blob: 34199d3e425c45854356d88192fdb6fa5be46471 [file] [log] [blame]
//===-- SIOptimizeExecMaskingPreRA.cpp ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass removes redundant S_OR_B64 instructions enabling lanes in
/// the exec. If two SI_END_CF (lowered as S_OR_B64) come together without any
/// vector instructions between them we can only keep outer SI_END_CF, given
/// that CFG is structured and exec bits of the outer end statement are always
/// not less than exec bit of the inner one.
///
/// This needs to be done before the RA to eliminate saved exec bits registers
/// but after register coalescer to have no vector registers copies in between
/// of different end cf statements.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "si-optimize-exec-masking-pre-ra"
namespace {
class SIOptimizeExecMaskingPreRA : public MachineFunctionPass {
private:
const SIRegisterInfo *TRI;
const SIInstrInfo *TII;
MachineRegisterInfo *MRI;
public:
MachineBasicBlock::iterator skipIgnoreExecInsts(
MachineBasicBlock::iterator I, MachineBasicBlock::iterator E) const;
MachineBasicBlock::iterator skipIgnoreExecInstsTrivialSucc(
MachineBasicBlock *&MBB,
MachineBasicBlock::iterator It) const;
public:
static char ID;
SIOptimizeExecMaskingPreRA() : MachineFunctionPass(ID) {
initializeSIOptimizeExecMaskingPreRAPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override {
return "SI optimize exec mask operations pre-RA";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveIntervals>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIOptimizeExecMaskingPreRA, DEBUG_TYPE,
"SI optimize exec mask operations pre-RA", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIOptimizeExecMaskingPreRA, DEBUG_TYPE,
"SI optimize exec mask operations pre-RA", false, false)
char SIOptimizeExecMaskingPreRA::ID = 0;
char &llvm::SIOptimizeExecMaskingPreRAID = SIOptimizeExecMaskingPreRA::ID;
FunctionPass *llvm::createSIOptimizeExecMaskingPreRAPass() {
return new SIOptimizeExecMaskingPreRA();
}
static bool isEndCF(const MachineInstr &MI, const SIRegisterInfo *TRI,
const GCNSubtarget &ST) {
if (ST.isWave32()) {
return MI.getOpcode() == AMDGPU::S_OR_B32 &&
MI.modifiesRegister(AMDGPU::EXEC_LO, TRI);
}
return MI.getOpcode() == AMDGPU::S_OR_B64 &&
MI.modifiesRegister(AMDGPU::EXEC, TRI);
}
static bool isFullExecCopy(const MachineInstr& MI, const GCNSubtarget& ST) {
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
if (MI.isCopy() && MI.getOperand(1).getReg() == Exec) {
assert(MI.isFullCopy());
return true;
}
return false;
}
static unsigned getOrNonExecReg(const MachineInstr &MI,
const SIInstrInfo &TII,
const GCNSubtarget& ST) {
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
auto Op = TII.getNamedOperand(MI, AMDGPU::OpName::src1);
if (Op->isReg() && Op->getReg() != Exec)
return Op->getReg();
Op = TII.getNamedOperand(MI, AMDGPU::OpName::src0);
if (Op->isReg() && Op->getReg() != Exec)
return Op->getReg();
return AMDGPU::NoRegister;
}
static MachineInstr* getOrExecSource(const MachineInstr &MI,
const SIInstrInfo &TII,
const MachineRegisterInfo &MRI,
const GCNSubtarget& ST) {
auto SavedExec = getOrNonExecReg(MI, TII, ST);
if (SavedExec == AMDGPU::NoRegister)
return nullptr;
auto SaveExecInst = MRI.getUniqueVRegDef(SavedExec);
if (!SaveExecInst || !isFullExecCopy(*SaveExecInst, ST))
return nullptr;
return SaveExecInst;
}
/// Skip over instructions that don't care about the exec mask.
