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); | 
|  | auto elAsIntTy = llvm::IntegerType::get(*jit->context, size * 8); | 
|  | auto ptrCast = jit->builder->CreatePointerCast(V(ptr), elAsIntTy->getPointerTo()); | 
|  | auto load = jit->builder->CreateAlignedLoad(elAsIntTy, ptrCast, llvm::MaybeAlign(alignment), isVolatile); | 
|  | load->setAtomic(atomicOrdering(atomic, memoryOrder)); | 
|  | auto loadCast = jit->builder->CreateBitCast(load, elTy); | 
|  | return V(loadCast); | 
|  | } | 
|  | else | 
|  | { | 
|  | // More exotic types require falling back to the extern: | 
|  | // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) | 
|  | auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); | 
|  | auto intTy = llvm::IntegerType::get(*jit->context, sizeof(int) * 8); | 
|  | auto i8Ty = llvm::Type::getInt8Ty(*jit->context); | 
|  | auto i8PtrTy = i8Ty->getPointerTo(); | 
|  | auto voidTy = llvm::Type::getVoidTy(*jit->context); | 
|  | auto funcTy = llvm::FunctionType::get(voidTy, { sizetTy, i8PtrTy, i8PtrTy, intTy }, false); | 
|  | auto func = jit->module->getOrInsertFunction("__atomic_load", funcTy); | 
|  | auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); | 
|  | auto out = allocateStackVariable(type); | 
|  | jit->builder->CreateCall(func, { | 
|  | llvm::ConstantInt::get(sizetTy, size), | 
|  | jit->builder->CreatePointerCast(V(ptr), i8PtrTy), | 
|  | jit->builder->CreatePointerCast(V(out), i8PtrTy), | 
|  | llvm::ConstantInt::get(intTy, uint64_t(atomicOrdering(true, memoryOrder))), | 
|  | }); | 
|  | return V(jit->builder->CreateLoad(T(type), V(out))); | 
|  | } | 
|  | } | 
|  | default: | 
|  | UNREACHABLE("asInternalType(type): %d", int(asInternalType(type))); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int alignment, bool atomic, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | switch(asInternalType(type)) | 
|  | { | 
|  | case Type_v2i32: | 
|  | case Type_v4i16: | 
|  | case Type_v8i8: | 
|  | case Type_v2f32: | 
|  | createStore( | 
|  | createExtractElement( | 
|  | createBitCast(value, T(llvm::VectorType::get(T(Long::type()), 2, false))), Long::type(), 0), | 
|  | createBitCast(ptr, Pointer<Long>::type()), | 
|  | Long::type(), isVolatile, alignment, atomic, memoryOrder); | 
|  | return value; | 
|  | case Type_v2i16: | 
|  | case Type_v4i8: | 
|  | if(alignment != 0)  // Not a local variable (all vectors are 128-bit). | 
|  | { | 
|  | createStore( | 
|  | createExtractElement(createBitCast(value, Int4::type()), Int::type(), 0), | 
|  | createBitCast(ptr, Pointer<Int>::type()), | 
|  | Int::type(), isVolatile, alignment, atomic, memoryOrder); | 
|  | return value; | 
|  | } | 
|  | // Fallthrough to non-emulated case. | 
|  | case Type_LLVM: | 
|  | { | 
|  | auto elTy = T(type); | 
|  | ASSERT(V(ptr)->getType()->getContainedType(0) == elTy); | 
|  |  | 
|  | if(__has_feature(memory_sanitizer) && !jit->msanInstrumentation) | 
|  | { | 
|  | // Mark all memory writes as initialized by calling __msan_unpoison | 
|  | // void __msan_unpoison(const volatile void *a, size_t size) | 
|  | auto voidTy = llvm::Type::getVoidTy(*jit->context); | 
|  | auto i8Ty = llvm::Type::getInt8Ty(*jit->context); | 
|  | auto voidPtrTy = i8Ty->getPointerTo(); | 
|  | auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); | 
|  | auto funcTy = llvm::FunctionType::get(voidTy, { voidPtrTy, sizetTy }, false); | 
|  | auto func = jit->module->getOrInsertFunction("__msan_unpoison", funcTy); | 
|  | auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); | 
|  |  | 
|  | jit->builder->CreateCall(func, { jit->builder->CreatePointerCast(V(ptr), voidPtrTy), | 
|  | llvm::ConstantInt::get(sizetTy, size) }); | 
|  | } | 
|  |  | 
|  | if(!atomic) | 
|  | { | 
|  | jit->builder->CreateAlignedStore(V(value), V(ptr), llvm::MaybeAlign(alignment), isVolatile); | 
|  | } | 
|  | else if(elTy->isIntegerTy() || elTy->isPointerTy()) | 
|  | { | 
|  | // Integers and pointers can be atomically stored by setting | 
|  | // the ordering constraint on the store instruction. | 
|  | auto store = jit->builder->CreateAlignedStore(V(value), V(ptr), llvm::MaybeAlign(alignment), isVolatile); | 
|  | store->setAtomic(atomicOrdering(atomic, memoryOrder)); | 
|  | } | 
|  | else if(elTy->isFloatTy() || elTy->isDoubleTy()) | 
|  | { | 
|  | // LLVM claims to support atomic stores of float types as | 
|  | // above, but certain backends cannot deal with this. | 
|  | // Store as an bitcast integer. See b/136037244. | 
|  | auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); | 
|  | auto elAsIntTy = llvm::IntegerType::get(*jit->context, size * 8); | 
|  | auto valCast = jit->builder->CreateBitCast(V(value), elAsIntTy); | 
|  | auto ptrCast = jit->builder->CreatePointerCast(V(ptr), elAsIntTy->getPointerTo()); | 
|  | auto store = jit->builder->CreateAlignedStore(valCast, ptrCast, llvm::MaybeAlign(alignment), isVolatile); | 
|  | store->setAtomic(atomicOrdering(atomic, memoryOrder)); | 
|  | } | 
|  | else | 
|  | { | 
|  | // More exotic types require falling back to the extern: | 
|  | // void __atomic_store(size_t size, void *ptr, void *val, int ordering) | 
|  | auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); | 
|  | auto intTy = llvm::IntegerType::get(*jit->context, sizeof(int) * 8); | 
|  | auto i8Ty = llvm::Type::getInt8Ty(*jit->context); | 
|  | auto i8PtrTy = i8Ty->getPointerTo(); | 
|  | auto voidTy = llvm::Type::getVoidTy(*jit->context); | 
|  | auto funcTy = llvm::FunctionType::get(voidTy, { sizetTy, i8PtrTy, i8PtrTy, intTy }, false); | 
|  | auto func = jit->module->getOrInsertFunction("__atomic_store", funcTy); | 
|  | auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); | 
|  | auto copy = allocateStackVariable(type); | 
|  | jit->builder->CreateStore(V(value), V(copy)); | 
|  | jit->builder->CreateCall(func, { | 
|  | llvm::ConstantInt::get(sizetTy, size), | 
|  | jit->builder->CreatePointerCast(V(ptr), i8PtrTy), | 
|  | jit->builder->CreatePointerCast(V(copy), i8PtrTy), | 
|  | llvm::ConstantInt::get(intTy, uint64_t(atomicOrdering(true, memoryOrder))), | 
|  | }); | 
|  | } | 
|  |  | 
|  | return value; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE("asInternalType(type): %d", int(asInternalType(type))); | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createMaskedLoad(Value *ptr, Type *elTy, Value *mask, unsigned int alignment, bool zeroMaskedLanes) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  |  | 
|  | ASSERT(V(ptr)->getType()->isPointerTy()); | 
|  | ASSERT(V(mask)->getType()->isVectorTy()); | 
|  |  | 
|  | auto numEls = llvm::cast<llvm::FixedVectorType>(V(mask)->getType())->getNumElements(); | 
|  | auto i1Ty = llvm::Type::getInt1Ty(*jit->context); | 
|  | auto i32Ty = llvm::Type::getInt32Ty(*jit->context); | 
|  | auto elVecTy = llvm::VectorType::get(T(elTy), numEls, false); | 
|  | auto elVecPtrTy = elVecTy->getPointerTo(); | 
|  | auto i8Mask = jit->builder->CreateIntCast(V(mask), llvm::VectorType::get(i1Ty, numEls, false), false);  // vec<int, int, ...> -> vec<bool, bool, ...> | 
|  | auto passthrough = zeroMaskedLanes ? llvm::Constant::getNullValue(elVecTy) : llvm::UndefValue::get(elVecTy); | 
|  | auto align = llvm::ConstantInt::get(i32Ty, alignment); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::masked_load, { elVecTy, elVecPtrTy }); | 
|  | return V(jit->builder->CreateCall(func, { V(ptr), align, i8Mask, passthrough })); | 
|  | } | 
|  |  | 
|  | void Nucleus::createMaskedStore(Value *ptr, Value *val, Value *mask, unsigned int alignment) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  |  | 
|  | ASSERT(V(ptr)->getType()->isPointerTy()); | 
|  | ASSERT(V(val)->getType()->isVectorTy()); | 
|  | ASSERT(V(mask)->getType()->isVectorTy()); | 
|  |  | 
|  | auto numEls = llvm::cast<llvm::FixedVectorType>(V(mask)->getType())->getNumElements(); | 
|  | auto i1Ty = llvm::Type::getInt1Ty(*jit->context); | 
|  | auto i32Ty = llvm::Type::getInt32Ty(*jit->context); | 
|  | auto elVecTy = V(val)->getType(); | 
|  | auto elVecPtrTy = elVecTy->getPointerTo(); | 
|  | auto i1Mask = jit->builder->CreateIntCast(V(mask), llvm::VectorType::get(i1Ty, numEls, false), false);  // vec<int, int, ...> -> vec<bool, bool, ...> | 
|  | auto align = llvm::ConstantInt::get(i32Ty, alignment); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::masked_store, { elVecTy, elVecPtrTy }); | 
|  | jit->builder->CreateCall(func, { V(val), V(ptr), align, i1Mask }); | 
|  |  | 
|  | if(__has_feature(memory_sanitizer) && !jit->msanInstrumentation) | 
|  | { | 
|  | // Mark memory writes as initialized by calling __msan_unpoison | 
|  | // void __msan_unpoison(const volatile void *a, size_t size) | 
|  | auto voidTy = llvm::Type::getVoidTy(*jit->context); | 
|  | auto voidPtrTy = voidTy->getPointerTo(); | 
|  | auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); | 
|  | auto funcTy = llvm::FunctionType::get(voidTy, { voidPtrTy, sizetTy }, false); | 
|  | auto func = jit->module->getOrInsertFunction("__msan_unpoison", funcTy); | 
|  | auto size = jit->module->getDataLayout().getTypeStoreSize(llvm::cast<llvm::VectorType>(elVecTy)->getElementType()); | 
|  |  | 
|  | for(unsigned i = 0; i < numEls; i++) | 
|  | { | 
|  | // Check mask for this element | 
|  | auto idx = llvm::ConstantInt::get(i32Ty, i); | 
|  | auto thenBlock = llvm::BasicBlock::Create(*jit->context, "", jit->function); | 
|  | auto mergeBlock = llvm::BasicBlock::Create(*jit->context, "", jit->function); | 
|  | jit->builder->CreateCondBr(jit->builder->CreateExtractElement(i1Mask, idx), thenBlock, mergeBlock); | 
|  | jit->builder->SetInsertPoint(thenBlock); | 
|  |  | 
|  | // Insert __msan_unpoison call in conditional block | 
|  | auto elPtr = jit->builder->CreateGEP(elVecTy, V(ptr), idx); | 
|  | jit->builder->CreateCall(func, { jit->builder->CreatePointerCast(elPtr, voidPtrTy), | 
|  | llvm::ConstantInt::get(sizetTy, size) }); | 
|  |  | 
|  | jit->builder->CreateBr(mergeBlock); | 
|  | jit->builder->SetInsertPoint(mergeBlock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static llvm::Value *createGather(llvm::Value *base, llvm::Type *elTy, llvm::Value *offsets, llvm::Value *mask, unsigned int alignment, bool zeroMaskedLanes) | 
|  | { | 
|  | ASSERT(base->getType()->isPointerTy()); | 
|  | ASSERT(offsets->getType()->isVectorTy()); | 
|  | ASSERT(mask->getType()->isVectorTy()); | 
|  |  | 
|  | auto numEls = llvm::cast<llvm::FixedVectorType>(mask->getType())->getNumElements(); | 
|  | auto i1Ty = llvm::Type::getInt1Ty(*jit->context); | 
|  | auto i32Ty = llvm::Type::getInt32Ty(*jit->context); | 
|  | auto i8Ty = llvm::Type::getInt8Ty(*jit->context); | 
|  | auto i8PtrTy = i8Ty->getPointerTo(); | 
|  | auto elPtrTy = elTy->getPointerTo(); | 
|  | auto elVecTy = llvm::VectorType::get(elTy, numEls, false); | 
|  | auto elPtrVecTy = llvm::VectorType::get(elPtrTy, numEls, false); | 
|  | auto i8Base = jit->builder->CreatePointerCast(base, i8PtrTy); | 
|  | auto i8Ptrs = jit->builder->CreateGEP(i8Ty, i8Base, offsets); | 
|  | auto elPtrs = jit->builder->CreatePointerCast(i8Ptrs, elPtrVecTy); | 
|  | auto i1Mask = jit->builder->CreateIntCast(mask, llvm::VectorType::get(i1Ty, numEls, false), false);  // vec<int, int, ...> -> vec<bool, bool, ...> | 
|  | auto passthrough = zeroMaskedLanes ? llvm::Constant::getNullValue(elVecTy) : llvm::UndefValue::get(elVecTy); | 
|  |  | 
|  | if(!__has_feature(memory_sanitizer)) | 
|  | { | 
|  | auto align = llvm::ConstantInt::get(i32Ty, alignment); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::masked_gather, { elVecTy, elPtrVecTy }); | 
|  | return jit->builder->CreateCall(func, { elPtrs, align, i1Mask, passthrough }); | 
|  | } | 
|  | else  // __has_feature(memory_sanitizer) | 
|  | { | 
|  | // MemorySanitizer currently does not support instrumenting llvm::Intrinsic::masked_gather | 
|  | // Work around it by emulating gather with element-wise loads. | 
|  | // TODO(b/172238865): Remove when supported by MemorySanitizer. | 
|  |  | 
|  | Value *result = Nucleus::allocateStackVariable(T(elVecTy)); | 
|  | Nucleus::createStore(V(passthrough), result, T(elVecTy)); | 
|  |  | 
|  | for(unsigned i = 0; i < numEls; i++) | 
|  | { | 
|  | // Check mask for this element | 
|  | Value *elementMask = Nucleus::createExtractElement(V(i1Mask), T(i1Ty), i); | 
|  |  | 
|  | If(RValue<Bool>(elementMask)) | 
|  | { | 
|  | Value *elPtr = Nucleus::createExtractElement(V(elPtrs), T(elPtrTy), i); | 
|  | Value *el = Nucleus::createLoad(elPtr, T(elTy), /*isVolatile */ false, alignment, /* atomic */ false, std::memory_order_relaxed); | 
|  |  | 
|  | Value *v = Nucleus::createLoad(result, T(elVecTy)); | 
|  | v = Nucleus::createInsertElement(v, el, i); | 
|  | Nucleus::createStore(v, result, T(elVecTy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return V(Nucleus::createLoad(result, T(elVecTy))); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue<Float4> Gather(RValue<Pointer<Float>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */) | 
|  | { | 
