| //===- AMDGPURegisterBankInfo.cpp -------------------------------*- C++ -*-==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the RegisterBankInfo class for |
| /// AMDGPU. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPURegisterBankInfo.h" |
| #include "AMDGPUInstrInfo.h" |
| #include "AMDGPUSubtarget.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "SIRegisterInfo.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" |
| #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBank.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Constants.h" |
| |
| #define GET_TARGET_REGBANK_IMPL |
| #include "AMDGPUGenRegisterBank.inc" |
| |
| // This file will be TableGen'ed at some point. |
| #include "AMDGPUGenRegisterBankInfo.def" |
| |
| using namespace llvm; |
| using namespace MIPatternMatch; |
| |
| namespace { |
| |
| // Observer to apply a register bank to new registers created by LegalizerHelper. |
| class ApplyRegBankMapping final : public GISelChangeObserver { |
| private: |
| const AMDGPURegisterBankInfo &RBI; |
| MachineRegisterInfo &MRI; |
| const RegisterBank *NewBank; |
| SmallVector<MachineInstr *, 4> NewInsts; |
| |
| public: |
| ApplyRegBankMapping(const AMDGPURegisterBankInfo &RBI_, |
| MachineRegisterInfo &MRI_, const RegisterBank *RB) |
| : RBI(RBI_), MRI(MRI_), NewBank(RB) {} |
| |
| ~ApplyRegBankMapping() { |
| for (MachineInstr *MI : NewInsts) |
| applyBank(*MI); |
| } |
| |
| /// Set any registers that don't have a set register class or bank to SALU. |
| void applyBank(MachineInstr &MI) { |
| const unsigned Opc = MI.getOpcode(); |
| if (Opc == AMDGPU::G_ANYEXT || Opc == AMDGPU::G_ZEXT || |
| Opc == AMDGPU::G_SEXT) { |
| // LegalizerHelper wants to use the basic legalization artifacts when |
| // widening etc. We don't handle selection with vcc in artifact sources, |
| // so we need to use a sslect instead to handle these properly. |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| const RegisterBank *SrcBank = RBI.getRegBank(SrcReg, MRI, *RBI.TRI); |
| if (SrcBank == &AMDGPU::VCCRegBank) { |
| const LLT S32 = LLT::scalar(32); |
| assert(MRI.getType(SrcReg) == LLT::scalar(1)); |
| assert(MRI.getType(DstReg) == S32); |
| assert(NewBank == &AMDGPU::VGPRRegBank); |
| |
| // Replace the extension with a select, which really uses the boolean |
| // source. |
| MachineIRBuilder B(MI); |
| auto True = B.buildConstant(S32, Opc == AMDGPU::G_SEXT ? -1 : 1); |
| auto False = B.buildConstant(S32, 0); |
| B.buildSelect(DstReg, SrcReg, True, False); |
| MRI.setRegBank(True.getReg(0), *NewBank); |
| MRI.setRegBank(False.getReg(0), *NewBank); |
| MI.eraseFromParent(); |
| } |
| |
| assert(!MRI.getRegClassOrRegBank(DstReg)); |
| MRI.setRegBank(DstReg, *NewBank); |
| return; |
| } |
| |
| #ifndef NDEBUG |
| if (Opc == AMDGPU::G_TRUNC) { |
| Register DstReg = MI.getOperand(0).getReg(); |
| const RegisterBank *DstBank = RBI.getRegBank(DstReg, MRI, *RBI.TRI); |
| assert(DstBank != &AMDGPU::VCCRegBank); |
| } |
| #endif |
| |
| for (MachineOperand &Op : MI.operands()) { |
| if (!Op.isReg()) |
| continue; |
| |
| Register Reg = Op.getReg(); |
| if (MRI.getRegClassOrRegBank(Reg)) |
| continue; |
| |
| const RegisterBank *RB = NewBank; |
| if (MRI.getType(Reg) == LLT::scalar(1)) { |
| assert(NewBank == &AMDGPU::VGPRRegBank && |
| "s1 operands should only be used for vector bools"); |
| assert((MI.getOpcode() != AMDGPU::G_TRUNC && |
| MI.getOpcode() != AMDGPU::G_ANYEXT) && |
| "not expecting legalization artifacts here"); |
| RB = &AMDGPU::VCCRegBank; |
| } |
| |
| MRI.setRegBank(Reg, *RB); |
| } |
| } |
| |
| void erasingInstr(MachineInstr &MI) override {} |
| |
| void createdInstr(MachineInstr &MI) override { |
| // At this point, the instruction was just inserted and has no operands. |
| NewInsts.push_back(&MI); |
| } |
| |
| void changingInstr(MachineInstr &MI) override {} |
| void changedInstr(MachineInstr &MI) override {} |
| }; |
| |
| } |
| AMDGPURegisterBankInfo::AMDGPURegisterBankInfo(const GCNSubtarget &ST) |
| : AMDGPUGenRegisterBankInfo(), |
| Subtarget(ST), |
| TRI(Subtarget.getRegisterInfo()), |
| TII(Subtarget.getInstrInfo()) { |
| |
| // HACK: Until this is fully tablegen'd. |
| static bool AlreadyInit = false; |
| if (AlreadyInit) |
| return; |
| |
| AlreadyInit = true; |
| |
| assert(&getRegBank(AMDGPU::SGPRRegBankID) == &AMDGPU::SGPRRegBank && |
| &getRegBank(AMDGPU::VGPRRegBankID) == &AMDGPU::VGPRRegBank && |
| &getRegBank(AMDGPU::AGPRRegBankID) == &AMDGPU::AGPRRegBank); |
| } |
| |
| static bool isVectorRegisterBank(const RegisterBank &Bank) { |
| unsigned BankID = Bank.getID(); |
| return BankID == AMDGPU::VGPRRegBankID || BankID == AMDGPU::AGPRRegBankID; |
| } |
| |
| unsigned AMDGPURegisterBankInfo::copyCost(const RegisterBank &Dst, |
| const RegisterBank &Src, |
| unsigned Size) const { |
| // TODO: Should there be a UniformVGPRRegBank which can use readfirstlane? |
| if (Dst.getID() == AMDGPU::SGPRRegBankID && |
| isVectorRegisterBank(Src)) { |
| return std::numeric_limits<unsigned>::max(); |
| } |
| |
| // Bool values are tricky, because the meaning is based on context. The SCC |
| // and VCC banks are for the natural scalar and vector conditions produced by |
| // a compare. |
| // |
| // Legalization doesn't know about the necessary context, so an s1 use may |
| // have been a truncate from an arbitrary value, in which case a copy (lowered |
| // as a compare with 0) needs to be inserted. |
| if (Size == 1 && |
| (Dst.getID() == AMDGPU::SGPRRegBankID) && |
| (isVectorRegisterBank(Src) || |
| Src.getID() == AMDGPU::SGPRRegBankID || |
| Src.getID() == AMDGPU::VCCRegBankID)) |
| return std::numeric_limits<unsigned>::max(); |
| |
| if (Src.getID() == AMDGPU::VCCRegBankID) |
| return std::numeric_limits<unsigned>::max(); |
| |
| // There is no direct copy between AGPRs. |
| if (Dst.getID() == AMDGPU::AGPRRegBankID && |
| Src.getID() == AMDGPU::AGPRRegBankID) |
| return 4; |
| |
| return RegisterBankInfo::copyCost(Dst, Src, Size); |
| } |
| |
| unsigned AMDGPURegisterBankInfo::getBreakDownCost( |
| const ValueMapping &ValMapping, |
| const RegisterBank *CurBank) const { |
| // Check if this is a breakdown for G_LOAD to move the pointer from SGPR to |
| // VGPR. |
| // FIXME: Is there a better way to do this? |
| if (ValMapping.NumBreakDowns >= 2 || ValMapping.BreakDown[0].Length >= 64) |
| return 10; // This is expensive. |
| |
| assert(ValMapping.NumBreakDowns == 2 && |
| ValMapping.BreakDown[0].Length == 32 && |
| ValMapping.BreakDown[0].StartIdx == 0 && |
| ValMapping.BreakDown[1].Length == 32 && |
| ValMapping.BreakDown[1].StartIdx == 32 && |
| ValMapping.BreakDown[0].RegBank == ValMapping.BreakDown[1].RegBank); |
| |
| // 32-bit extract of a 64-bit value is just access of a subregister, so free. |
| // TODO: Cost of 0 hits assert, though it's not clear it's what we really |
| // want. |
| |
| // TODO: 32-bit insert to a 64-bit SGPR may incur a non-free copy due to SGPR |
| // alignment restrictions, but this probably isn't important. |
| return 1; |
| } |
| |
| const RegisterBank & |
| AMDGPURegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC, |
| LLT Ty) const { |
| if (&RC == &AMDGPU::SReg_1RegClass) |
| return AMDGPU::VCCRegBank; |
| |
| // We promote real scalar booleans to SReg_32. Any SGPR using s1 is really a |
| // VCC-like use. |
| if (TRI->isSGPRClass(&RC)) { |
| // FIXME: This probably came from a copy from a physical register, which |
| // should be inferrrable from the copied to-type. We don't have many boolean |
| // physical register constraints so just assume a normal SGPR for now. |
| if (!Ty.isValid()) |
| return AMDGPU::SGPRRegBank; |
| |
| return Ty == LLT::scalar(1) ? AMDGPU::VCCRegBank : AMDGPU::SGPRRegBank; |
| } |
| |
| return TRI->isAGPRClass(&RC) ? AMDGPU::AGPRRegBank : AMDGPU::VGPRRegBank; |
| } |
| |
| template <unsigned NumOps> |
| RegisterBankInfo::InstructionMappings |
| AMDGPURegisterBankInfo::addMappingFromTable( |
| const MachineInstr &MI, const MachineRegisterInfo &MRI, |
| const std::array<unsigned, NumOps> RegSrcOpIdx, |
| ArrayRef<OpRegBankEntry<NumOps>> Table) const { |
| |
| InstructionMappings AltMappings; |
| |
| SmallVector<const ValueMapping *, 10> Operands(MI.getNumOperands()); |
| |
| unsigned Sizes[NumOps]; |
| for (unsigned I = 0; I < NumOps; ++I) { |
| Register Reg = MI.getOperand(RegSrcOpIdx[I]).getReg(); |
| Sizes[I] = getSizeInBits(Reg, MRI, *TRI); |
| } |
| |
| for (unsigned I = 0, E = MI.getNumExplicitDefs(); I != E; ++I) { |
| unsigned SizeI = getSizeInBits(MI.getOperand(I).getReg(), MRI, *TRI); |
| Operands[I] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, SizeI); |
| } |
| |
| // getInstrMapping's default mapping uses ID 1, so start at 2. |
| unsigned MappingID = 2; |
| for (const auto &Entry : Table) { |
| for (unsigned I = 0; I < NumOps; ++I) { |
| int OpIdx = RegSrcOpIdx[I]; |
| Operands[OpIdx] = AMDGPU::getValueMapping(Entry.RegBanks[I], Sizes[I]); |
| } |
| |
| AltMappings.push_back(&getInstructionMapping(MappingID++, Entry.Cost, |
| getOperandsMapping(Operands), |
| Operands.size())); |
| } |
| |
| return AltMappings; |
| } |
| |
| RegisterBankInfo::InstructionMappings |
| AMDGPURegisterBankInfo::getInstrAlternativeMappingsIntrinsic( |
| const MachineInstr &MI, const MachineRegisterInfo &MRI) const { |
| switch (MI.getIntrinsicID()) { |
| case Intrinsic::amdgcn_readlane: { |
| static const OpRegBankEntry<3> Table[2] = { |
| // Perfectly legal. |
| { { AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID }, 1 }, |
| |
| // Need a readfirstlane for the index. |
| { { AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 2 } |
| }; |
| |
| const std::array<unsigned, 3> RegSrcOpIdx = { { 0, 2, 3 } }; |
| return addMappingFromTable<3>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table)); |
| } |
| case Intrinsic::amdgcn_writelane: { |
| static const OpRegBankEntry<4> Table[4] = { |
| // Perfectly legal. |
| { { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 1 }, |
| |
| // Need readfirstlane of first op |
| { { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 2 }, |
| |
| // Need readfirstlane of second op |
| { { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 2 }, |
| |
| // Need readfirstlane of both ops |
| { { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 3 } |
| }; |
| |
| // rsrc, voffset, offset |
| const std::array<unsigned, 4> RegSrcOpIdx = { { 0, 2, 3, 4 } }; |
| return addMappingFromTable<4>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table)); |
| } |
| default: |
| return RegisterBankInfo::getInstrAlternativeMappings(MI); |
| } |
| } |
| |
| RegisterBankInfo::InstructionMappings |
| AMDGPURegisterBankInfo::getInstrAlternativeMappingsIntrinsicWSideEffects( |
| const MachineInstr &MI, const MachineRegisterInfo &MRI) const { |
| |
| switch (MI.getIntrinsicID()) { |
| case Intrinsic::amdgcn_buffer_load: { |
| static const OpRegBankEntry<3> Table[4] = { |
| // Perfectly legal. |
| { { AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID }, 1 }, |
| { { AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 1 }, |
| |
| // Waterfall loop needed for rsrc. In the worst case this will execute |
| // approximately an extra 10 * wavesize + 2 instructions. |
| { { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID }, 1000 }, |
| { { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 1000 } |
| }; |
| |
| // rsrc, voffset, offset |
| const std::array<unsigned, 3> RegSrcOpIdx = { { 2, 3, 4 } }; |
| return addMappingFromTable<3>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table)); |
| } |
| case Intrinsic::amdgcn_s_buffer_load: { |
| static const OpRegBankEntry<2> Table[4] = { |
| // Perfectly legal. |
| { { AMDGPU::SGPRRegBankID, AMDGPU::SGPRRegBankID }, 1 }, |
| |
| // Only need 1 register in loop |
| { { AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 300 }, |
| |
| // Have to waterfall the resource. |
| { { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID }, 1000 }, |
| |
| // Have to waterfall the resource, and the offset. |
| { { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 1500 } |
| }; |
| |
| // rsrc, offset |
| const std::array<unsigned, 2> RegSrcOpIdx = { { 2, 3 } }; |
| return addMappingFromTable<2>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table)); |
| } |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: { |
| // VGPR = M0, VGPR |
| static const OpRegBankEntry<3> Table[2] = { |
| // Perfectly legal. |
| { { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 1 }, |
| |
| // Need a readfirstlane for m0 |
| { { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 2 } |
| }; |
| |
| const std::array<unsigned, 3> RegSrcOpIdx = { { 0, 2, 3 } }; |
| return addMappingFromTable<3>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table)); |
| } |
| case Intrinsic::amdgcn_s_sendmsg: |
| case Intrinsic::amdgcn_s_sendmsghalt: { |
| // FIXME: Should have no register for immediate |
| static const OpRegBankEntry<1> Table[2] = { |
| // Perfectly legal. |
| { { AMDGPU::SGPRRegBankID }, 1 }, |
| |
| // Need readlane |
| { { AMDGPU::VGPRRegBankID }, 3 } |
| }; |
| |
| const std::array<unsigned, 1> RegSrcOpIdx = { { 2 } }; |
| return addMappingFromTable<1>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table)); |
| } |
| default: |
| return RegisterBankInfo::getInstrAlternativeMappings(MI); |
| } |
| } |
| |
| static bool memOpHasNoClobbered(const MachineMemOperand *MMO) { |
| const Instruction *I = dyn_cast_or_null<Instruction>(MMO->getValue()); |
| return I && I->getMetadata("amdgpu.noclobber"); |
| } |
| |
| // FIXME: Returns uniform if there's no source value information. This is |
| // probably wrong. |
| static bool isScalarLoadLegal(const MachineInstr &MI) { |
| if (!MI.hasOneMemOperand()) |
| return false; |
| |
| const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| const unsigned AS = MMO->getAddrSpace(); |
| const bool IsConst = AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; |
| |
| // There are no extending SMRD/SMEM loads, and they require 4-byte alignment. |
| return MMO->getSize() >= 4 && MMO->getAlignment() >= 4 && |
| // Can't do a scalar atomic load. |
| !MMO->isAtomic() && |
| // Don't use scalar loads for volatile accesses to non-constant address |
| // spaces. |
| (IsConst || !MMO->isVolatile()) && |
| // Memory must be known constant, or not written before this load. |
| (IsConst || MMO->isInvariant() || memOpHasNoClobbered(MMO)) && |
| AMDGPUInstrInfo::isUniformMMO(MMO); |
| } |
| |
| RegisterBankInfo::InstructionMappings |
| AMDGPURegisterBankInfo::getInstrAlternativeMappings( |
| const MachineInstr &MI) const { |
| |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| |
| InstructionMappings AltMappings; |
| switch (MI.getOpcode()) { |
| case TargetOpcode::G_CONSTANT: { |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| if (Size == 1) { |
