| //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This contains a MachineSchedStrategy implementation for maximizing wave |
| /// occupancy on GCN hardware. |
| //===----------------------------------------------------------------------===// |
| |
| #include "GCNSchedStrategy.h" |
| #include "AMDGPUSubtarget.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "SIRegisterInfo.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/Support/MathExtras.h" |
| |
| #define DEBUG_TYPE "machine-scheduler" |
| |
| using namespace llvm; |
| |
| GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy( |
| const MachineSchedContext *C) : |
| GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { } |
| |
| void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) { |
| GenericScheduler::initialize(DAG); |
| |
| const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); |
| |
| MF = &DAG->MF; |
| |
| const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); |
| |
| // FIXME: This is also necessary, because some passes that run after |
| // scheduling and before regalloc increase register pressure. |
| const int ErrorMargin = 3; |
| |
| SGPRExcessLimit = Context->RegClassInfo |
| ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin; |
| VGPRExcessLimit = Context->RegClassInfo |
| ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin; |
| if (TargetOccupancy) { |
| SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true); |
| VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy); |
| } else { |
| SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, |
| SRI->getSGPRPressureSet()); |
| VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF, |
| SRI->getVGPRPressureSet()); |
| } |
| |
| SGPRCriticalLimit -= ErrorMargin; |
| VGPRCriticalLimit -= ErrorMargin; |
| } |
| |
| void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU, |
| bool AtTop, const RegPressureTracker &RPTracker, |
| const SIRegisterInfo *SRI, |
| unsigned SGPRPressure, |
| unsigned VGPRPressure) { |
| |
| Cand.SU = SU; |
| Cand.AtTop = AtTop; |
| |
| // getDownwardPressure() and getUpwardPressure() make temporary changes to |
| // the tracker, so we need to pass those function a non-const copy. |
| RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); |
| |
| Pressure.clear(); |
| MaxPressure.clear(); |
| |
| if (AtTop) |
| TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure); |
| else { |
| // FIXME: I think for bottom up scheduling, the register pressure is cached |
| // and can be retrieved by DAG->getPressureDif(SU). |
| TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure); |
| } |
| |
| unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()]; |
| unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()]; |
| |
| // If two instructions increase the pressure of different register sets |
| // by the same amount, the generic scheduler will prefer to schedule the |
| // instruction that increases the set with the least amount of registers, |
| // which in our case would be SGPRs. This is rarely what we want, so |
| // when we report excess/critical register pressure, we do it either |
| // only for VGPRs or only for SGPRs. |
| |
| // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs. |
| const unsigned MaxVGPRPressureInc = 16; |
| bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit; |
| bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit; |
| |
| |
| // FIXME: We have to enter REG-EXCESS before we reach the actual threshold |
| // to increase the likelihood we don't go over the limits. We should improve |
| // the analysis to look through dependencies to find the path with the least |
| // register pressure. |
| |
| // We only need to update the RPDelta for instructions that increase register |
| // pressure. Instructions that decrease or keep reg pressure the same will be |
| // marked as RegExcess in tryCandidate() when they are compared with |
| // instructions that increase the register pressure. |
| if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) { |
| Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet()); |
| Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit); |
| } |
| |
| if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) { |
| Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet()); |
| Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit); |
| } |
| |
| // Register pressure is considered 'CRITICAL' if it is approaching a value |
| // that would reduce the wave occupancy for the execution unit. When |
| // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both |
| // has the same cost, so we don't need to prefer one over the other. |
| |
| int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit; |
| int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit; |
| |
| if (SGPRDelta >= 0 || VGPRDelta >= 0) { |
| if (SGPRDelta > VGPRDelta) { |
| Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet()); |
| Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta); |
| } else { |
| Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet()); |
| Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta); |
| } |
| } |
| } |
| |
| // This function is mostly cut and pasted from |
| // GenericScheduler::pickNodeFromQueue() |
| void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone, |
| const CandPolicy &ZonePolicy, |
| const RegPressureTracker &RPTracker, |
| SchedCandidate &Cand) { |
| const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI); |
| ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos(); |
| unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()]; |
| unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()]; |
| ReadyQueue &Q = Zone.Available; |
| for (SUnit *SU : Q) { |
| |
| SchedCandidate TryCand(ZonePolicy); |
| initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, |
| SGPRPressure, VGPRPressure); |
| // Pass SchedBoundary only when comparing nodes from the same boundary. |
| SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; |
| GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg); |
| if (TryCand.Reason != NoCand) { |
| // Initialize resource delta if needed in case future heuristics query it. |
| if (TryCand.ResDelta == SchedResourceDelta()) |
| TryCand.initResourceDelta(Zone.DAG, SchedModel); |
| Cand.setBest(TryCand); |
| LLVM_DEBUG(traceCandidate(Cand)); |
| } |
| } |
| } |
| |
| // This function is mostly cut and pasted from |
| // GenericScheduler::pickNodeBidirectional() |
| SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) { |
| // Schedule as far as possible in the direction of no choice. This is most |
| // efficient, but also provides the best heuristics for CriticalPSets. |
| if (SUnit *SU = Bot.pickOnlyChoice()) { |
| IsTopNode = false; |
| return SU; |
| } |
| if (SUnit *SU = Top.pickOnlyChoice()) { |
| IsTopNode = true; |
| return SU; |
| } |
| // Set the bottom-up policy based on the state of the current bottom zone and |
| // the instructions outside the zone, including the top zone. |
| CandPolicy BotPolicy; |
| setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); |
| // Set the top-down policy based on the state of the current top zone and |
| // the instructions outside the zone, including the bottom zone. |
| CandPolicy TopPolicy; |
| setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); |
| |
| // See if BotCand is still valid (because we previously scheduled from Top). |
| LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); |
| if (!BotCand.isValid() || BotCand.SU->isScheduled || |
| BotCand.Policy != BotPolicy) { |
| BotCand.reset(CandPolicy()); |
| pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); |
| assert(BotCand.Reason != NoCand && "failed to find the first candidate"); |
| } else { |
| LLVM_DEBUG(traceCandidate(BotCand)); |
| #ifndef NDEBUG |
| if (VerifyScheduling) { |
| SchedCandidate TCand; |
| TCand.reset(CandPolicy()); |
| pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); |
| assert(TCand.SU == BotCand.SU && |
| "Last pick result should correspond to re-picking right now"); |
| } |
| #endif |
| } |
| |
| // Check if the top Q has a better candidate. |
| LLVM_DEBUG(dbgs() << "Picking from Top:\n"); |
