| //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the implementation of the scalar evolution expander, |
| // which is used to generate the code corresponding to a given scalar evolution |
| // expression. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, |
| /// reusing an existing cast if a suitable one exists, moving an existing |
| /// cast if a suitable one exists but isn't in the right place, or |
| /// creating a new one. |
| Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, |
| Instruction::CastOps Op, |
| BasicBlock::iterator IP) { |
| // This function must be called with the builder having a valid insertion |
| // point. It doesn't need to be the actual IP where the uses of the returned |
| // cast will be added, but it must dominate such IP. |
| // We use this precondition to produce a cast that will dominate all its |
| // uses. In particular, this is crucial for the case where the builder's |
| // insertion point *is* the point where we were asked to put the cast. |
| // Since we don't know the builder's insertion point is actually |
| // where the uses will be added (only that it dominates it), we are |
| // not allowed to move it. |
| BasicBlock::iterator BIP = Builder.GetInsertPoint(); |
| |
| Instruction *Ret = nullptr; |
| |
| // Check to see if there is already a cast! |
| for (User *U : V->users()) |
| if (U->getType() == Ty) |
| if (CastInst *CI = dyn_cast<CastInst>(U)) |
| if (CI->getOpcode() == Op) { |
| // If the cast isn't where we want it, create a new cast at IP. |
| // Likewise, do not reuse a cast at BIP because it must dominate |
| // instructions that might be inserted before BIP. |
| if (BasicBlock::iterator(CI) != IP || BIP == IP) { |
| // Create a new cast, and leave the old cast in place in case |
| // it is being used as an insert point. Clear its operand |
| // so that it doesn't hold anything live. |
| Ret = CastInst::Create(Op, V, Ty, "", &*IP); |
| Ret->takeName(CI); |
| CI->replaceAllUsesWith(Ret); |
| CI->setOperand(0, UndefValue::get(V->getType())); |
| break; |
| } |
| Ret = CI; |
| break; |
| } |
| |
| // Create a new cast. |
| if (!Ret) |
| Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); |
| |
| // We assert at the end of the function since IP might point to an |
| // instruction with different dominance properties than a cast |
| // (an invoke for example) and not dominate BIP (but the cast does). |
| assert(SE.DT.dominates(Ret, &*BIP)); |
| |
| rememberInstruction(Ret); |
| return Ret; |
| } |
| |
| static BasicBlock::iterator findInsertPointAfter(Instruction *I, |
| BasicBlock *MustDominate) { |
| BasicBlock::iterator IP = ++I->getIterator(); |
| if (auto *II = dyn_cast<InvokeInst>(I)) |
| IP = II->getNormalDest()->begin(); |
| |
| while (isa<PHINode>(IP)) |
| ++IP; |
| |
| if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { |
| ++IP; |
| } else if (isa<CatchSwitchInst>(IP)) { |
| IP = MustDominate->getFirstInsertionPt(); |
| } else { |
| assert(!IP->isEHPad() && "unexpected eh pad!"); |
| } |
| |
| return IP; |
| } |
| |
| /// InsertNoopCastOfTo - Insert a cast of V to the specified type, |
| /// which must be possible with a noop cast, doing what we can to share |
| /// the casts. |
| Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { |
| Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); |
| assert((Op == Instruction::BitCast || |
| Op == Instruction::PtrToInt || |
| Op == Instruction::IntToPtr) && |
| "InsertNoopCastOfTo cannot perform non-noop casts!"); |
| assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && |
| "InsertNoopCastOfTo cannot change sizes!"); |
| |
| // Short-circuit unnecessary bitcasts. |
| if (Op == Instruction::BitCast) { |
| if (V->getType() == Ty) |
| return V; |
| if (CastInst *CI = dyn_cast<CastInst>(V)) { |
| if (CI->getOperand(0)->getType() == Ty) |
| return CI->getOperand(0); |
| } |
| } |
| // Short-circuit unnecessary inttoptr<->ptrtoint casts. |
| if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && |
| SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { |
| if (CastInst *CI = dyn_cast<CastInst>(V)) |
| if ((CI->getOpcode() == Instruction::PtrToInt || |
| CI->getOpcode() == Instruction::IntToPtr) && |
| SE.getTypeSizeInBits(CI->getType()) == |
| SE.getTypeSizeInBits(CI->getOperand(0)->getType())) |
| return CI->getOperand(0); |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| if ((CE->getOpcode() == Instruction::PtrToInt || |
| CE->getOpcode() == Instruction::IntToPtr) && |
| SE.getTypeSizeInBits(CE->getType()) == |