| static const OpRegBankEntry<1> Table[3] = { |
| { { AMDGPU::VGPRRegBankID }, 1 }, |
| { { AMDGPU::SGPRRegBankID }, 1 }, |
| { { AMDGPU::VCCRegBankID }, 1 } |
| }; |
| |
| return addMappingFromTable<1>(MI, MRI, {{ 0 }}, Table); |
| } |
| |
| LLVM_FALLTHROUGH; |
| } |
| case TargetOpcode::G_FCONSTANT: |
| case TargetOpcode::G_FRAME_INDEX: |
| case TargetOpcode::G_GLOBAL_VALUE: { |
| static const OpRegBankEntry<1> Table[2] = { |
| { { AMDGPU::VGPRRegBankID }, 1 }, |
| { { AMDGPU::SGPRRegBankID }, 1 } |
| }; |
| |
| return addMappingFromTable<1>(MI, MRI, {{ 0 }}, Table); |
| } |
| case TargetOpcode::G_AND: |
| case TargetOpcode::G_OR: |
| case TargetOpcode::G_XOR: { |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| |
| if (Size == 1) { |
| // s_{and|or|xor}_b32 set scc when the result of the 32-bit op is not 0. |
| const InstructionMapping &SCCMapping = getInstructionMapping( |
| 1, 1, getOperandsMapping( |
| {AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32)}), |
| 3); // Num Operands |
| AltMappings.push_back(&SCCMapping); |
| |
| const InstructionMapping &VCCMapping0 = getInstructionMapping( |
| 2, 1, getOperandsMapping( |
| {AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Size)}), |
| 3); // Num Operands |
| AltMappings.push_back(&VCCMapping0); |
| return AltMappings; |
| } |
| |
| if (Size != 64) |
| break; |
| |
| const InstructionMapping &SSMapping = getInstructionMapping( |
| 1, 1, getOperandsMapping( |
| {AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size)}), |
| 3); // Num Operands |
| AltMappings.push_back(&SSMapping); |
| |
| const InstructionMapping &VVMapping = getInstructionMapping( |
| 2, 2, getOperandsMapping( |
| {AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size)}), |
| 3); // Num Operands |
| AltMappings.push_back(&VVMapping); |
| |
| const InstructionMapping &SVMapping = getInstructionMapping( |
| 3, 3, getOperandsMapping( |
| {AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMappingSGPR64Only(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size)}), |
| 3); // Num Operands |
| AltMappings.push_back(&SVMapping); |
| |
| // SGPR in LHS is slightly preferrable, so make it VS more expensive than |
| // SV. |
| const InstructionMapping &VSMapping = getInstructionMapping( |
| 3, 4, getOperandsMapping( |
| {AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMappingSGPR64Only(AMDGPU::SGPRRegBankID, Size)}), |
| 3); // Num Operands |
| AltMappings.push_back(&VSMapping); |
| break; |
| } |
| case TargetOpcode::G_LOAD: |
| case TargetOpcode::G_ZEXTLOAD: |
| case TargetOpcode::G_SEXTLOAD: { |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| LLT PtrTy = MRI.getType(MI.getOperand(1).getReg()); |
| unsigned PtrSize = PtrTy.getSizeInBits(); |
| unsigned AS = PtrTy.getAddressSpace(); |
| LLT LoadTy = MRI.getType(MI.getOperand(0).getReg()); |
| |
| if ((AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::REGION_ADDRESS && |
| AS != AMDGPUAS::PRIVATE_ADDRESS) && |
| isScalarLoadLegal(MI)) { |
| const InstructionMapping &SSMapping = getInstructionMapping( |
| 1, 1, getOperandsMapping( |
| {AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, PtrSize)}), |
| 2); // Num Operands |
| AltMappings.push_back(&SSMapping); |
| } |
| |
| const InstructionMapping &VVMapping = getInstructionMapping( |
| 2, 1, getOperandsMapping( |
| {AMDGPU::getValueMappingLoadSGPROnly(AMDGPU::VGPRRegBankID, LoadTy), |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, PtrSize)}), |
| 2); // Num Operands |
| AltMappings.push_back(&VVMapping); |
| |
| // It may be possible to have a vgpr = load sgpr mapping here, because |
| // the mubuf instructions support this kind of load, but probably for only |
| // gfx7 and older. However, the addressing mode matching in the instruction |
| // selector should be able to do a better job of detecting and selecting |
| // these kinds of loads from the vgpr = load vgpr mapping. |
| |
| return AltMappings; |
| |
| } |
| case TargetOpcode::G_ICMP: { |
| // TODO: Should report 32-bit for scalar output type. |
| unsigned Size = getSizeInBits(MI.getOperand(2).getReg(), MRI, *TRI); |
| const InstructionMapping &SSMapping = getInstructionMapping(1, 1, |
| getOperandsMapping({AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1), |
| nullptr, // Predicate operand. |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size)}), |
| 4); // Num Operands |
| AltMappings.push_back(&SSMapping); |
| |
| const InstructionMapping &SVMapping = getInstructionMapping(2, 1, |
| getOperandsMapping({AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1), |
| nullptr, // Predicate operand. |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size)}), |
| 4); // Num Operands |
| AltMappings.push_back(&SVMapping); |
| |
| const InstructionMapping &VSMapping = getInstructionMapping(3, 1, |
| getOperandsMapping({AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1), |
| nullptr, // Predicate operand. |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size)}), |
| 4); // Num Operands |
| AltMappings.push_back(&VSMapping); |
| |
| const InstructionMapping &VVMapping = getInstructionMapping(4, 1, |
| getOperandsMapping({AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1), |
| nullptr, // Predicate operand. |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size)}), |
| 4); // Num Operands |
| AltMappings.push_back(&VVMapping); |
| |
| return AltMappings; |
| } |
| case TargetOpcode::G_SELECT: { |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| const InstructionMapping &SSMapping = getInstructionMapping(1, 1, |
| getOperandsMapping({AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size)}), |
| 4); // Num Operands |
| AltMappings.push_back(&SSMapping); |
| |
| const InstructionMapping &VVMapping = getInstructionMapping(2, 1, |
| getOperandsMapping({AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1), |
| AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size)}), |
| 4); // Num Operands |
| AltMappings.push_back(&VVMapping); |
| |
| return AltMappings; |
| } |
| case TargetOpcode::G_SMIN: |
| case TargetOpcode::G_SMAX: |
| case TargetOpcode::G_UMIN: |
| case TargetOpcode::G_UMAX: { |
| static const OpRegBankEntry<3> Table[4] = { |
| { { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 1 }, |
| { { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 1 }, |
| { { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID }, 1 }, |
| |
| // Scalar requires cmp+select, and extends if 16-bit. |
| // FIXME: Should there be separate costs for 32 and 16-bit |
| { { AMDGPU::SGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::SGPRRegBankID }, 3 } |
| }; |
| |
| const std::array<unsigned, 3> RegSrcOpIdx = { { 0, 1, 2 } }; |
| return addMappingFromTable<3>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table)); |
| } |
| case TargetOpcode::G_UADDE: |
| case TargetOpcode::G_USUBE: |
| case TargetOpcode::G_SADDE: |
| case TargetOpcode::G_SSUBE: { |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| const InstructionMapping &SSMapping = getInstructionMapping(1, 1, |
| getOperandsMapping( |
| {AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1)}), |
| 5); // Num Operands |
| AltMappings.push_back(&SSMapping); |
| |
| const InstructionMapping &VVMapping = getInstructionMapping(2, 1, |
| getOperandsMapping({AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1), |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size), |
| AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1)}), |
| 5); // Num Operands |
| AltMappings.push_back(&VVMapping); |
| return AltMappings; |
| } |
| case AMDGPU::G_BRCOND: { |
| assert(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() == 1); |
| |
| // TODO: Change type to 32 for scalar |
| const InstructionMapping &SMapping = getInstructionMapping( |
| 1, 1, getOperandsMapping( |
| {AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1), nullptr}), |
| 2); // Num Operands |
| AltMappings.push_back(&SMapping); |
| |
| const InstructionMapping &VMapping = getInstructionMapping( |
| 1, 1, getOperandsMapping( |
| {AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1), nullptr }), |
| 2); // Num Operands |
| AltMappings.push_back(&VMapping); |
| return AltMappings; |
| } |
| case AMDGPU::G_INTRINSIC: |
| return getInstrAlternativeMappingsIntrinsic(MI, MRI); |
| case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: |
| return getInstrAlternativeMappingsIntrinsicWSideEffects(MI, MRI); |
| default: |
| break; |
| } |
| return RegisterBankInfo::getInstrAlternativeMappings(MI); |
| } |
| |
| void AMDGPURegisterBankInfo::split64BitValueForMapping( |
| MachineIRBuilder &B, |
| SmallVector<Register, 2> &Regs, |
| LLT HalfTy, |
| Register Reg) const { |
| assert(HalfTy.getSizeInBits() == 32); |
| MachineRegisterInfo *MRI = B.getMRI(); |
| Register LoLHS = MRI->createGenericVirtualRegister(HalfTy); |
| Register HiLHS = MRI->createGenericVirtualRegister(HalfTy); |
| const RegisterBank *Bank = getRegBank(Reg, *MRI, *TRI); |
| MRI->setRegBank(LoLHS, *Bank); |
| MRI->setRegBank(HiLHS, *Bank); |
| |
| Regs.push_back(LoLHS); |
| Regs.push_back(HiLHS); |
| |
| B.buildInstr(AMDGPU::G_UNMERGE_VALUES) |
| .addDef(LoLHS) |
| .addDef(HiLHS) |
| .addUse(Reg); |
| } |
| |
| /// Replace the current type each register in \p Regs has with \p NewTy |
| static void setRegsToType(MachineRegisterInfo &MRI, ArrayRef<Register> Regs, |
| LLT NewTy) { |
| for (Register Reg : Regs) { |
| assert(MRI.getType(Reg).getSizeInBits() == NewTy.getSizeInBits()); |
| MRI.setType(Reg, NewTy); |
| } |
| } |
| |
| static LLT getHalfSizedType(LLT Ty) { |
| if (Ty.isVector()) { |
| assert(Ty.getNumElements() % 2 == 0); |
| return LLT::scalarOrVector(Ty.getNumElements() / 2, Ty.getElementType()); |
| } |
| |
| assert(Ty.getSizeInBits() % 2 == 0); |
| return LLT::scalar(Ty.getSizeInBits() / 2); |
| } |
| |
| /// Legalize instruction \p MI where operands in \p OpIndices must be SGPRs. If |
| /// any of the required SGPR operands are VGPRs, perform a waterfall loop to |
| /// execute the instruction for each unique combination of values in all lanes |
| /// in the wave. The block will be split such that rest of the instructions are |
| /// moved to a new block. |
| /// |
| /// Essentially performs this loop: |
| // |
| /// Save Execution Mask |
| /// For (Lane : Wavefront) { |
| /// Enable Lane, Disable all other lanes |
| /// SGPR = read SGPR value for current lane from VGPR |
| /// VGPRResult[Lane] = use_op SGPR |
| /// } |
| /// Restore Execution Mask |
| /// |
| /// There is additional complexity to try for compare values to identify the |
| /// unique values used. |
| bool AMDGPURegisterBankInfo::executeInWaterfallLoop( |
| MachineIRBuilder &B, |
| iterator_range<MachineBasicBlock::iterator> Range, |
| SmallSet<Register, 4> &SGPROperandRegs, |
| MachineRegisterInfo &MRI) const { |
| SmallVector<Register, 4> ResultRegs; |
| SmallVector<Register, 4> InitResultRegs; |
| SmallVector<Register, 4> PhiRegs; |
| |
| MachineBasicBlock &MBB = B.getMBB(); |
| MachineFunction *MF = &B.getMF(); |
| |
| const TargetRegisterClass *WaveRC = TRI->getWaveMaskRegClass(); |
| const unsigned WaveAndOpc = Subtarget.isWave32() ? |
| AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; |
| const unsigned MovTermOpc = Subtarget.isWave32() ? |
| AMDGPU::S_MOV_B32_term : AMDGPU::S_MOV_B64_term; |
| const unsigned XorTermOpc = Subtarget.isWave32() ? |
| AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term; |
| const unsigned AndSaveExecOpc = Subtarget.isWave32() ? |
| AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64; |
| const unsigned ExecReg = Subtarget.isWave32() ? |
| AMDGPU::EXEC_LO : AMDGPU::EXEC; |
| |
| for (MachineInstr &MI : Range) { |
| for (MachineOperand &Def : MI.defs()) { |
| LLT ResTy = MRI.getType(Def.getReg()); |
| const RegisterBank *DefBank = getRegBank(Def.getReg(), MRI, *TRI); |
| ResultRegs.push_back(Def.getReg()); |
| Register InitReg = B.buildUndef(ResTy).getReg(0); |
| Register PhiReg = MRI.createGenericVirtualRegister(ResTy); |
| InitResultRegs.push_back(InitReg); |
| PhiRegs.push_back(PhiReg); |
| MRI.setRegBank(PhiReg, *DefBank); |
| MRI.setRegBank(InitReg, *DefBank); |
| } |
| } |
| |
| Register SaveExecReg = MRI.createVirtualRegister(WaveRC); |
| Register InitSaveExecReg = MRI.createVirtualRegister(WaveRC); |
| |
| // Don't bother using generic instructions/registers for the exec mask. |
| B.buildInstr(TargetOpcode::IMPLICIT_DEF) |
| .addDef(InitSaveExecReg); |
| |
| Register PhiExec = MRI.createVirtualRegister(WaveRC); |
| Register NewExec = MRI.createVirtualRegister(WaveRC); |
| |
| // To insert the loop we need to split the block. Move everything before this |
| // point to a new block, and insert a new empty block before this instruction. |
| MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock(); |
| MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock(); |
| MachineBasicBlock *RestoreExecBB = MF->CreateMachineBasicBlock(); |
| MachineFunction::iterator MBBI(MBB); |
| ++MBBI; |
| MF->insert(MBBI, LoopBB); |
| MF->insert(MBBI, RestoreExecBB); |
| MF->insert(MBBI, RemainderBB); |
| |
| LoopBB->addSuccessor(RestoreExecBB); |
| LoopBB->addSuccessor(LoopBB); |
| |
| // Move the rest of the block into a new block. |
| RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); |
| RemainderBB->splice(RemainderBB->begin(), &MBB, Range.end(), MBB.end()); |
| |
| MBB.addSuccessor(LoopBB); |
| RestoreExecBB->addSuccessor(RemainderBB); |
| |
| B.setInsertPt(*LoopBB, LoopBB->end()); |
| |
| B.buildInstr(TargetOpcode::PHI) |
| .addDef(PhiExec) |
| .addReg(InitSaveExecReg) |
| .addMBB(&MBB) |
| .addReg(NewExec) |
| .addMBB(LoopBB); |
| |
| for (auto Result : zip(InitResultRegs, ResultRegs, PhiRegs)) { |
| B.buildInstr(TargetOpcode::G_PHI) |
| .addDef(std::get<2>(Result)) |
| .addReg(std::get<0>(Result)) // Initial value / implicit_def |
| .addMBB(&MBB) |
| .addReg(std::get<1>(Result)) // Mid-loop value. |
| .addMBB(LoopBB); |
| } |
| |
| const DebugLoc &DL = B.getDL(); |
| |
| // Figure out the iterator range after splicing the instructions. |
| auto NewBegin = std::prev(LoopBB->end()); |
| |
| // Move the instruction into the loop. Note we moved everything after |
| // Range.end() already into a new block, so Range.end() is no longer valid. |
| LoopBB->splice(LoopBB->end(), &MBB, Range.begin(), MBB.end()); |
| |
| auto NewEnd = LoopBB->end(); |
| |
| MachineBasicBlock::iterator I = Range.begin(); |
| B.setInsertPt(*LoopBB, I); |
| |
| Register CondReg; |
| |
| for (MachineInstr &MI : make_range(NewBegin, NewEnd)) { |
| for (MachineOperand &Op : MI.uses()) { |
| if (!Op.isReg() || Op.isDef()) |
| continue; |
| |
| if (SGPROperandRegs.count(Op.getReg())) { |
| LLT OpTy = MRI.getType(Op.getReg()); |
| unsigned OpSize = OpTy.getSizeInBits(); |
| |
| // Can only do a readlane of 32-bit pieces. |