|  | return As<Float4>(V(createGather(V(base.value()), T(Float::type()), V(offsets.value()), V(mask.value()), alignment, zeroMaskedLanes))); | 
|  | } | 
|  |  | 
|  | RValue<Int4> Gather(RValue<Pointer<Int>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */) | 
|  | { | 
|  | return As<Int4>(V(createGather(V(base.value()), T(Int::type()), V(offsets.value()), V(mask.value()), alignment, zeroMaskedLanes))); | 
|  | } | 
|  |  | 
|  | static void createScatter(llvm::Value *base, llvm::Value *val, llvm::Value *offsets, llvm::Value *mask, unsigned int alignment) | 
|  | { | 
|  | ASSERT(base->getType()->isPointerTy()); | 
|  | ASSERT(val->getType()->isVectorTy()); | 
|  | ASSERT(offsets->getType()->isVectorTy()); | 
|  | ASSERT(mask->getType()->isVectorTy()); | 
|  |  | 
|  | auto numEls = llvm::cast<llvm::FixedVectorType>(mask->getType())->getNumElements(); | 
|  | auto i1Ty = llvm::Type::getInt1Ty(*jit->context); | 
|  | auto i32Ty = llvm::Type::getInt32Ty(*jit->context); | 
|  | auto i8Ty = llvm::Type::getInt8Ty(*jit->context); | 
|  | auto i8PtrTy = i8Ty->getPointerTo(); | 
|  | auto elVecTy = val->getType(); | 
|  | auto elTy = llvm::cast<llvm::VectorType>(elVecTy)->getElementType(); | 
|  | auto elPtrTy = elTy->getPointerTo(); | 
|  | auto elPtrVecTy = llvm::VectorType::get(elPtrTy, numEls, false); | 
|  |  | 
|  | auto i8Base = jit->builder->CreatePointerCast(base, i8PtrTy); | 
|  | auto i8Ptrs = jit->builder->CreateGEP(i8Ty, i8Base, offsets); | 
|  | auto elPtrs = jit->builder->CreatePointerCast(i8Ptrs, elPtrVecTy); | 
|  | auto i1Mask = jit->builder->CreateIntCast(mask, llvm::VectorType::get(i1Ty, numEls, false), false);  // vec<int, int, ...> -> vec<bool, bool, ...> | 
|  |  | 
|  | if(!__has_feature(memory_sanitizer)) | 
|  | { | 
|  | auto align = llvm::ConstantInt::get(i32Ty, alignment); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::masked_scatter, { elVecTy, elPtrVecTy }); | 
|  | jit->builder->CreateCall(func, { val, elPtrs, align, i1Mask }); | 
|  | } | 
|  | else  // __has_feature(memory_sanitizer) | 
|  | { | 
|  | // MemorySanitizer currently does not support instrumenting llvm::Intrinsic::masked_scatter | 
|  | // Work around it by emulating scatter with element-wise stores. | 
|  | // TODO(b/172238865): Remove when supported by MemorySanitizer. | 
|  |  | 
|  | for(unsigned i = 0; i < numEls; i++) | 
|  | { | 
|  | // Check mask for this element | 
|  | auto idx = llvm::ConstantInt::get(i32Ty, i); | 
|  | auto thenBlock = llvm::BasicBlock::Create(*jit->context, "", jit->function); | 
|  | auto mergeBlock = llvm::BasicBlock::Create(*jit->context, "", jit->function); | 
|  | jit->builder->CreateCondBr(jit->builder->CreateExtractElement(i1Mask, idx), thenBlock, mergeBlock); | 
|  | jit->builder->SetInsertPoint(thenBlock); | 
|  |  | 
|  | auto el = jit->builder->CreateExtractElement(val, idx); | 
|  | auto elPtr = jit->builder->CreateExtractElement(elPtrs, idx); | 
|  | Nucleus::createStore(V(el), V(elPtr), T(elTy), /*isVolatile */ false, alignment, /* atomic */ false, std::memory_order_relaxed); | 
|  |  | 
|  | jit->builder->CreateBr(mergeBlock); | 
|  | jit->builder->SetInsertPoint(mergeBlock); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scatter(RValue<Pointer<Float>> base, RValue<Float4> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment) | 
|  | { | 
|  | return createScatter(V(base.value()), V(val.value()), V(offsets.value()), V(mask.value()), alignment); | 
|  | } | 
|  |  | 
|  | void Scatter(RValue<Pointer<Int>> base, RValue<Int4> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment) | 
|  | { | 
|  | return createScatter(V(base.value()), V(val.value()), V(offsets.value()), V(mask.value()), alignment); | 
|  | } | 
|  |  | 
|  | void Nucleus::createFence(std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | jit->builder->CreateFence(atomicOrdering(true, memoryOrder)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | ASSERT(V(ptr)->getType()->getContainedType(0) == T(type)); | 
|  | if(sizeof(void *) == 8) | 
|  | { | 
|  | // LLVM manual: "When indexing into an array, pointer or vector, | 
|  | // integers of any width are allowed, and they are not required to | 
|  | // be constant. These integers are treated as signed values where | 
|  | // relevant." | 
|  | // | 
|  | // Thus if we want indexes to be treated as unsigned we have to | 
|  | // zero-extend them ourselves. | 
|  | // | 
|  | // Note that this is not because we want to address anywhere near | 
|  | // 4 GB of data. Instead this is important for performance because | 
|  | // x86 supports automatic zero-extending of 32-bit registers to | 
|  | // 64-bit. Thus when indexing into an array using a uint32 is | 
|  | // actually faster than an int32. | 
|  | index = unsignedIndex ? createZExt(index, Long::type()) : createSExt(index, Long::type()); | 
|  | } | 
|  |  | 
|  | // For non-emulated types we can rely on LLVM's GEP to calculate the | 
|  | // effective address correctly. | 
|  | if(asInternalType(type) == Type_LLVM) | 
|  | { | 
|  | return V(jit->builder->CreateGEP(T(type), V(ptr), V(index))); | 
|  | } | 
|  |  | 
|  | // For emulated types we have to multiply the index by the intended | 
|  | // type size ourselves to obain the byte offset. | 
|  | index = (sizeof(void *) == 8) ? createMul(index, createConstantLong((int64_t)typeSize(type))) : createMul(index, createConstantInt((int)typeSize(type))); | 
|  |  | 
|  | // Cast to a byte pointer, apply the byte offset, and cast back to the | 
|  | // original pointer type. | 
|  | return createBitCast( | 
|  | V(jit->builder->CreateGEP(T(Byte::type()), V(createBitCast(ptr, T(llvm::PointerType::get(T(Byte::type()), 0)))), V(index))), | 
|  | T(llvm::PointerType::get(T(type), 0))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicAdd(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Add, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicSub(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Sub, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicAnd(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::And, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicOr(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Or, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicXor(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Xor, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicMin(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Min, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicMax(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Max, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicUMin(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::UMin, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicUMax(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::UMax, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicExchange(Value *ptr, Value *value, std::memory_order memoryOrder) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, V(ptr), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrder))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createAtomicCompareExchange(Value *ptr, Value *value, Value *compare, std::memory_order memoryOrderEqual, std::memory_order memoryOrderUnequal) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | // Note: AtomicCmpXchgInstruction returns a 2-member struct containing {result, success-flag}, not the result directly. | 
|  | return V(jit->builder->CreateExtractValue( | 
|  | jit->builder->CreateAtomicCmpXchg(V(ptr), V(compare), V(value), | 
|  | #if LLVM_VERSION_MAJOR >= 11 | 
|  | llvm::MaybeAlign(), | 
|  | #endif | 
|  | atomicOrdering(true, memoryOrderEqual), | 
|  | atomicOrdering(true, memoryOrderUnequal)), | 
|  | llvm::ArrayRef<unsigned>(0u))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createTrunc(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateTrunc(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createZExt(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateZExt(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createSExt(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateSExt(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFPToUI(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFPToUI(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFPToSI(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFPToSI(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createSIToFP(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateSIToFP(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFPTrunc(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFPTrunc(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFPExt(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFPExt(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createBitCast(Value *v, Type *destType) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | // Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need | 
|  | // support for casting between scalars and wide vectors. Emulate them by writing to the stack and | 
|  | // reading back as the destination type. | 
|  | if(!V(v)->getType()->isVectorTy() && T(destType)->isVectorTy()) | 
|  | { | 
|  | Value *readAddress = allocateStackVariable(destType); | 
|  | Value *writeAddress = createBitCast(readAddress, T(llvm::PointerType::get(V(v)->getType(), 0))); | 
|  | createStore(v, writeAddress, T(V(v)->getType())); | 
|  | return createLoad(readAddress, destType); | 
|  | } | 
|  | else if(V(v)->getType()->isVectorTy() && !T(destType)->isVectorTy()) | 
|  | { | 
|  | Value *writeAddress = allocateStackVariable(T(V(v)->getType())); | 
|  | createStore(v, writeAddress, T(V(v)->getType())); | 
|  | Value *readAddress = createBitCast(writeAddress, T(llvm::PointerType::get(T(destType), 0))); | 
|  | return createLoad(readAddress, destType); | 
|  | } | 
|  |  | 
|  | return V(jit->builder->CreateBitCast(V(v), T(destType))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpEQ(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpNE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpNE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpUGT(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpUGE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpULT(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpULT(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpULE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpULE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpSGT(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpSGE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpSLT(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateICmpSLE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpOEQ(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpOGT(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpOGE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpOLT(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpOLE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpONE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpORD(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpUNO(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpUEQ(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpUGT(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpUGE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpULT(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpULE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateFCmpUNE(V(lhs), V(rhs))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createExtractElement(Value *vector, Type *type, int index) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | ASSERT(V(vector)->getType()->getContainedType(0) == T(type)); | 
|  | return V(jit->builder->CreateExtractElement(V(vector), V(createConstantInt(index)))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createInsertElement(Value *vector, Value *element, int index) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateInsertElement(V(vector), V(element), V(createConstantInt(index)))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createShuffleVector(Value *v1, Value *v2, const int *select) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  |  | 
|  | int size = llvm::cast<llvm::FixedVectorType>(V(v1)->getType())->getNumElements(); | 
|  | llvm::SmallVector<int, 16> mask; | 
|  | for(int i = 0; i < size; i++) | 
|  | { | 
|  | mask.push_back(select[i]); | 
|  | } | 
|  |  | 
|  | return V(lowerShuffleVector(V(v1), V(v2), mask)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createSelect(Value *c, Value *ifTrue, Value *ifFalse) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(jit->builder->CreateSelect(V(c), V(ifTrue), V(ifFalse))); | 
|  | } | 
|  |  | 
|  | SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return reinterpret_cast<SwitchCases *>(jit->builder->CreateSwitch(V(control), B(defaultBranch), numCases)); | 
|  | } | 
|  |  | 
|  | void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | llvm::SwitchInst *sw = reinterpret_cast<llvm::SwitchInst *>(switchCases); | 
|  | sw->addCase(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*jit->context), label, true), B(branch)); | 