| if (!TopCand.isValid() || TopCand.SU->isScheduled || |
| TopCand.Policy != TopPolicy) { |
| TopCand.reset(CandPolicy()); |
| pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find the first candidate"); |
| } else { |
| LLVM_DEBUG(traceCandidate(TopCand)); |
| #ifndef NDEBUG |
| if (VerifyScheduling) { |
| SchedCandidate TCand; |
| TCand.reset(CandPolicy()); |
| pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); |
| assert(TCand.SU == TopCand.SU && |
| "Last pick result should correspond to re-picking right now"); |
| } |
| #endif |
| } |
| |
| // Pick best from BotCand and TopCand. |
| LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand); |
| dbgs() << "Bot Cand: "; traceCandidate(BotCand);); |
| SchedCandidate Cand; |
| if (TopCand.Reason == BotCand.Reason) { |
| Cand = BotCand; |
| GenericSchedulerBase::CandReason TopReason = TopCand.Reason; |
| TopCand.Reason = NoCand; |
| GenericScheduler::tryCandidate(Cand, TopCand, nullptr); |
| if (TopCand.Reason != NoCand) { |
| Cand.setBest(TopCand); |
| } else { |
| TopCand.Reason = TopReason; |
| } |
| } else { |
| if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) { |
| Cand = TopCand; |
| } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) { |
| Cand = BotCand; |
| } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) { |
| Cand = TopCand; |
| } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) { |
| Cand = BotCand; |
| } else { |
| if (BotCand.Reason > TopCand.Reason) { |
| Cand = TopCand; |
| } else { |
| Cand = BotCand; |
| } |
| } |
| } |
| LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand);); |
| |
| IsTopNode = Cand.AtTop; |
| return Cand.SU; |
| } |
| |
| // This function is mostly cut and pasted from |
| // GenericScheduler::pickNode() |
| SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) { |
| if (DAG->top() == DAG->bottom()) { |
| assert(Top.Available.empty() && Top.Pending.empty() && |
| Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); |
| return nullptr; |
| } |
| SUnit *SU; |
| do { |
| if (RegionPolicy.OnlyTopDown) { |
| SU = Top.pickOnlyChoice(); |
| if (!SU) { |
| CandPolicy NoPolicy; |
| TopCand.reset(NoPolicy); |
| pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find a candidate"); |
| SU = TopCand.SU; |
| } |
| IsTopNode = true; |
| } else if (RegionPolicy.OnlyBottomUp) { |
| SU = Bot.pickOnlyChoice(); |
| if (!SU) { |
| CandPolicy NoPolicy; |
| BotCand.reset(NoPolicy); |
| pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); |
| assert(BotCand.Reason != NoCand && "failed to find a candidate"); |
| SU = BotCand.SU; |
| } |
| IsTopNode = false; |
| } else { |
| SU = pickNodeBidirectional(IsTopNode); |
| } |
| } while (SU->isScheduled); |
| |
| if (SU->isTopReady()) |
| Top.removeReady(SU); |
| if (SU->isBottomReady()) |
| Bot.removeReady(SU); |
| |
| LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " |
| << *SU->getInstr()); |
| return SU; |
| } |
| |
| GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C, |
| std::unique_ptr<MachineSchedStrategy> S) : |
| ScheduleDAGMILive(C, std::move(S)), |
| ST(MF.getSubtarget<GCNSubtarget>()), |
| MFI(*MF.getInfo<SIMachineFunctionInfo>()), |
| StartingOccupancy(MFI.getOccupancy()), |
| MinOccupancy(StartingOccupancy), Stage(0), RegionIdx(0) { |
| |
| LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n"); |
| } |
| |
| void GCNScheduleDAGMILive::schedule() { |
| if (Stage == 0) { |
| // Just record regions at the first pass. |
| Regions.push_back(std::make_pair(RegionBegin, RegionEnd)); |
| return; |
| } |
| |
| std::vector<MachineInstr*> Unsched; |
| Unsched.reserve(NumRegionInstrs); |
| for (auto &I : *this) { |
| Unsched.push_back(&I); |
| } |
| |
| GCNRegPressure PressureBefore; |
| if (LIS) { |
| PressureBefore = Pressure[RegionIdx]; |
| |
| LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:"; |
| GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI); |
| dbgs() << "Region live-in pressure: "; |
| llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs()); |
| dbgs() << "Region register pressure: "; |
| PressureBefore.print(dbgs())); |