| if (OpSize == 32) { |
| // Avoid extra copies in the simple case of one 32-bit register. |
| Register CurrentLaneOpReg |
| = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); |
| MRI.setType(CurrentLaneOpReg, OpTy); |
| |
| constrainGenericRegister(Op.getReg(), AMDGPU::VGPR_32RegClass, MRI); |
| // Read the next variant <- also loop target. |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), |
| CurrentLaneOpReg) |
| .addReg(Op.getReg()); |
| |
| Register NewCondReg = MRI.createVirtualRegister(WaveRC); |
| bool First = CondReg == AMDGPU::NoRegister; |
| if (First) |
| CondReg = NewCondReg; |
| |
| // Compare the just read M0 value to all possible Idx values. |
| B.buildInstr(AMDGPU::V_CMP_EQ_U32_e64) |
| .addDef(NewCondReg) |
| .addReg(CurrentLaneOpReg) |
| .addReg(Op.getReg()); |
| Op.setReg(CurrentLaneOpReg); |
| |
| if (!First) { |
| Register AndReg = MRI.createVirtualRegister(WaveRC); |
| |
| // If there are multiple operands to consider, and the conditions. |
| B.buildInstr(WaveAndOpc) |
| .addDef(AndReg) |
| .addReg(NewCondReg) |
| .addReg(CondReg); |
| CondReg = AndReg; |
| } |
| } else { |
| LLT S32 = LLT::scalar(32); |
| SmallVector<Register, 8> ReadlanePieces; |
| |
| // The compares can be done as 64-bit, but the extract needs to be done |
| // in 32-bit pieces. |
| |
| bool Is64 = OpSize % 64 == 0; |
| |
| LLT UnmergeTy = OpSize % 64 == 0 ? LLT::scalar(64) : LLT::scalar(32); |
| unsigned CmpOp = OpSize % 64 == 0 ? AMDGPU::V_CMP_EQ_U64_e64 |
| : AMDGPU::V_CMP_EQ_U32_e64; |
| |
| // The compares can be done as 64-bit, but the extract needs to be done |
| // in 32-bit pieces. |
| |
| // Insert the unmerge before the loop. |
| |
| B.setMBB(MBB); |
| auto Unmerge = B.buildUnmerge(UnmergeTy, Op.getReg()); |
| B.setInstr(*I); |
| |
| unsigned NumPieces = Unmerge->getNumOperands() - 1; |
| for (unsigned PieceIdx = 0; PieceIdx != NumPieces; ++PieceIdx) { |
| Register UnmergePiece = Unmerge.getReg(PieceIdx); |
| |
| Register CurrentLaneOpReg; |
| if (Is64) { |
| Register CurrentLaneOpRegLo = MRI.createGenericVirtualRegister(S32); |
| Register CurrentLaneOpRegHi = MRI.createGenericVirtualRegister(S32); |
| |
| MRI.setRegClass(UnmergePiece, &AMDGPU::VReg_64RegClass); |
| MRI.setRegClass(CurrentLaneOpRegLo, &AMDGPU::SReg_32_XM0RegClass); |
| MRI.setRegClass(CurrentLaneOpRegHi, &AMDGPU::SReg_32_XM0RegClass); |
| |
| // Read the next variant <- also loop target. |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), |
| CurrentLaneOpRegLo) |
| .addReg(UnmergePiece, 0, AMDGPU::sub0); |
| |
| // Read the next variant <- also loop target. |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), |
| CurrentLaneOpRegHi) |
| .addReg(UnmergePiece, 0, AMDGPU::sub1); |
| |
| CurrentLaneOpReg = |
| B.buildMerge(LLT::scalar(64), |
| {CurrentLaneOpRegLo, CurrentLaneOpRegHi}) |
| .getReg(0); |
| |
| MRI.setRegClass(CurrentLaneOpReg, &AMDGPU::SReg_64_XEXECRegClass); |
| |
| if (OpTy.getScalarSizeInBits() == 64) { |
| // If we need to produce a 64-bit element vector, so use the |
| // merged pieces |
| ReadlanePieces.push_back(CurrentLaneOpReg); |
| } else { |
| // 32-bit element type. |
| ReadlanePieces.push_back(CurrentLaneOpRegLo); |
| ReadlanePieces.push_back(CurrentLaneOpRegHi); |
| } |
| } else { |
| CurrentLaneOpReg = MRI.createGenericVirtualRegister(S32); |
| MRI.setRegClass(UnmergePiece, &AMDGPU::VGPR_32RegClass); |
| MRI.setRegClass(CurrentLaneOpReg, &AMDGPU::SReg_32_XM0RegClass); |
| |
| // Read the next variant <- also loop target. |
| BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), |
| CurrentLaneOpReg) |
| .addReg(UnmergePiece); |
| ReadlanePieces.push_back(CurrentLaneOpReg); |
| } |
| |
| Register NewCondReg = MRI.createVirtualRegister(WaveRC); |
| bool First = CondReg == AMDGPU::NoRegister; |
| if (First) |
| CondReg = NewCondReg; |
| |
| B.buildInstr(CmpOp) |
| .addDef(NewCondReg) |
| .addReg(CurrentLaneOpReg) |
| .addReg(UnmergePiece); |
| |
| if (!First) { |
| Register AndReg = MRI.createVirtualRegister(WaveRC); |
| |
| // If there are multiple operands to consider, and the conditions. |
| B.buildInstr(WaveAndOpc) |
| .addDef(AndReg) |
| .addReg(NewCondReg) |
| .addReg(CondReg); |
| CondReg = AndReg; |
| } |
| } |
| |
| // FIXME: Build merge seems to switch to CONCAT_VECTORS but not |
| // BUILD_VECTOR |
| if (OpTy.isVector()) { |
| auto Merge = B.buildBuildVector(OpTy, ReadlanePieces); |
| Op.setReg(Merge.getReg(0)); |
| } else { |
| auto Merge = B.buildMerge(OpTy, ReadlanePieces); |
| Op.setReg(Merge.getReg(0)); |
| } |
| |
| MRI.setRegBank(Op.getReg(), AMDGPU::SGPRRegBank); |
| } |
| } |
| } |
| } |
| |
| B.setInsertPt(*LoopBB, LoopBB->end()); |
| |
| // Update EXEC, save the original EXEC value to VCC. |
| B.buildInstr(AndSaveExecOpc) |
| .addDef(NewExec) |
| .addReg(CondReg, RegState::Kill); |
| |
| MRI.setSimpleHint(NewExec, CondReg); |
| |
| // Update EXEC, switch all done bits to 0 and all todo bits to 1. |
| B.buildInstr(XorTermOpc) |
| .addDef(ExecReg) |
| .addReg(ExecReg) |
| .addReg(NewExec); |
| |
| // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use |
| // s_cbranch_scc0? |
| |
| // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover. |
| B.buildInstr(AMDGPU::S_CBRANCH_EXECNZ) |
| .addMBB(LoopBB); |
| |
| // Save the EXEC mask before the loop. |
| BuildMI(MBB, MBB.end(), DL, TII->get(MovTermOpc), SaveExecReg) |
| .addReg(ExecReg); |
| |
| // Restore the EXEC mask after the loop. |
| B.setMBB(*RestoreExecBB); |
| B.buildInstr(MovTermOpc) |
| .addDef(ExecReg) |
| .addReg(SaveExecReg); |
| |
| // Set the insert point after the original instruction, so any new |
| // instructions will be in the remainder. |
| B.setInsertPt(*RemainderBB, RemainderBB->begin()); |
| |
| return true; |
| } |
| |
| // Return any unique registers used by \p MI at \p OpIndices that need to be |
| // handled in a waterfall loop. Returns these registers in \p |
| // SGPROperandRegs. Returns true if there are any operansd to handle and a |
| // waterfall loop is necessary. |
| bool AMDGPURegisterBankInfo::collectWaterfallOperands( |
| SmallSet<Register, 4> &SGPROperandRegs, MachineInstr &MI, |
| MachineRegisterInfo &MRI, ArrayRef<unsigned> OpIndices) const { |
| for (unsigned Op : OpIndices) { |
| assert(MI.getOperand(Op).isUse()); |
| Register Reg = MI.getOperand(Op).getReg(); |
| const RegisterBank *OpBank = getRegBank(Reg, MRI, *TRI); |
| if (OpBank->getID() == AMDGPU::VGPRRegBankID) |
| SGPROperandRegs.insert(Reg); |
| } |
| |
| // No operands need to be replaced, so no need to loop. |
| return !SGPROperandRegs.empty(); |
| } |
| |
| bool AMDGPURegisterBankInfo::executeInWaterfallLoop( |
| MachineIRBuilder &B, MachineInstr &MI, MachineRegisterInfo &MRI, |
| ArrayRef<unsigned> OpIndices) const { |
| // Use a set to avoid extra readfirstlanes in the case where multiple operands |
| // are the same register. |
| SmallSet<Register, 4> SGPROperandRegs; |
| |
| if (!collectWaterfallOperands(SGPROperandRegs, MI, MRI, OpIndices)) |
| return false; |
| |
| MachineBasicBlock::iterator I = MI.getIterator(); |
| return executeInWaterfallLoop(B, make_range(I, std::next(I)), |
| SGPROperandRegs, MRI); |
| } |
| |
| bool AMDGPURegisterBankInfo::executeInWaterfallLoop( |
| MachineInstr &MI, MachineRegisterInfo &MRI, |
| ArrayRef<unsigned> OpIndices) const { |
| MachineIRBuilder B(MI); |
| return executeInWaterfallLoop(B, MI, MRI, OpIndices); |
| } |
| |
| // Legalize an operand that must be an SGPR by inserting a readfirstlane. |
| void AMDGPURegisterBankInfo::constrainOpWithReadfirstlane( |
| MachineInstr &MI, MachineRegisterInfo &MRI, unsigned OpIdx) const { |
| Register Reg = MI.getOperand(OpIdx).getReg(); |
| const RegisterBank *Bank = getRegBank(Reg, MRI, *TRI); |
| if (Bank != &AMDGPU::VGPRRegBank) |
| return; |
| |
| MachineIRBuilder B(MI); |
| Register SGPR = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); |
| B.buildInstr(AMDGPU::V_READFIRSTLANE_B32) |
| .addDef(SGPR) |
| .addReg(Reg); |
| |
| MRI.setType(SGPR, MRI.getType(Reg)); |
| |
| const TargetRegisterClass *Constrained = |
| constrainGenericRegister(Reg, AMDGPU::VGPR_32RegClass, MRI); |
| (void)Constrained; |
| assert(Constrained && "Failed to constrain readfirstlane src reg"); |
| |
| MI.getOperand(OpIdx).setReg(SGPR); |
| } |
| |
| // When regbankselect repairs registers, it will insert a repair instruction |
| // which defines the repaired register. Then it calls applyMapping and expects |
| // that the targets will either delete or rewrite the originally wrote to the |
| // repaired registers. Beccause of this, we end up in a situation where |
| // we have 2 instructions defining the same registers. |
| static MachineInstr *getOtherVRegDef(const MachineRegisterInfo &MRI, |
| Register Reg, |
| const MachineInstr &MI) { |
| // Is there some way we can assert that there are exactly 2 def instructions? |
| for (MachineInstr &Other : MRI.def_instructions(Reg)) { |
| if (&Other != &MI) |
| return &Other; |
| } |
| |
| return nullptr; |
| } |
| |
| bool AMDGPURegisterBankInfo::applyMappingWideLoad(MachineInstr &MI, |
| const AMDGPURegisterBankInfo::OperandsMapper &OpdMapper, |
| MachineRegisterInfo &MRI) const { |
| Register DstReg = MI.getOperand(0).getReg(); |
| const LLT LoadTy = MRI.getType(DstReg); |
| unsigned LoadSize = LoadTy.getSizeInBits(); |
| const unsigned MaxNonSmrdLoadSize = 128; |
| // 128-bit loads are supported for all instruction types. |
| if (LoadSize <= MaxNonSmrdLoadSize) |
| return false; |
| |
| SmallVector<unsigned, 16> DefRegs(OpdMapper.getVRegs(0)); |
| SmallVector<unsigned, 1> SrcRegs(OpdMapper.getVRegs(1)); |
| |
| // If the pointer is an SGPR, we have nothing to do. |
| if (SrcRegs.empty()) { |
| const RegisterBank *PtrBank = |
| OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank; |
| if (PtrBank == &AMDGPU::SGPRRegBank) |
| return false; |
| SrcRegs.push_back(MI.getOperand(1).getReg()); |
| } |
| |
| assert(LoadSize % MaxNonSmrdLoadSize == 0); |
| |
| // We want to get the repair instruction now, because it will help us |
| // determine which instruction the legalizer inserts that will also |
| // write to DstReg. |
| MachineInstr *RepairInst = getOtherVRegDef(MRI, DstReg, MI); |
| |
| // RegBankSelect only emits scalar types, so we need to reset the pointer |
| // operand to a pointer type. |
| Register BasePtrReg = SrcRegs[0]; |
| LLT PtrTy = MRI.getType(MI.getOperand(1).getReg()); |
| MRI.setType(BasePtrReg, PtrTy); |
| |
| MachineIRBuilder B(MI); |
| |
| unsigned SplitElts = |
| MaxNonSmrdLoadSize / LoadTy.getScalarType().getSizeInBits(); |
| const LLT LoadSplitTy = LLT::vector(SplitElts, LoadTy.getScalarType()); |
| ApplyRegBankMapping O(*this, MRI, &AMDGPU::VGPRRegBank); |
| GISelObserverWrapper Observer(&O); |
| B.setChangeObserver(Observer); |
| LegalizerHelper Helper(B.getMF(), Observer, B); |
| if (Helper.fewerElementsVector(MI, 0, LoadSplitTy) != LegalizerHelper::Legalized) |
| return false; |
| |
| // At this point, the legalizer has split the original load into smaller |
| // loads. At the end of lowering, it inserts an instruction (LegalizedInst) |
| // that combines the outputs of the lower loads and writes it to DstReg. |
| // The register bank selector has also added the RepairInst which writes to |
| // DstReg as well. |
| |
| MachineInstr *LegalizedInst = getOtherVRegDef(MRI, DstReg, *RepairInst); |
| |
| // Replace the output of the LegalizedInst with a temporary register, since |
| // RepairInst already defines DstReg. |
| Register TmpReg = MRI.createGenericVirtualRegister(MRI.getType(DstReg)); |
| LegalizedInst->getOperand(0).setReg(TmpReg); |
| B.setInsertPt(*RepairInst->getParent(), RepairInst); |
| |
| for (unsigned DefIdx = 0, e = DefRegs.size(); DefIdx != e; ++DefIdx) { |
| Register IdxReg = MRI.createGenericVirtualRegister(LLT::scalar(32)); |
| B.buildConstant(IdxReg, DefIdx); |
| MRI.setRegBank(IdxReg, AMDGPU::VGPRRegBank); |
| B.buildExtractVectorElement(DefRegs[DefIdx], TmpReg, IdxReg); |
| } |
| |
| MRI.setRegBank(DstReg, AMDGPU::VGPRRegBank); |
| return true; |
| } |
| |
| bool AMDGPURegisterBankInfo::applyMappingImage( |
| MachineInstr &MI, const AMDGPURegisterBankInfo::OperandsMapper &OpdMapper, |
| MachineRegisterInfo &MRI, int RsrcIdx) const { |
| const int NumDefs = MI.getNumExplicitDefs(); |
| |
| // The reported argument index is relative to the IR intrinsic call arguments, |
| // so we need to shift by the number of defs and the intrinsic ID. |
| RsrcIdx += NumDefs + 1; |
| |
| // Insert copies to VGPR arguments. |
| applyDefaultMapping(OpdMapper); |
| |
| // Fixup any SGPR arguments. |
| SmallVector<unsigned, 4> SGPRIndexes; |
| for (int I = NumDefs, NumOps = MI.getNumOperands(); I != NumOps; ++I) { |
| if (!MI.getOperand(I).isReg()) |
| continue; |
| |
| // If this intrinsic has a sampler, it immediately follows rsrc. |
| if (I == RsrcIdx || I == RsrcIdx + 1) |
| SGPRIndexes.push_back(I); |
| } |
| |
| executeInWaterfallLoop(MI, MRI, SGPRIndexes); |
| return true; |
| } |
| |
| // FIXME: Duplicated from LegalizerHelper |
| static CmpInst::Predicate minMaxToCompare(unsigned Opc) { |
| switch (Opc) { |
| case TargetOpcode::G_SMIN: |
| return CmpInst::ICMP_SLT; |
| case TargetOpcode::G_SMAX: |
| return CmpInst::ICMP_SGT; |
| case TargetOpcode::G_UMIN: |
| return CmpInst::ICMP_ULT; |
| case TargetOpcode::G_UMAX: |
| return CmpInst::ICMP_UGT; |
| default: |
| llvm_unreachable("not in integer min/max"); |
| } |
| } |
| |
| // FIXME: Duplicated from LegalizerHelper, except changing the boolean type. |
| void AMDGPURegisterBankInfo::lowerScalarMinMax(MachineIRBuilder &B, |
| MachineInstr &MI) const { |
| Register Dst = MI.getOperand(0).getReg(); |
| Register Src0 = MI.getOperand(1).getReg(); |
| Register Src1 = MI.getOperand(2).getReg(); |
| |
| const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); |
| LLT CmpType = LLT::scalar(32); |
| |
| auto Cmp = B.buildICmp(Pred, CmpType, Src0, Src1); |
| B.buildSelect(Dst, Cmp, Src0, Src1); |
| |
| B.getMRI()->setRegBank(Cmp.getReg(0), AMDGPU::SGPRRegBank); |
| MI.eraseFromParent(); |
| } |
| |
| // For cases where only a single copy is inserted for matching register banks. |
| // Replace the register in the instruction operand |
| static void substituteSimpleCopyRegs( |
| const AMDGPURegisterBankInfo::OperandsMapper &OpdMapper, unsigned OpIdx) { |
| SmallVector<unsigned, 1> SrcReg(OpdMapper.getVRegs(OpIdx)); |
| if (!SrcReg.empty()) { |
| assert(SrcReg.size() == 1); |
| OpdMapper.getMI().getOperand(OpIdx).setReg(SrcReg[0]); |
| } |
| } |
| |
| /// Handle register layout difference for f16 images for some subtargets. |
| Register AMDGPURegisterBankInfo::handleD16VData(MachineIRBuilder &B, |
| MachineRegisterInfo &MRI, |
| Register Reg) const { |
| if (!Subtarget.hasUnpackedD16VMem()) |
| return Reg; |
| |
| const LLT S16 = LLT::scalar(16); |
| LLT StoreVT = MRI.getType(Reg); |