|  | } | 
|  |  | 
|  | void Nucleus::createUnreachable() | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | jit->builder->CreateUnreachable(); | 
|  | } | 
|  |  | 
|  | Type *Nucleus::getType(Value *value) | 
|  | { | 
|  | return T(V(value)->getType()); | 
|  | } | 
|  |  | 
|  | Type *Nucleus::getContainedType(Type *vectorType) | 
|  | { | 
|  | return T(T(vectorType)->getContainedType(0)); | 
|  | } | 
|  |  | 
|  | Type *Nucleus::getPointerType(Type *ElementType) | 
|  | { | 
|  | return T(llvm::PointerType::get(T(ElementType), 0)); | 
|  | } | 
|  |  | 
|  | static llvm::Type *getNaturalIntType() | 
|  | { | 
|  | return llvm::Type::getIntNTy(*jit->context, sizeof(int) * 8); | 
|  | } | 
|  |  | 
|  | Type *Nucleus::getPrintfStorageType(Type *valueType) | 
|  | { | 
|  | llvm::Type *valueTy = T(valueType); | 
|  | if(valueTy->isIntegerTy()) | 
|  | { | 
|  | return T(getNaturalIntType()); | 
|  | } | 
|  | if(valueTy->isFloatTy()) | 
|  | { | 
|  | return T(llvm::Type::getDoubleTy(*jit->context)); | 
|  | } | 
|  |  | 
|  | UNIMPLEMENTED_NO_BUG("getPrintfStorageType: add more cases as needed"); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createNullValue(Type *Ty) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::Constant::getNullValue(T(Ty))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantLong(int64_t i) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantInt::get(llvm::Type::getInt64Ty(*jit->context), i, true)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantInt(int i) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*jit->context), i, true)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantInt(unsigned int i) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*jit->context), i, false)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantBool(bool b) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantInt::get(llvm::Type::getInt1Ty(*jit->context), b)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantByte(signed char i) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*jit->context), i, true)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantByte(unsigned char i) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*jit->context), i, false)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantShort(short i) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*jit->context), i, true)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantShort(unsigned short i) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*jit->context), i, false)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantFloat(float x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantFP::get(T(Float::type()), x)); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createNullPointer(Type *Ty) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return V(llvm::ConstantPointerNull::get(llvm::PointerType::get(T(Ty), 0))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantVector(const int64_t *constants, Type *type) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | ASSERT(llvm::isa<llvm::VectorType>(T(type))); | 
|  | const int numConstants = elementCount(type);                                           // Number of provided constants for the (emulated) type. | 
|  | const int numElements = llvm::cast<llvm::FixedVectorType>(T(type))->getNumElements();  // Number of elements of the underlying vector type. | 
|  | ASSERT(numElements <= 16 && numConstants <= numElements); | 
|  | llvm::Constant *constantVector[16]; | 
|  |  | 
|  | for(int i = 0; i < numElements; i++) | 
|  | { | 
|  | constantVector[i] = llvm::ConstantInt::get(T(type)->getContainedType(0), constants[i % numConstants]); | 
|  | } | 
|  |  | 
|  | return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant *>(constantVector, numElements))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantVector(const double *constants, Type *type) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | ASSERT(llvm::isa<llvm::VectorType>(T(type))); | 
|  | const int numConstants = elementCount(type);                                           // Number of provided constants for the (emulated) type. | 
|  | const int numElements = llvm::cast<llvm::FixedVectorType>(T(type))->getNumElements();  // Number of elements of the underlying vector type. | 
|  | ASSERT(numElements <= 8 && numConstants <= numElements); | 
|  | llvm::Constant *constantVector[8]; | 
|  |  | 
|  | for(int i = 0; i < numElements; i++) | 
|  | { | 
|  | constantVector[i] = llvm::ConstantFP::get(T(type)->getContainedType(0), constants[i % numConstants]); | 
|  | } | 
|  |  | 
|  | return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant *>(constantVector, numElements))); | 
|  | } | 
|  |  | 
|  | Value *Nucleus::createConstantString(const char *v) | 
|  | { | 
|  | // NOTE: Do not call RR_DEBUG_INFO_UPDATE_LOC() here to avoid recursion when called from rr::Printv | 
|  | auto ptr = jit->builder->CreateGlobalStringPtr(v); | 
|  | return V(ptr); | 
|  | } | 
|  |  | 
|  | void Nucleus::setOptimizerCallback(OptimizerCallback *callback) | 
|  | { | 
|  | // The LLVM backend does not produce optimizer reports. | 
|  | (void)callback; | 
|  | } | 
|  |  | 
|  | Type *Void::type() | 
|  | { | 
|  | return T(llvm::Type::getVoidTy(*jit->context)); | 
|  | } | 
|  |  | 
|  | Type *Bool::type() | 
|  | { | 
|  | return T(llvm::Type::getInt1Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | Type *Byte::type() | 
|  | { | 
|  | return T(llvm::Type::getInt8Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | Type *SByte::type() | 
|  | { | 
|  | return T(llvm::Type::getInt8Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | Type *Short::type() | 
|  | { | 
|  | return T(llvm::Type::getInt16Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | Type *UShort::type() | 
|  | { | 
|  | return T(llvm::Type::getInt16Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | Type *Byte4::type() | 
|  | { | 
|  | return T(Type_v4i8); | 
|  | } | 
|  |  | 
|  | Type *SByte4::type() | 
|  | { | 
|  | return T(Type_v4i8); | 
|  | } | 
|  |  | 
|  | RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::paddusb(x, y); | 
|  | #else | 
|  | return As<Byte8>(V(lowerPUADDSAT(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psubusb(x, y); | 
|  | #else | 
|  | return As<Byte8>(V(lowerPUSUBSAT(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int> SignMask(RValue<Byte8> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmovmskb(x); | 
|  | #else | 
|  | return As<Int>(V(lowerSignMask(V(x.value()), T(Int::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | //	RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y) | 
|  | //	{ | 
|  | //#if defined(__i386__) || defined(__x86_64__) | 
|  | //		return x86::pcmpgtb(x, y);   // FIXME: Signedness | 
|  | //#else | 
|  | //		return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Byte8::type())))); | 
|  | //#endif | 
|  | //	} | 
|  |  | 
|  | RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pcmpeqb(x, y); | 
|  | #else | 
|  | return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Byte8::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *Byte8::type() | 
|  | { | 
|  | return T(Type_v8i8); | 
|  | } | 
|  |  | 
|  | RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::paddsb(x, y); | 
|  | #else | 
|  | return As<SByte8>(V(lowerPSADDSAT(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psubsb(x, y); | 
|  | #else | 
|  | return As<SByte8>(V(lowerPSSUBSAT(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int> SignMask(RValue<SByte8> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmovmskb(As<Byte8>(x)); | 
|  | #else | 
|  | return As<Int>(V(lowerSignMask(V(x.value()), T(Int::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pcmpgtb(x, y); | 
|  | #else | 
|  | return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Byte8::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pcmpeqb(As<Byte8>(x), As<Byte8>(y)); | 
|  | #else | 
|  | return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Byte8::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *SByte8::type() | 
|  | { | 
|  | return T(Type_v8i8); | 
|  | } | 
|  |  | 
|  | Type *Byte16::type() | 
|  | { | 
|  | return T(llvm::VectorType::get(T(Byte::type()), 16, false)); | 
|  | } | 
|  |  | 
|  | Type *SByte16::type() | 
|  | { | 
|  | return T(llvm::VectorType::get(T(SByte::type()), 16, false)); | 
|  | } | 
|  |  | 
|  | Type *Short2::type() | 
|  | { | 
|  | return T(Type_v2i16); | 
|  | } | 
|  |  | 
|  | Type *UShort2::type() | 
|  | { | 
|  | return T(Type_v2i16); | 
|  | } | 
|  |  | 
|  | Short4::Short4(RValue<Int4> cast) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | int select[8] = { 0, 2, 4, 6, 0, 2, 4, 6 }; | 
|  | Value *short8 = Nucleus::createBitCast(cast.value(), Short8::type()); | 
|  |  | 
|  | Value *packed = Nucleus::createShuffleVector(short8, short8, select); | 
|  | Value *short4 = As<Short4>(Int2(As<Int4>(packed))).value(); | 
|  |  | 
|  | storeValue(short4); | 
|  | } | 
|  |  | 
|  | //	Short4::Short4(RValue<Float> cast) | 
|  | //	{ | 
|  | //	} | 
|  |  | 
|  | Short4::Short4(RValue<Float4> cast) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Int4 v4i32 = Int4(cast); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | v4i32 = As<Int4>(x86::packssdw(v4i32, v4i32)); | 
|  | #else | 
|  | Value *v = v4i32.loadValue(); | 
|  | v4i32 = As<Int4>(V(lowerPack(V(v), V(v), true))); | 
|  | #endif | 
|  |  | 
|  | storeValue(As<Short4>(Int2(v4i32)).value()); | 
|  | } | 
|  |  | 
|  | RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | //	return RValue<Short4>(Nucleus::createShl(lhs.value(), rhs.value())); | 
|  |  | 
|  | return x86::psllw(lhs, rhs); | 
|  | #else | 
|  | return As<Short4>(V(lowerVectorShl(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psraw(lhs, rhs); | 
|  | #else | 
|  | return As<Short4>(V(lowerVectorAShr(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmaxsw(x, y); | 
|  | #else | 
|  | return RValue<Short4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SGT))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pminsw(x, y); | 
|  | #else | 
|  | return RValue<Short4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SLT))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::paddsw(x, y); | 
|  | #else | 
|  | return As<Short4>(V(lowerPSADDSAT(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psubsw(x, y); | 
|  | #else | 
|  | return As<Short4>(V(lowerPSSUBSAT(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmulhw(x, y); | 
|  | #else | 
|  | return As<Short4>(V(lowerMulHigh(V(x.value()), V(y.value()), true))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmaddwd(x, y); | 
|  | #else | 
|  | return As<Int2>(V(lowerMulAdd(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | auto result = x86::packsswb(x, y); | 
|  | #else | 
|  | auto result = V(lowerPack(V(x.value()), V(y.value()), true)); | 
|  | #endif | 
|  | return As<SByte8>(Swizzle(As<Int4>(result), 0x0202)); | 
|  | } | 
|  |  | 
|  | RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | auto result = x86::packuswb(x, y); | 
|  | #else | 
|  | auto result = V(lowerPack(V(x.value()), V(y.value()), false)); | 
|  | #endif | 
|  | return As<Byte8>(Swizzle(As<Int4>(result), 0x0202)); | 
|  | } | 
|  |  | 
|  | RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pcmpgtw(x, y); | 
|  | #else | 
|  | return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Short4::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pcmpeqw(x, y); | 
|  | #else | 
|  | return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Short4::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *Short4::type() | 
|  | { | 
|  | return T(Type_v4i16); | 
|  | } | 
|  |  | 
|  | UShort4::UShort4(RValue<Float4> cast, bool saturate) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | if(saturate) | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | Int4 int4(Min(cast, Float4(0xFFFF)));  // packusdw takes care of 0x0000 saturation | 
|  | *this = As<Short4>(PackUnsigned(int4, int4)); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | *this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000)))); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | *this = Short4(Int4(cast)); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | //	return RValue<Short4>(Nucleus::createShl(lhs.value(), rhs.value())); | 
|  |  | 
|  | return As<UShort4>(x86::psllw(As<Short4>(lhs), rhs)); | 
|  | #else | 
|  | return As<UShort4>(V(lowerVectorShl(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | //	return RValue<Short4>(Nucleus::createLShr(lhs.value(), rhs.value())); | 
|  |  | 
|  | return x86::psrlw(lhs, rhs); | 
|  | #else | 
|  | return As<UShort4>(V(lowerVectorLShr(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<UShort4>(Max(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)); | 
|  | } | 
|  |  | 
|  | RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<UShort4>(Min(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)); | 