| } |
| |
| ScheduleDAGMILive::schedule(); |
| Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); |
| |
| if (!LIS) |
| return; |
| |
| // Check the results of scheduling. |
| GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; |
| auto PressureAfter = getRealRegPressure(); |
| |
| LLVM_DEBUG(dbgs() << "Pressure after scheduling: "; |
| PressureAfter.print(dbgs())); |
| |
| if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit && |
| PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) { |
| Pressure[RegionIdx] = PressureAfter; |
| LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n"); |
| return; |
| } |
| unsigned Occ = MFI.getOccupancy(); |
| unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST)); |
| unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST)); |
| LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore |
| << ", after " << WavesAfter << ".\n"); |
| |
| // We could not keep current target occupancy because of the just scheduled |
| // region. Record new occupancy for next scheduling cycle. |
| unsigned NewOccupancy = std::max(WavesAfter, WavesBefore); |
| // Allow memory bound functions to drop to 4 waves if not limited by an |
| // attribute. |
| if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy && |
| WavesAfter >= MFI.getMinAllowedOccupancy()) { |
| LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to " |
| << MFI.getMinAllowedOccupancy() << " waves\n"); |
| NewOccupancy = WavesAfter; |
| } |
| if (NewOccupancy < MinOccupancy) { |
| MinOccupancy = NewOccupancy; |
| MFI.limitOccupancy(MinOccupancy); |
| LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to " |
| << MinOccupancy << ".\n"); |
| } |
| |
| if (WavesAfter >= MinOccupancy) { |
| unsigned TotalVGPRs = AMDGPU::IsaInfo::getAddressableNumVGPRs(&ST); |
| unsigned TotalSGPRs = AMDGPU::IsaInfo::getAddressableNumSGPRs(&ST); |
| if (WavesAfter > MFI.getMinWavesPerEU() || |
| PressureAfter.less(ST, PressureBefore) || |
| (TotalVGPRs >= PressureAfter.getVGPRNum() && |
| TotalSGPRs >= PressureAfter.getSGPRNum())) { |
| Pressure[RegionIdx] = PressureAfter; |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n"); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n"); |
| RegionEnd = RegionBegin; |
| for (MachineInstr *MI : Unsched) { |
| if (MI->isDebugInstr()) |
| continue; |
| |
| if (MI->getIterator() != RegionEnd) { |
| BB->remove(MI); |
| BB->insert(RegionEnd, MI); |
| if (!MI->isDebugInstr()) |
| LIS->handleMove(*MI, true); |
| } |
| // Reset read-undef flags and update them later. |
| for (auto &Op : MI->operands()) |
| if (Op.isReg() && Op.isDef()) |
| Op.setIsUndef(false); |
| RegisterOperands RegOpers; |
| RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); |
| if (!MI->isDebugInstr()) { |
| if (ShouldTrackLaneMasks) { |
| // Adjust liveness and add missing dead+read-undef flags. |
| SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); |
| RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); |
| } else { |
| // Adjust for missing dead-def flags. |
| RegOpers.detectDeadDefs(*MI, *LIS); |
| } |
| } |
| RegionEnd = MI->getIterator(); |
| ++RegionEnd; |
| LLVM_DEBUG(dbgs() << "Scheduling " << *MI); |
| } |
| RegionBegin = Unsched.front()->getIterator(); |
| Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd); |
| |
| placeDebugValues(); |
| } |
| |
| GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const { |
| GCNDownwardRPTracker RPTracker(*LIS); |
| RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]); |
| return RPTracker.moveMaxPressure(); |
| } |
| |
| void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) { |
| GCNDownwardRPTracker RPTracker(*LIS); |
| |
| // If the block has the only successor then live-ins of that successor are |
| // live-outs of the current block. We can reuse calculated live set if the |
| // successor will be sent to scheduling past current block. |
| const MachineBasicBlock *OnlySucc = nullptr; |
| if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) { |
| SlotIndexes *Ind = LIS->getSlotIndexes(); |
| if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin())) |