MachineBasicBlock::iterator SIOptimizeExecMaskingPreRA::skipIgnoreExecInsts(
MachineBasicBlock::iterator I, MachineBasicBlock::iterator E) const {
for ( ; I != E; ++I) {
if (TII->mayReadEXEC(*MRI, *I))
break;
}
return I;
}
// Skip to the next instruction, ignoring debug instructions, and trivial block
// boundaries (blocks that have one (typically fallthrough) successor, and the
// successor has one predecessor.
MachineBasicBlock::iterator
SIOptimizeExecMaskingPreRA::skipIgnoreExecInstsTrivialSucc(
MachineBasicBlock *&MBB,
MachineBasicBlock::iterator It) const {
do {
It = skipIgnoreExecInsts(It, MBB->end());
if (It != MBB->end() || MBB->succ_size() != 1)
break;
// If there is one trivial successor, advance to the next block.
MachineBasicBlock *Succ = *MBB->succ_begin();
// TODO: Is this really necessary?
if (!MBB->isLayoutSuccessor(Succ))
break;
It = Succ->begin();
MBB = Succ;
} while (true);
return It;
}
// Optimize sequence
// %sel = V_CNDMASK_B32_e64 0, 1, %cc
// %cmp = V_CMP_NE_U32 1, %1
// $vcc = S_AND_B64 $exec, %cmp
// S_CBRANCH_VCC[N]Z
// =>
// $vcc = S_ANDN2_B64 $exec, %cc
// S_CBRANCH_VCC[N]Z
//
// It is the negation pattern inserted by DAGCombiner::visitBRCOND() in the
// rebuildSetCC(). We start with S_CBRANCH to avoid exhaustive search, but
// only 3 first instructions are really needed. S_AND_B64 with exec is a
// required part of the pattern since V_CNDMASK_B32 writes zeroes for inactive
// lanes.
//
// Returns %cc register on success.
static unsigned optimizeVcndVcmpPair(MachineBasicBlock &MBB,
const GCNSubtarget &ST,
MachineRegisterInfo &MRI,
LiveIntervals *LIS) {
const SIRegisterInfo *TRI = ST.getRegisterInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
bool Wave32 = ST.isWave32();
const unsigned AndOpc = Wave32 ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
const unsigned Andn2Opc = Wave32 ? AMDGPU::S_ANDN2_B32 : AMDGPU::S_ANDN2_B64;
const unsigned CondReg = Wave32 ? AMDGPU::VCC_LO : AMDGPU::VCC;
const unsigned ExecReg = Wave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
auto I = llvm::find_if(MBB.terminators(), [](const MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
return Opc == AMDGPU::S_CBRANCH_VCCZ ||
Opc == AMDGPU::S_CBRANCH_VCCNZ; });
if (I == MBB.terminators().end())
return AMDGPU::NoRegister;
auto *And = TRI->findReachingDef(CondReg, AMDGPU::NoSubRegister,
*I, MRI, LIS);
if (!And || And->getOpcode() != AndOpc ||
!And->getOperand(1).isReg() || !And->getOperand(2).isReg())
return AMDGPU::NoRegister;
MachineOperand *AndCC = &And->getOperand(1);
Register CmpReg = AndCC->getReg();
unsigned CmpSubReg = AndCC->getSubReg();
if (CmpReg == ExecReg) {
AndCC = &And->getOperand(2);
CmpReg = AndCC->getReg();
CmpSubReg = AndCC->getSubReg();
} else if (And->getOperand(2).getReg() != ExecReg) {
return AMDGPU::NoRegister;
}
auto *Cmp = TRI->findReachingDef(CmpReg, CmpSubReg, *And, MRI, LIS);
if (!Cmp || !(Cmp->getOpcode() == AMDGPU::V_CMP_NE_U32_e32 ||
Cmp->getOpcode() == AMDGPU::V_CMP_NE_U32_e64) ||