|  | } | 
|  |  | 
|  | RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::paddusw(x, y); | 
|  | #else | 
|  | return As<UShort4>(V(lowerPUADDSAT(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psubusw(x, y); | 
|  | #else | 
|  | return As<UShort4>(V(lowerPUSUBSAT(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmulhuw(x, y); | 
|  | #else | 
|  | return As<UShort4>(V(lowerMulHigh(V(x.value()), V(y.value()), false))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pavgw(x, y); | 
|  | #else | 
|  | return As<UShort4>(V(lowerPAVG(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *UShort4::type() | 
|  | { | 
|  | return T(Type_v4i16); | 
|  | } | 
|  |  | 
|  | RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psllw(lhs, rhs); | 
|  | #else | 
|  | return As<Short8>(V(lowerVectorShl(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psraw(lhs, rhs); | 
|  | #else | 
|  | return As<Short8>(V(lowerVectorAShr(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmaddwd(x, y); | 
|  | #else | 
|  | return As<Int4>(V(lowerMulAdd(V(x.value()), V(y.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmulhw(x, y); | 
|  | #else | 
|  | return As<Short8>(V(lowerMulHigh(V(x.value()), V(y.value()), true))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *Short8::type() | 
|  | { | 
|  | return T(llvm::VectorType::get(T(Short::type()), 8, false)); | 
|  | } | 
|  |  | 
|  | RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return As<UShort8>(x86::psllw(As<Short8>(lhs), rhs)); | 
|  | #else | 
|  | return As<UShort8>(V(lowerVectorShl(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psrlw(lhs, rhs);  // FIXME: Fallback required | 
|  | #else | 
|  | return As<UShort8>(V(lowerVectorLShr(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pmulhuw(x, y); | 
|  | #else | 
|  | return As<UShort8>(V(lowerMulHigh(V(x.value()), V(y.value()), false))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *UShort8::type() | 
|  | { | 
|  | return T(llvm::VectorType::get(T(UShort::type()), 8, false)); | 
|  | } | 
|  |  | 
|  | RValue<Int> operator++(Int &val, int)  // Post-increment | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | RValue<Int> res = val; | 
|  |  | 
|  | Value *inc = Nucleus::createAdd(res.value(), Nucleus::createConstantInt(1)); | 
|  | val.storeValue(inc); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | const Int &operator++(Int &val)  // Pre-increment | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1)); | 
|  | val.storeValue(inc); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | RValue<Int> operator--(Int &val, int)  // Post-decrement | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | RValue<Int> res = val; | 
|  |  | 
|  | Value *inc = Nucleus::createSub(res.value(), Nucleus::createConstantInt(1)); | 
|  | val.storeValue(inc); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | const Int &operator--(Int &val)  // Pre-decrement | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1)); | 
|  | val.storeValue(inc); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | RValue<Int> RoundInt(RValue<Float> cast) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::cvtss2si(cast); | 
|  | #else | 
|  | return RValue<Int>(V(lowerRoundInt(V(cast.value()), T(Int::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *Int::type() | 
|  | { | 
|  | return T(llvm::Type::getInt32Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | Type *Long::type() | 
|  | { | 
|  | return T(llvm::Type::getInt64Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | UInt::UInt(RValue<Float> cast) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *integer = Nucleus::createFPToUI(cast.value(), UInt::type()); | 
|  | storeValue(integer); | 
|  | } | 
|  |  | 
|  | RValue<UInt> operator++(UInt &val, int)  // Post-increment | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | RValue<UInt> res = val; | 
|  |  | 
|  | Value *inc = Nucleus::createAdd(res.value(), Nucleus::createConstantInt(1)); | 
|  | val.storeValue(inc); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | const UInt &operator++(UInt &val)  // Pre-increment | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1)); | 
|  | val.storeValue(inc); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | RValue<UInt> operator--(UInt &val, int)  // Post-decrement | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | RValue<UInt> res = val; | 
|  |  | 
|  | Value *inc = Nucleus::createSub(res.value(), Nucleus::createConstantInt(1)); | 
|  | val.storeValue(inc); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | const UInt &operator--(UInt &val)  // Pre-decrement | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1)); | 
|  | val.storeValue(inc); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | //	RValue<UInt> RoundUInt(RValue<Float> cast) | 
|  | //	{ | 
|  | //#if defined(__i386__) || defined(__x86_64__) | 
|  | //		return x86::cvtss2si(val);   // FIXME: Unsigned | 
|  | //#else | 
|  | //		return IfThenElse(cast > 0.0f, Int(cast + 0.5f), Int(cast - 0.5f)); | 
|  | //#endif | 
|  | //	} | 
|  |  | 
|  | Type *UInt::type() | 
|  | { | 
|  | return T(llvm::Type::getInt32Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | //	Int2::Int2(RValue<Int> cast) | 
|  | //	{ | 
|  | //		Value *extend = Nucleus::createZExt(cast.value(), Long::type()); | 
|  | //		Value *vector = Nucleus::createBitCast(extend, Int2::type()); | 
|  | // | 
|  | //		int shuffle[2] = {0, 0}; | 
|  | //		Value *replicate = Nucleus::createShuffleVector(vector, vector, shuffle); | 
|  | // | 
|  | //		storeValue(replicate); | 
|  | //	} | 
|  |  | 
|  | RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | //	return RValue<Int2>(Nucleus::createShl(lhs.value(), rhs.value())); | 
|  |  | 
|  | return x86::pslld(lhs, rhs); | 
|  | #else | 
|  | return As<Int2>(V(lowerVectorShl(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | //	return RValue<Int2>(Nucleus::createAShr(lhs.value(), rhs.value())); | 
|  |  | 
|  | return x86::psrad(lhs, rhs); | 
|  | #else | 
|  | return As<Int2>(V(lowerVectorAShr(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *Int2::type() | 
|  | { | 
|  | return T(Type_v2i32); | 
|  | } | 
|  |  | 
|  | RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | //	return RValue<UInt2>(Nucleus::createShl(lhs.value(), rhs.value())); | 
|  |  | 
|  | return As<UInt2>(x86::pslld(As<Int2>(lhs), rhs)); | 
|  | #else | 
|  | return As<UInt2>(V(lowerVectorShl(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | //	return RValue<UInt2>(Nucleus::createLShr(lhs.value(), rhs.value())); | 
|  |  | 
|  | return x86::psrld(lhs, rhs); | 
|  | #else | 
|  | return As<UInt2>(V(lowerVectorLShr(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *UInt2::type() | 
|  | { | 
|  | return T(Type_v2i32); | 
|  | } | 
|  |  | 
|  | Int4::Int4(RValue<Byte4> cast) | 
|  | : XYZW(this) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | int swizzle[16] = { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 }; | 
|  | Value *a = Nucleus::createBitCast(cast.value(), Byte16::type()); | 
|  | Value *b = Nucleus::createShuffleVector(a, Nucleus::createNullValue(Byte16::type()), swizzle); | 
|  |  | 
|  | int swizzle2[8] = { 0, 8, 1, 9, 2, 10, 3, 11 }; | 
|  | Value *c = Nucleus::createBitCast(b, Short8::type()); | 
|  | Value *d = Nucleus::createShuffleVector(c, Nucleus::createNullValue(Short8::type()), swizzle2); | 
|  |  | 
|  | *this = As<Int4>(d); | 
|  | } | 
|  |  | 
|  | Int4::Int4(RValue<SByte4> cast) | 
|  | : XYZW(this) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | int swizzle[16] = { 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 }; | 
|  | Value *a = Nucleus::createBitCast(cast.value(), Byte16::type()); | 
|  | Value *b = Nucleus::createShuffleVector(a, a, swizzle); | 
|  |  | 
|  | int swizzle2[8] = { 0, 0, 1, 1, 2, 2, 3, 3 }; | 
|  | Value *c = Nucleus::createBitCast(b, Short8::type()); | 
|  | Value *d = Nucleus::createShuffleVector(c, c, swizzle2); | 
|  |  | 
|  | *this = As<Int4>(d) >> 24; | 
|  | } | 
|  |  | 
|  | Int4::Int4(RValue<Short4> cast) | 
|  | : XYZW(this) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | int swizzle[8] = { 0, 0, 1, 1, 2, 2, 3, 3 }; | 
|  | Value *c = Nucleus::createShuffleVector(cast.value(), cast.value(), swizzle); | 
|  | *this = As<Int4>(c) >> 16; | 
|  | } | 
|  |  | 
|  | Int4::Int4(RValue<UShort4> cast) | 
|  | : XYZW(this) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | int swizzle[8] = { 0, 8, 1, 9, 2, 10, 3, 11 }; | 
|  | Value *c = Nucleus::createShuffleVector(cast.value(), Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle); | 
|  | *this = As<Int4>(c); | 
|  | } | 
|  |  | 
|  | Int4::Int4(RValue<Int> rhs) | 
|  | : XYZW(this) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *vector = loadValue(); | 
|  | Value *insert = Nucleus::createInsertElement(vector, rhs.value(), 0); | 
|  |  | 
|  | int swizzle[4] = { 0, 0, 0, 0 }; | 
|  | Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle); | 
|  |  | 
|  | storeValue(replicate); | 
|  | } | 
|  |  | 
|  | RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::pslld(lhs, rhs); | 
|  | #else | 
|  | return As<Int4>(V(lowerVectorShl(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psrad(lhs, rhs); | 
|  | #else | 
|  | return As<Int4>(V(lowerVectorAShr(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLT(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGT(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> Abs(RValue<Int4> x) | 
|  | { | 
|  | #if LLVM_VERSION_MAJOR >= 12 | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::abs, { V(x.value())->getType() }); | 
|  | return RValue<Int4>(V(jit->builder->CreateCall(func, { V(x.value()), llvm::ConstantInt::getFalse(*jit->context) }))); | 
|  | #else | 
|  | auto negative = x >> 31; | 
|  | return (x ^ negative) - negative; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::pmaxsd(x, y); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | RValue<Int4> greater = CmpNLE(x, y); | 
|  | return (x & greater) | (y & ~greater); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::pminsd(x, y); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | RValue<Int4> less = CmpLT(x, y); | 
|  | return (x & less) | (y & ~less); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue<Int4> RoundInt(RValue<Float4> cast) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::cvtps2dq(cast); | 
|  | #else | 
|  | return As<Int4>(V(lowerRoundInt(V(cast.value()), T(Int4::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int4> RoundIntClamped(RValue<Float4> cast) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | // cvtps2dq produces 0x80000000, a negative value, for input larger than | 
|  | // 2147483520.0, so clamp to 2147483520. Values less than -2147483520.0 | 
|  | // saturate to 0x80000000. | 
|  | return x86::cvtps2dq(Min(cast, Float4(0x7FFFFF80))); | 
|  | #else | 
|  | // ARM saturates to the largest positive or negative integer. Unit tests | 
|  | // verify that lowerRoundInt() behaves as desired. | 
|  | return As<Int4>(V(lowerRoundInt(V(cast.value()), T(Int4::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int4> MulHigh(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq. | 
|  | return As<Int4>(V(lowerMulHigh(V(x.value()), V(y.value()), true))); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> MulHigh(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq. | 
|  | return As<UInt4>(V(lowerMulHigh(V(x.value()), V(y.value()), false))); | 
|  | } | 
|  |  | 
|  | RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::packssdw(x, y); | 
|  | #else | 
|  | return As<Short8>(V(lowerPack(V(x.value()), V(y.value()), true))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::packusdw(x, y); | 
|  | #else | 
|  | return As<UShort8>(V(lowerPack(V(x.value()), V(y.value()), false))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int> SignMask(RValue<Int4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::movmskps(As<Float4>(x)); | 
|  | #else | 
|  | return As<Int>(V(lowerSignMask(V(x.value()), T(Int::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | Type *Int4::type() | 
|  | { | 
|  | return T(llvm::VectorType::get(T(Int::type()), 4, false)); | 
|  | } | 
|  |  | 
|  | UInt4::UInt4(RValue<Float4> cast) | 
|  | : XYZW(this) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *xyzw = Nucleus::createFPToUI(cast.value(), UInt4::type()); | 
|  | storeValue(xyzw); | 
|  | } | 
|  |  | 
|  | UInt4::UInt4(RValue<UInt> rhs) | 
|  | : XYZW(this) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *vector = loadValue(); | 
|  | Value *insert = Nucleus::createInsertElement(vector, rhs.value(), 0); | 
|  |  | 
|  | int swizzle[4] = { 0, 0, 0, 0 }; | 
|  | Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle); | 
|  |  | 
|  | storeValue(replicate); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return As<UInt4>(x86::pslld(As<Int4>(lhs), rhs)); | 
|  | #else | 
|  | return As<UInt4>(V(lowerVectorShl(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::psrld(lhs, rhs); | 
|  | #else | 