| SE.getTypeSizeInBits(CE->getOperand(0)->getType())) |
| return CE->getOperand(0); |
| } |
| |
| // Fold a cast of a constant. |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return ConstantExpr::getCast(Op, C, Ty); |
| |
| // Cast the argument at the beginning of the entry block, after |
| // any bitcasts of other arguments. |
| if (Argument *A = dyn_cast<Argument>(V)) { |
| BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); |
| while ((isa<BitCastInst>(IP) && |
| isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && |
| cast<BitCastInst>(IP)->getOperand(0) != A) || |
| isa<DbgInfoIntrinsic>(IP)) |
| ++IP; |
| return ReuseOrCreateCast(A, Ty, Op, IP); |
| } |
| |
| // Cast the instruction immediately after the instruction. |
| Instruction *I = cast<Instruction>(V); |
| BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); |
| return ReuseOrCreateCast(I, Ty, Op, IP); |
| } |
| |
| /// InsertBinop - Insert the specified binary operator, doing a small amount |
| /// of work to avoid inserting an obviously redundant operation. |
| Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, |
| Value *LHS, Value *RHS) { |
| // Fold a binop with constant operands. |
| if (Constant *CLHS = dyn_cast<Constant>(LHS)) |
| if (Constant *CRHS = dyn_cast<Constant>(RHS)) |
| return ConstantExpr::get(Opcode, CLHS, CRHS); |
| |
| // Do a quick scan to see if we have this binop nearby. If so, reuse it. |
| unsigned ScanLimit = 6; |
| BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); |
| // Scanning starts from the last instruction before the insertion point. |
| BasicBlock::iterator IP = Builder.GetInsertPoint(); |
| if (IP != BlockBegin) { |
| --IP; |
| for (; ScanLimit; --IP, --ScanLimit) { |
| // Don't count dbg.value against the ScanLimit, to avoid perturbing the |
| // generated code. |
| if (isa<DbgInfoIntrinsic>(IP)) |
| ScanLimit++; |
| |
| // Conservatively, do not use any instruction which has any of wrap/exact |
| // flags installed. |
| // TODO: Instead of simply disable poison instructions we can be clever |
| // here and match SCEV to this instruction. |
| auto canGeneratePoison = [](Instruction *I) { |
| if (isa<OverflowingBinaryOperator>(I) && |
| (I->hasNoSignedWrap() || I->hasNoUnsignedWrap())) |
| return true; |
| if (isa<PossiblyExactOperator>(I) && I->isExact()) |
| return true; |
| return false; |
| }; |
| if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && |
| IP->getOperand(1) == RHS && !canGeneratePoison(&*IP)) |
| return &*IP; |
| if (IP == BlockBegin) break; |
| } |
| } |
| |
| // Save the original insertion point so we can restore it when we're done. |
| DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); |
| SCEVInsertPointGuard Guard(Builder, this); |
| |
| // Move the insertion point out of as many loops as we can. |
| while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { |
| if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) break; |
| |
| // Ok, move up a level. |
| Builder.SetInsertPoint(Preheader->getTerminator()); |
| } |
| |
| // If we haven't found this binop, insert it. |
| Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); |
| BO->setDebugLoc(Loc); |
| rememberInstruction(BO); |
| |
| return BO; |
| } |
| |
| /// FactorOutConstant - Test if S is divisible by Factor, using signed |
| /// division. If so, update S with Factor divided out and return true. |
| /// S need not be evenly divisible if a reasonable remainder can be |
| /// computed. |
| /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made |
| /// unnecessary; in its place, just signed-divide Ops[i] by the scale and |
| /// check to see if the divide was folded. |
| static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, |
| const SCEV *Factor, ScalarEvolution &SE, |
| const DataLayout &DL) { |
| // Everything is divisible by one. |
| if (Factor->isOne()) |
| return true; |
| |
| // x/x == 1. |
| if (S == Factor) { |
| S = SE.getConstant(S->getType(), 1); |
| return true; |
| } |
| |
| // For a Constant, check for a multiple of the given factor. |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { |
| // 0/x == 0. |
| if (C->isZero()) |
| return true; |
| // Check for divisibility. |
| if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { |
| ConstantInt *CI = |
| ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); |
| // If the quotient is zero and the remainder is non-zero, reject |
| // the value at this scale. It will be considered for subsequent |
| // smaller scales. |
