| //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines vectorizer utilities. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/ADT/EquivalenceClasses.h" |
| #include "llvm/Analysis/DemandedBits.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Value.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| /// Identify if the intrinsic is trivially vectorizable. |
| /// This method returns true if the intrinsic's argument types are all |
| /// scalars for the scalar form of the intrinsic and all vectors for |
| /// the vector form of the intrinsic. |
| bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { |
| switch (ID) { |
| case Intrinsic::sqrt: |
| case Intrinsic::sin: |
| case Intrinsic::cos: |
| case Intrinsic::exp: |
| case Intrinsic::exp2: |
| case Intrinsic::log: |
| case Intrinsic::log10: |
| case Intrinsic::log2: |
| case Intrinsic::fabs: |
| case Intrinsic::minnum: |
| case Intrinsic::maxnum: |
| case Intrinsic::copysign: |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::nearbyint: |
| case Intrinsic::round: |
| case Intrinsic::bswap: |
| case Intrinsic::bitreverse: |
| case Intrinsic::ctpop: |
| case Intrinsic::pow: |
| case Intrinsic::fma: |
| case Intrinsic::fmuladd: |
| case Intrinsic::ctlz: |
| case Intrinsic::cttz: |
| case Intrinsic::powi: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// Identifies if the intrinsic has a scalar operand. It check for |
| /// ctlz,cttz and powi special intrinsics whose argument is scalar. |
| bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, |
| unsigned ScalarOpdIdx) { |
| switch (ID) { |
| case Intrinsic::ctlz: |
| case Intrinsic::cttz: |
| case Intrinsic::powi: |
| return (ScalarOpdIdx == 1); |
| default: |
| return false; |
| } |
| } |
| |
| /// Returns intrinsic ID for call. |
| /// For the input call instruction it finds mapping intrinsic and returns |
| /// its ID, in case it does not found it return not_intrinsic. |
| Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, |
| const TargetLibraryInfo *TLI) { |
| Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); |
| if (ID == Intrinsic::not_intrinsic) |
| return Intrinsic::not_intrinsic; |
| |
| if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || |
| ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || |
| ID == Intrinsic::sideeffect) |
| return ID; |
| return Intrinsic::not_intrinsic; |
| } |
| |
| /// Find the operand of the GEP that should be checked for consecutive |
| /// stores. This ignores trailing indices that have no effect on the final |
| /// pointer. |
| unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { |
| const DataLayout &DL = Gep->getModule()->getDataLayout(); |
| unsigned LastOperand = Gep->getNumOperands() - 1; |
| unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); |
| |
| // Walk backwards and try to peel off zeros. |
| while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { |
| // Find the type we're currently indexing into. |
| gep_type_iterator GEPTI = gep_type_begin(Gep); |
| std::advance(GEPTI, LastOperand - 2); |
| |
| // If it's a type with the same allocation size as the result of the GEP we |
| // can peel off the zero index. |
| if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) |
| break; |
| --LastOperand; |
| } |
| |
| return LastOperand; |
| } |
| |
| /// If the argument is a GEP, then returns the operand identified by |
| /// getGEPInductionOperand. However, if there is some other non-loop-invariant |
| /// operand, it returns that instead. |
| Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { |
| GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| if (!GEP) |
| return Ptr; |
| |
| unsigned InductionOperand = getGEPInductionOperand(GEP); |
| |
| // Check that all of the gep indices are uniform except for our induction |
| // operand. |
| for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) |
| if (i != InductionOperand && |
| !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) |
| return Ptr; |
| return GEP->getOperand(InductionOperand); |
| } |
| |
| /// If a value has only one user that is a CastInst, return it. |
| Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { |
| Value *UniqueCast = nullptr; |
| for (User *U : Ptr->users()) { |
| CastInst *CI = dyn_cast<CastInst>(U); |
| if (CI && CI->getType() == Ty) { |
| if (!UniqueCast) |
| UniqueCast = CI; |
| else |
| return nullptr; |
| } |
| } |
| return UniqueCast; |
| } |
| |
| /// Get the stride of a pointer access in a loop. Looks for symbolic |
| /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. |
| Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { |
| auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); |
| if (!PtrTy || PtrTy->isAggregateType()) |