|  | return As<UInt4>(V(lowerVectorLShr(V(lhs.value()), rhs))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULT(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGT(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::pmaxud(x, y); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | RValue<UInt4> greater = CmpNLE(x, y); | 
|  | return (x & greater) | (y & ~greater); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::pminud(x, y); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | RValue<UInt4> less = CmpLT(x, y); | 
|  | return (x & less) | (y & ~less); | 
|  | } | 
|  | } | 
|  |  | 
|  | Type *UInt4::type() | 
|  | { | 
|  | return T(llvm::VectorType::get(T(UInt::type()), 4, false)); | 
|  | } | 
|  |  | 
|  | Type *Half::type() | 
|  | { | 
|  | return T(llvm::Type::getInt16Ty(*jit->context)); | 
|  | } | 
|  |  | 
|  | RValue<Float> Rcp_pp(RValue<Float> x, bool exactAtPow2) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(exactAtPow2) | 
|  | { | 
|  | // rcpss uses a piecewise-linear approximation which minimizes the relative error | 
|  | // but is not exact at power-of-two values. Rectify by multiplying by the inverse. | 
|  | return x86::rcpss(x) * Float(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); | 
|  | } | 
|  | return x86::rcpss(x); | 
|  | #else | 
|  | return As<Float>(V(lowerRCP(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> RcpSqrt_pp(RValue<Float> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::rsqrtss(x); | 
|  | #else | 
|  | return As<Float>(V(lowerRSQRT(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool HasRcpApprox() | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return true; | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> RcpApprox(RValue<Float4> x, bool exactAtPow2) | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(exactAtPow2) | 
|  | { | 
|  | // rcpps uses a piecewise-linear approximation which minimizes the relative error | 
|  | // but is not exact at power-of-two values. Rectify by multiplying by the inverse. | 
|  | return x86::rcpps(x) * Float4(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); | 
|  | } | 
|  | return x86::rcpps(x); | 
|  | #else | 
|  | UNREACHABLE("RValue<Float4> RcpApprox() not available on this platform"); | 
|  | return { 0.0f }; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> RcpApprox(RValue<Float> x, bool exactAtPow2) | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(exactAtPow2) | 
|  | { | 
|  | // rcpss uses a piecewise-linear approximation which minimizes the relative error | 
|  | // but is not exact at power-of-two values. Rectify by multiplying by the inverse. | 
|  | return x86::rcpss(x) * Float(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); | 
|  | } | 
|  | return x86::rcpss(x); | 
|  | #else | 
|  | UNREACHABLE("RValue<Float4> RcpApprox() not available on this platform"); | 
|  | return { 0.0f }; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool HasRcpSqrtApprox() | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return true; | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> RcpSqrtApprox(RValue<Float4> x) | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::rsqrtps(x); | 
|  | #else | 
|  | UNREACHABLE("RValue<Float4> RcpSqrtApprox() not available on this platform"); | 
|  | return { 0.0f }; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> RcpSqrtApprox(RValue<Float> x) | 
|  | { | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::rsqrtss(x); | 
|  | #else | 
|  | UNREACHABLE("RValue<Float4> RcpSqrtApprox() not available on this platform"); | 
|  | return { 0.0f }; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> Sqrt(RValue<Float> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::sqrtss(x); | 
|  | #else | 
|  | return As<Float>(V(lowerSQRT(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> Round(RValue<Float> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::roundss(x, 0); | 
|  | } | 
|  | else | 
|  | { | 
|  | return Float4(Round(Float4(x))).x; | 
|  | } | 
|  | #else | 
|  | return RValue<Float>(V(lowerRound(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> Trunc(RValue<Float> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::roundss(x, 3); | 
|  | } | 
|  | else | 
|  | { | 
|  | return Float(Int(x));  // Rounded toward zero | 
|  | } | 
|  | #else | 
|  | return RValue<Float>(V(lowerTrunc(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> Frac(RValue<Float> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x - x86::floorss(x); | 
|  | } | 
|  | else | 
|  | { | 
|  | return Float4(Frac(Float4(x))).x; | 
|  | } | 
|  | #else | 
|  | // x - floor(x) can be 1.0 for very small negative x. | 
|  | // Clamp against the value just below 1.0. | 
|  | return Min(x - Floor(x), As<Float>(Int(0x3F7FFFFF))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> Floor(RValue<Float> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::floorss(x); | 
|  | } | 
|  | else | 
|  | { | 
|  | return Float4(Floor(Float4(x))).x; | 
|  | } | 
|  | #else | 
|  | return RValue<Float>(V(lowerFloor(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float> Ceil(RValue<Float> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::ceilss(x); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | return Float4(Ceil(Float4(x))).x; | 
|  | } | 
|  | } | 
|  |  | 
|  | Type *Float::type() | 
|  | { | 
|  | return T(llvm::Type::getFloatTy(*jit->context)); | 
|  | } | 
|  |  | 
|  | Type *Float2::type() | 
|  | { | 
|  | return T(Type_v2f32); | 
|  | } | 
|  |  | 
|  | RValue<Float> Exp2(RValue<Float> v) | 
|  | { | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::exp2, { T(Float::type()) }); | 
|  | return RValue<Float>(V(jit->builder->CreateCall(func, V(v.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float> Log2(RValue<Float> v) | 
|  | { | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::log2, { T(Float::type()) }); | 
|  | return RValue<Float>(V(jit->builder->CreateCall(func, V(v.value())))); | 
|  | } | 
|  |  | 
|  | Float4::Float4(RValue<Float> rhs) | 
|  | : XYZW(this) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Value *vector = loadValue(); | 
|  | Value *insert = Nucleus::createInsertElement(vector, rhs.value(), 0); | 
|  |  | 
|  | int swizzle[4] = { 0, 0, 0, 0 }; | 
|  | Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle); | 
|  |  | 
|  | storeValue(replicate); | 
|  | } | 
|  |  | 
|  | RValue<Float4> MulAdd(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z) | 
|  | { | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::fmuladd, { T(Float4::type()) }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, { V(x.value()), V(y.value()), V(z.value()) }))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> FMA(RValue<Float4> x, RValue<Float4> y, RValue<Float4> z) | 
|  | { | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::fma, { T(Float4::type()) }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, { V(x.value()), V(y.value()), V(z.value()) }))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Abs(RValue<Float4> x) | 
|  | { | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::fabs, { V(x.value())->getType() }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, V(x.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::maxps(x, y); | 
|  | #else | 
|  | return As<Float4>(V(lowerPFMINMAX(V(x.value()), V(y.value()), llvm::FCmpInst::FCMP_OGT))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::minps(x, y); | 
|  | #else | 
|  | return As<Float4>(V(lowerPFMINMAX(V(x.value()), V(y.value()), llvm::FCmpInst::FCMP_OLT))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> Rcp_pp(RValue<Float4> x, bool exactAtPow2) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(exactAtPow2) | 
|  | { | 
|  | // rcpps uses a piecewise-linear approximation which minimizes the relative error | 
|  | // but is not exact at power-of-two values. Rectify by multiplying by the inverse. | 
|  | return x86::rcpps(x) * Float4(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); | 
|  | } | 
|  | return x86::rcpps(x); | 
|  | #else | 
|  | return As<Float4>(V(lowerRCP(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> RcpSqrt_pp(RValue<Float4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::rsqrtps(x); | 
|  | #else | 
|  | return As<Float4>(V(lowerRSQRT(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> Sqrt(RValue<Float4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::sqrtps(x); | 
|  | #else | 
|  | return As<Float4>(V(lowerSQRT(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int> SignMask(RValue<Float4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | return x86::movmskps(x); | 
|  | #else | 
|  | return As<Int>(V(lowerFPSignMask(V(x.value()), T(Int::type())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | //	return As<Int4>(x86::cmpeqps(x, y)); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOEQ(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | //	return As<Int4>(x86::cmpltps(x, y)); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLT(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | //	return As<Int4>(x86::cmpleps(x, y)); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | //	return As<Int4>(x86::cmpneqps(x, y)); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpONE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | //	return As<Int4>(x86::cmpnltps(x, y)); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | //	return As<Int4>(x86::cmpnleps(x, y)); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGT(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpUEQ(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpUEQ(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpULT(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpULT(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpULE(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpULE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpUNEQ(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpUNE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpUNLT(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpUGE(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> CmpUNLE(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpUGT(x.value(), y.value()), Int4::type())); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Round(RValue<Float4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::roundps(x, 0); | 
|  | } | 
|  | else | 
|  | { | 
|  | return Float4(RoundInt(x)); | 
|  | } | 
|  | #else | 
|  | return RValue<Float4>(V(lowerRound(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> Trunc(RValue<Float4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::roundps(x, 3); | 
|  | } | 
|  | else | 
|  | { | 
|  | return Float4(Int4(x)); | 
|  | } | 
|  | #else | 
|  | return RValue<Float4>(V(lowerTrunc(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> Frac(RValue<Float4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Float4 frc; | 
|  |  | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | frc = x - x86::floorps(x); | 
|  | } | 
|  | else | 
|  | { | 
|  | frc = x - Float4(Int4(x));  // Signed fractional part. | 
|  |  | 
|  | frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1.0f)));  // Add 1.0 if negative. | 
|  | } | 
|  | #else | 
|  | frc = x - Floor(x); | 
|  | #endif | 
|  |  | 
|  | // x - floor(x) can be 1.0 for very small negative x. | 
|  | // Clamp against the value just below 1.0. | 
|  | return Min(frc, As<Float4>(Int4(0x3F7FFFFF))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Floor(RValue<Float4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::floorps(x); | 
|  | } | 
|  | else | 
|  | { | 
|  | return x - Frac(x); | 
|  | } | 
|  | #else | 
|  | return RValue<Float4>(V(lowerFloor(V(x.value())))); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | RValue<Float4> Ceil(RValue<Float4> x) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return x86::ceilps(x); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | return -Floor(-x); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue<Float4> Sin(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::sin, { V(v.value())->getType() }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Cos(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::cos, { V(v.value())->getType() }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Tan(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return Sin(v) / Cos(v); | 
|  | } | 
|  |  | 
|  | static RValue<Float4> TransformFloat4PerElement(RValue<Float4> v, const char *name) | 
|  | { | 
|  | auto funcTy = llvm::FunctionType::get(T(Float::type()), llvm::ArrayRef<llvm::Type *>(T(Float::type())), false); | 
|  | auto func = jit->module->getOrInsertFunction(name, funcTy); | 
|  | llvm::Value *out = llvm::UndefValue::get(T(Float4::type())); | 
|  | for(uint64_t i = 0; i < 4; i++) | 
|  | { | 
|  | auto el = jit->builder->CreateCall(func, V(Nucleus::createExtractElement(v.value(), Float::type(), i))); | 
|  | out = V(Nucleus::createInsertElement(V(out), V(el), i)); | 
|  | } | 