| if (!CI->isZero()) { |
| const SCEV *Div = SE.getConstant(CI); |
| S = Div; |
| Remainder = SE.getAddExpr( |
| Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); |
| return true; |
| } |
| } |
| } |
| |
| // In a Mul, check if there is a constant operand which is a multiple |
| // of the given factor. |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { |
| // Size is known, check if there is a constant operand which is a multiple |
| // of the given factor. If so, we can factor it. |
| const SCEVConstant *FC = cast<SCEVConstant>(Factor); |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) |
| if (!C->getAPInt().srem(FC->getAPInt())) { |
| SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); |
| NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); |
| S = SE.getMulExpr(NewMulOps); |
| return true; |
| } |
| } |
| |
| // In an AddRec, check if both start and step are divisible. |
| if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { |
| const SCEV *Step = A->getStepRecurrence(SE); |
| const SCEV *StepRem = SE.getConstant(Step->getType(), 0); |
| if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) |
| return false; |
| if (!StepRem->isZero()) |
| return false; |
| const SCEV *Start = A->getStart(); |
| if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) |
| return false; |
| S = SE.getAddRecExpr(Start, Step, A->getLoop(), |
| A->getNoWrapFlags(SCEV::FlagNW)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs |
| /// is the number of SCEVAddRecExprs present, which are kept at the end of |
| /// the list. |
| /// |
| static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, |
| Type *Ty, |
| ScalarEvolution &SE) { |
| unsigned NumAddRecs = 0; |
| for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) |
| ++NumAddRecs; |
| // Group Ops into non-addrecs and addrecs. |
| SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); |
| SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); |
| // Let ScalarEvolution sort and simplify the non-addrecs list. |
| const SCEV *Sum = NoAddRecs.empty() ? |
| SE.getConstant(Ty, 0) : |
| SE.getAddExpr(NoAddRecs); |
| // If it returned an add, use the operands. Otherwise it simplified |
| // the sum into a single value, so just use that. |
| Ops.clear(); |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) |
| Ops.append(Add->op_begin(), Add->op_end()); |
| else if (!Sum->isZero()) |
| Ops.push_back(Sum); |
| // Then append the addrecs. |
| Ops.append(AddRecs.begin(), AddRecs.end()); |
| } |
| |
| /// SplitAddRecs - Flatten a list of add operands, moving addrec start values |
| /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. |
| /// This helps expose more opportunities for folding parts of the expressions |
| /// into GEP indices. |
| /// |
| static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, |
| Type *Ty, |
| ScalarEvolution &SE) { |
| // Find the addrecs. |
| SmallVector<const SCEV *, 8> AddRecs; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) |
| while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { |
| const SCEV *Start = A->getStart(); |
| if (Start->isZero()) break; |
| const SCEV *Zero = SE.getConstant(Ty, 0); |
| AddRecs.push_back(SE.getAddRecExpr(Zero, |
| A->getStepRecurrence(SE), |
| A->getLoop(), |
| A->getNoWrapFlags(SCEV::FlagNW))); |
| if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { |
| Ops[i] = Zero; |
| Ops.append(Add->op_begin(), Add->op_end()); |
| e += Add->getNumOperands(); |
| } else { |
| Ops[i] = Start; |
| } |
| } |
| if (!AddRecs.empty()) { |
| // Add the addrecs onto the end of the list. |
| Ops.append(AddRecs.begin(), AddRecs.end()); |
| // Resort the operand list, moving any constants to the front. |
| SimplifyAddOperands(Ops, Ty, SE); |
| } |
| } |
| |
| /// expandAddToGEP - Expand an addition expression with a pointer type into |
| /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps |
| /// BasicAliasAnalysis and other passes analyze the result. See the rules |
| /// for getelementptr vs. inttoptr in |
| /// http://llvm.org/docs/LangRef.html#pointeraliasing |
| /// for details. |
| /// |
| /// Design note: The correctness of using getelementptr here depends on |
| /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as |
| /// they may introduce pointer arithmetic which may not be safely converted |
| /// into getelementptr. |
| /// |
| /// Design note: It might seem desirable for this function to be more |
| /// loop-aware. If some of the indices are loop-invariant while others |