| return nullptr; |
| |
| // Try to remove a gep instruction to make the pointer (actually index at this |
| // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the |
| // pointer, otherwise, we are analyzing the index. |
| Value *OrigPtr = Ptr; |
| |
| // The size of the pointer access. |
| int64_t PtrAccessSize = 1; |
| |
| Ptr = stripGetElementPtr(Ptr, SE, Lp); |
| const SCEV *V = SE->getSCEV(Ptr); |
| |
| if (Ptr != OrigPtr) |
| // Strip off casts. |
| while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) |
| V = C->getOperand(); |
| |
| const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); |
| if (!S) |
| return nullptr; |
| |
| V = S->getStepRecurrence(*SE); |
| if (!V) |
| return nullptr; |
| |
| // Strip off the size of access multiplication if we are still analyzing the |
| // pointer. |
| if (OrigPtr == Ptr) { |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { |
| if (M->getOperand(0)->getSCEVType() != scConstant) |
| return nullptr; |
| |
| const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); |
| |
| // Huge step value - give up. |
| if (APStepVal.getBitWidth() > 64) |
| return nullptr; |
| |
| int64_t StepVal = APStepVal.getSExtValue(); |
| if (PtrAccessSize != StepVal) |
| return nullptr; |
| V = M->getOperand(1); |
| } |
| } |
| |
| // Strip off casts. |
| Type *StripedOffRecurrenceCast = nullptr; |
| if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { |
| StripedOffRecurrenceCast = C->getType(); |
| V = C->getOperand(); |
| } |
| |
| // Look for the loop invariant symbolic value. |
| const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); |
| if (!U) |
| return nullptr; |
| |
| Value *Stride = U->getValue(); |
| if (!Lp->isLoopInvariant(Stride)) |
| return nullptr; |
| |
| // If we have stripped off the recurrence cast we have to make sure that we |
| // return the value that is used in this loop so that we can replace it later. |
| if (StripedOffRecurrenceCast) |
| Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); |
| |
| return Stride; |
| } |
| |
| /// Given a vector and an element number, see if the scalar value is |
| /// already around as a register, for example if it were inserted then extracted |
| /// from the vector. |
| Value *llvm::findScalarElement(Value *V, unsigned EltNo) { |
| assert(V->getType()->isVectorTy() && "Not looking at a vector?"); |
| VectorType *VTy = cast<VectorType>(V->getType()); |
| unsigned Width = VTy->getNumElements(); |
| if (EltNo >= Width) // Out of range access. |
| return UndefValue::get(VTy->getElementType()); |
| |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return C->getAggregateElement(EltNo); |
| |
| if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { |
| // If this is an insert to a variable element, we don't know what it is. |
| if (!isa<ConstantInt>(III->getOperand(2))) |
| return nullptr; |
| unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); |
| |
| // If this is an insert to the element we are looking for, return the |
| // inserted value. |
| if (EltNo == IIElt) |
| return III->getOperand(1); |
| |
| // Otherwise, the insertelement doesn't modify the value, recurse on its |
| // vector input. |
| return findScalarElement(III->getOperand(0), EltNo); |
| } |
| |
| if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { |
| unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); |
| int InEl = SVI->getMaskValue(EltNo); |
| if (InEl < 0) |
| return UndefValue::get(VTy->getElementType()); |
| if (InEl < (int)LHSWidth) |
| return findScalarElement(SVI->getOperand(0), InEl); |
| return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); |
| } |
| |
| // Extract a value from a vector add operation with a constant zero. |
| Value *Val = nullptr; Constant *Con = nullptr; |
| if (match(V, m_Add(m_Value(Val), m_Constant(Con)))) |
| if (Constant *Elt = Con->getAggregateElement(EltNo)) |
| if (Elt->isNullValue()) |
| return findScalarElement(Val, EltNo); |
| |
| // Otherwise, we don't know. |
| return nullptr; |
| } |
| |
| /// Get splat value if the input is a splat vector or return nullptr. |
| /// This function is not fully general. It checks only 2 cases: |
| /// the input value is (1) a splat constants vector or (2) a sequence |
| /// of instructions that broadcast a single value into a vector. |
| /// |
| const llvm::Value *llvm::getSplatValue(const Value *V) { |
| |
| if (auto *C = dyn_cast<Constant>(V)) |
| if (isa<VectorType>(V->getType())) |
| return C->getSplatValue(); |
| |
| auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); |
| if (!ShuffleInst) |
| return nullptr; |
| // All-zero (or undef) shuffle mask elements. |
| for (int MaskElt : ShuffleInst->getShuffleMask()) |