| if (!StoreVT.isVector() || StoreVT.getElementType() != S16) |
| return Reg; |
| |
| auto Unmerge = B.buildUnmerge(S16, Reg); |
| |
| |
| SmallVector<Register, 4> WideRegs; |
| for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) |
| WideRegs.push_back(Unmerge.getReg(I)); |
| |
| const LLT S32 = LLT::scalar(32); |
| int NumElts = StoreVT.getNumElements(); |
| |
| return B.buildMerge(LLT::vector(NumElts, S32), WideRegs).getReg(0); |
| } |
| |
| static std::pair<Register, unsigned> |
| getBaseWithConstantOffset(MachineRegisterInfo &MRI, Register Reg) { |
| int64_t Const; |
| if (mi_match(Reg, MRI, m_ICst(Const))) |
| return std::make_pair(Register(), Const); |
| |
| Register Base; |
| if (mi_match(Reg, MRI, m_GAdd(m_Reg(Base), m_ICst(Const)))) |
| return std::make_pair(Base, Const); |
| |
| // TODO: Handle G_OR used for add case |
| return std::make_pair(Reg, 0); |
| } |
| |
| std::pair<Register, unsigned> |
| AMDGPURegisterBankInfo::splitBufferOffsets(MachineIRBuilder &B, |
| Register OrigOffset) const { |
| const unsigned MaxImm = 4095; |
| Register BaseReg; |
| unsigned ImmOffset; |
| const LLT S32 = LLT::scalar(32); |
| |
| std::tie(BaseReg, ImmOffset) = getBaseWithConstantOffset(*B.getMRI(), |
| OrigOffset); |
| |
| unsigned C1 = 0; |
| if (ImmOffset != 0) { |
| // If the immediate value is too big for the immoffset field, put the value |
| // and -4096 into the immoffset field so that the value that is copied/added |
| // for the voffset field is a multiple of 4096, and it stands more chance |
| // of being CSEd with the copy/add for another similar load/store. |
| // However, do not do that rounding down to a multiple of 4096 if that is a |
| // negative number, as it appears to be illegal to have a negative offset |
| // in the vgpr, even if adding the immediate offset makes it positive. |
| unsigned Overflow = ImmOffset & ~MaxImm; |
| ImmOffset -= Overflow; |
| if ((int32_t)Overflow < 0) { |
| Overflow += ImmOffset; |
| ImmOffset = 0; |
| } |
| |
| C1 = ImmOffset; |
| if (Overflow != 0) { |
| if (!BaseReg) |
| BaseReg = B.buildConstant(S32, Overflow).getReg(0); |
| else { |
| auto OverflowVal = B.buildConstant(S32, Overflow); |
| BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0); |
| } |
| } |
| } |
| |
| if (!BaseReg) |
| BaseReg = B.buildConstant(S32, 0).getReg(0); |
| |
| return {BaseReg, C1}; |
| } |
| |
| static bool isZero(Register Reg, MachineRegisterInfo &MRI) { |
| int64_t C; |
| return mi_match(Reg, MRI, m_ICst(C)) && C == 0; |
| } |
| |
| static unsigned extractGLC(unsigned CachePolicy) { |
| return CachePolicy & 1; |
| } |
| |
| static unsigned extractSLC(unsigned CachePolicy) { |
| return (CachePolicy >> 1) & 1; |
| } |
| |
| static unsigned extractDLC(unsigned CachePolicy) { |
| return (CachePolicy >> 2) & 1; |
| } |
| |
| MachineInstr * |
| AMDGPURegisterBankInfo::selectStoreIntrinsic(MachineIRBuilder &B, |
| MachineInstr &MI) const { |
| MachineRegisterInfo &MRI = *B.getMRI(); |
| executeInWaterfallLoop(B, MI, MRI, {2, 4}); |
| |
| // FIXME: DAG lowering brokenly changes opcode based on FP vs. integer. |
| |
| Register VData = MI.getOperand(1).getReg(); |
| LLT Ty = MRI.getType(VData); |
| |
| int EltSize = Ty.getScalarSizeInBits(); |
| int Size = Ty.getSizeInBits(); |
| |
| // FIXME: Broken integer truncstore. |
| if (EltSize != 32) |
| report_fatal_error("unhandled intrinsic store"); |
| |
| // FIXME: Verifier should enforce 1 MMO for these intrinsics. |
| const int MemSize = (*MI.memoperands_begin())->getSize(); |
| |
| |
| Register RSrc = MI.getOperand(2).getReg(); |
| Register VOffset = MI.getOperand(3).getReg(); |
| Register SOffset = MI.getOperand(4).getReg(); |
| unsigned CachePolicy = MI.getOperand(5).getImm(); |
| |
| unsigned ImmOffset; |
| std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset); |
| |
| const bool Offen = !isZero(VOffset, MRI); |
| |
| unsigned Opc = AMDGPU::BUFFER_STORE_DWORD_OFFEN_exact; |
| switch (8 * MemSize) { |
| case 8: |
| Opc = Offen ? AMDGPU::BUFFER_STORE_BYTE_OFFEN_exact : |
| AMDGPU::BUFFER_STORE_BYTE_OFFSET_exact; |
| break; |
| case 16: |
| Opc = Offen ? AMDGPU::BUFFER_STORE_SHORT_OFFEN_exact : |
| AMDGPU::BUFFER_STORE_SHORT_OFFSET_exact; |
| break; |
| default: |
| Opc = Offen ? AMDGPU::BUFFER_STORE_DWORD_OFFEN_exact : |
| AMDGPU::BUFFER_STORE_DWORD_OFFSET_exact; |
| if (Size > 32) |
| Opc = AMDGPU::getMUBUFOpcode(Opc, Size / 32); |
| break; |
| } |
| |
| |
| // Set the insertion point back to the instruction in case it was moved into a |
| // loop. |
| B.setInstr(MI); |
| |
| MachineInstrBuilder MIB = B.buildInstr(Opc) |
| .addUse(VData); |
| |
| if (Offen) |
| MIB.addUse(VOffset); |
| |
| MIB.addUse(RSrc) |
| .addUse(SOffset) |
| .addImm(ImmOffset) |
| .addImm(extractGLC(CachePolicy)) |
| .addImm(extractSLC(CachePolicy)) |
| .addImm(0) // tfe: FIXME: Remove from inst |
| .addImm(extractDLC(CachePolicy)) |
| .cloneMemRefs(MI); |
| |
| // FIXME: We need a way to report failure from applyMappingImpl. |
| // Insert constrain copies before inserting the loop. |
| if (!constrainSelectedInstRegOperands(*MIB, *TII, *TRI, *this)) |
| report_fatal_error("failed to constrain selected store intrinsic"); |
| |
| return MIB; |
| } |
| |
| bool AMDGPURegisterBankInfo::buildVCopy(MachineIRBuilder &B, Register DstReg, |
| Register SrcReg) const { |
| MachineRegisterInfo &MRI = *B.getMRI(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| if (SrcTy.getSizeInBits() == 32) { |
| // Use a v_mov_b32 here to make the exec dependency explicit. |
| B.buildInstr(AMDGPU::V_MOV_B32_e32) |
| .addDef(DstReg) |
| .addUse(SrcReg); |
| return constrainGenericRegister(DstReg, AMDGPU::VGPR_32RegClass, MRI) && |
| constrainGenericRegister(SrcReg, AMDGPU::SReg_32RegClass, MRI); |
| } |
| |
| Register TmpReg0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| Register TmpReg1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); |
| |
| B.buildInstr(AMDGPU::V_MOV_B32_e32) |
| .addDef(TmpReg0) |
| .addUse(SrcReg, 0, AMDGPU::sub0); |
| B.buildInstr(AMDGPU::V_MOV_B32_e32) |
| .addDef(TmpReg1) |
| .addUse(SrcReg, 0, AMDGPU::sub1); |
| B.buildInstr(AMDGPU::REG_SEQUENCE) |
| .addDef(DstReg) |
| .addUse(TmpReg0) |
| .addImm(AMDGPU::sub0) |
| .addUse(TmpReg1) |
| .addImm(AMDGPU::sub1); |
| |
| return constrainGenericRegister(SrcReg, AMDGPU::SReg_64RegClass, MRI) && |
| constrainGenericRegister(DstReg, AMDGPU::VReg_64RegClass, MRI); |
| } |
| |
| void AMDGPURegisterBankInfo::applyMappingImpl( |
| const OperandsMapper &OpdMapper) const { |
| MachineInstr &MI = OpdMapper.getMI(); |
| unsigned Opc = MI.getOpcode(); |
| MachineRegisterInfo &MRI = OpdMapper.getMRI(); |
| switch (Opc) { |
| case AMDGPU::G_PHI: { |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| if (DstTy != LLT::scalar(1)) |
| break; |
| |
| const LLT S32 = LLT::scalar(32); |
| const RegisterBank *DstBank = |
| OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank; |
| if (DstBank == &AMDGPU::VCCRegBank) { |
| applyDefaultMapping(OpdMapper); |
| // The standard handling only considers the result register bank for |
| // phis. For VCC, blindly inserting a copy when the phi is lowered will |
| // produce an invalid copy. We can only copy with some kind of compare to |
| // get a vector boolean result. Insert a regitser bank copy that will be |
| // correctly lowered to a compare. |
| MachineIRBuilder B(*MI.getParent()->getParent()); |
| |
| for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { |
| Register SrcReg = MI.getOperand(I).getReg(); |
| const RegisterBank *SrcBank = getRegBank(SrcReg, MRI, *TRI); |
| |
| if (SrcBank != &AMDGPU::VCCRegBank) { |
| MachineBasicBlock *SrcMBB = MI.getOperand(I + 1).getMBB(); |
| B.setInsertPt(*SrcMBB, SrcMBB->getFirstTerminator()); |
| |
| auto Copy = B.buildCopy(LLT::scalar(1), SrcReg); |
| MRI.setRegBank(Copy.getReg(0), AMDGPU::VCCRegBank); |
| MI.getOperand(I).setReg(Copy.getReg(0)); |
| } |
| } |
| |
| return; |
| } |
| |
| // Phi handling is strange and only considers the bank of the destination. |
| substituteSimpleCopyRegs(OpdMapper, 0); |
| |
| // Promote SGPR/VGPR booleans to s32 |
| MachineFunction *MF = MI.getParent()->getParent(); |
| ApplyRegBankMapping ApplyBank(*this, MRI, DstBank); |
| GISelObserverWrapper Observer(&ApplyBank); |
| MachineIRBuilder B(MI); |
| LegalizerHelper Helper(*MF, Observer, B); |
| |
| if (Helper.widenScalar(MI, 0, S32) != LegalizerHelper::Legalized) |
| llvm_unreachable("widen scalar should have succeeded"); |
| |
| return; |
| } |
| case AMDGPU::G_ICMP: |
| case AMDGPU::G_UADDO: |
| case AMDGPU::G_USUBO: |
| case AMDGPU::G_UADDE: |
| case AMDGPU::G_SADDE: |
| case AMDGPU::G_USUBE: |
| case AMDGPU::G_SSUBE: { |
| unsigned BoolDstOp = Opc == AMDGPU::G_ICMP ? 0 : 1; |
| Register DstReg = MI.getOperand(BoolDstOp).getReg(); |
| |
| const RegisterBank *DstBank = |
| OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank; |
| if (DstBank != &AMDGPU::SGPRRegBank) |
| break; |
| |
| const bool HasCarryIn = MI.getNumOperands() == 5; |
| |
| // If this is a scalar compare, promote the result to s32, as the selection |
| // will end up using a copy to a 32-bit vreg. |
| const LLT S32 = LLT::scalar(32); |
| Register NewDstReg = MRI.createGenericVirtualRegister(S32); |
| MRI.setRegBank(NewDstReg, AMDGPU::SGPRRegBank); |
| MI.getOperand(BoolDstOp).setReg(NewDstReg); |
| MachineIRBuilder B(MI); |
| |
| if (HasCarryIn) { |
| Register NewSrcReg = MRI.createGenericVirtualRegister(S32); |
| MRI.setRegBank(NewSrcReg, AMDGPU::SGPRRegBank); |
| B.buildZExt(NewSrcReg, MI.getOperand(4).getReg()); |
| MI.getOperand(4).setReg(NewSrcReg); |
| } |
| |
| MachineBasicBlock *MBB = MI.getParent(); |
| B.setInsertPt(*MBB, std::next(MI.getIterator())); |
| B.buildTrunc(DstReg, NewDstReg); |
| return; |
| } |
| case AMDGPU::G_SELECT: { |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| |
| SmallVector<Register, 1> CondRegs(OpdMapper.getVRegs(1)); |
| if (CondRegs.empty()) |
| CondRegs.push_back(MI.getOperand(1).getReg()); |
| else { |
| assert(CondRegs.size() == 1); |
| } |
| |
| const RegisterBank *CondBank = getRegBank(CondRegs[0], MRI, *TRI); |
| if (CondBank == &AMDGPU::SGPRRegBank) { |
| MachineIRBuilder B(MI); |
| const LLT S32 = LLT::scalar(32); |
| Register NewCondReg = MRI.createGenericVirtualRegister(S32); |
| MRI.setRegBank(NewCondReg, AMDGPU::SGPRRegBank); |
| |
| MI.getOperand(1).setReg(NewCondReg); |
| B.buildZExt(NewCondReg, CondRegs[0]); |
| } |
| |
| if (DstTy.getSizeInBits() != 64) |
| break; |
| |
| MachineIRBuilder B(MI); |
| LLT HalfTy = getHalfSizedType(DstTy); |
| |
| SmallVector<Register, 2> DefRegs(OpdMapper.getVRegs(0)); |
| SmallVector<Register, 2> Src1Regs(OpdMapper.getVRegs(2)); |
| SmallVector<Register, 2> Src2Regs(OpdMapper.getVRegs(3)); |
| |
| // All inputs are SGPRs, nothing special to do. |
| if (DefRegs.empty()) { |
| assert(Src1Regs.empty() && Src2Regs.empty()); |
| break; |
| } |
| |
| if (Src1Regs.empty()) |
| split64BitValueForMapping(B, Src1Regs, HalfTy, MI.getOperand(2).getReg()); |
| else { |
| setRegsToType(MRI, Src1Regs, HalfTy); |
| } |
| |
| if (Src2Regs.empty()) |
| split64BitValueForMapping(B, Src2Regs, HalfTy, MI.getOperand(3).getReg()); |
| else |
| setRegsToType(MRI, Src2Regs, HalfTy); |
| |
| setRegsToType(MRI, DefRegs, HalfTy); |
| |
| B.buildSelect(DefRegs[0], CondRegs[0], Src1Regs[0], Src2Regs[0]); |
| B.buildSelect(DefRegs[1], CondRegs[0], Src1Regs[1], Src2Regs[1]); |
| |
| MRI.setRegBank(DstReg, AMDGPU::VGPRRegBank); |
| MI.eraseFromParent(); |
| return; |
| } |
| case AMDGPU::G_BRCOND: { |
| Register CondReg = MI.getOperand(0).getReg(); |
| // FIXME: Should use legalizer helper, but should change bool ext type. |
| const RegisterBank *CondBank = |
| OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank; |
| |
| if (CondBank == &AMDGPU::SGPRRegBank) { |
| MachineIRBuilder B(MI); |
| const LLT S32 = LLT::scalar(32); |
| Register NewCondReg = MRI.createGenericVirtualRegister(S32); |
| MRI.setRegBank(NewCondReg, AMDGPU::SGPRRegBank); |
| |
| MI.getOperand(0).setReg(NewCondReg); |
| B.buildZExt(NewCondReg, CondReg); |
| return; |
| } |
| |
| break; |
| } |
| case AMDGPU::G_AND: |
| case AMDGPU::G_OR: |
| case AMDGPU::G_XOR: { |
| // 64-bit and is only available on the SALU, so split into 2 32-bit ops if |
| // there is a VGPR input. |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| |
| if (DstTy.getSizeInBits() == 1) { |
| const RegisterBank *DstBank = |
| OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank; |
| if (DstBank == &AMDGPU::VCCRegBank) |
| break; |
| |
| MachineFunction *MF = MI.getParent()->getParent(); |
| ApplyRegBankMapping ApplyBank(*this, MRI, DstBank); |
| GISelObserverWrapper Observer(&ApplyBank); |
| MachineIRBuilder B(MI); |
| LegalizerHelper Helper(*MF, Observer, B); |
| |
| if (Helper.widenScalar(MI, 0, LLT::scalar(32)) != |
| LegalizerHelper::Legalized) |
| llvm_unreachable("widen scalar should have succeeded"); |
| return; |
| } |
| |
| if (DstTy.getSizeInBits() != 64) |
| break; |
| |
| LLT HalfTy = getHalfSizedType(DstTy); |
| SmallVector<Register, 2> DefRegs(OpdMapper.getVRegs(0)); |
| SmallVector<Register, 2> Src0Regs(OpdMapper.getVRegs(1)); |
| SmallVector<Register, 2> Src1Regs(OpdMapper.getVRegs(2)); |
| |
| // All inputs are SGPRs, nothing special to do. |
| if (DefRegs.empty()) { |
| assert(Src0Regs.empty() && Src1Regs.empty()); |
| break; |
| } |
| |
| assert(DefRegs.size() == 2); |
| assert(Src0Regs.size() == Src1Regs.size() && |
| (Src0Regs.empty() || Src0Regs.size() == 2)); |
| |
| // Depending on where the source registers came from, the generic code may |
| // have decided to split the inputs already or not. If not, we still need to |
| // extract the values. |
| MachineIRBuilder B(MI); |
| |
| if (Src0Regs.empty()) |
| split64BitValueForMapping(B, Src0Regs, HalfTy, MI.getOperand(1).getReg()); |
| else |
| setRegsToType(MRI, Src0Regs, HalfTy); |
| |
| if (Src1Regs.empty()) |
| split64BitValueForMapping(B, Src1Regs, HalfTy, MI.getOperand(2).getReg()); |
| else |
| setRegsToType(MRI, Src1Regs, HalfTy); |
| |
| setRegsToType(MRI, DefRegs, HalfTy); |
| |
| B.buildInstr(Opc) |
| .addDef(DefRegs[0]) |
| .addUse(Src0Regs[0]) |
| .addUse(Src1Regs[0]); |
| |
| B.buildInstr(Opc) |
| .addDef(DefRegs[1]) |
| .addUse(Src0Regs[1]) |
| .addUse(Src1Regs[1]); |
| |
| MRI.setRegBank(DstReg, AMDGPU::VGPRRegBank); |
| MI.eraseFromParent(); |
| return; |
| } |
| case AMDGPU::G_ADD: |
| case AMDGPU::G_SUB: |
| case AMDGPU::G_MUL: { |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| if (DstTy != LLT::scalar(16)) |
| break; |
| |
| const RegisterBank *DstBank = |
| OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank; |
| if (DstBank == &AMDGPU::VGPRRegBank) |
| break; |
| |
| // 16-bit operations are VALU only, but can be promoted to 32-bit SALU. |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineIRBuilder B(MI); |