|  | return RValue<Float4>(V(out)); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Asin(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "asinf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Acos(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "acosf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Atan(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "atanf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Sinh(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "sinhf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Cosh(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "coshf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Tanh(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "tanhf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Asinh(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "asinhf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Acosh(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "acoshf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Atanh(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | return TransformFloat4PerElement(v, "atanhf"); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Atan2(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | llvm::SmallVector<llvm::Type *, 2> paramTys; | 
|  | paramTys.push_back(T(Float::type())); | 
|  | paramTys.push_back(T(Float::type())); | 
|  | auto funcTy = llvm::FunctionType::get(T(Float::type()), paramTys, false); | 
|  | auto func = jit->module->getOrInsertFunction("atan2f", funcTy); | 
|  | llvm::Value *out = llvm::UndefValue::get(T(Float4::type())); | 
|  | for(uint64_t i = 0; i < 4; i++) | 
|  | { | 
|  | auto el = jit->builder->CreateCall(func, { V(Nucleus::createExtractElement(x.value(), Float::type(), i)), | 
|  | V(Nucleus::createExtractElement(y.value(), Float::type(), i)) }); | 
|  | out = V(Nucleus::createInsertElement(V(out), V(el), i)); | 
|  | } | 
|  | return RValue<Float4>(V(out)); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Pow(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::pow, { T(Float4::type()) }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, { V(x.value()), V(y.value()) }))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Exp(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::exp, { T(Float4::type()) }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Log(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::log, { T(Float4::type()) }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Exp2(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::exp2, { T(Float4::type()) }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> Log2(RValue<Float4> v) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::log2, { T(Float4::type()) }); | 
|  | return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); | 
|  | } | 
|  |  | 
|  | RValue<UInt> Ctlz(RValue<UInt> v, bool isZeroUndef) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::ctlz, { T(UInt::type()) }); | 
|  | return RValue<UInt>(V(jit->builder->CreateCall(func, { V(v.value()), | 
|  | isZeroUndef ? llvm::ConstantInt::getTrue(*jit->context) : llvm::ConstantInt::getFalse(*jit->context) }))); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> Ctlz(RValue<UInt4> v, bool isZeroUndef) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::ctlz, { T(UInt4::type()) }); | 
|  | return RValue<UInt4>(V(jit->builder->CreateCall(func, { V(v.value()), | 
|  | isZeroUndef ? llvm::ConstantInt::getTrue(*jit->context) : llvm::ConstantInt::getFalse(*jit->context) }))); | 
|  | } | 
|  |  | 
|  | RValue<UInt> Cttz(RValue<UInt> v, bool isZeroUndef) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::cttz, { T(UInt::type()) }); | 
|  | return RValue<UInt>(V(jit->builder->CreateCall(func, { V(v.value()), | 
|  | isZeroUndef ? llvm::ConstantInt::getTrue(*jit->context) : llvm::ConstantInt::getFalse(*jit->context) }))); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> Cttz(RValue<UInt4> v, bool isZeroUndef) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::cttz, { T(UInt4::type()) }); | 
|  | return RValue<UInt4>(V(jit->builder->CreateCall(func, { V(v.value()), | 
|  | isZeroUndef ? llvm::ConstantInt::getTrue(*jit->context) : llvm::ConstantInt::getFalse(*jit->context) }))); | 
|  | } | 
|  |  | 
|  | RValue<Int> MinAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder) | 
|  | { | 
|  | return RValue<Int>(Nucleus::createAtomicMin(x.value(), y.value(), memoryOrder)); | 
|  | } | 
|  |  | 
|  | RValue<UInt> MinAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder) | 
|  | { | 
|  | return RValue<UInt>(Nucleus::createAtomicUMin(x.value(), y.value(), memoryOrder)); | 
|  | } | 
|  |  | 
|  | RValue<Int> MaxAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder) | 
|  | { | 
|  | return RValue<Int>(Nucleus::createAtomicMax(x.value(), y.value(), memoryOrder)); | 
|  | } | 
|  |  | 
|  | RValue<UInt> MaxAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder) | 
|  | { | 
|  | return RValue<UInt>(Nucleus::createAtomicUMax(x.value(), y.value(), memoryOrder)); | 
|  | } | 
|  |  | 
|  | Type *Float4::type() | 
|  | { | 
|  | return T(llvm::VectorType::get(T(Float::type()), 4, false)); | 
|  | } | 
|  |  | 
|  | RValue<Long> Ticks() | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | llvm::Function *rdtsc = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::readcyclecounter); | 
|  |  | 
|  | return RValue<Long>(V(jit->builder->CreateCall(rdtsc))); | 
|  | } | 
|  |  | 
|  | RValue<Pointer<Byte>> ConstantPointer(void const *ptr) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | // Note: this should work for 32-bit pointers as well because 'inttoptr' | 
|  | // is defined to truncate (and zero extend) if necessary. | 
|  | auto ptrAsInt = llvm::ConstantInt::get(llvm::Type::getInt64Ty(*jit->context), reinterpret_cast<uintptr_t>(ptr)); | 
|  | return RValue<Pointer<Byte>>(V(jit->builder->CreateIntToPtr(ptrAsInt, T(Pointer<Byte>::type())))); | 
|  | } | 
|  |  | 
|  | RValue<Pointer<Byte>> ConstantData(void const *data, size_t size) | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | auto str = ::std::string(reinterpret_cast<const char *>(data), size); | 
|  | auto ptr = jit->builder->CreateGlobalStringPtr(str); | 
|  | return RValue<Pointer<Byte>>(V(ptr)); | 
|  | } | 
|  |  | 
|  | Value *Call(RValue<Pointer<Byte>> fptr, Type *retTy, std::initializer_list<Value *> args, std::initializer_list<Type *> argTys) | 
|  | { | 
|  | // If this is a MemorySanitizer build, but Reactor routine instrumentation is not enabled, | 
|  | // mark all call arguments as initialized by calling __msan_unpoison_param(). | 
|  | if(__has_feature(memory_sanitizer) && !jit->msanInstrumentation) | 
|  | { | 
|  | // void __msan_unpoison_param(size_t n) | 
|  | auto voidTy = llvm::Type::getVoidTy(*jit->context); | 
|  | auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); | 
|  | auto funcTy = llvm::FunctionType::get(voidTy, { sizetTy }, false); | 
|  | auto func = jit->module->getOrInsertFunction("__msan_unpoison_param", funcTy); | 
|  |  | 
|  | jit->builder->CreateCall(func, { llvm::ConstantInt::get(sizetTy, args.size()) }); | 
|  | } | 
|  |  | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | llvm::SmallVector<llvm::Type *, 8> paramTys; | 
|  | for(auto ty : argTys) { paramTys.push_back(T(ty)); } | 
|  | auto funcTy = llvm::FunctionType::get(T(retTy), paramTys, false); | 
|  |  | 
|  | auto funcPtrTy = funcTy->getPointerTo(); | 
|  | auto funcPtr = jit->builder->CreatePointerCast(V(fptr.value()), funcPtrTy); | 
|  |  | 
|  | llvm::SmallVector<llvm::Value *, 8> arguments; | 
|  | for(auto arg : args) { arguments.push_back(V(arg)); } | 
|  | return V(jit->builder->CreateCall(funcTy, funcPtr, arguments)); | 
|  | } | 
|  |  | 
|  | void Breakpoint() | 
|  | { | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | llvm::Function *debugtrap = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::debugtrap); | 
|  |  | 
|  | jit->builder->CreateCall(debugtrap); | 
|  | } | 
|  |  | 
|  | }  // namespace rr | 
|  |  | 
|  | namespace rr { | 
|  |  | 
|  | #if defined(__i386__) || defined(__x86_64__) | 
|  | namespace x86 { | 
|  |  | 
|  | // Differs from IRBuilder<>::CreateUnaryIntrinsic() in that it only accepts native instruction intrinsics which have | 
|  | // implicit types, such as 'x86_sse_rcp_ps' operating on v4f32, while 'sqrt' requires explicitly specifying the operand type. | 
|  | static Value *createInstruction(llvm::Intrinsic::ID id, Value *x) | 
|  | { | 
|  | llvm::Function *intrinsic = llvm::Intrinsic::getDeclaration(jit->module.get(), id); | 
|  |  | 
|  | return V(jit->builder->CreateCall(intrinsic, V(x))); | 
|  | } | 
|  |  | 
|  | // Differs from IRBuilder<>::CreateBinaryIntrinsic() in that it only accepts native instruction intrinsics which have | 
|  | // implicit types, such as 'x86_sse_max_ps' operating on v4f32, while 'sadd_sat' requires explicitly specifying the operand types. | 
|  | static Value *createInstruction(llvm::Intrinsic::ID id, Value *x, Value *y) | 
|  | { | 
|  | llvm::Function *intrinsic = llvm::Intrinsic::getDeclaration(jit->module.get(), id); | 
|  |  | 
|  | return V(jit->builder->CreateCall(intrinsic, { V(x), V(y) })); | 
|  | } | 
|  |  | 
|  | RValue<Int> cvtss2si(RValue<Float> val) | 
|  | { | 
|  | Float4 vector; | 
|  | vector.x = val; | 
|  |  | 
|  | return RValue<Int>(createInstruction(llvm::Intrinsic::x86_sse_cvtss2si, RValue<Float4>(vector).value())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> cvtps2dq(RValue<Float4> val) | 
|  | { | 
|  | return RValue<Int4>(createInstruction(llvm::Intrinsic::x86_sse2_cvtps2dq, val.value())); | 
|  | } | 
|  |  | 
|  | RValue<Float> rcpss(RValue<Float> val) | 
|  | { | 
|  | Value *undef = V(llvm::UndefValue::get(T(Float4::type()))); | 
|  |  | 
|  | // TODO(b/172238865): MemorySanitizer does not support the rcpss instruction, | 
|  | // which makes it look at the entire 128-bit input operand for undefined bits. | 
|  | // Use zero-initialized values instead. | 
|  | if(__has_feature(memory_sanitizer)) | 
|  | { | 
|  | undef = Float4(0).loadValue(); | 
|  | } | 
|  |  | 
|  | Value *vector = Nucleus::createInsertElement(undef, val.value(), 0); | 
|  |  | 
|  | return RValue<Float>(Nucleus::createExtractElement(createInstruction(llvm::Intrinsic::x86_sse_rcp_ss, vector), Float::type(), 0)); | 
|  | } | 
|  |  | 
|  | RValue<Float> sqrtss(RValue<Float> val) | 
|  | { | 
|  | return RValue<Float>(V(jit->builder->CreateUnaryIntrinsic(llvm::Intrinsic::sqrt, V(val.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float> rsqrtss(RValue<Float> val) | 
|  | { | 
|  | Value *undef = V(llvm::UndefValue::get(T(Float4::type()))); | 
|  |  | 
|  | // TODO(b/172238865): MemorySanitizer does not support the rsqrtss instruction, | 
|  | // which makes it look at the entire 128-bit input operand for undefined bits. | 
|  | // Use zero-initialized values instead. | 
|  | if(__has_feature(memory_sanitizer)) | 
|  | { | 
|  | undef = Float4(0).loadValue(); | 
|  | } | 
|  |  | 
|  | Value *vector = Nucleus::createInsertElement(undef, val.value(), 0); | 
|  |  | 
|  | return RValue<Float>(Nucleus::createExtractElement(createInstruction(llvm::Intrinsic::x86_sse_rsqrt_ss, vector), Float::type(), 0)); | 
|  | } | 
|  |  | 
|  | RValue<Float4> rcpps(RValue<Float4> val) | 
|  | { | 
|  | return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse_rcp_ps, val.value())); | 
|  | } | 
|  |  | 
|  | RValue<Float4> sqrtps(RValue<Float4> val) | 
|  | { | 
|  | return RValue<Float4>(V(jit->builder->CreateUnaryIntrinsic(llvm::Intrinsic::sqrt, V(val.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> rsqrtps(RValue<Float4> val) | 
|  | { | 
|  | return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse_rsqrt_ps, val.value())); | 
|  | } | 
|  |  | 
|  | RValue<Float4> maxps(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse_max_ps, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<Float4> minps(RValue<Float4> x, RValue<Float4> y) | 
|  | { | 
|  | return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse_min_ps, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<Float> roundss(RValue<Float> val, unsigned char imm) | 
|  | { | 
|  | llvm::Function *roundss = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::x86_sse41_round_ss); | 
|  |  | 
|  | Value *undef = V(llvm::UndefValue::get(T(Float4::type()))); | 
|  |  | 
|  | // TODO(b/172238865): MemorySanitizer does not support the roundss instruction, | 
|  | // which makes it look at the entire 128-bit input operands for undefined bits. | 
|  | // Use zero-initialized values instead. | 
|  | if(__has_feature(memory_sanitizer)) | 
|  | { | 
|  | undef = Float4(0).loadValue(); | 
|  | } | 
|  |  | 
|  | Value *vector = Nucleus::createInsertElement(undef, val.value(), 0); | 
|  |  | 
|  | return RValue<Float>(Nucleus::createExtractElement(V(jit->builder->CreateCall(roundss, { V(undef), V(vector), V(Nucleus::createConstantInt(imm)) })), Float::type(), 0)); | 
|  | } | 
|  |  | 
|  | RValue<Float> floorss(RValue<Float> val) | 