| /// aren't, it might seem desirable to emit multiple GEPs, keeping the |
| /// loop-invariant portions of the overall computation outside the loop. |
| /// However, there are a few reasons this is not done here. Hoisting simple |
| /// arithmetic is a low-level optimization that often isn't very |
| /// important until late in the optimization process. In fact, passes |
| /// like InstructionCombining will combine GEPs, even if it means |
| /// pushing loop-invariant computation down into loops, so even if the |
| /// GEPs were split here, the work would quickly be undone. The |
| /// LoopStrengthReduction pass, which is usually run quite late (and |
| /// after the last InstructionCombining pass), takes care of hoisting |
| /// loop-invariant portions of expressions, after considering what |
| /// can be folded using target addressing modes. |
| /// |
| Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, |
| const SCEV *const *op_end, |
| PointerType *PTy, |
| Type *Ty, |
| Value *V) { |
| Type *OriginalElTy = PTy->getElementType(); |
| Type *ElTy = OriginalElTy; |
| SmallVector<Value *, 4> GepIndices; |
| SmallVector<const SCEV *, 8> Ops(op_begin, op_end); |
| bool AnyNonZeroIndices = false; |
| |
| // Split AddRecs up into parts as either of the parts may be usable |
| // without the other. |
| SplitAddRecs(Ops, Ty, SE); |
| |
| Type *IntPtrTy = DL.getIntPtrType(PTy); |
| |
| // Descend down the pointer's type and attempt to convert the other |
| // operands into GEP indices, at each level. The first index in a GEP |
| // indexes into the array implied by the pointer operand; the rest of |
| // the indices index into the element or field type selected by the |
| // preceding index. |
| for (;;) { |
| // If the scale size is not 0, attempt to factor out a scale for |
| // array indexing. |
| SmallVector<const SCEV *, 8> ScaledOps; |
| if (ElTy->isSized()) { |
| const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy); |
| if (!ElSize->isZero()) { |
| SmallVector<const SCEV *, 8> NewOps; |
| for (const SCEV *Op : Ops) { |
| const SCEV *Remainder = SE.getConstant(Ty, 0); |
| if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { |
| // Op now has ElSize factored out. |
| ScaledOps.push_back(Op); |
| if (!Remainder->isZero()) |
| NewOps.push_back(Remainder); |
| AnyNonZeroIndices = true; |
| } else { |
| // The operand was not divisible, so add it to the list of operands |
| // we'll scan next iteration. |
| NewOps.push_back(Op); |
| } |
| } |
| // If we made any changes, update Ops. |
| if (!ScaledOps.empty()) { |
| Ops = NewOps; |
| SimplifyAddOperands(Ops, Ty, SE); |
| } |
| } |
| } |
| |
| // Record the scaled array index for this level of the type. If |
| // we didn't find any operands that could be factored, tentatively |
| // assume that element zero was selected (since the zero offset |
| // would obviously be folded away). |
| Value *Scaled = ScaledOps.empty() ? |
| Constant::getNullValue(Ty) : |
| expandCodeFor(SE.getAddExpr(ScaledOps), Ty); |
| GepIndices.push_back(Scaled); |
| |
| // Collect struct field index operands. |
| while (StructType *STy = dyn_cast<StructType>(ElTy)) { |
| bool FoundFieldNo = false; |
| // An empty struct has no fields. |
| if (STy->getNumElements() == 0) break; |
| // Field offsets are known. See if a constant offset falls within any of |
| // the struct fields. |
| if (Ops.empty()) |
| break; |
| if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) |
| if (SE.getTypeSizeInBits(C->getType()) <= 64) { |
| const StructLayout &SL = *DL.getStructLayout(STy); |
| uint64_t FullOffset = C->getValue()->getZExtValue(); |
| if (FullOffset < SL.getSizeInBytes()) { |
| unsigned ElIdx = SL.getElementContainingOffset(FullOffset); |
| GepIndices.push_back( |
| ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); |
| ElTy = STy->getTypeAtIndex(ElIdx); |
| Ops[0] = |
| SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); |
| AnyNonZeroIndices = true; |
| FoundFieldNo = true; |
| } |
| } |
| // If no struct field offsets were found, tentatively assume that |
| // field zero was selected (since the zero offset would obviously |
| // be folded away). |
| if (!FoundFieldNo) { |
| ElTy = STy->getTypeAtIndex(0u); |
| GepIndices.push_back( |
| Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); |
| } |
| } |
| |
| if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) |
| ElTy = ATy->getElementType(); |
| else |
| break; |
| } |
| |
| // If none of the operands were convertible to proper GEP indices, cast |