| ApplyRegBankMapping ApplySALU(*this, MRI, &AMDGPU::SGPRRegBank); |
| GISelObserverWrapper Observer(&ApplySALU); |
| LegalizerHelper Helper(*MF, Observer, B); |
| |
| if (Helper.widenScalar(MI, 0, LLT::scalar(32)) != |
| LegalizerHelper::Legalized) |
| llvm_unreachable("widen scalar should have succeeded"); |
| return; |
| } |
| case AMDGPU::G_SMIN: |
| case AMDGPU::G_SMAX: |
| case AMDGPU::G_UMIN: |
| case AMDGPU::G_UMAX: { |
| Register DstReg = MI.getOperand(0).getReg(); |
| const RegisterBank *DstBank = |
| OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank; |
| if (DstBank == &AMDGPU::VGPRRegBank) |
| break; |
| |
| MachineFunction *MF = MI.getParent()->getParent(); |
| MachineIRBuilder B(MI); |
| |
| // Turn scalar min/max into a compare and select. |
| LLT Ty = MRI.getType(DstReg); |
| LLT S32 = LLT::scalar(32); |
| LLT S16 = LLT::scalar(16); |
| |
| if (Ty == S16) { |
| ApplyRegBankMapping ApplySALU(*this, MRI, &AMDGPU::SGPRRegBank); |
| GISelObserverWrapper Observer(&ApplySALU); |
| LegalizerHelper Helper(*MF, Observer, B); |
| |
| // Need to widen to s32, and expand as cmp + select. |
| if (Helper.widenScalar(MI, 0, S32) != LegalizerHelper::Legalized) |
| llvm_unreachable("widenScalar should have succeeded"); |
| |
| // FIXME: This is relying on widenScalar leaving MI in place. |
| lowerScalarMinMax(B, MI); |
| } else |
| lowerScalarMinMax(B, MI); |
| |
| return; |
| } |
| case AMDGPU::G_SEXT: |
| case AMDGPU::G_ZEXT: { |
| Register SrcReg = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| bool Signed = Opc == AMDGPU::G_SEXT; |
| |
| MachineIRBuilder B(MI); |
| const RegisterBank *SrcBank = |
| OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank; |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| if (DstTy.isScalar() && |
| SrcBank != &AMDGPU::SGPRRegBank && |
| SrcBank != &AMDGPU::VCCRegBank && |
| // FIXME: Should handle any type that round to s64 when irregular |
| // breakdowns supported. |
| DstTy.getSizeInBits() == 64 && |
| SrcTy.getSizeInBits() <= 32) { |
| const LLT S32 = LLT::scalar(32); |
| SmallVector<Register, 2> DefRegs(OpdMapper.getVRegs(0)); |
| |
| // Extend to 32-bit, and then extend the low half. |
| if (Signed) { |
| // TODO: Should really be buildSExtOrCopy |
| B.buildSExtOrTrunc(DefRegs[0], SrcReg); |
| |
| // Replicate sign bit from 32-bit extended part. |
| auto ShiftAmt = B.buildConstant(S32, 31); |
| MRI.setRegBank(ShiftAmt.getReg(0), *SrcBank); |
| B.buildAShr(DefRegs[1], DefRegs[0], ShiftAmt); |
| } else { |
| B.buildZExtOrTrunc(DefRegs[0], SrcReg); |
| B.buildConstant(DefRegs[1], 0); |
| } |
| |
| MRI.setRegBank(DstReg, *SrcBank); |
| MI.eraseFromParent(); |
| return; |
| } |
| |
| if (SrcTy != LLT::scalar(1)) |
| return; |
| |
| if (SrcBank == &AMDGPU::VCCRegBank) { |
| SmallVector<Register, 2> DefRegs(OpdMapper.getVRegs(0)); |
| |
| const RegisterBank *DstBank = &AMDGPU::VGPRRegBank; |
| |
| unsigned DstSize = DstTy.getSizeInBits(); |
| // 64-bit select is SGPR only |
| const bool UseSel64 = DstSize > 32 && |
| SrcBank->getID() == AMDGPU::SGPRRegBankID; |
| |
| // TODO: Should s16 select be legal? |
| LLT SelType = UseSel64 ? LLT::scalar(64) : LLT::scalar(32); |
| auto True = B.buildConstant(SelType, Signed ? -1 : 1); |
| auto False = B.buildConstant(SelType, 0); |
| |
| MRI.setRegBank(True.getReg(0), *DstBank); |
| MRI.setRegBank(False.getReg(0), *DstBank); |
| MRI.setRegBank(DstReg, *DstBank); |
| |
| if (DstSize > 32) { |
| B.buildSelect(DefRegs[0], SrcReg, True, False); |
| B.buildCopy(DefRegs[1], DefRegs[0]); |
| } else if (DstSize < 32) { |
| auto Sel = B.buildSelect(SelType, SrcReg, True, False); |
| MRI.setRegBank(Sel.getReg(0), *DstBank); |
| B.buildTrunc(DstReg, Sel); |
| } else { |
| B.buildSelect(DstReg, SrcReg, True, False); |
| } |
| |
| MI.eraseFromParent(); |
| return; |
| } |
| |
| // Fixup the case with an s1 src that isn't a condition register. Use shifts |
| // instead of introducing a compare to avoid an unnecessary condition |
| // register (and since there's no scalar 16-bit compares). |
| auto Ext = B.buildAnyExt(DstTy, SrcReg); |
| auto ShiftAmt = B.buildConstant(LLT::scalar(32), DstTy.getSizeInBits() - 1); |
| auto Shl = B.buildShl(DstTy, Ext, ShiftAmt); |
| |
| if (MI.getOpcode() == AMDGPU::G_SEXT) |
| B.buildAShr(DstReg, Shl, ShiftAmt); |
| else |
| B.buildLShr(DstReg, Shl, ShiftAmt); |
| |
| MRI.setRegBank(DstReg, *SrcBank); |
| MRI.setRegBank(Ext.getReg(0), *SrcBank); |
| MRI.setRegBank(ShiftAmt.getReg(0), *SrcBank); |
| MRI.setRegBank(Shl.getReg(0), *SrcBank); |
| MI.eraseFromParent(); |
| return; |
| } |
| case AMDGPU::G_BUILD_VECTOR: |
| case AMDGPU::G_BUILD_VECTOR_TRUNC: { |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| if (DstTy != LLT::vector(2, 16)) |
| break; |
| |
| assert(MI.getNumOperands() == 3 && OpdMapper.getVRegs(0).empty()); |
| substituteSimpleCopyRegs(OpdMapper, 1); |
| substituteSimpleCopyRegs(OpdMapper, 2); |
| |
| const RegisterBank *DstBank = |
| OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank; |
| if (DstBank == &AMDGPU::SGPRRegBank) |
| break; // Can use S_PACK_* instructions. |
| |
| MachineIRBuilder B(MI); |
| |
| Register Lo = MI.getOperand(1).getReg(); |
| Register Hi = MI.getOperand(2).getReg(); |
| const LLT S32 = LLT::scalar(32); |
| |
| const RegisterBank *BankLo = |
| OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank; |
| const RegisterBank *BankHi = |
| OpdMapper.getInstrMapping().getOperandMapping(2).BreakDown[0].RegBank; |
| |
| Register ZextLo; |
| Register ShiftHi; |
| |
| if (Opc == AMDGPU::G_BUILD_VECTOR) { |
| ZextLo = B.buildZExt(S32, Lo).getReg(0); |
| MRI.setRegBank(ZextLo, *BankLo); |
| |
| Register ZextHi = B.buildZExt(S32, Hi).getReg(0); |
| MRI.setRegBank(ZextHi, *BankHi); |
| |
| auto ShiftAmt = B.buildConstant(S32, 16); |
| MRI.setRegBank(ShiftAmt.getReg(0), *BankHi); |
| |
| ShiftHi = B.buildShl(S32, ZextHi, ShiftAmt).getReg(0); |
| MRI.setRegBank(ShiftHi, *BankHi); |
| } else { |
| Register MaskLo = B.buildConstant(S32, 0xffff).getReg(0); |
| MRI.setRegBank(MaskLo, *BankLo); |
| |
| auto ShiftAmt = B.buildConstant(S32, 16); |
| MRI.setRegBank(ShiftAmt.getReg(0), *BankHi); |
| |
| ShiftHi = B.buildShl(S32, Hi, ShiftAmt).getReg(0); |
| MRI.setRegBank(ShiftHi, *BankHi); |
| |
| ZextLo = B.buildAnd(S32, Lo, MaskLo).getReg(0); |
| MRI.setRegBank(ZextLo, *BankLo); |
| } |
| |
| auto Or = B.buildOr(S32, ZextLo, ShiftHi); |
| MRI.setRegBank(Or.getReg(0), *DstBank); |
| |
| B.buildBitcast(DstReg, Or); |
| MI.eraseFromParent(); |
| return; |
| } |
| case AMDGPU::G_EXTRACT_VECTOR_ELT: { |
| SmallVector<Register, 2> DstRegs(OpdMapper.getVRegs(0)); |
| |
| assert(OpdMapper.getVRegs(1).empty() && OpdMapper.getVRegs(2).empty()); |
| |
| LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); |
| MachineIRBuilder B(MI); |
| |
| const ValueMapping &DstMapping |
| = OpdMapper.getInstrMapping().getOperandMapping(0); |
| const RegisterBank *DstBank = DstMapping.BreakDown[0].RegBank; |
| const RegisterBank *SrcBank = |
| OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank; |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| Register IdxReg = MI.getOperand(2).getReg(); |
| |
| // If this is a VGPR result only because the index was a VGPR result, the |
| // actual indexing will be done on the SGPR source vector, which will |
| // produce a scalar result. We need to copy to the VGPR result inside the |
| // waterfall loop. |
| const bool NeedCopyToVGPR = DstBank == &AMDGPU::VGPRRegBank && |
| SrcBank == &AMDGPU::SGPRRegBank; |
| if (DstRegs.empty()) { |
| applyDefaultMapping(OpdMapper); |
| |
| executeInWaterfallLoop(MI, MRI, { 2 }); |
| |
| if (NeedCopyToVGPR) { |
| // We don't want a phi for this temporary reg. |
| Register TmpReg = MRI.createGenericVirtualRegister(DstTy); |
| MRI.setRegBank(TmpReg, AMDGPU::SGPRRegBank); |
| MI.getOperand(0).setReg(TmpReg); |
| B.setInsertPt(*MI.getParent(), ++MI.getIterator()); |
| |
| // Use a v_mov_b32 here to make the exec dependency explicit. |
| buildVCopy(B, DstReg, TmpReg); |
| } |
| |
| return; |
| } |
| |
| assert(DstTy.getSizeInBits() == 64); |
| |
| LLT SrcTy = MRI.getType(SrcReg); |
| const LLT S32 = LLT::scalar(32); |
| LLT Vec32 = LLT::vector(2 * SrcTy.getNumElements(), 32); |
| |
| auto CastSrc = B.buildBitcast(Vec32, SrcReg); |
| auto One = B.buildConstant(S32, 1); |
| |
| // Split the vector index into 32-bit pieces. Prepare to move all of the |
| // new instructions into a waterfall loop if necessary. |
| // |
| // Don't put the bitcast or constant in the loop. |
| MachineInstrSpan Span(MachineBasicBlock::iterator(&MI), &B.getMBB()); |
| |
| // Compute 32-bit element indices, (2 * OrigIdx, 2 * OrigIdx + 1). |
| auto IdxLo = B.buildShl(S32, IdxReg, One); |
| auto IdxHi = B.buildAdd(S32, IdxLo, One); |
| |
| auto Extract0 = B.buildExtractVectorElement(DstRegs[0], CastSrc, IdxLo); |
| auto Extract1 = B.buildExtractVectorElement(DstRegs[1], CastSrc, IdxHi); |
| |
| MRI.setRegBank(DstReg, *DstBank); |
| MRI.setRegBank(CastSrc.getReg(0), *SrcBank); |
| MRI.setRegBank(One.getReg(0), AMDGPU::SGPRRegBank); |
| MRI.setRegBank(IdxLo.getReg(0), AMDGPU::SGPRRegBank); |
| MRI.setRegBank(IdxHi.getReg(0), AMDGPU::SGPRRegBank); |
| |
| SmallSet<Register, 4> OpsToWaterfall; |
| if (!collectWaterfallOperands(OpsToWaterfall, MI, MRI, { 2 })) { |
| MI.eraseFromParent(); |
| return; |
| } |
| |
| // Remove the original instruction to avoid potentially confusing the |
| // waterfall loop logic. |
| B.setInstr(*Span.begin()); |
| MI.eraseFromParent(); |
| executeInWaterfallLoop(B, make_range(Span.begin(), Span.end()), |
| OpsToWaterfall, MRI); |
| |
| if (NeedCopyToVGPR) { |
| MachineBasicBlock *LoopBB = Extract1->getParent(); |
| Register TmpReg0 = MRI.createGenericVirtualRegister(S32); |
| Register TmpReg1 = MRI.createGenericVirtualRegister(S32); |
| MRI.setRegBank(TmpReg0, AMDGPU::SGPRRegBank); |
| MRI.setRegBank(TmpReg1, AMDGPU::SGPRRegBank); |
| |
| Extract0->getOperand(0).setReg(TmpReg0); |
| Extract1->getOperand(0).setReg(TmpReg1); |
| |
| B.setInsertPt(*LoopBB, ++Extract1->getIterator()); |
| |
| buildVCopy(B, DstRegs[0], TmpReg0); |
| buildVCopy(B, DstRegs[1], TmpReg1); |
| } |
| |
| return; |
| } |
| case AMDGPU::G_INSERT_VECTOR_ELT: { |
| SmallVector<Register, 2> InsRegs(OpdMapper.getVRegs(2)); |
| |
| assert(OpdMapper.getVRegs(0).empty()); |
| assert(OpdMapper.getVRegs(1).empty()); |
| assert(OpdMapper.getVRegs(3).empty()); |
| |
| if (InsRegs.empty()) { |
| applyDefaultMapping(OpdMapper); |
| executeInWaterfallLoop(MI, MRI, { 3 }); |
| return; |
| } |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SrcReg = MI.getOperand(1).getReg(); |
| Register InsReg = MI.getOperand(2).getReg(); |
| Register IdxReg = MI.getOperand(3).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| LLT InsTy = MRI.getType(InsReg); |
| (void)InsTy; |
| |
| assert(InsTy.getSizeInBits() == 64); |
| |
| const LLT S32 = LLT::scalar(32); |
| LLT Vec32 = LLT::vector(2 * SrcTy.getNumElements(), 32); |
| |
| MachineIRBuilder B(MI); |
| auto CastSrc = B.buildBitcast(Vec32, SrcReg); |
| auto One = B.buildConstant(S32, 1); |
| |
| // Split the vector index into 32-bit pieces. Prepare to move all of the |
| // new instructions into a waterfall loop if necessary. |
| // |
| // Don't put the bitcast or constant in the loop. |
| MachineInstrSpan Span(MachineBasicBlock::iterator(&MI), &B.getMBB()); |
| |
| // Compute 32-bit element indices, (2 * OrigIdx, 2 * OrigIdx + 1). |
| auto IdxLo = B.buildShl(S32, IdxReg, One); |
| auto IdxHi = B.buildAdd(S32, IdxLo, One); |
| |
| auto InsLo = B.buildInsertVectorElement(Vec32, CastSrc, InsRegs[0], IdxLo); |
| auto InsHi = B.buildInsertVectorElement(Vec32, InsLo, InsRegs[1], IdxHi); |
| B.buildBitcast(DstReg, InsHi); |
| |
| const RegisterBank *DstBank = |
| OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank; |
| const RegisterBank *SrcBank = |
| OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank; |
| const RegisterBank *InsSrcBank = |
| OpdMapper.getInstrMapping().getOperandMapping(2).BreakDown[0].RegBank; |
| |
| MRI.setRegBank(InsReg, *InsSrcBank); |
| MRI.setRegBank(CastSrc.getReg(0), *SrcBank); |
| MRI.setRegBank(InsLo.getReg(0), *DstBank); |
| MRI.setRegBank(InsHi.getReg(0), *DstBank); |
| MRI.setRegBank(One.getReg(0), AMDGPU::SGPRRegBank); |
| MRI.setRegBank(IdxLo.getReg(0), AMDGPU::SGPRRegBank); |
| MRI.setRegBank(IdxHi.getReg(0), AMDGPU::SGPRRegBank); |
| |
| |
| SmallSet<Register, 4> OpsToWaterfall; |
| if (!collectWaterfallOperands(OpsToWaterfall, MI, MRI, { 3 })) { |
| MI.eraseFromParent(); |
| return; |
| } |
| |
| B.setInstr(*Span.begin()); |
| MI.eraseFromParent(); |
| |
| executeInWaterfallLoop(B, make_range(Span.begin(), Span.end()), |
| OpsToWaterfall, MRI); |
| return; |
| } |
| case AMDGPU::G_INTRINSIC: { |
| switch (MI.getIntrinsicID()) { |
| case Intrinsic::amdgcn_s_buffer_load: { |
| // FIXME: Move to G_INTRINSIC_W_SIDE_EFFECTS |
| executeInWaterfallLoop(MI, MRI, { 2, 3 }); |
| return; |
| } |
| case Intrinsic::amdgcn_readlane: { |
| substituteSimpleCopyRegs(OpdMapper, 2); |
| |
| assert(OpdMapper.getVRegs(0).empty()); |
| assert(OpdMapper.getVRegs(3).empty()); |
| |
| // Make sure the index is an SGPR. It doesn't make sense to run this in a |
| // waterfall loop, so assume it's a uniform value. |
| constrainOpWithReadfirstlane(MI, MRI, 3); // Index |
| return; |
| } |
| case Intrinsic::amdgcn_writelane: { |
| assert(OpdMapper.getVRegs(0).empty()); |
| assert(OpdMapper.getVRegs(2).empty()); |
| assert(OpdMapper.getVRegs(3).empty()); |
| |
| substituteSimpleCopyRegs(OpdMapper, 4); // VGPR input val |
| constrainOpWithReadfirstlane(MI, MRI, 2); // Source value |
| constrainOpWithReadfirstlane(MI, MRI, 3); // Index |
| return; |
| } |
| default: |
| break; |
| } |
| break; |
| } |
| case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { |
| auto IntrID = MI.getIntrinsicID(); |
| switch (IntrID) { |
| case Intrinsic::amdgcn_buffer_load: { |
| executeInWaterfallLoop(MI, MRI, { 2 }); |
| return; |
| } |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: { |
| // This is only allowed to execute with 1 lane, so readfirstlane is safe. |
| assert(OpdMapper.getVRegs(0).empty()); |
| substituteSimpleCopyRegs(OpdMapper, 3); |
| constrainOpWithReadfirstlane(MI, MRI, 2); // M0 |
| return; |
| } |
| case Intrinsic::amdgcn_ds_gws_init: |
| case Intrinsic::amdgcn_ds_gws_barrier: |
| case Intrinsic::amdgcn_ds_gws_sema_br: { |
| // Only the first lane is executes, so readfirstlane is safe. |
| substituteSimpleCopyRegs(OpdMapper, 1); |
| constrainOpWithReadfirstlane(MI, MRI, 2); // M0 |
| return; |
| } |
| case Intrinsic::amdgcn_ds_gws_sema_v: |
| case Intrinsic::amdgcn_ds_gws_sema_p: |
| case Intrinsic::amdgcn_ds_gws_sema_release_all: { |
| // Only the first lane is executes, so readfirstlane is safe. |