|  | { | 
|  | return roundss(val, 1); | 
|  | } | 
|  |  | 
|  | RValue<Float> ceilss(RValue<Float> val) | 
|  | { | 
|  | return roundss(val, 2); | 
|  | } | 
|  |  | 
|  | RValue<Float4> roundps(RValue<Float4> val, unsigned char imm) | 
|  | { | 
|  | return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse41_round_ps, val.value(), Nucleus::createConstantInt(imm))); | 
|  | } | 
|  |  | 
|  | RValue<Float4> floorps(RValue<Float4> val) | 
|  | { | 
|  | return roundps(val, 1); | 
|  | } | 
|  |  | 
|  | RValue<Float4> ceilps(RValue<Float4> val) | 
|  | { | 
|  | return roundps(val, 2); | 
|  | } | 
|  |  | 
|  | RValue<Short4> paddsw(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Short4>(V(lowerPSADDSAT(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> psubsw(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Short4>(V(lowerPSSUBSAT(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<UShort4> paddusw(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | return As<UShort4>(V(lowerPUADDSAT(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<UShort4> psubusw(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | return As<UShort4>(V(lowerPUSUBSAT(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<SByte8> paddsb(RValue<SByte8> x, RValue<SByte8> y) | 
|  | { | 
|  | return As<SByte8>(V(lowerPSADDSAT(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<SByte8> psubsb(RValue<SByte8> x, RValue<SByte8> y) | 
|  | { | 
|  | return As<SByte8>(V(lowerPSSUBSAT(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Byte8> paddusb(RValue<Byte8> x, RValue<Byte8> y) | 
|  | { | 
|  | return As<Byte8>(V(lowerPUADDSAT(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Byte8> psubusb(RValue<Byte8> x, RValue<Byte8> y) | 
|  | { | 
|  | return As<Byte8>(V(lowerPUSUBSAT(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<UShort4> pavgw(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | return As<UShort4>(V(lowerPAVG(V(x.value()), V(y.value())))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> pmaxsw(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Short4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SGT))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> pminsw(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Short4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SLT))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> pcmpgtw(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Short4::type())))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> pcmpeqw(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Short4::type())))); | 
|  | } | 
|  |  | 
|  | RValue<Byte8> pcmpgtb(RValue<SByte8> x, RValue<SByte8> y) | 
|  | { | 
|  | return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Byte8::type())))); | 
|  | } | 
|  |  | 
|  | RValue<Byte8> pcmpeqb(RValue<Byte8> x, RValue<Byte8> y) | 
|  | { | 
|  | return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Byte8::type())))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> packssdw(RValue<Int2> x, RValue<Int2> y) | 
|  | { | 
|  | return As<Short4>(createInstruction(llvm::Intrinsic::x86_sse2_packssdw_128, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<Short8> packssdw(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | return RValue<Short8>(createInstruction(llvm::Intrinsic::x86_sse2_packssdw_128, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<SByte8> packsswb(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<SByte8>(createInstruction(llvm::Intrinsic::x86_sse2_packsswb_128, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<Byte8> packuswb(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Byte8>(createInstruction(llvm::Intrinsic::x86_sse2_packuswb_128, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<UShort8> packusdw(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | if(CPUID::supportsSSE4_1()) | 
|  | { | 
|  | return RValue<UShort8>(createInstruction(llvm::Intrinsic::x86_sse41_packusdw, x.value(), y.value())); | 
|  | } | 
|  | else | 
|  | { | 
|  | RValue<Int4> bx = (x & ~(x >> 31)) - Int4(0x8000); | 
|  | RValue<Int4> by = (y & ~(y >> 31)) - Int4(0x8000); | 
|  |  | 
|  | return As<UShort8>(packssdw(bx, by) + Short8(0x8000u)); | 
|  | } | 
|  | } | 
|  |  | 
|  | RValue<UShort4> psrlw(RValue<UShort4> x, unsigned char y) | 
|  | { | 
|  | return As<UShort4>(createInstruction(llvm::Intrinsic::x86_sse2_psrli_w, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<UShort8> psrlw(RValue<UShort8> x, unsigned char y) | 
|  | { | 
|  | return RValue<UShort8>(createInstruction(llvm::Intrinsic::x86_sse2_psrli_w, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> psraw(RValue<Short4> x, unsigned char y) | 
|  | { | 
|  | return As<Short4>(createInstruction(llvm::Intrinsic::x86_sse2_psrai_w, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Short8> psraw(RValue<Short8> x, unsigned char y) | 
|  | { | 
|  | return RValue<Short8>(createInstruction(llvm::Intrinsic::x86_sse2_psrai_w, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> psllw(RValue<Short4> x, unsigned char y) | 
|  | { | 
|  | return As<Short4>(createInstruction(llvm::Intrinsic::x86_sse2_pslli_w, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Short8> psllw(RValue<Short8> x, unsigned char y) | 
|  | { | 
|  | return RValue<Short8>(createInstruction(llvm::Intrinsic::x86_sse2_pslli_w, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Int2> pslld(RValue<Int2> x, unsigned char y) | 
|  | { | 
|  | return As<Int2>(createInstruction(llvm::Intrinsic::x86_sse2_pslli_d, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Int4> pslld(RValue<Int4> x, unsigned char y) | 
|  | { | 
|  | return RValue<Int4>(createInstruction(llvm::Intrinsic::x86_sse2_pslli_d, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Int2> psrad(RValue<Int2> x, unsigned char y) | 
|  | { | 
|  | return As<Int2>(createInstruction(llvm::Intrinsic::x86_sse2_psrai_d, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Int4> psrad(RValue<Int4> x, unsigned char y) | 
|  | { | 
|  | return RValue<Int4>(createInstruction(llvm::Intrinsic::x86_sse2_psrai_d, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<UInt2> psrld(RValue<UInt2> x, unsigned char y) | 
|  | { | 
|  | return As<UInt2>(createInstruction(llvm::Intrinsic::x86_sse2_psrli_d, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> psrld(RValue<UInt4> x, unsigned char y) | 
|  | { | 
|  | return RValue<UInt4>(createInstruction(llvm::Intrinsic::x86_sse2_psrli_d, x.value(), Nucleus::createConstantInt(y))); | 
|  | } | 
|  |  | 
|  | RValue<Int4> pmaxsd(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | return RValue<Int4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SGT))); | 
|  | } | 
|  |  | 
|  | RValue<Int4> pminsd(RValue<Int4> x, RValue<Int4> y) | 
|  | { | 
|  | return RValue<Int4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SLT))); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> pmaxud(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | return RValue<UInt4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_UGT))); | 
|  | } | 
|  |  | 
|  | RValue<UInt4> pminud(RValue<UInt4> x, RValue<UInt4> y) | 
|  | { | 
|  | return RValue<UInt4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_ULT))); | 
|  | } | 
|  |  | 
|  | RValue<Short4> pmulhw(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Short4>(createInstruction(llvm::Intrinsic::x86_sse2_pmulh_w, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<UShort4> pmulhuw(RValue<UShort4> x, RValue<UShort4> y) | 
|  | { | 
|  | return As<UShort4>(createInstruction(llvm::Intrinsic::x86_sse2_pmulhu_w, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<Int2> pmaddwd(RValue<Short4> x, RValue<Short4> y) | 
|  | { | 
|  | return As<Int2>(createInstruction(llvm::Intrinsic::x86_sse2_pmadd_wd, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<Short8> pmulhw(RValue<Short8> x, RValue<Short8> y) | 
|  | { | 
|  | return RValue<Short8>(createInstruction(llvm::Intrinsic::x86_sse2_pmulh_w, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<UShort8> pmulhuw(RValue<UShort8> x, RValue<UShort8> y) | 
|  | { | 
|  | return RValue<UShort8>(createInstruction(llvm::Intrinsic::x86_sse2_pmulhu_w, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<Int4> pmaddwd(RValue<Short8> x, RValue<Short8> y) | 
|  | { | 
|  | return RValue<Int4>(createInstruction(llvm::Intrinsic::x86_sse2_pmadd_wd, x.value(), y.value())); | 
|  | } | 
|  |  | 
|  | RValue<Int> movmskps(RValue<Float4> x) | 
|  | { | 
|  | Value *v = x.value(); | 
|  |  | 
|  | // TODO(b/172238865): MemorySanitizer does not support movmsk instructions, | 
|  | // which makes it look at the entire 128-bit input for undefined bits. Mask off | 
|  | // just the sign bits to avoid false positives. | 
|  | if(__has_feature(memory_sanitizer)) | 
|  | { | 
|  | v = As<Float4>(As<Int4>(v) & Int4(0x80000000u)).value(); | 
|  | } | 
|  |  | 
|  | return RValue<Int>(createInstruction(llvm::Intrinsic::x86_sse_movmsk_ps, v)); | 
|  | } | 
|  |  | 
|  | RValue<Int> pmovmskb(RValue<Byte8> x) | 
|  | { | 
|  | Value *v = x.value(); | 
|  |  | 
|  | // TODO(b/172238865): MemorySanitizer does not support movmsk instructions, | 
|  | // which makes it look at the entire 128-bit input for undefined bits. Mask off | 
|  | // just the sign bits in the lower 64-bit vector to avoid false positives. | 
|  | if(__has_feature(memory_sanitizer)) | 
|  | { | 
|  | v = As<Byte16>(As<Int4>(v) & Int4(0x80808080u, 0x80808080u, 0, 0)).value(); | 
|  | } | 
|  |  | 
|  | return RValue<Int>(createInstruction(llvm::Intrinsic::x86_sse2_pmovmskb_128, v)) & 0xFF; | 
|  | } | 
|  |  | 
|  | }  // namespace x86 | 
|  | #endif  // defined(__i386__) || defined(__x86_64__) | 
|  |  | 
|  | #ifdef ENABLE_RR_PRINT | 
|  | void VPrintf(const std::vector<Value *> &vals) | 
|  | { | 
|  | auto i32Ty = llvm::Type::getInt32Ty(*jit->context); | 
|  | auto i8PtrTy = llvm::Type::getInt8PtrTy(*jit->context); | 
|  | auto funcTy = llvm::FunctionType::get(i32Ty, { i8PtrTy }, true); | 
|  | auto func = jit->module->getOrInsertFunction("rr::DebugPrintf", funcTy); | 
|  | jit->builder->CreateCall(func, V(vals)); | 
|  | } | 
|  | #endif  // ENABLE_RR_PRINT | 
|  |  | 
|  | void Nop() | 
|  | { | 
|  | auto voidTy = llvm::Type::getVoidTy(*jit->context); | 
|  | auto funcTy = llvm::FunctionType::get(voidTy, {}, false); | 
|  | auto func = jit->module->getOrInsertFunction("nop", funcTy); | 
|  | jit->builder->CreateCall(func); | 
|  | } | 
|  |  | 
|  | void EmitDebugLocation() | 
|  | { | 
|  | #ifdef ENABLE_RR_DEBUG_INFO | 
|  | if(jit->debugInfo != nullptr) | 
|  | { | 
|  | jit->debugInfo->EmitLocation(); | 
|  | } | 
|  | #endif  // ENABLE_RR_DEBUG_INFO | 
|  | } | 
|  |  | 
|  | void EmitDebugVariable(Value *value) | 
|  | { | 
|  | #ifdef ENABLE_RR_DEBUG_INFO | 
|  | if(jit->debugInfo != nullptr) | 
|  | { | 
|  | jit->debugInfo->EmitVariable(value); | 
|  | } | 
|  | #endif  // ENABLE_RR_DEBUG_INFO | 
|  | } | 
|  |  | 
|  | void FlushDebug() | 
|  | { | 
|  | #ifdef ENABLE_RR_DEBUG_INFO | 
|  | if(jit->debugInfo != nullptr) | 
|  | { | 
|  | jit->debugInfo->Flush(); | 
|  | } | 
|  | #endif  // ENABLE_RR_DEBUG_INFO | 
|  | } | 
|  |  | 
|  | }  // namespace rr | 
|  |  | 
|  | // ------------------------------  Coroutines ------------------------------ | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Magic values retuned by llvm.coro.suspend. | 
|  | // See: https://llvm.org/docs/Coroutines.html#llvm-coro-suspend-intrinsic | 
|  | enum SuspendAction | 
|  | { | 
|  | SuspendActionSuspend = -1, | 
|  | SuspendActionResume = 0, | 
|  | SuspendActionDestroy = 1 | 
|  | }; | 
|  |  | 
|  | void promoteFunctionToCoroutine() | 
|  | { | 
|  | ASSERT(jit->coroutine.id == nullptr); | 
|  |  | 
|  | // Types | 
|  | auto voidTy = llvm::Type::getVoidTy(*jit->context); | 
|  | auto i1Ty = llvm::Type::getInt1Ty(*jit->context); | 
|  | auto i8Ty = llvm::Type::getInt8Ty(*jit->context); | 
|  | auto i32Ty = llvm::Type::getInt32Ty(*jit->context); | 
|  | auto i8PtrTy = llvm::Type::getInt8PtrTy(*jit->context); | 
|  | auto promiseTy = jit->coroutine.yieldType; | 
|  | auto promisePtrTy = promiseTy->getPointerTo(); | 
|  |  | 
|  | // LLVM intrinsics | 
|  | auto coro_id = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_id); | 
|  | auto coro_size = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_size, { i32Ty }); | 
|  | auto coro_begin = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_begin); | 
|  | auto coro_resume = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_resume); | 
|  | auto coro_end = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_end); | 
|  | auto coro_free = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_free); | 
|  | auto coro_destroy = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_destroy); | 
|  | auto coro_promise = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_promise); | 
|  | auto coro_done = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_done); | 
|  | auto coro_suspend = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_suspend); | 