| OnlySucc = *MBB->succ_begin(); |
| } |
| |
| // Scheduler sends regions from the end of the block upwards. |
| size_t CurRegion = RegionIdx; |
| for (size_t E = Regions.size(); CurRegion != E; ++CurRegion) |
| if (Regions[CurRegion].first->getParent() != MBB) |
| break; |
| --CurRegion; |
| |
| auto I = MBB->begin(); |
| auto LiveInIt = MBBLiveIns.find(MBB); |
| if (LiveInIt != MBBLiveIns.end()) { |
| auto LiveIn = std::move(LiveInIt->second); |
| RPTracker.reset(*MBB->begin(), &LiveIn); |
| MBBLiveIns.erase(LiveInIt); |
| } else { |
| auto &Rgn = Regions[CurRegion]; |
| I = Rgn.first; |
| auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second); |
| auto LRS = BBLiveInMap.lookup(NonDbgMI); |
| assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS)); |
| RPTracker.reset(*I, &LRS); |
| } |
| |
| for ( ; ; ) { |
| I = RPTracker.getNext(); |
| |
| if (Regions[CurRegion].first == I) { |
| LiveIns[CurRegion] = RPTracker.getLiveRegs(); |
| RPTracker.clearMaxPressure(); |
| } |
| |
| if (Regions[CurRegion].second == I) { |
| Pressure[CurRegion] = RPTracker.moveMaxPressure(); |
| if (CurRegion-- == RegionIdx) |
| break; |
| } |
| RPTracker.advanceToNext(); |
| RPTracker.advanceBeforeNext(); |
| } |
| |
| if (OnlySucc) { |
| if (I != MBB->end()) { |
| RPTracker.advanceToNext(); |
| RPTracker.advance(MBB->end()); |
| } |
| RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs()); |
| RPTracker.advanceBeforeNext(); |
| MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs(); |
| } |
| } |
| |
| DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> |
| GCNScheduleDAGMILive::getBBLiveInMap() const { |
| assert(!Regions.empty()); |
| std::vector<MachineInstr *> BBStarters; |
| BBStarters.reserve(Regions.size()); |
| auto I = Regions.rbegin(), E = Regions.rend(); |
| auto *BB = I->first->getParent(); |
| do { |
| auto *MI = &*skipDebugInstructionsForward(I->first, I->second); |
| BBStarters.push_back(MI); |
| do { |
| ++I; |
| } while (I != E && I->first->getParent() == BB); |
| } while (I != E); |
| return getLiveRegMap(BBStarters, false /*After*/, *LIS); |
| } |
| |
| void GCNScheduleDAGMILive::finalizeSchedule() { |
| GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl; |
| LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n"); |
| |
| LiveIns.resize(Regions.size()); |
| Pressure.resize(Regions.size()); |
| |
| if (!Regions.empty()) |
| BBLiveInMap = getBBLiveInMap(); |
| |
| do { |
| Stage++; |
| RegionIdx = 0; |
| MachineBasicBlock *MBB = nullptr; |
| |
| if (Stage > 1) { |
| // Retry function scheduling if we found resulting occupancy and it is |
| // lower than used for first pass scheduling. This will give more freedom |
| // to schedule low register pressure blocks. |
| // Code is partially copied from MachineSchedulerBase::scheduleRegions(). |
| |
| if (!LIS || StartingOccupancy <= MinOccupancy) |
| break; |
| |
| LLVM_DEBUG( |
| dbgs() |
| << "Retrying function scheduling with lowest recorded occupancy " |
| << MinOccupancy << ".\n"); |
| |
| S.setTargetOccupancy(MinOccupancy); |
| } |
| |
| for (auto Region : Regions) { |
| RegionBegin = Region.first; |
| RegionEnd = Region.second; |
| |
| if (RegionBegin->getParent() != MBB) { |
| if (MBB) finishBlock(); |
| MBB = RegionBegin->getParent(); |
| startBlock(MBB); |
| if (Stage == 1) |
| computeBlockPressure(MBB); |
| } |
| |
| unsigned NumRegionInstrs = std::distance(begin(), end()); |
| enterRegion(MBB, begin(), end(), NumRegionInstrs); |
| |
| // Skip empty scheduling regions (0 or 1 schedulable instructions). |
| if (begin() == end() || begin() == std::prev(end())) { |
| exitRegion(); |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); |
| LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " " |
| << MBB->getName() << "\n From: " << *begin() |
| << " To: "; |
| if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; |
| else dbgs() << "End"; |
| dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); |
| |
| schedule(); |
| |
| exitRegion(); |
| ++RegionIdx; |
| } |
| finishBlock(); |
| |
| } while (Stage < 2); |
| } |