| constrainOpWithReadfirstlane(MI, MRI, 1); // M0 |
| return; |
| } |
| case Intrinsic::amdgcn_s_sendmsg: |
| case Intrinsic::amdgcn_s_sendmsghalt: { |
| // FIXME: Should this use a waterfall loop? |
| constrainOpWithReadfirstlane(MI, MRI, 2); // M0 |
| return; |
| } |
| case Intrinsic::amdgcn_raw_buffer_load: |
| case Intrinsic::amdgcn_raw_buffer_load_format: |
| case Intrinsic::amdgcn_raw_tbuffer_load: |
| case Intrinsic::amdgcn_raw_buffer_store: |
| case Intrinsic::amdgcn_raw_buffer_store_format: |
| case Intrinsic::amdgcn_raw_tbuffer_store: { |
| applyDefaultMapping(OpdMapper); |
| executeInWaterfallLoop(MI, MRI, {2, 4}); |
| return; |
| } |
| case Intrinsic::amdgcn_struct_buffer_load: |
| case Intrinsic::amdgcn_struct_buffer_store: |
| case Intrinsic::amdgcn_struct_tbuffer_load: |
| case Intrinsic::amdgcn_struct_tbuffer_store: { |
| applyDefaultMapping(OpdMapper); |
| executeInWaterfallLoop(MI, MRI, {2, 5}); |
| return; |
| } |
| default: { |
| if (const AMDGPU::RsrcIntrinsic *RSrcIntrin = |
| AMDGPU::lookupRsrcIntrinsic(IntrID)) { |
| // Non-images can have complications from operands that allow both SGPR |
| // and VGPR. For now it's too complicated to figure out the final opcode |
| // to derive the register bank from the MCInstrDesc. |
| if (RSrcIntrin->IsImage) { |
| applyMappingImage(MI, OpdMapper, MRI, RSrcIntrin->RsrcArg); |
| return; |
| } |
| } |
| |
| break; |
| } |
| } |
| break; |
| } |
| case AMDGPU::G_LOAD: |
| case AMDGPU::G_ZEXTLOAD: |
| case AMDGPU::G_SEXTLOAD: { |
| if (applyMappingWideLoad(MI, OpdMapper, MRI)) |
| return; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| return applyDefaultMapping(OpdMapper); |
| } |
| |
| bool AMDGPURegisterBankInfo::isSALUMapping(const MachineInstr &MI) const { |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| for (unsigned i = 0, e = MI.getNumOperands();i != e; ++i) { |
| if (!MI.getOperand(i).isReg()) |
| continue; |
| Register Reg = MI.getOperand(i).getReg(); |
| if (const RegisterBank *Bank = getRegBank(Reg, MRI, *TRI)) { |
| if (Bank->getID() != AMDGPU::SGPRRegBankID) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| const RegisterBankInfo::InstructionMapping & |
| AMDGPURegisterBankInfo::getDefaultMappingSOP(const MachineInstr &MI) const { |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SmallVector<const ValueMapping*, 8> OpdsMapping(MI.getNumOperands()); |
| |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| unsigned Size = getSizeInBits(MI.getOperand(i).getReg(), MRI, *TRI); |
| OpdsMapping[i] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| } |
| return getInstructionMapping(1, 1, getOperandsMapping(OpdsMapping), |
| MI.getNumOperands()); |
| } |
| |
| const RegisterBankInfo::InstructionMapping & |
| AMDGPURegisterBankInfo::getDefaultMappingVOP(const MachineInstr &MI) const { |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SmallVector<const ValueMapping*, 8> OpdsMapping(MI.getNumOperands()); |
| unsigned OpdIdx = 0; |
| |
| unsigned Size0 = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| OpdsMapping[OpdIdx++] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size0); |
| |
| if (MI.getOperand(OpdIdx).isIntrinsicID()) |
| OpdsMapping[OpdIdx++] = nullptr; |
| |
| Register Reg1 = MI.getOperand(OpdIdx).getReg(); |
| unsigned Size1 = getSizeInBits(Reg1, MRI, *TRI); |
| |
| unsigned DefaultBankID = Size1 == 1 ? |
| AMDGPU::VCCRegBankID : AMDGPU::VGPRRegBankID; |
| unsigned Bank1 = getRegBankID(Reg1, MRI, *TRI, DefaultBankID); |
| |
| OpdsMapping[OpdIdx++] = AMDGPU::getValueMapping(Bank1, Size1); |
| |
| for (unsigned e = MI.getNumOperands(); OpdIdx != e; ++OpdIdx) { |
| const MachineOperand &MO = MI.getOperand(OpdIdx); |
| if (!MO.isReg()) |
| continue; |
| |
| unsigned Size = getSizeInBits(MO.getReg(), MRI, *TRI); |
| unsigned BankID = Size == 1 ? AMDGPU::VCCRegBankID : AMDGPU::VGPRRegBankID; |
| OpdsMapping[OpdIdx] = AMDGPU::getValueMapping(BankID, Size); |
| } |
| |
| return getInstructionMapping(1, 1, getOperandsMapping(OpdsMapping), |
| MI.getNumOperands()); |
| } |
| |
| const RegisterBankInfo::InstructionMapping & |
| AMDGPURegisterBankInfo::getDefaultMappingAllVGPR(const MachineInstr &MI) const { |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SmallVector<const ValueMapping*, 8> OpdsMapping(MI.getNumOperands()); |
| |
| for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
| const MachineOperand &Op = MI.getOperand(I); |
| if (!Op.isReg()) |
| continue; |
| |
| unsigned Size = getSizeInBits(Op.getReg(), MRI, *TRI); |
| OpdsMapping[I] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size); |
| } |
| |
| return getInstructionMapping(1, 1, getOperandsMapping(OpdsMapping), |
| MI.getNumOperands()); |
| } |
| |
| const RegisterBankInfo::InstructionMapping & |
| AMDGPURegisterBankInfo::getImageMapping(const MachineRegisterInfo &MRI, |
| const MachineInstr &MI, |
| int RsrcIdx) const { |
| // The reported argument index is relative to the IR intrinsic call arguments, |
| // so we need to shift by the number of defs and the intrinsic ID. |
| RsrcIdx += MI.getNumExplicitDefs() + 1; |
| |
| const int NumOps = MI.getNumOperands(); |
| SmallVector<const ValueMapping *, 8> OpdsMapping(NumOps); |
| |
| // TODO: Should packed/unpacked D16 difference be reported here as part of |
| // the value mapping? |
| for (int I = 0; I != NumOps; ++I) { |
| if (!MI.getOperand(I).isReg()) |
| continue; |
| |
| Register OpReg = MI.getOperand(I).getReg(); |
| unsigned Size = getSizeInBits(OpReg, MRI, *TRI); |
| |
| // FIXME: Probably need a new intrinsic register bank searchable table to |
| // handle arbitrary intrinsics easily. |
| // |
| // If this has a sampler, it immediately follows rsrc. |
| const bool MustBeSGPR = I == RsrcIdx || I == RsrcIdx + 1; |
| |
| if (MustBeSGPR) { |
| // If this must be an SGPR, so we must report whatever it is as legal. |
| unsigned NewBank = getRegBankID(OpReg, MRI, *TRI, AMDGPU::SGPRRegBankID); |
| OpdsMapping[I] = AMDGPU::getValueMapping(NewBank, Size); |
| } else { |
| // Some operands must be VGPR, and these are easy to copy to. |
| OpdsMapping[I] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size); |
| } |
| } |
| |
| return getInstructionMapping(1, 1, getOperandsMapping(OpdsMapping), NumOps); |
| } |
| |
| const RegisterBankInfo::InstructionMapping & |
| AMDGPURegisterBankInfo::getInstrMappingForLoad(const MachineInstr &MI) const { |
| |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| SmallVector<const ValueMapping*, 2> OpdsMapping(2); |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| LLT LoadTy = MRI.getType(MI.getOperand(0).getReg()); |
| Register PtrReg = MI.getOperand(1).getReg(); |
| LLT PtrTy = MRI.getType(PtrReg); |
| unsigned AS = PtrTy.getAddressSpace(); |
| unsigned PtrSize = PtrTy.getSizeInBits(); |
| |
| const ValueMapping *ValMapping; |
| const ValueMapping *PtrMapping; |
| |
| const RegisterBank *PtrBank = getRegBank(PtrReg, MRI, *TRI); |
| |
| if (PtrBank == &AMDGPU::SGPRRegBank && |
| (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::REGION_ADDRESS && |
| AS != AMDGPUAS::PRIVATE_ADDRESS) && |
| isScalarLoadLegal(MI)) { |
| // We have a uniform instruction so we want to use an SMRD load |
| ValMapping = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| PtrMapping = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, PtrSize); |
| } else { |
| ValMapping = AMDGPU::getValueMappingLoadSGPROnly(AMDGPU::VGPRRegBankID, LoadTy); |
| PtrMapping = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, PtrSize); |
| } |
| |
| OpdsMapping[0] = ValMapping; |
| OpdsMapping[1] = PtrMapping; |
| const RegisterBankInfo::InstructionMapping &Mapping = getInstructionMapping( |
| 1, 1, getOperandsMapping(OpdsMapping), MI.getNumOperands()); |
| return Mapping; |
| |
| // FIXME: Do we want to add a mapping for FLAT load, or should we just |
| // handle that during instruction selection? |
| } |
| |
| unsigned |
| AMDGPURegisterBankInfo::getRegBankID(Register Reg, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI, |
| unsigned Default) const { |
| const RegisterBank *Bank = getRegBank(Reg, MRI, TRI); |
| return Bank ? Bank->getID() : Default; |
| } |
| |
| |
| static unsigned regBankUnion(unsigned RB0, unsigned RB1) { |
| return (RB0 == AMDGPU::SGPRRegBankID && RB1 == AMDGPU::SGPRRegBankID) ? |
| AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID; |
| } |
| |
| static int regBankBoolUnion(int RB0, int RB1) { |
| if (RB0 == -1) |
| return RB1; |
| if (RB1 == -1) |
| return RB0; |
| |
| // vcc, vcc -> vcc |
| // vcc, sgpr -> vcc |
| // vcc, vgpr -> vcc |
| if (RB0 == AMDGPU::VCCRegBankID || RB1 == AMDGPU::VCCRegBankID) |
| return AMDGPU::VCCRegBankID; |
| |
| // vcc, vgpr -> vgpr |
| return regBankUnion(RB0, RB1); |
| } |
| |
| const RegisterBankInfo::ValueMapping * |
| AMDGPURegisterBankInfo::getSGPROpMapping(Register Reg, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI) const { |
| // Lie and claim anything is legal, even though this needs to be an SGPR |
| // applyMapping will have to deal with it as a waterfall loop. |
| unsigned Bank = getRegBankID(Reg, MRI, TRI, AMDGPU::SGPRRegBankID); |
| unsigned Size = getSizeInBits(Reg, MRI, TRI); |
| return AMDGPU::getValueMapping(Bank, Size); |
| } |
| |
| const RegisterBankInfo::ValueMapping * |
| AMDGPURegisterBankInfo::getVGPROpMapping(Register Reg, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI) const { |
| unsigned Size = getSizeInBits(Reg, MRI, TRI); |
| return AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size); |
| } |
| |
| const RegisterBankInfo::ValueMapping * |
| AMDGPURegisterBankInfo::getAGPROpMapping(Register Reg, |
| const MachineRegisterInfo &MRI, |
| const TargetRegisterInfo &TRI) const { |
| unsigned Size = getSizeInBits(Reg, MRI, TRI); |
| return AMDGPU::getValueMapping(AMDGPU::AGPRRegBankID, Size); |
| } |
| |
| /// |
| /// This function must return a legal mapping, because |
| /// AMDGPURegisterBankInfo::getInstrAlternativeMappings() is not called |
| /// in RegBankSelect::Mode::Fast. Any mapping that would cause a |
| /// VGPR to SGPR generated is illegal. |
| /// |
| const RegisterBankInfo::InstructionMapping & |
| AMDGPURegisterBankInfo::getInstrMapping(const MachineInstr &MI) const { |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| |
| if (MI.isRegSequence()) { |
| // If any input is a VGPR, the result must be a VGPR. The default handling |
| // assumes any copy between banks is legal. |
| unsigned BankID = AMDGPU::SGPRRegBankID; |
| |
| for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { |
| auto OpBank = getRegBankID(MI.getOperand(I).getReg(), MRI, *TRI); |
| // It doesn't make sense to use vcc or scc banks here, so just ignore |
| // them. |
| if (OpBank != AMDGPU::SGPRRegBankID) { |
| BankID = AMDGPU::VGPRRegBankID; |
| break; |
| } |
| } |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| |
| const ValueMapping &ValMap = getValueMapping(0, Size, getRegBank(BankID)); |
| return getInstructionMapping( |
| 1, /*Cost*/ 1, |
| /*OperandsMapping*/ getOperandsMapping({&ValMap}), 1); |
| } |
| |
| // The default handling is broken and doesn't handle illegal SGPR->VGPR copies |
| // properly. |
| // |
| // TODO: There are additional exec masking dependencies to analyze. |
| if (MI.getOpcode() == TargetOpcode::G_PHI) { |
| // TODO: Generate proper invalid bank enum. |
| int ResultBank = -1; |
| Register DstReg = MI.getOperand(0).getReg(); |
| |
| // Sometimes the result may have already been assigned a bank. |
| if (const RegisterBank *DstBank = getRegBank(DstReg, MRI, *TRI)) |
| ResultBank = DstBank->getID(); |
| |
| for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { |
| Register Reg = MI.getOperand(I).getReg(); |
| const RegisterBank *Bank = getRegBank(Reg, MRI, *TRI); |
| |
| // FIXME: Assuming VGPR for any undetermined inputs. |
| if (!Bank || Bank->getID() == AMDGPU::VGPRRegBankID) { |
| ResultBank = AMDGPU::VGPRRegBankID; |
| break; |
| } |
| |
| // FIXME: Need to promote SGPR case to s32 |
| unsigned OpBank = Bank->getID(); |
| ResultBank = regBankBoolUnion(ResultBank, OpBank); |
| } |
| |
| assert(ResultBank != -1); |
| |
| unsigned Size = MRI.getType(DstReg).getSizeInBits(); |
| |
| const ValueMapping &ValMap = |
| getValueMapping(0, Size, getRegBank(ResultBank)); |
| return getInstructionMapping( |
| 1, /*Cost*/ 1, |
| /*OperandsMapping*/ getOperandsMapping({&ValMap}), 1); |
| } |
| |
| const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI); |
| if (Mapping.isValid()) |
| return Mapping; |
| |
| SmallVector<const ValueMapping*, 8> OpdsMapping(MI.getNumOperands()); |
| |
| switch (MI.getOpcode()) { |
| default: |
| return getInvalidInstructionMapping(); |
| |
| case AMDGPU::G_AND: |
| case AMDGPU::G_OR: |
| case AMDGPU::G_XOR: { |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| if (Size == 1) { |
| const RegisterBank *DstBank |
| = getRegBank(MI.getOperand(0).getReg(), MRI, *TRI); |
| |
| unsigned TargetBankID = -1; |
| unsigned BankLHS = -1; |
| unsigned BankRHS = -1; |
| if (DstBank) { |
| TargetBankID = DstBank->getID(); |
| if (DstBank == &AMDGPU::VCCRegBank) { |
| TargetBankID = AMDGPU::VCCRegBankID; |
| BankLHS = AMDGPU::VCCRegBankID; |
| BankRHS = AMDGPU::VCCRegBankID; |
| } else { |
| BankLHS = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| BankRHS = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| } |
| } else { |
| BankLHS = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI, |
| AMDGPU::VCCRegBankID); |
| BankRHS = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI, |
| AMDGPU::VCCRegBankID); |
| |
| // Both inputs should be true booleans to produce a boolean result. |
| if (BankLHS == AMDGPU::VGPRRegBankID || BankRHS == AMDGPU::VGPRRegBankID) { |
| TargetBankID = AMDGPU::VGPRRegBankID; |
| } else if (BankLHS == AMDGPU::VCCRegBankID || BankRHS == AMDGPU::VCCRegBankID) { |
| TargetBankID = AMDGPU::VCCRegBankID; |
| BankLHS = AMDGPU::VCCRegBankID; |
| BankRHS = AMDGPU::VCCRegBankID; |
| } else if (BankLHS == AMDGPU::SGPRRegBankID && BankRHS == AMDGPU::SGPRRegBankID) { |
| TargetBankID = AMDGPU::SGPRRegBankID; |
| } |
| } |
| |
| OpdsMapping[0] = AMDGPU::getValueMapping(TargetBankID, Size); |
| OpdsMapping[1] = AMDGPU::getValueMapping(BankLHS, Size); |
| OpdsMapping[2] = AMDGPU::getValueMapping(BankRHS, Size); |
| break; |
| } |
| |
| if (Size == 64) { |
| |
| if (isSALUMapping(MI)) { |
| OpdsMapping[0] = getValueMappingSGPR64Only(AMDGPU::SGPRRegBankID, Size); |
| OpdsMapping[1] = OpdsMapping[2] = OpdsMapping[0]; |
| } else { |
| OpdsMapping[0] = getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size); |
| unsigned Bank1 = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI/*, DefaultBankID*/); |
| OpdsMapping[1] = AMDGPU::getValueMapping(Bank1, Size); |
| |
| unsigned Bank2 = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI/*, DefaultBankID*/); |