| // the base to i8* and do an ugly getelementptr with that. It's still |
| // better than ptrtoint+arithmetic+inttoptr at least. |
| if (!AnyNonZeroIndices) { |
| // Cast the base to i8*. |
| V = InsertNoopCastOfTo(V, |
| Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); |
| |
| assert(!isa<Instruction>(V) || |
| SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); |
| |
| // Expand the operands for a plain byte offset. |
| Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); |
| |
| // Fold a GEP with constant operands. |
| if (Constant *CLHS = dyn_cast<Constant>(V)) |
| if (Constant *CRHS = dyn_cast<Constant>(Idx)) |
| return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), |
| CLHS, CRHS); |
| |
| // Do a quick scan to see if we have this GEP nearby. If so, reuse it. |
| unsigned ScanLimit = 6; |
| BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); |
| // Scanning starts from the last instruction before the insertion point. |
| BasicBlock::iterator IP = Builder.GetInsertPoint(); |
| if (IP != BlockBegin) { |
| --IP; |
| for (; ScanLimit; --IP, --ScanLimit) { |
| // Don't count dbg.value against the ScanLimit, to avoid perturbing the |
| // generated code. |
| if (isa<DbgInfoIntrinsic>(IP)) |
| ScanLimit++; |
| if (IP->getOpcode() == Instruction::GetElementPtr && |
| IP->getOperand(0) == V && IP->getOperand(1) == Idx) |
| return &*IP; |
| if (IP == BlockBegin) break; |
| } |
| } |
| |
| // Save the original insertion point so we can restore it when we're done. |
| SCEVInsertPointGuard Guard(Builder, this); |
| |
| // Move the insertion point out of as many loops as we can. |
| while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { |
| if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) break; |
| |
| // Ok, move up a level. |
| Builder.SetInsertPoint(Preheader->getTerminator()); |
| } |
| |
| // Emit a GEP. |
| Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); |
| rememberInstruction(GEP); |
| |
| return GEP; |
| } |
| |
| { |
| SCEVInsertPointGuard Guard(Builder, this); |
| |
| // Move the insertion point out of as many loops as we can. |
| while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { |
| if (!L->isLoopInvariant(V)) break; |
| |
| bool AnyIndexNotLoopInvariant = any_of( |
| GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); |
| |
| if (AnyIndexNotLoopInvariant) |
| break; |
| |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) break; |
| |
| // Ok, move up a level. |
| Builder.SetInsertPoint(Preheader->getTerminator()); |
| } |
| |
| // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, |
| // because ScalarEvolution may have changed the address arithmetic to |
| // compute a value which is beyond the end of the allocated object. |
| Value *Casted = V; |
| if (V->getType() != PTy) |
| Casted = InsertNoopCastOfTo(Casted, PTy); |
| Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); |
| Ops.push_back(SE.getUnknown(GEP)); |
| rememberInstruction(GEP); |
| } |
| |
| return expand(SE.getAddExpr(Ops)); |
| } |
| |
| Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, |
| Value *V) { |
| const SCEV *const Ops[1] = {Op}; |
| return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); |
| } |
| |
| /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for |
| /// SCEV expansion. If they are nested, this is the most nested. If they are |
| /// neighboring, pick the later. |
| static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, |
| DominatorTree &DT) { |
| if (!A) return B; |
| if (!B) return A; |
| if (A->contains(B)) return B; |
| if (B->contains(A)) return A; |
| if (DT.dominates(A->getHeader(), B->getHeader())) return B; |
| if (DT.dominates(B->getHeader(), A->getHeader())) return A; |
| return A; // Arbitrarily break the tie. |
| } |
| |
| /// getRelevantLoop - Get the most relevant loop associated with the given |
| /// expression, according to PickMostRelevantLoop. |
| const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { |
| // Test whether we've already computed the most relevant loop for this SCEV. |
| auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); |
| if (!Pair.second) |
| return Pair.first->second; |
| |
| if (isa<SCEVConstant>(S)) |
| // A constant has no relevant loops. |
| return nullptr; |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) |
| return Pair.first->second = SE.LI.getLoopFor(I->getParent()); |
| // A non-instruction has no relevant loops. |
| return nullptr; |
| } |
| if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { |
| const Loop *L = nullptr; |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) |
| L = AR->getLoop(); |
| for (const SCEV *Op : N->operands()) |
| L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); |
| return RelevantLoops[N] = L; |
| } |
| if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { |
| const Loop *Result = getRelevantLoop(C->getOperand()); |
| return RelevantLoops[C] = Result; |
| } |
| if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { |
| const Loop *Result = PickMostRelevantLoop( |
| getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); |
| return RelevantLoops[D] = Result; |
| } |
| llvm_unreachable("Unexpected SCEV type!"); |
| } |
| |
| namespace { |
| |
| /// LoopCompare - Compare loops by PickMostRelevantLoop. |
| class LoopCompare { |
| DominatorTree &DT; |
| public: |
| explicit LoopCompare(DominatorTree &dt) : DT(dt) {} |
| |
| bool operator()(std::pair<const Loop *, const SCEV *> LHS, |
| std::pair<const Loop *, const SCEV *> RHS) const { |
| // Keep pointer operands sorted at the end. |
| if (LHS.second->getType()->isPointerTy() != |
| RHS.second->getType()->isPointerTy()) |
| return LHS.second->getType()->isPointerTy(); |
| |
| // Compare loops with PickMostRelevantLoop. |
| if (LHS.first != RHS.first) |
| return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; |
| |
| // If one operand is a non-constant negative and the other is not, |
| // put the non-constant negative on the right so that a sub can |
| // be used instead of a negate and add. |
| if (LHS.second->isNonConstantNegative()) { |
| if (!RHS.second->isNonConstantNegative()) |
| return false; |
| } else if (RHS.second->isNonConstantNegative()) |
| return true; |
| |
| // Otherwise they are equivalent according to this comparison. |
| return false; |
| } |
| }; |
| |
| } |
| |
| Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { |
| Type *Ty = SE.getEffectiveSCEVType(S->getType()); |
| |
| // Collect all the add operands in a loop, along with their associated loops. |
| // Iterate in reverse so that constants are emitted last, all else equal, and |
| // so that pointer operands are inserted first, which the code below relies on |
| // to form more involved GEPs. |
| SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; |
| for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), |
| E(S->op_begin()); I != E; ++I) |
| OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); |
| |
| // Sort by loop. Use a stable sort so that constants follow non-constants and |
| // pointer operands precede non-pointer operands. |
| std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); |
| |
| // Emit instructions to add all the operands. Hoist as much as possible |
| // out of loops, and form meaningful getelementptrs where possible. |
| Value *Sum = nullptr; |
| for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { |
| const Loop *CurLoop = I->first; |
| const SCEV *Op = I->second; |
| if (!Sum) { |
| // This is the first operand. Just expand it. |
| Sum = expand(Op); |
| ++I; |
| } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { |
| // The running sum expression is a pointer. Try to form a getelementptr |
| // at this level with that as the base. |
| SmallVector<const SCEV *, 4> NewOps; |
| for (; I != E && I->first == CurLoop; ++I) { |
| // If the operand is SCEVUnknown and not instructions, peek through |
| // it, to enable more of it to be folded into the GEP. |
| const SCEV *X = I->second; |
| if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) |
| if (!isa<Instruction>(U->getValue())) |
| X = SE.getSCEV(U->getValue()); |
| NewOps.push_back(X); |
| } |
| Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); |
| } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { |
| // The running sum is an integer, and there's a pointer at this level. |
| // Try to form a getelementptr. If the running sum is instructions, |
| // use a SCEVUnknown to avoid re-analyzing them. |
| SmallVector<const SCEV *, 4> NewOps; |
| NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : |
| SE.getSCEV(Sum)); |
| for (++I; I != E && I->first == CurLoop; ++I) |
| NewOps.push_back(I->second); |
| Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); |
| } else if (Op->isNonConstantNegative()) { |
| // Instead of doing a negate and add, just do a subtract. |
| Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); |
| Sum = InsertNoopCastOfTo(Sum, Ty); |
| Sum = InsertBinop(Instruction::Sub, Sum, W); |
| ++I; |