Cmp->getParent() != And->getParent())
return AMDGPU::NoRegister;
MachineOperand *Op1 = TII->getNamedOperand(*Cmp, AMDGPU::OpName::src0);
MachineOperand *Op2 = TII->getNamedOperand(*Cmp, AMDGPU::OpName::src1);
if (Op1->isImm() && Op2->isReg())
std::swap(Op1, Op2);
if (!Op1->isReg() || !Op2->isImm() || Op2->getImm() != 1)
return AMDGPU::NoRegister;
Register SelReg = Op1->getReg();
auto *Sel = TRI->findReachingDef(SelReg, Op1->getSubReg(), *Cmp, MRI, LIS);
if (!Sel || Sel->getOpcode() != AMDGPU::V_CNDMASK_B32_e64)
return AMDGPU::NoRegister;
if (TII->hasModifiersSet(*Sel, AMDGPU::OpName::src0_modifiers) ||
TII->hasModifiersSet(*Sel, AMDGPU::OpName::src1_modifiers))
return AMDGPU::NoRegister;
Op1 = TII->getNamedOperand(*Sel, AMDGPU::OpName::src0);
Op2 = TII->getNamedOperand(*Sel, AMDGPU::OpName::src1);
MachineOperand *CC = TII->getNamedOperand(*Sel, AMDGPU::OpName::src2);
if (!Op1->isImm() || !Op2->isImm() || !CC->isReg() ||
Op1->getImm() != 0 || Op2->getImm() != 1)
return AMDGPU::NoRegister;
LLVM_DEBUG(dbgs() << "Folding sequence:\n\t" << *Sel << '\t' << *Cmp << '\t'
<< *And);
Register CCReg = CC->getReg();
LIS->RemoveMachineInstrFromMaps(*And);
MachineInstr *Andn2 =
BuildMI(MBB, *And, And->getDebugLoc(), TII->get(Andn2Opc),
And->getOperand(0).getReg())
.addReg(ExecReg)
.addReg(CCReg, getUndefRegState(CC->isUndef()), CC->getSubReg());
And->eraseFromParent();
LIS->InsertMachineInstrInMaps(*Andn2);
LLVM_DEBUG(dbgs() << "=>\n\t" << *Andn2 << '\n');
// Try to remove compare. Cmp value should not used in between of cmp
// and s_and_b64 if VCC or just unused if any other register.
if ((Register::isVirtualRegister(CmpReg) && MRI.use_nodbg_empty(CmpReg)) ||
(CmpReg == CondReg &&
std::none_of(std::next(Cmp->getIterator()), Andn2->getIterator(),
[&](const MachineInstr &MI) {
return MI.readsRegister(CondReg, TRI);
}))) {
LLVM_DEBUG(dbgs() << "Erasing: " << *Cmp << '\n');
LIS->RemoveMachineInstrFromMaps(*Cmp);
Cmp->eraseFromParent();
// Try to remove v_cndmask_b32.
if (Register::isVirtualRegister(SelReg) && MRI.use_nodbg_empty(SelReg)) {
LLVM_DEBUG(dbgs() << "Erasing: " << *Sel << '\n');
LIS->RemoveMachineInstrFromMaps(*Sel);
Sel->eraseFromParent();
}
}
return CCReg;
}
bool SIOptimizeExecMaskingPreRA::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
TRI = ST.getRegisterInfo();
TII = ST.getInstrInfo();
MRI = &MF.getRegInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
LiveIntervals *LIS = &getAnalysis<LiveIntervals>();
DenseSet<unsigned> RecalcRegs({AMDGPU::EXEC_LO, AMDGPU::EXEC_HI});
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
if (unsigned Reg = optimizeVcndVcmpPair(MBB, ST, MRI, LIS)) {
RecalcRegs.insert(Reg);
RecalcRegs.insert(AMDGPU::VCC_LO);
RecalcRegs.insert(AMDGPU::VCC_HI);
RecalcRegs.insert(AMDGPU::SCC);
Changed = true;
}
// Try to remove unneeded instructions before s_endpgm.
if (MBB.succ_empty()) {
if (MBB.empty())
continue;
// Skip this if the endpgm has any implicit uses, otherwise we would need
// to be careful to update / remove them.