| OpdsMapping[2] = AMDGPU::getValueMapping(Bank2, Size); |
| } |
| |
| break; |
| } |
| |
| LLVM_FALLTHROUGH; |
| } |
| case AMDGPU::G_PTR_ADD: |
| case AMDGPU::G_ADD: |
| case AMDGPU::G_SUB: |
| case AMDGPU::G_MUL: |
| case AMDGPU::G_SHL: |
| case AMDGPU::G_LSHR: |
| case AMDGPU::G_ASHR: |
| case AMDGPU::G_UADDO: |
| case AMDGPU::G_USUBO: |
| case AMDGPU::G_UADDE: |
| case AMDGPU::G_SADDE: |
| case AMDGPU::G_USUBE: |
| case AMDGPU::G_SSUBE: |
| case AMDGPU::G_SMIN: |
| case AMDGPU::G_SMAX: |
| case AMDGPU::G_UMIN: |
| case AMDGPU::G_UMAX: |
| if (isSALUMapping(MI)) |
| return getDefaultMappingSOP(MI); |
| LLVM_FALLTHROUGH; |
| |
| case AMDGPU::G_FADD: |
| case AMDGPU::G_FSUB: |
| case AMDGPU::G_FPTOSI: |
| case AMDGPU::G_FPTOUI: |
| case AMDGPU::G_FMUL: |
| case AMDGPU::G_FMA: |
| case AMDGPU::G_FMAD: |
| case AMDGPU::G_FSQRT: |
| case AMDGPU::G_FFLOOR: |
| case AMDGPU::G_FCEIL: |
| case AMDGPU::G_FRINT: |
| case AMDGPU::G_SITOFP: |
| case AMDGPU::G_UITOFP: |
| case AMDGPU::G_FPTRUNC: |
| case AMDGPU::G_FPEXT: |
| case AMDGPU::G_FEXP2: |
| case AMDGPU::G_FLOG2: |
| case AMDGPU::G_FMINNUM: |
| case AMDGPU::G_FMAXNUM: |
| case AMDGPU::G_FMINNUM_IEEE: |
| case AMDGPU::G_FMAXNUM_IEEE: |
| case AMDGPU::G_FCANONICALIZE: |
| case AMDGPU::G_INTRINSIC_TRUNC: |
| case AMDGPU::G_AMDGPU_FFBH_U32: |
| return getDefaultMappingVOP(MI); |
| case AMDGPU::G_UMULH: |
| case AMDGPU::G_SMULH: { |
| if (Subtarget.hasScalarMulHiInsts() && isSALUMapping(MI)) |
| return getDefaultMappingSOP(MI); |
| return getDefaultMappingVOP(MI); |
| } |
| case AMDGPU::G_IMPLICIT_DEF: { |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| break; |
| } |
| case AMDGPU::G_FCONSTANT: |
| case AMDGPU::G_CONSTANT: |
| case AMDGPU::G_GLOBAL_VALUE: |
| case AMDGPU::G_BLOCK_ADDR: |
| case AMDGPU::G_READCYCLECOUNTER: { |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| break; |
| } |
| case AMDGPU::G_FRAME_INDEX: { |
| // TODO: This should be the same as other constants, but eliminateFrameIndex |
| // currently assumes VALU uses. |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size); |
| break; |
| } |
| case AMDGPU::G_INSERT: { |
| unsigned BankID = isSALUMapping(MI) ? AMDGPU::SGPRRegBankID : |
| AMDGPU::VGPRRegBankID; |
| unsigned DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| unsigned SrcSize = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI); |
| unsigned EltSize = getSizeInBits(MI.getOperand(2).getReg(), MRI, *TRI); |
| OpdsMapping[0] = AMDGPU::getValueMapping(BankID, DstSize); |
| OpdsMapping[1] = AMDGPU::getValueMapping(BankID, SrcSize); |
| OpdsMapping[2] = AMDGPU::getValueMapping(BankID, EltSize); |
| OpdsMapping[3] = nullptr; |
| break; |
| } |
| case AMDGPU::G_EXTRACT: { |
| unsigned BankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI); |
| unsigned DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| unsigned SrcSize = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI); |
| OpdsMapping[0] = AMDGPU::getValueMapping(BankID, DstSize); |
| OpdsMapping[1] = AMDGPU::getValueMapping(BankID, SrcSize); |
| OpdsMapping[2] = nullptr; |
| break; |
| } |
| case AMDGPU::G_BUILD_VECTOR: |
| case AMDGPU::G_BUILD_VECTOR_TRUNC: { |
| LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); |
| if (DstTy == LLT::vector(2, 16)) { |
| unsigned DstSize = DstTy.getSizeInBits(); |
| unsigned SrcSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| unsigned Src0BankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI); |
| unsigned Src1BankID = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI); |
| unsigned DstBankID = regBankUnion(Src0BankID, Src1BankID); |
| |
| OpdsMapping[0] = AMDGPU::getValueMapping(DstBankID, DstSize); |
| OpdsMapping[1] = AMDGPU::getValueMapping(Src0BankID, SrcSize); |
| OpdsMapping[2] = AMDGPU::getValueMapping(Src1BankID, SrcSize); |
| break; |
| } |
| |
| LLVM_FALLTHROUGH; |
| } |
| case AMDGPU::G_MERGE_VALUES: |
| case AMDGPU::G_CONCAT_VECTORS: { |
| unsigned Bank = isSALUMapping(MI) ? |
| AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID; |
| unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned SrcSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| |
| OpdsMapping[0] = AMDGPU::getValueMapping(Bank, DstSize); |
| // Op1 and Dst should use the same register bank. |
| for (unsigned i = 1, e = MI.getNumOperands(); i != e; ++i) |
| OpdsMapping[i] = AMDGPU::getValueMapping(Bank, SrcSize); |
| break; |
| } |
| case AMDGPU::G_BITCAST: |
| case AMDGPU::G_INTTOPTR: |
| case AMDGPU::G_PTRTOINT: |
| case AMDGPU::G_CTLZ: |
| case AMDGPU::G_CTLZ_ZERO_UNDEF: |
| case AMDGPU::G_CTTZ: |
| case AMDGPU::G_CTTZ_ZERO_UNDEF: |
| case AMDGPU::G_CTPOP: |
| case AMDGPU::G_BSWAP: |
| case AMDGPU::G_BITREVERSE: |
| case AMDGPU::G_FABS: |
| case AMDGPU::G_FNEG: { |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned BankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI); |
| OpdsMapping[0] = OpdsMapping[1] = AMDGPU::getValueMapping(BankID, Size); |
| break; |
| } |
| case AMDGPU::G_TRUNC: { |
| Register Dst = MI.getOperand(0).getReg(); |
| Register Src = MI.getOperand(1).getReg(); |
| unsigned Bank = getRegBankID(Src, MRI, *TRI); |
| unsigned DstSize = getSizeInBits(Dst, MRI, *TRI); |
| unsigned SrcSize = getSizeInBits(Src, MRI, *TRI); |
| OpdsMapping[0] = DstSize == 1 && Bank != AMDGPU::SGPRRegBankID ? |
| AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, DstSize) : |
| AMDGPU::getValueMapping(Bank, DstSize); |
| OpdsMapping[1] = AMDGPU::getValueMapping(Bank, SrcSize); |
| break; |
| } |
| case AMDGPU::G_ZEXT: |
| case AMDGPU::G_SEXT: |
| case AMDGPU::G_ANYEXT: { |
| Register Dst = MI.getOperand(0).getReg(); |
| Register Src = MI.getOperand(1).getReg(); |
| unsigned DstSize = getSizeInBits(Dst, MRI, *TRI); |
| unsigned SrcSize = getSizeInBits(Src, MRI, *TRI); |
| |
| unsigned DstBank; |
| const RegisterBank *SrcBank = getRegBank(Src, MRI, *TRI); |
| assert(SrcBank); |
| switch (SrcBank->getID()) { |
| case AMDGPU::SGPRRegBankID: |
| DstBank = AMDGPU::SGPRRegBankID; |
| break; |
| default: |
| DstBank = AMDGPU::VGPRRegBankID; |
| break; |
| } |
| |
| // TODO: Should anyext be split into 32-bit part as well? |
| if (MI.getOpcode() == AMDGPU::G_ANYEXT) { |
| OpdsMapping[0] = AMDGPU::getValueMapping(DstBank, DstSize); |
| OpdsMapping[1] = AMDGPU::getValueMapping(SrcBank->getID(), SrcSize); |
| } else { |
| // Scalar extend can use 64-bit BFE, but VGPRs require extending to |
| // 32-bits, and then to 64. |
| OpdsMapping[0] = AMDGPU::getValueMappingSGPR64Only(DstBank, DstSize); |
| OpdsMapping[1] = AMDGPU::getValueMappingSGPR64Only(SrcBank->getID(), |
| SrcSize); |
| } |
| break; |
| } |
| case AMDGPU::G_FCMP: { |
| unsigned Size = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); |
| unsigned Op2Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1); |
| OpdsMapping[1] = nullptr; // Predicate Operand. |
| OpdsMapping[2] = AMDGPU::getValueMapping(Op2Bank, Size); |
| OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size); |
| break; |
| } |
| case AMDGPU::G_STORE: { |
| assert(MI.getOperand(0).isReg()); |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| // FIXME: We need to specify a different reg bank once scalar stores |
| // are supported. |
| const ValueMapping *ValMapping = |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size); |
| // FIXME: Depending on the type of store, the pointer could be in |
| // the SGPR Reg bank. |
| // FIXME: Pointer size should be based on the address space. |
| const ValueMapping *PtrMapping = |
| AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 64); |
| |
| OpdsMapping[0] = ValMapping; |
| OpdsMapping[1] = PtrMapping; |
| break; |
| } |
| |
| case AMDGPU::G_ICMP: { |
| auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); |
| unsigned Size = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); |
| unsigned Op2Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI); |
| unsigned Op3Bank = getRegBankID(MI.getOperand(3).getReg(), MRI, *TRI); |
| |
| bool CanUseSCC = Op2Bank == AMDGPU::SGPRRegBankID && |
| Op3Bank == AMDGPU::SGPRRegBankID && |
| (Size == 32 || (Size == 64 && |
| (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) && |
| Subtarget.hasScalarCompareEq64())); |
| |
| unsigned Op0Bank = CanUseSCC ? AMDGPU::SGPRRegBankID : AMDGPU::VCCRegBankID; |
| |
| // TODO: Use 32-bit for scalar output size. |
| // SCC results will need to be copied to a 32-bit SGPR virtual register. |
| const unsigned ResultSize = 1; |
| |
| OpdsMapping[0] = AMDGPU::getValueMapping(Op0Bank, ResultSize); |
| OpdsMapping[1] = nullptr; // Predicate Operand. |
| OpdsMapping[2] = AMDGPU::getValueMapping(Op2Bank, Size); |
| OpdsMapping[3] = AMDGPU::getValueMapping(Op3Bank, Size); |
| break; |
| } |
| case AMDGPU::G_EXTRACT_VECTOR_ELT: { |
| // VGPR index can be used for waterfall when indexing a SGPR vector. |
| unsigned SrcBankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI); |
| unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned SrcSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| unsigned IdxSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); |
| unsigned IdxBank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI); |
| unsigned OutputBankID = regBankUnion(SrcBankID, IdxBank); |
| |
| OpdsMapping[0] = AMDGPU::getValueMappingSGPR64Only(OutputBankID, DstSize); |
| OpdsMapping[1] = AMDGPU::getValueMapping(SrcBankID, SrcSize); |
| |
| // The index can be either if the source vector is VGPR. |
| OpdsMapping[2] = AMDGPU::getValueMapping(IdxBank, IdxSize); |
| break; |
| } |
| case AMDGPU::G_INSERT_VECTOR_ELT: { |
| unsigned OutputBankID = isSALUMapping(MI) ? |
| AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID; |
| |
| unsigned VecSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned InsertSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); |
| unsigned IdxSize = MRI.getType(MI.getOperand(3).getReg()).getSizeInBits(); |
| unsigned SrcBankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI); |
| unsigned InsertEltBankID = getRegBankID(MI.getOperand(2).getReg(), |
| MRI, *TRI); |
| unsigned IdxBankID = getRegBankID(MI.getOperand(3).getReg(), MRI, *TRI); |
| |
| OpdsMapping[0] = AMDGPU::getValueMapping(OutputBankID, VecSize); |
| OpdsMapping[1] = AMDGPU::getValueMapping(SrcBankID, VecSize); |
| OpdsMapping[2] = AMDGPU::getValueMappingSGPR64Only(InsertEltBankID, |
| InsertSize); |
| |
| // The index can be either if the source vector is VGPR. |
| OpdsMapping[3] = AMDGPU::getValueMapping(IdxBankID, IdxSize); |
| break; |
| } |
| case AMDGPU::G_UNMERGE_VALUES: { |
| unsigned Bank = isSALUMapping(MI) ? AMDGPU::SGPRRegBankID : |
| AMDGPU::VGPRRegBankID; |
| |
| // Op1 and Dst should use the same register bank. |
| // FIXME: Shouldn't this be the default? Why do we need to handle this? |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| unsigned Size = getSizeInBits(MI.getOperand(i).getReg(), MRI, *TRI); |
| OpdsMapping[i] = AMDGPU::getValueMapping(Bank, Size); |
| } |
| break; |
| } |
| case AMDGPU::G_INTRINSIC: { |
| switch (MI.getIntrinsicID()) { |
| default: |
| return getInvalidInstructionMapping(); |
| case Intrinsic::amdgcn_div_fmas: |
| case Intrinsic::amdgcn_div_fixup: |
| case Intrinsic::amdgcn_trig_preop: |
| case Intrinsic::amdgcn_sin: |
| case Intrinsic::amdgcn_cos: |
| case Intrinsic::amdgcn_log_clamp: |
| case Intrinsic::amdgcn_rcp: |
| case Intrinsic::amdgcn_rcp_legacy: |
| case Intrinsic::amdgcn_rsq: |
| case Intrinsic::amdgcn_rsq_legacy: |
| case Intrinsic::amdgcn_rsq_clamp: |
| case Intrinsic::amdgcn_ldexp: |
| case Intrinsic::amdgcn_frexp_mant: |
| case Intrinsic::amdgcn_frexp_exp: |
| case Intrinsic::amdgcn_fract: |
| case Intrinsic::amdgcn_cvt_pkrtz: |
| case Intrinsic::amdgcn_cvt_pknorm_i16: |
| case Intrinsic::amdgcn_cvt_pknorm_u16: |
| case Intrinsic::amdgcn_cvt_pk_i16: |
| case Intrinsic::amdgcn_cvt_pk_u16: |
| case Intrinsic::amdgcn_fmed3: |
| case Intrinsic::amdgcn_cubeid: |
| case Intrinsic::amdgcn_cubema: |
| case Intrinsic::amdgcn_cubesc: |
| case Intrinsic::amdgcn_cubetc: |
| case Intrinsic::amdgcn_sffbh: |
| case Intrinsic::amdgcn_fmad_ftz: |
| case Intrinsic::amdgcn_mbcnt_lo: |
| case Intrinsic::amdgcn_mbcnt_hi: |
| case Intrinsic::amdgcn_ubfe: |
| case Intrinsic::amdgcn_sbfe: |
| case Intrinsic::amdgcn_mul_u24: |
| case Intrinsic::amdgcn_mul_i24: |
| case Intrinsic::amdgcn_lerp: |
| case Intrinsic::amdgcn_sad_u8: |
| case Intrinsic::amdgcn_msad_u8: |
| case Intrinsic::amdgcn_sad_hi_u8: |
| case Intrinsic::amdgcn_sad_u16: |
| case Intrinsic::amdgcn_qsad_pk_u16_u8: |
| case Intrinsic::amdgcn_mqsad_pk_u16_u8: |
| case Intrinsic::amdgcn_mqsad_u32_u8: |
| case Intrinsic::amdgcn_cvt_pk_u8_f32: |
| case Intrinsic::amdgcn_alignbit: |
| case Intrinsic::amdgcn_alignbyte: |
| case Intrinsic::amdgcn_fdot2: |
| case Intrinsic::amdgcn_sdot2: |
| case Intrinsic::amdgcn_udot2: |
| case Intrinsic::amdgcn_sdot4: |
| case Intrinsic::amdgcn_udot4: |
| case Intrinsic::amdgcn_sdot8: |
| case Intrinsic::amdgcn_udot8: |
| case Intrinsic::amdgcn_wwm: |
| case Intrinsic::amdgcn_wqm: |
| return getDefaultMappingVOP(MI); |
| case Intrinsic::amdgcn_ds_swizzle: |
| case Intrinsic::amdgcn_ds_permute: |
| case Intrinsic::amdgcn_ds_bpermute: |
| case Intrinsic::amdgcn_update_dpp: |
| return getDefaultMappingAllVGPR(MI); |
| case Intrinsic::amdgcn_kernarg_segment_ptr: |
| case Intrinsic::amdgcn_s_getpc: |
| case Intrinsic::amdgcn_groupstaticsize: { |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| break; |
| } |
| case Intrinsic::amdgcn_wqm_vote: { |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| OpdsMapping[0] = OpdsMapping[2] |
| = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Size); |
| break; |
| } |
| case Intrinsic::amdgcn_s_buffer_load: { |
| // FIXME: This should be moved to G_INTRINSIC_W_SIDE_EFFECTS |
| Register RSrc = MI.getOperand(2).getReg(); // SGPR |
| Register Offset = MI.getOperand(3).getReg(); // SGPR/imm |
| |
| unsigned Size0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned Size2 = MRI.getType(RSrc).getSizeInBits(); |
| unsigned Size3 = MRI.getType(Offset).getSizeInBits(); |
| |
| unsigned RSrcBank = getRegBankID(RSrc, MRI, *TRI); |
| unsigned OffsetBank = getRegBankID(Offset, MRI, *TRI); |
| |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size0); |
| OpdsMapping[1] = nullptr; // intrinsic id |
| |
| // Lie and claim everything is legal, even though some need to be |
| // SGPRs. applyMapping will have to deal with it as a waterfall loop. |
| OpdsMapping[2] = AMDGPU::getValueMapping(RSrcBank, Size2); // rsrc |
| OpdsMapping[3] = AMDGPU::getValueMapping(OffsetBank, Size3); |
| OpdsMapping[4] = nullptr; |
| break; |
| } |
| case Intrinsic::amdgcn_div_scale: { |
| unsigned Dst0Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned Dst1Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Dst0Size); |
| OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Dst1Size); |