| if (MaskElt != 0 && MaskElt != -1) |
| return nullptr; |
| // The first shuffle source is 'insertelement' with index 0. |
| auto *InsertEltInst = |
| dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); |
| if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || |
| !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero()) |
| return nullptr; |
| |
| return InsertEltInst->getOperand(1); |
| } |
| |
| MapVector<Instruction *, uint64_t> |
| llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, |
| const TargetTransformInfo *TTI) { |
| |
| // DemandedBits will give us every value's live-out bits. But we want |
| // to ensure no extra casts would need to be inserted, so every DAG |
| // of connected values must have the same minimum bitwidth. |
| EquivalenceClasses<Value *> ECs; |
| SmallVector<Value *, 16> Worklist; |
| SmallPtrSet<Value *, 4> Roots; |
| SmallPtrSet<Value *, 16> Visited; |
| DenseMap<Value *, uint64_t> DBits; |
| SmallPtrSet<Instruction *, 4> InstructionSet; |
| MapVector<Instruction *, uint64_t> MinBWs; |
| |
| // Determine the roots. We work bottom-up, from truncs or icmps. |
| bool SeenExtFromIllegalType = false; |
| for (auto *BB : Blocks) |
| for (auto &I : *BB) { |
| InstructionSet.insert(&I); |
| |
| if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && |
| !TTI->isTypeLegal(I.getOperand(0)->getType())) |
| SeenExtFromIllegalType = true; |
| |
| // Only deal with non-vector integers up to 64-bits wide. |
| if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && |
| !I.getType()->isVectorTy() && |
| I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { |
| // Don't make work for ourselves. If we know the loaded type is legal, |
| // don't add it to the worklist. |
| if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) |
| continue; |
| |
| Worklist.push_back(&I); |
| Roots.insert(&I); |
| } |
| } |
| // Early exit. |
| if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) |
| return MinBWs; |
| |
| // Now proceed breadth-first, unioning values together. |
| while (!Worklist.empty()) { |
| Value *Val = Worklist.pop_back_val(); |
| Value *Leader = ECs.getOrInsertLeaderValue(Val); |
| |
| if (Visited.count(Val)) |
| continue; |
| Visited.insert(Val); |
| |
| // Non-instructions terminate a chain successfully. |
| if (!isa<Instruction>(Val)) |
| continue; |
| Instruction *I = cast<Instruction>(Val); |
| |
| // If we encounter a type that is larger than 64 bits, we can't represent |
| // it so bail out. |
| if (DB.getDemandedBits(I).getBitWidth() > 64) |
| return MapVector<Instruction *, uint64_t>(); |
| |
| uint64_t V = DB.getDemandedBits(I).getZExtValue(); |
| DBits[Leader] |= V; |
| DBits[I] = V; |
| |
| // Casts, loads and instructions outside of our range terminate a chain |
| // successfully. |
| if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || |
| !InstructionSet.count(I)) |
| continue; |
| |
| // Unsafe casts terminate a chain unsuccessfully. We can't do anything |
| // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to |
| // transform anything that relies on them. |
| if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || |
| !I->getType()->isIntegerTy()) { |
| DBits[Leader] |= ~0ULL; |
| continue; |
| } |
| |
| // We don't modify the types of PHIs. Reductions will already have been |
| // truncated if possible, and inductions' sizes will have been chosen by |
| // indvars. |
| if (isa<PHINode>(I)) |
| continue; |
| |
| if (DBits[Leader] == ~0ULL) |
| // All bits demanded, no point continuing. |
| continue; |
| |
| for (Value *O : cast<User>(I)->operands()) { |
| ECs.unionSets(Leader, O); |
| Worklist.push_back(O); |
| } |
| } |
| |
| // Now we've discovered all values, walk them to see if there are |
| // any users we didn't see. If there are, we can't optimize that |
| // chain. |
| for (auto &I : DBits) |
| for (auto *U : I.first->users()) |
| if (U->getType()->isIntegerTy() && DBits.count(U) == 0) |
| DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; |
| |
| for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { |
| uint64_t LeaderDemandedBits = 0; |
| for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) |
| LeaderDemandedBits |= DBits[*MI]; |
| |
| uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - |
| llvm::countLeadingZeros(LeaderDemandedBits); |
| // Round up to a power of 2 |
| if (!isPowerOf2_64((uint64_t)MinBW)) |
| MinBW = NextPowerOf2(MinBW); |
| |
| // We don't modify the types of PHIs. Reductions will already have been |
| // truncated if possible, and inductions' sizes will have been chosen by |
| // indvars. |
| // If we are required to shrink a PHI, abandon this entire equivalence class. |
| bool Abort = false; |