|  |  | 
|  | auto allocFrameTy = llvm::FunctionType::get(i8PtrTy, { i32Ty }, false); | 
|  | auto allocFrame = jit->module->getOrInsertFunction("coroutine_alloc_frame", allocFrameTy); | 
|  | auto freeFrameTy = llvm::FunctionType::get(voidTy, { i8PtrTy }, false); | 
|  | auto freeFrame = jit->module->getOrInsertFunction("coroutine_free_frame", freeFrameTy); | 
|  |  | 
|  | auto oldInsertionPoint = jit->builder->saveIP(); | 
|  |  | 
|  | // Build the coroutine_await() function: | 
|  | // | 
|  | //    bool coroutine_await(CoroutineHandle* handle, YieldType* out) | 
|  | //    { | 
|  | //        if(llvm.coro.done(handle)) | 
|  | //        { | 
|  | //            return false; | 
|  | //        } | 
|  | //        else | 
|  | //        { | 
|  | //            *value = (T*)llvm.coro.promise(handle); | 
|  | //            llvm.coro.resume(handle); | 
|  | //            return true; | 
|  | //        } | 
|  | //    } | 
|  | // | 
|  | { | 
|  | auto args = jit->coroutine.await->arg_begin(); | 
|  | auto handle = args++; | 
|  | auto outPtr = args++; | 
|  | jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "co_await", jit->coroutine.await)); | 
|  | auto doneBlock = llvm::BasicBlock::Create(*jit->context, "done", jit->coroutine.await); | 
|  | auto resumeBlock = llvm::BasicBlock::Create(*jit->context, "resume", jit->coroutine.await); | 
|  |  | 
|  | auto done = jit->builder->CreateCall(coro_done, { handle }, "done"); | 
|  | jit->builder->CreateCondBr(done, doneBlock, resumeBlock); | 
|  |  | 
|  | jit->builder->SetInsertPoint(doneBlock); | 
|  | jit->builder->CreateRet(llvm::ConstantInt::getFalse(i1Ty)); | 
|  |  | 
|  | jit->builder->SetInsertPoint(resumeBlock); | 
|  | auto promiseAlignment = llvm::ConstantInt::get(i32Ty, 4);  // TODO: Get correct alignment. | 
|  | auto promisePtr = jit->builder->CreateCall(coro_promise, { handle, promiseAlignment, llvm::ConstantInt::get(i1Ty, 0) }); | 
|  | auto promise = jit->builder->CreateLoad(promiseTy, jit->builder->CreatePointerCast(promisePtr, promisePtrTy)); | 
|  | jit->builder->CreateStore(promise, outPtr); | 
|  | jit->builder->CreateCall(coro_resume, { handle }); | 
|  | jit->builder->CreateRet(llvm::ConstantInt::getTrue(i1Ty)); | 
|  | } | 
|  |  | 
|  | // Build the coroutine_destroy() function: | 
|  | // | 
|  | //    void coroutine_destroy(CoroutineHandle* handle) | 
|  | //    { | 
|  | //        llvm.coro.destroy(handle); | 
|  | //    } | 
|  | // | 
|  | { | 
|  | auto handle = jit->coroutine.destroy->arg_begin(); | 
|  | jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "", jit->coroutine.destroy)); | 
|  | jit->builder->CreateCall(coro_destroy, { handle }); | 
|  | jit->builder->CreateRetVoid(); | 
|  | } | 
|  |  | 
|  | // Begin building the main coroutine_begin() function. | 
|  | // | 
|  | //    CoroutineHandle* coroutine_begin(<Arguments>) | 
|  | //    { | 
|  | //        YieldType promise; | 
|  | //        auto id = llvm.coro.id(0, &promise, nullptr, nullptr); | 
|  | //        void* frame = coroutine_alloc_frame(llvm.coro.size.i32()); | 
|  | //        CoroutineHandle *handle = llvm.coro.begin(id, frame); | 
|  | // | 
|  | //        ... <REACTOR CODE> ... | 
|  | // | 
|  | //    end: | 
|  | //        SuspendAction action = llvm.coro.suspend(none, true /* final */);  // <-- RESUME POINT | 
|  | //        switch(action) | 
|  | //        { | 
|  | //        case SuspendActionResume: | 
|  | //            UNREACHABLE(); // Illegal to resume after final suspend. | 
|  | //        case SuspendActionDestroy: | 
|  | //            goto destroy; | 
|  | //        default: // (SuspendActionSuspend) | 
|  | //            goto suspend; | 
|  | //        } | 
|  | // | 
|  | //    destroy: | 
|  | //        coroutine_free_frame(llvm.coro.free(id, handle)); | 
|  | //        goto suspend; | 
|  | // | 
|  | //    suspend: | 
|  | //        llvm.coro.end(handle, false); | 
|  | //        return handle; | 
|  | //    } | 
|  | // | 
|  |  | 
|  | #ifdef ENABLE_RR_DEBUG_INFO | 
|  | jit->debugInfo = std::make_unique<rr::DebugInfo>(jit->builder.get(), jit->context.get(), jit->module.get(), jit->function); | 
|  | #endif  // ENABLE_RR_DEBUG_INFO | 
|  |  | 
|  | jit->coroutine.suspendBlock = llvm::BasicBlock::Create(*jit->context, "suspend", jit->function); | 
|  | jit->coroutine.endBlock = llvm::BasicBlock::Create(*jit->context, "end", jit->function); | 
|  | jit->coroutine.destroyBlock = llvm::BasicBlock::Create(*jit->context, "destroy", jit->function); | 
|  |  | 
|  | jit->builder->SetInsertPoint(jit->coroutine.entryBlock, jit->coroutine.entryBlock->begin()); | 
|  | jit->coroutine.promise = jit->builder->CreateAlloca(promiseTy, nullptr, "promise"); | 
|  | jit->coroutine.id = jit->builder->CreateCall(coro_id, { | 
|  | llvm::ConstantInt::get(i32Ty, 0), | 
|  | jit->builder->CreatePointerCast(jit->coroutine.promise, i8PtrTy), | 
|  | llvm::ConstantPointerNull::get(i8PtrTy), | 
|  | llvm::ConstantPointerNull::get(i8PtrTy), | 
|  | }); | 
|  | auto size = jit->builder->CreateCall(coro_size, {}); | 
|  | auto frame = jit->builder->CreateCall(allocFrame, { size }); | 
|  | jit->coroutine.handle = jit->builder->CreateCall(coro_begin, { jit->coroutine.id, frame }); | 
|  |  | 
|  | // Build the suspend block | 
|  | jit->builder->SetInsertPoint(jit->coroutine.suspendBlock); | 
|  | jit->builder->CreateCall(coro_end, { jit->coroutine.handle, llvm::ConstantInt::get(i1Ty, 0) }); | 
|  | jit->builder->CreateRet(jit->coroutine.handle); | 
|  |  | 
|  | // Build the end block | 
|  | jit->builder->SetInsertPoint(jit->coroutine.endBlock); | 
|  | auto action = jit->builder->CreateCall(coro_suspend, { | 
|  | llvm::ConstantTokenNone::get(*jit->context), | 
|  | llvm::ConstantInt::get(i1Ty, 1),  // final: true | 
|  | }); | 
|  | auto switch_ = jit->builder->CreateSwitch(action, jit->coroutine.suspendBlock, 3); | 
|  | // switch_->addCase(llvm::ConstantInt::get(i8Ty, SuspendActionResume), trapBlock); // TODO: Trap attempting to resume after final suspend | 
|  | switch_->addCase(llvm::ConstantInt::get(i8Ty, SuspendActionDestroy), jit->coroutine.destroyBlock); | 
|  |  | 
|  | // Build the destroy block | 
|  | jit->builder->SetInsertPoint(jit->coroutine.destroyBlock); | 
|  | auto memory = jit->builder->CreateCall(coro_free, { jit->coroutine.id, jit->coroutine.handle }); | 
|  | jit->builder->CreateCall(freeFrame, { memory }); | 
|  | jit->builder->CreateBr(jit->coroutine.suspendBlock); | 
|  |  | 
|  | // Switch back to original insert point to continue building the coroutine. | 
|  | jit->builder->restoreIP(oldInsertionPoint); | 
|  | } | 
|  |  | 
|  | }  // anonymous namespace | 
|  |  | 
|  | namespace rr { | 
|  |  | 
|  | void Nucleus::createCoroutine(Type *YieldType, const std::vector<Type *> &Params) | 
|  | { | 
|  | // Coroutines are initially created as a regular function. | 
|  | // Upon the first call to Yield(), the function is promoted to a true | 
|  | // coroutine. | 
|  | auto voidTy = llvm::Type::getVoidTy(*jit->context); | 
|  | auto i1Ty = llvm::Type::getInt1Ty(*jit->context); | 
|  | auto i8PtrTy = llvm::Type::getInt8PtrTy(*jit->context); | 
|  | auto handleTy = i8PtrTy; | 
|  | auto boolTy = i1Ty; | 
|  | auto promiseTy = T(YieldType); | 
|  | auto promisePtrTy = promiseTy->getPointerTo(); | 
|  |  | 
|  | jit->function = rr::createFunction("coroutine_begin", handleTy, T(Params)); | 
|  | jit->function->addFnAttr("coroutine.presplit", "0"); | 
|  | jit->coroutine.await = rr::createFunction("coroutine_await", boolTy, { handleTy, promisePtrTy }); | 
|  | jit->coroutine.destroy = rr::createFunction("coroutine_destroy", voidTy, { handleTy }); | 
|  | jit->coroutine.yieldType = promiseTy; | 
|  | jit->coroutine.entryBlock = llvm::BasicBlock::Create(*jit->context, "function", jit->function); | 
|  |  | 
|  | jit->builder->SetInsertPoint(jit->coroutine.entryBlock); | 
|  | } | 
|  |  | 
|  | void Nucleus::yield(Value *val) | 
|  | { | 
|  | if(jit->coroutine.id == nullptr) | 
|  | { | 
|  | // First call to yield(). | 
|  | // Promote the function to a full coroutine. | 
|  | promoteFunctionToCoroutine(); | 
|  | ASSERT(jit->coroutine.id != nullptr); | 
|  | } | 
|  |  | 
|  | //      promise = val; | 
|  | // | 
|  | //      auto action = llvm.coro.suspend(none, false /* final */); // <-- RESUME POINT | 
|  | //      switch(action) | 
|  | //      { | 
|  | //      case SuspendActionResume: | 
|  | //          goto resume; | 
|  | //      case SuspendActionDestroy: | 
|  | //          goto destroy; | 
|  | //      default: // (SuspendActionSuspend) | 
|  | //          goto suspend; | 
|  | //      } | 
|  | //  resume: | 
|  | // | 
|  |  | 
|  | RR_DEBUG_INFO_UPDATE_LOC(); | 
|  | Variable::materializeAll(); | 
|  |  | 
|  | // Types | 
|  | auto i1Ty = llvm::Type::getInt1Ty(*jit->context); | 
|  | auto i8Ty = llvm::Type::getInt8Ty(*jit->context); | 
|  |  | 
|  | // Intrinsics | 
|  | auto coro_suspend = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_suspend); | 
|  |  | 
|  | // Create a block to resume execution. | 
|  | auto resumeBlock = llvm::BasicBlock::Create(*jit->context, "resume", jit->function); | 
|  |  | 
|  | // Store the promise (yield value) | 
|  | jit->builder->CreateStore(V(val), jit->coroutine.promise); | 
|  | auto action = jit->builder->CreateCall(coro_suspend, { | 
|  | llvm::ConstantTokenNone::get(*jit->context), | 
|  | llvm::ConstantInt::get(i1Ty, 0),  // final: true | 
|  | }); | 
|  | auto switch_ = jit->builder->CreateSwitch(action, jit->coroutine.suspendBlock, 3); | 
|  | switch_->addCase(llvm::ConstantInt::get(i8Ty, SuspendActionResume), resumeBlock); | 
|  | switch_->addCase(llvm::ConstantInt::get(i8Ty, SuspendActionDestroy), jit->coroutine.destroyBlock); | 
|  |  | 
|  | // Continue building in the resume block. | 
|  | jit->builder->SetInsertPoint(resumeBlock); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<Routine> Nucleus::acquireCoroutine(const char *name, const Config::Edit *cfgEdit /* = nullptr */) | 
|  | { | 
|  | bool isCoroutine = jit->coroutine.id != nullptr; | 
|  | if(isCoroutine) | 
|  | { | 
|  | jit->builder->CreateBr(jit->coroutine.endBlock); | 
|  | } | 
|  | else | 
|  | { | 
|  | // Coroutine without a Yield acts as a regular function. | 
|  | // The 'coroutine_begin' function returns a nullptr for the coroutine | 
|  | // handle. | 
|  | jit->builder->CreateRet(llvm::Constant::getNullValue(jit->function->getReturnType())); | 
|  | // The 'coroutine_await' function always returns false (coroutine done). | 
|  | jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "", jit->coroutine.await)); | 
|  | jit->builder->CreateRet(llvm::Constant::getNullValue(jit->coroutine.await->getReturnType())); | 
|  | // The 'coroutine_destroy' does nothing, returns void. | 
|  | jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "", jit->coroutine.destroy)); | 
|  | jit->builder->CreateRetVoid(); | 
|  | } | 
|  |  | 
|  | #ifdef ENABLE_RR_DEBUG_INFO | 
|  | if(jit->debugInfo != nullptr) | 
|  | { | 
|  | jit->debugInfo->Finalize(); | 
|  | } | 
|  | #endif  // ENABLE_RR_DEBUG_INFO | 
|  |  | 
|  | if(false) | 
|  | { | 
|  | std::error_code error; | 
|  | llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-unopt.txt", error); | 
|  | jit->module->print(file, 0); | 
|  | } | 
|  |  | 
|  | if(isCoroutine) | 
|  | { | 
|  | // Run manadory coroutine transforms. | 
|  | llvm::legacy::PassManager pm; | 
|  |  | 
|  | pm.add(llvm::createCoroEarlyLegacyPass()); | 
|  | pm.add(llvm::createCoroSplitLegacyPass()); | 
|  | pm.add(llvm::createCoroElideLegacyPass()); | 
|  | pm.add(llvm::createBarrierNoopPass()); | 
|  | pm.add(llvm::createCoroCleanupLegacyPass()); | 
|  |  | 
|  | pm.run(*jit->module); | 
|  | } | 
|  |  | 
|  | #if defined(ENABLE_RR_LLVM_IR_VERIFICATION) || !defined(NDEBUG) | 
|  | { | 
|  | llvm::legacy::PassManager pm; | 
|  | pm.add(llvm::createVerifierPass()); | 
|  | pm.run(*jit->module); | 
|  | } | 
|  | #endif  // defined(ENABLE_RR_LLVM_IR_VERIFICATION) || !defined(NDEBUG) | 
|  |  | 
|  | Config cfg = jit->config; | 
|  | if(cfgEdit) | 
|  | { | 
|  | cfg = cfgEdit->apply(jit->config); | 
|  | } | 
|  | jit->optimize(cfg); | 
|  |  | 
|  | if(false) | 
|  | { | 
|  | std::error_code error; | 
|  | llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-opt.txt", error); | 
|  | jit->module->print(file, 0); | 
|  | } | 
|  |  | 
|  | llvm::Function *funcs[Nucleus::CoroutineEntryCount]; | 
|  | funcs[Nucleus::CoroutineEntryBegin] = jit->function; | 
|  | funcs[Nucleus::CoroutineEntryAwait] = jit->coroutine.await; | 
|  | funcs[Nucleus::CoroutineEntryDestroy] = jit->coroutine.destroy; | 
|  |  | 
|  | auto routine = jit->acquireRoutine(name, funcs, Nucleus::CoroutineEntryCount, cfg); | 
|  |  | 
|  | delete jit; | 
|  | jit = nullptr; | 
|  |  | 
|  | return routine; | 
|  | } | 
|  |  | 
|  | Nucleus::CoroutineHandle Nucleus::invokeCoroutineBegin(Routine &routine, std::function<Nucleus::CoroutineHandle()> func) | 
|  | { | 
|  | return func(); | 
|  | } | 
|  |  | 
|  | }  // namespace rr |