| |
| unsigned SrcSize = MRI.getType(MI.getOperand(3).getReg()).getSizeInBits(); |
| OpdsMapping[3] = AMDGPU::getValueMapping( |
| getRegBankID(MI.getOperand(3).getReg(), MRI, *TRI), SrcSize); |
| OpdsMapping[4] = AMDGPU::getValueMapping( |
| getRegBankID(MI.getOperand(4).getReg(), MRI, *TRI), SrcSize); |
| |
| break; |
| } |
| case Intrinsic::amdgcn_class: { |
| Register Src0Reg = MI.getOperand(2).getReg(); |
| Register Src1Reg = MI.getOperand(3).getReg(); |
| unsigned Src0Size = MRI.getType(Src0Reg).getSizeInBits(); |
| unsigned Src1Size = MRI.getType(Src1Reg).getSizeInBits(); |
| unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, DstSize); |
| OpdsMapping[2] = AMDGPU::getValueMapping(getRegBankID(Src0Reg, MRI, *TRI), |
| Src0Size); |
| OpdsMapping[3] = AMDGPU::getValueMapping(getRegBankID(Src1Reg, MRI, *TRI), |
| Src1Size); |
| break; |
| } |
| case Intrinsic::amdgcn_icmp: |
| case Intrinsic::amdgcn_fcmp: { |
| unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| // This is not VCCRegBank because this is not used in boolean contexts. |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, DstSize); |
| unsigned OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); |
| unsigned Op1Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI); |
| unsigned Op2Bank = getRegBankID(MI.getOperand(3).getReg(), MRI, *TRI); |
| OpdsMapping[2] = AMDGPU::getValueMapping(Op1Bank, OpSize); |
| OpdsMapping[3] = AMDGPU::getValueMapping(Op2Bank, OpSize); |
| break; |
| } |
| case Intrinsic::amdgcn_readlane: { |
| // This must be an SGPR, but accept a VGPR. |
| Register IdxReg = MI.getOperand(3).getReg(); |
| unsigned IdxSize = MRI.getType(IdxReg).getSizeInBits(); |
| unsigned IdxBank = getRegBankID(IdxReg, MRI, *TRI, AMDGPU::SGPRRegBankID); |
| OpdsMapping[3] = AMDGPU::getValueMapping(IdxBank, IdxSize); |
| LLVM_FALLTHROUGH; |
| } |
| case Intrinsic::amdgcn_readfirstlane: { |
| unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, DstSize); |
| OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, SrcSize); |
| break; |
| } |
| case Intrinsic::amdgcn_writelane: { |
| unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| Register SrcReg = MI.getOperand(2).getReg(); |
| unsigned SrcSize = MRI.getType(SrcReg).getSizeInBits(); |
| unsigned SrcBank = getRegBankID(SrcReg, MRI, *TRI, AMDGPU::SGPRRegBankID); |
| Register IdxReg = MI.getOperand(3).getReg(); |
| unsigned IdxSize = MRI.getType(IdxReg).getSizeInBits(); |
| unsigned IdxBank = getRegBankID(IdxReg, MRI, *TRI, AMDGPU::SGPRRegBankID); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, DstSize); |
| |
| // These 2 must be SGPRs, but accept VGPRs. Readfirstlane will be inserted |
| // to legalize. |
| OpdsMapping[2] = AMDGPU::getValueMapping(SrcBank, SrcSize); |
| OpdsMapping[3] = AMDGPU::getValueMapping(IdxBank, IdxSize); |
| OpdsMapping[4] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, SrcSize); |
| break; |
| } |
| case Intrinsic::amdgcn_if_break: { |
| unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1); |
| OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| break; |
| } |
| case Intrinsic::amdgcn_mfma_f32_4x4x1f32: |
| case Intrinsic::amdgcn_mfma_f32_4x4x4f16: |
| case Intrinsic::amdgcn_mfma_i32_4x4x4i8: |
| case Intrinsic::amdgcn_mfma_f32_4x4x2bf16: |
| case Intrinsic::amdgcn_mfma_f32_16x16x1f32: |
| case Intrinsic::amdgcn_mfma_f32_16x16x4f32: |
| case Intrinsic::amdgcn_mfma_f32_16x16x4f16: |
| case Intrinsic::amdgcn_mfma_f32_16x16x16f16: |
| case Intrinsic::amdgcn_mfma_i32_16x16x4i8: |
| case Intrinsic::amdgcn_mfma_i32_16x16x16i8: |
| case Intrinsic::amdgcn_mfma_f32_16x16x2bf16: |
| case Intrinsic::amdgcn_mfma_f32_16x16x8bf16: |
| case Intrinsic::amdgcn_mfma_f32_32x32x1f32: |
| case Intrinsic::amdgcn_mfma_f32_32x32x2f32: |
| case Intrinsic::amdgcn_mfma_f32_32x32x4f16: |
| case Intrinsic::amdgcn_mfma_f32_32x32x8f16: |
| case Intrinsic::amdgcn_mfma_i32_32x32x4i8: |
| case Intrinsic::amdgcn_mfma_i32_32x32x8i8: |
| case Intrinsic::amdgcn_mfma_f32_32x32x2bf16: |
| case Intrinsic::amdgcn_mfma_f32_32x32x4bf16: { |
| // Default for MAI intrinsics. |
| // srcC can also be an immediate which can be folded later. |
| // FIXME: Should we eventually add an alternative mapping with AGPR src |
| // for srcA/srcB? |
| // |
| // vdst, srcA, srcB, srcC |
| OpdsMapping[0] = getAGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI); |
| OpdsMapping[2] = getVGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI); |
| OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI); |
| OpdsMapping[4] = getAGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI); |
| break; |
| } |
| } |
| break; |
| } |
| case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: { |
| auto IntrID = MI.getIntrinsicID(); |
| switch (IntrID) { |
| case Intrinsic::amdgcn_s_getreg: |
| case Intrinsic::amdgcn_s_memtime: |
| case Intrinsic::amdgcn_s_memrealtime: |
| case Intrinsic::amdgcn_s_get_waveid_in_workgroup: { |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| break; |
| } |
| case Intrinsic::amdgcn_ds_append: |
| case Intrinsic::amdgcn_ds_consume: |
| case Intrinsic::amdgcn_ds_fadd: |
| case Intrinsic::amdgcn_ds_fmin: |
| case Intrinsic::amdgcn_ds_fmax: |
| case Intrinsic::amdgcn_atomic_inc: |
| case Intrinsic::amdgcn_atomic_dec: |
| return getDefaultMappingAllVGPR(MI); |
| case Intrinsic::amdgcn_ds_ordered_add: |
| case Intrinsic::amdgcn_ds_ordered_swap: { |
| unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, DstSize); |
| unsigned M0Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| OpdsMapping[2] = AMDGPU::getValueMapping(M0Bank, 32); |
| OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32); |
| break; |
| } |
| case Intrinsic::amdgcn_exp_compr: |
| OpdsMapping[0] = nullptr; // IntrinsicID |
| // FIXME: These are immediate values which can't be read from registers. |
| OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32); |
| OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32); |
| // FIXME: Could we support packed types here? |
| OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32); |
| OpdsMapping[4] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32); |
| // FIXME: These are immediate values which can't be read from registers. |
| OpdsMapping[5] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32); |
| OpdsMapping[6] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32); |
| break; |
| case Intrinsic::amdgcn_exp: |
| // FIXME: Could we support packed types here? |
| OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32); |
| OpdsMapping[4] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32); |
| OpdsMapping[5] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32); |
| OpdsMapping[6] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32); |
| break; |
| case Intrinsic::amdgcn_buffer_load: { |
| Register RSrc = MI.getOperand(2).getReg(); // SGPR |
| Register VIndex = MI.getOperand(3).getReg(); // VGPR |
| Register Offset = MI.getOperand(4).getReg(); // SGPR/VGPR/imm |
| |
| unsigned Size0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned Size2 = MRI.getType(RSrc).getSizeInBits(); |
| unsigned Size3 = MRI.getType(VIndex).getSizeInBits(); |
| unsigned Size4 = MRI.getType(Offset).getSizeInBits(); |
| |
| unsigned RSrcBank = getRegBankID(RSrc, MRI, *TRI); |
| unsigned OffsetBank = getRegBankID(Offset, MRI, *TRI); |
| |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size0); |
| OpdsMapping[1] = nullptr; // intrinsic id |
| |
| // Lie and claim everything is legal, even though some need to be |
| // SGPRs. applyMapping will have to deal with it as a waterfall loop. |
| OpdsMapping[2] = AMDGPU::getValueMapping(RSrcBank, Size2); // rsrc |
| OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size3); |
| OpdsMapping[4] = AMDGPU::getValueMapping(OffsetBank, Size4); |
| OpdsMapping[5] = nullptr; |
| OpdsMapping[6] = nullptr; |
| break; |
| } |
| case Intrinsic::amdgcn_s_sendmsg: |
| case Intrinsic::amdgcn_s_sendmsghalt: { |
| // This must be an SGPR, but accept a VGPR. |
| unsigned Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| OpdsMapping[2] = AMDGPU::getValueMapping(Bank, 32); |
| break; |
| } |
| case Intrinsic::amdgcn_end_cf: |
| case Intrinsic::amdgcn_init_exec: { |
| unsigned Size = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI); |
| OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| break; |
| } |
| case Intrinsic::amdgcn_else: { |
| unsigned WaveSize = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI); |
| OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1); |
| OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, WaveSize); |
| OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, WaveSize); |
| break; |
| } |
| case Intrinsic::amdgcn_kill: { |
| OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1); |
| break; |
| } |
| case Intrinsic::amdgcn_raw_buffer_load: |
| case Intrinsic::amdgcn_raw_tbuffer_load: { |
| // FIXME: Should make intrinsic ID the last operand of the instruction, |
| // then this would be the same as store |
| OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI); |
| OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI); |
| OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI); |
| OpdsMapping[4] = getSGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI); |
| break; |
| } |
| case Intrinsic::amdgcn_raw_buffer_store: |
| case Intrinsic::amdgcn_raw_buffer_store_format: |
| case Intrinsic::amdgcn_raw_tbuffer_store: { |
| OpdsMapping[1] = getVGPROpMapping(MI.getOperand(1).getReg(), MRI, *TRI); |
| OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI); |
| OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI); |
| OpdsMapping[4] = getSGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI); |
| break; |
| } |
| case Intrinsic::amdgcn_struct_buffer_load: |
| case Intrinsic::amdgcn_struct_tbuffer_load: { |
| OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI); |
| OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI); |
| OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI); |
| OpdsMapping[4] = getVGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI); |
| OpdsMapping[5] = getSGPROpMapping(MI.getOperand(5).getReg(), MRI, *TRI); |
| break; |
| } |
| case Intrinsic::amdgcn_struct_buffer_store: |
| case Intrinsic::amdgcn_struct_tbuffer_store: { |
| OpdsMapping[1] = getVGPROpMapping(MI.getOperand(1).getReg(), MRI, *TRI); |
| OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI); |
| OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI); |
| OpdsMapping[4] = getVGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI); |
| OpdsMapping[5] = getSGPROpMapping(MI.getOperand(5).getReg(), MRI, *TRI); |
| break; |
| } |
| case Intrinsic::amdgcn_init_exec_from_input: { |
| unsigned Size = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI); |
| OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size); |
| break; |
| } |
| case Intrinsic::amdgcn_ds_gws_init: |
| case Intrinsic::amdgcn_ds_gws_barrier: |
| case Intrinsic::amdgcn_ds_gws_sema_br: { |
| OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32); |
| |
| // This must be an SGPR, but accept a VGPR. |
| unsigned Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| OpdsMapping[2] = AMDGPU::getValueMapping(Bank, 32); |
| break; |
| } |
| case Intrinsic::amdgcn_ds_gws_sema_v: |
| case Intrinsic::amdgcn_ds_gws_sema_p: |
| case Intrinsic::amdgcn_ds_gws_sema_release_all: { |
| // This must be an SGPR, but accept a VGPR. |
| unsigned Bank = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| OpdsMapping[1] = AMDGPU::getValueMapping(Bank, 32); |
| break; |
| } |
| default: |
| if (const AMDGPU::RsrcIntrinsic *RSrcIntrin = |
| AMDGPU::lookupRsrcIntrinsic(IntrID)) { |
| // Non-images can have complications from operands that allow both SGPR |
| // and VGPR. For now it's too complicated to figure out the final opcode |
| // to derive the register bank from the MCInstrDesc. |
| if (RSrcIntrin->IsImage) |
| return getImageMapping(MRI, MI, RSrcIntrin->RsrcArg); |
| } |
| |
| return getInvalidInstructionMapping(); |
| } |
| break; |
| } |
| case AMDGPU::G_SELECT: { |
| unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| unsigned Op2Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| unsigned Op3Bank = getRegBankID(MI.getOperand(3).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| bool SGPRSrcs = Op2Bank == AMDGPU::SGPRRegBankID && |
| Op3Bank == AMDGPU::SGPRRegBankID; |
| |
| unsigned CondBankDefault = SGPRSrcs ? |
| AMDGPU::SGPRRegBankID : AMDGPU::VCCRegBankID; |
| unsigned CondBank = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI, |
| CondBankDefault); |
| if (CondBank == AMDGPU::SGPRRegBankID) |
| CondBank = SGPRSrcs ? AMDGPU::SGPRRegBankID : AMDGPU::VCCRegBankID; |
| else if (CondBank == AMDGPU::VGPRRegBankID) |
| CondBank = AMDGPU::VCCRegBankID; |
| |
| unsigned Bank = SGPRSrcs && CondBank == AMDGPU::SGPRRegBankID ? |
| AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID; |
| |
| assert(CondBank == AMDGPU::VCCRegBankID || CondBank == AMDGPU::SGPRRegBankID); |
| |
| // TODO: Should report 32-bit for scalar condition type. |
| if (Size == 64) { |
| OpdsMapping[0] = AMDGPU::getValueMappingSGPR64Only(Bank, Size); |
| OpdsMapping[1] = AMDGPU::getValueMapping(CondBank, 1); |
| OpdsMapping[2] = AMDGPU::getValueMappingSGPR64Only(Bank, Size); |
| OpdsMapping[3] = AMDGPU::getValueMappingSGPR64Only(Bank, Size); |
| } else { |
| OpdsMapping[0] = AMDGPU::getValueMapping(Bank, Size); |
| OpdsMapping[1] = AMDGPU::getValueMapping(CondBank, 1); |
| OpdsMapping[2] = AMDGPU::getValueMapping(Bank, Size); |
| OpdsMapping[3] = AMDGPU::getValueMapping(Bank, Size); |
| } |
| |
| break; |
| } |
| |
| case AMDGPU::G_LOAD: |
| case AMDGPU::G_ZEXTLOAD: |
| case AMDGPU::G_SEXTLOAD: |
| return getInstrMappingForLoad(MI); |
| |
| case AMDGPU::G_ATOMICRMW_XCHG: |
| case AMDGPU::G_ATOMICRMW_ADD: |
| case AMDGPU::G_ATOMICRMW_SUB: |
| case AMDGPU::G_ATOMICRMW_AND: |
| case AMDGPU::G_ATOMICRMW_OR: |
| case AMDGPU::G_ATOMICRMW_XOR: |
| case AMDGPU::G_ATOMICRMW_MAX: |
| case AMDGPU::G_ATOMICRMW_MIN: |
| case AMDGPU::G_ATOMICRMW_UMAX: |
| case AMDGPU::G_ATOMICRMW_UMIN: |
| case AMDGPU::G_ATOMICRMW_FADD: |
| case AMDGPU::G_ATOMIC_CMPXCHG: |
| case AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG: { |
| return getDefaultMappingAllVGPR(MI); |
| } |
| case AMDGPU::G_BRCOND: { |
| unsigned Bank = getRegBankID(MI.getOperand(0).getReg(), MRI, *TRI, |
| AMDGPU::SGPRRegBankID); |
| assert(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() == 1); |
| if (Bank != AMDGPU::SGPRRegBankID) |
| Bank = AMDGPU::VCCRegBankID; |
| |
| OpdsMapping[0] = AMDGPU::getValueMapping(Bank, 1); |
| break; |
| } |
| } |
| |
| return getInstructionMapping(/*ID*/1, /*Cost*/1, |
| getOperandsMapping(OpdsMapping), |
| MI.getNumOperands()); |
| } |