| for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) |
| if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { |
| Abort = true; |
| break; |
| } |
| if (Abort) |
| continue; |
| |
| for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { |
| if (!isa<Instruction>(*MI)) |
| continue; |
| Type *Ty = (*MI)->getType(); |
| if (Roots.count(*MI)) |
| Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); |
| if (MinBW < Ty->getScalarSizeInBits()) |
| MinBWs[cast<Instruction>(*MI)] = MinBW; |
| } |
| } |
| |
| return MinBWs; |
| } |
| |
| /// \returns \p I after propagating metadata from \p VL. |
| Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { |
| Instruction *I0 = cast<Instruction>(VL[0]); |
| SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; |
| I0->getAllMetadataOtherThanDebugLoc(Metadata); |
| |
| for (auto Kind : |
| {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| LLVMContext::MD_noalias, LLVMContext::MD_fpmath, |
| LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) { |
| MDNode *MD = I0->getMetadata(Kind); |
| |
| for (int J = 1, E = VL.size(); MD && J != E; ++J) { |
| const Instruction *IJ = cast<Instruction>(VL[J]); |
| MDNode *IMD = IJ->getMetadata(Kind); |
| switch (Kind) { |
| case LLVMContext::MD_tbaa: |
| MD = MDNode::getMostGenericTBAA(MD, IMD); |
| break; |
| case LLVMContext::MD_alias_scope: |
| MD = MDNode::getMostGenericAliasScope(MD, IMD); |
| break; |
| case LLVMContext::MD_fpmath: |
| MD = MDNode::getMostGenericFPMath(MD, IMD); |
| break; |
| case LLVMContext::MD_noalias: |
| case LLVMContext::MD_nontemporal: |
| case LLVMContext::MD_invariant_load: |
| MD = MDNode::intersect(MD, IMD); |
| break; |
| default: |
| llvm_unreachable("unhandled metadata"); |
| } |
| } |
| |
| Inst->setMetadata(Kind, MD); |
| } |
| |
| return Inst; |
| } |
| |
| Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, |
| unsigned NumVecs) { |
| SmallVector<Constant *, 16> Mask; |
| for (unsigned i = 0; i < VF; i++) |
| for (unsigned j = 0; j < NumVecs; j++) |
| Mask.push_back(Builder.getInt32(j * VF + i)); |
| |
| return ConstantVector::get(Mask); |
| } |
| |
| Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, |
| unsigned Stride, unsigned VF) { |
| SmallVector<Constant *, 16> Mask; |
| for (unsigned i = 0; i < VF; i++) |
| Mask.push_back(Builder.getInt32(Start + i * Stride)); |
| |
| return ConstantVector::get(Mask); |
| } |
| |
| Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, |
| unsigned NumInts, unsigned NumUndefs) { |
| SmallVector<Constant *, 16> Mask; |
| for (unsigned i = 0; i < NumInts; i++) |
| Mask.push_back(Builder.getInt32(Start + i)); |
| |
| Constant *Undef = UndefValue::get(Builder.getInt32Ty()); |
| for (unsigned i = 0; i < NumUndefs; i++) |
| Mask.push_back(Undef); |
| |
| return ConstantVector::get(Mask); |
| } |
| |
| /// A helper function for concatenating vectors. This function concatenates two |
| /// vectors having the same element type. If the second vector has fewer |
| /// elements than the first, it is padded with undefs. |
| static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, |
| Value *V2) { |
| VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); |
| VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); |
| assert(VecTy1 && VecTy2 && |
| VecTy1->getScalarType() == VecTy2->getScalarType() && |
| "Expect two vectors with the same element type"); |
| |
| unsigned NumElts1 = VecTy1->getNumElements(); |
| unsigned NumElts2 = VecTy2->getNumElements(); |
| assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); |
| |
| if (NumElts1 > NumElts2) { |
| // Extend with UNDEFs. |
| Constant *ExtMask = |
| createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); |
| V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); |
| } |
| |
| Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); |
| return Builder.CreateShuffleVector(V1, V2, Mask); |
| } |
| |
| Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { |
| unsigned NumVecs = Vecs.size(); |
| assert(NumVecs > 1 && "Should be at least two vectors"); |
| |
| SmallVector<Value *, 8> ResList; |
| ResList.append(Vecs.begin(), Vecs.end()); |
| do { |
| SmallVector<Value *, 8> TmpList; |
| for (unsigned i = 0; i < NumVecs - 1; i += 2) { |
| Value *V0 = ResList[i], *V1 = ResList[i + 1]; |
| assert((V0->getType() == V1->getType() || i == NumVecs - 2) && |
| "Only the last vector may have a different type"); |
| |
| TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); |
| } |
| |
| // Push the last vector if the total number of vectors is odd. |
| if (NumVecs % 2 != 0) |
| TmpList.push_back(ResList[NumVecs - 1]); |
| |
| ResList = TmpList; |
| NumVecs = ResList.size(); |
| } while (NumVecs > 1); |
| |
| return ResList[0]; |
| } |