// S_ENDPGM always has a single imm operand that is not used other than to
// end up in the encoding
MachineInstr &Term = MBB.back();
if (Term.getOpcode() != AMDGPU::S_ENDPGM || Term.getNumOperands() != 1)
continue;
SmallVector<MachineBasicBlock*, 4> Blocks({&MBB});
while (!Blocks.empty()) {
auto CurBB = Blocks.pop_back_val();
auto I = CurBB->rbegin(), E = CurBB->rend();
if (I != E) {
if (I->isUnconditionalBranch() || I->getOpcode() == AMDGPU::S_ENDPGM)
++I;
else if (I->isBranch())
continue;
}
while (I != E) {
if (I->isDebugInstr()) {
I = std::next(I);
continue;
}
if (I->mayStore() || I->isBarrier() || I->isCall() ||
I->hasUnmodeledSideEffects() || I->hasOrderedMemoryRef())
break;
LLVM_DEBUG(dbgs()
<< "Removing no effect instruction: " << *I << '\n');
for (auto &Op : I->operands()) {
if (Op.isReg())
RecalcRegs.insert(Op.getReg());
}
auto Next = std::next(I);
LIS->RemoveMachineInstrFromMaps(*I);
I->eraseFromParent();
I = Next;
Changed = true;
}
if (I != E)
continue;
// Try to ascend predecessors.
for (auto *Pred : CurBB->predecessors()) {
if (Pred->succ_size() == 1)
Blocks.push_back(Pred);
}
}
continue;
}
// Try to collapse adjacent endifs.
auto E = MBB.end();
auto Lead = skipDebugInstructionsForward(MBB.begin(), E);
if (MBB.succ_size() != 1 || Lead == E || !isEndCF(*Lead, TRI, ST))
continue;
MachineBasicBlock *TmpMBB = &MBB;
auto NextLead = skipIgnoreExecInstsTrivialSucc(TmpMBB, std::next(Lead));
if (NextLead == TmpMBB->end() || !isEndCF(*NextLead, TRI, ST) ||
!getOrExecSource(*NextLead, *TII, MRI, ST))
continue;
LLVM_DEBUG(dbgs() << "Redundant EXEC = S_OR_B64 found: " << *Lead << '\n');
auto SaveExec = getOrExecSource(*Lead, *TII, MRI, ST);
unsigned SaveExecReg = getOrNonExecReg(*Lead, *TII, ST);
for (auto &Op : Lead->operands()) {
if (Op.isReg())
RecalcRegs.insert(Op.getReg());
}
LIS->RemoveMachineInstrFromMaps(*Lead);
Lead->eraseFromParent();
if (SaveExecReg) {
LIS->removeInterval(SaveExecReg);
LIS->createAndComputeVirtRegInterval(SaveExecReg);
}
Changed = true;
// If the only use of saved exec in the removed instruction is S_AND_B64
// fold the copy now.
if (!SaveExec || !SaveExec->isFullCopy())
continue;
Register SavedExec = SaveExec->getOperand(0).getReg();
bool SafeToReplace = true;
for (auto& U : MRI.use_nodbg_instructions(SavedExec)) {
if (U.getParent() != SaveExec->getParent()) {
SafeToReplace = false;
break;
}
LLVM_DEBUG(dbgs() << "Redundant EXEC COPY: " << *SaveExec << '\n');
}
if (SafeToReplace) {
LIS->RemoveMachineInstrFromMaps(*SaveExec);
SaveExec->eraseFromParent();
MRI.replaceRegWith(SavedExec, Exec);
LIS->removeInterval(SavedExec);
}
}
if (Changed) {
for (auto Reg : RecalcRegs) {
if (Register::isVirtualRegister(Reg)) {
LIS->removeInterval(Reg);
if (!MRI.reg_empty(Reg))
LIS->createAndComputeVirtRegInterval(Reg);
} else {
LIS->removeAllRegUnitsForPhysReg(Reg);
}
}
}
return Changed;
}