| } else { |
| // A simple add. |
| Value *W = expandCodeFor(Op, Ty); |
| Sum = InsertNoopCastOfTo(Sum, Ty); |
| // Canonicalize a constant to the RHS. |
| if (isa<Constant>(Sum)) std::swap(Sum, W); |
| Sum = InsertBinop(Instruction::Add, Sum, W); |
| ++I; |
| } |
| } |
| |
| return Sum; |
| } |
| |
| Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { |
| Type *Ty = SE.getEffectiveSCEVType(S->getType()); |
| |
| // Collect all the mul operands in a loop, along with their associated loops. |
| // Iterate in reverse so that constants are emitted last, all else equal. |
| SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; |
| for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), |
| E(S->op_begin()); I != E; ++I) |
| OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); |
| |
| // Sort by loop. Use a stable sort so that constants follow non-constants. |
| std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); |
| |
| // Emit instructions to mul all the operands. Hoist as much as possible |
| // out of loops. |
| Value *Prod = nullptr; |
| auto I = OpsAndLoops.begin(); |
| |
| // Expand the calculation of X pow N in the following manner: |
| // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: |
| // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). |
| const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { |
| auto E = I; |
| // Calculate how many times the same operand from the same loop is included |
| // into this power. |
| uint64_t Exponent = 0; |
| const uint64_t MaxExponent = UINT64_MAX >> 1; |
| // No one sane will ever try to calculate such huge exponents, but if we |
| // need this, we stop on UINT64_MAX / 2 because we need to exit the loop |
| // below when the power of 2 exceeds our Exponent, and we want it to be |
| // 1u << 31 at most to not deal with unsigned overflow. |
| while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { |
| ++Exponent; |
| ++E; |
| } |
| assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); |
| |
| // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them |
| // that are needed into the result. |
| Value *P = expandCodeFor(I->second, Ty); |
| Value *Result = nullptr; |
| if (Exponent & 1) |
| Result = P; |
| for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { |
| P = InsertBinop(Instruction::Mul, P, P); |
| if (Exponent & BinExp) |
| Result = Result ? InsertBinop(Instruction::Mul, Result, P) : P; |
| } |
| |
| I = E; |
| assert(Result && "Nothing was expanded?"); |
| return Result; |
| }; |
| |
| while (I != OpsAndLoops.end()) { |
| if (!Prod) { |
| // This is the first operand. Just expand it. |
| Prod = ExpandOpBinPowN(); |
| } else if (I->second->isAllOnesValue()) { |
| // Instead of doing a multiply by negative one, just do a negate. |
| Prod = InsertNoopCastOfTo(Prod, Ty); |
| Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); |
| ++I; |
| } else { |
| // A simple mul. |
| Value *W = ExpandOpBinPowN(); |
| Prod = InsertNoopCastOfTo(Prod, Ty); |
| // Canonicalize a constant to the RHS. |
| if (isa<Constant>(Prod)) std::swap(Prod, W); |
| const APInt *RHS; |
| if (match(W, m_Power2(RHS))) { |
| // Canonicalize Prod*(1<<C) to Prod<<C. |
| assert(!Ty->isVectorTy() && "vector types are not SCEVable"); |
| Prod = InsertBinop(Instruction::Shl, Prod, |
| ConstantInt::get(Ty, RHS->logBase2())); |
| } else { |
| Prod = InsertBinop(Instruction::Mul, Prod, W); |
| } |
| } |
| } |
| |
| return Prod; |
| } |
| |
| Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { |
| Type *Ty = SE.getEffectiveSCEVType(S->getType()); |
| |
| Value *LHS = expandCodeFor(S->getLHS(), Ty); |
| if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { |
| const APInt &RHS = SC->getAPInt(); |
| if (RHS.isPowerOf2()) |
| return InsertBinop(Instruction::LShr, LHS, |
| ConstantInt::get(Ty, RHS.logBase2())); |
| } |
| |
| Value *RHS = expandCodeFor(S->getRHS(), Ty); |
| return InsertBinop(Instruction::UDiv, LHS, RHS); |
| } |
| |
| /// Move parts of Base into Rest to leave Base with the minimal |
| /// expression that provides a pointer operand suitable for a |
| /// GEP expansion. |
| static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, |
| ScalarEvolution &SE) { |
| while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { |
| Base = A->getStart(); |
| Rest = SE.getAddExpr(Rest, |
| SE.getAddRecExpr(SE.getConstant(A->getType(), 0), |
| A->getStepRecurrence(SE), |
| A->getLoop(), |
| A->getNoWrapFlags(SCEV::FlagNW))); |
| } |
| if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { |
| Base = A->getOperand(A->getNumOperands()-1); |
| SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); |
| NewAddOps.back() = Rest; |
| Rest = SE.getAddExpr(NewAddOps); |
| ExposePointerBase(Base, Rest, SE); |
| } |
| } |
| |
| /// Determine if this is a well-behaved chain of instructions leading back to |
| /// the PHI. If so, it may be reused by expanded expressions. |
| bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, |
| const Loop *L) { |
| if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || |
| (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) |
| return false; |
| // If any of the operands don't dominate the insert position, bail. |
| // Addrec operands are always loop-invariant, so this can only happen |
| // if there are instructions which haven't been hoisted. |
| if (L == IVIncInsertLoop) { |
| for (User::op_iterator OI = IncV->op_begin()+1, |
| OE = IncV->op_end(); OI != OE; ++OI) |
| if (Instruction *OInst = dyn_cast<Instruction>(OI)) |
| if (!SE.DT.dominates(OInst, IVIncInsertPos)) |
| return false; |
| } |
| // Advance to the next instruction. |
| IncV = dyn_cast<Instruction>(IncV->getOperand(0)); |
| if (!IncV) |
| return false; |
| |
| if (IncV->mayHaveSideEffects()) |
| return false; |
| |
| if (IncV == PN) |
| return true; |
| |
| return isNormalAddRecExprPHI(PN, IncV, L); |
| } |
| |
| /// getIVIncOperand returns an induction variable increment's induction |
| /// variable operand. |
| /// |
| /// If allowScale is set, any type of GEP is allowed as long as the nonIV |
| /// operands dominate InsertPos. |
| /// |
| /// If allowScale is not set, ensure that a GEP increment conforms to one of the |
| /// simple patterns generated by getAddRecExprPHILiterally and |
| /// expandAddtoGEP. If the pattern isn't recognized, return NULL. |
| Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, |
| Instruction *InsertPos, |
| bool allowScale) { |
| if (IncV == InsertPos) |
| return nullptr; |
| |
| switch (IncV->getOpcode()) { |
| default: |
| return nullptr; |
| // Check for a simple Add/Sub or GEP of a loop invariant step. |
| case Instruction::Add: |
| case Instruction::Sub: { |
| Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); |
| if (!OInst || SE.DT.dominates(OInst, InsertPos)) |
| return dyn_cast<Instruction>(IncV->getOperand(0)); |
| return nullptr; |
| } |
| case Instruction::BitCast: |
| return dyn_cast<Instruction>(IncV->getOperand(0)); |
| case Instruction::GetElementPtr: |
| for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { |
| if (isa<Constant>(*I)) |
| continue; |
| if (Instruction *OInst = dyn_cast<Instruction>(*I)) { |
| if (!SE.DT.dominates(OInst, InsertPos)) |
| return nullptr; |
| } |
| if (allowScale) { |
| // allow any kind of GEP as long as it can be hoisted. |
| continue; |
| } |
| // This must be a pointer addition of constants (pretty), which is already |
| // handled, or some number of address-size elements (ugly). Ugly geps |
| // have 2 operands. i1* is used by the expander to represent an |
| // address-size element. |
| if (IncV->getNumOperands() != 2) |
| return nullptr; |
| unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); |
| if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) |
| && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) |
| return nullptr; |
| break; |
| } |
| return dyn_cast<Instruction>(IncV->getOperand(0)); |
| } |
| } |
| |
| /// If the insert point of the current builder or any of the builders on the |
| /// stack of saved builders has 'I' as its insert point, update it to point to |
| /// the instruction after 'I'. This is intended to be used when the instruction |
| /// 'I' is being moved. If this fixup is not done and 'I' is moved to a |
| /// different block, the inconsistent insert point (with a mismatched |
| /// Instruction and Block) can lead to an instruction being inserted in a block |
| /// other than its parent. |
| void SCEVExpander::fixupInsertPoints(Instruction *I) { |
| BasicBlock::iterator It(*I); |
| BasicBlock::iterator NewInsertPt = std::next(It); |
| if (Builder.GetInsertPoint() == It) |
| Builder.SetInsertPoint(&*NewInsertPt); |
| for (auto *InsertPtGuard : InsertPointGuards) |
| if (InsertPtGuard->GetInsertPoint() == It) |
| InsertPtGuard->SetInsertPoint(NewInsertPt); |
| } |
| |
| /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make |
| /// it available to other uses in this loop. Recursively hoist any operands, |
| /// until we reach a value that dominates InsertPos. |
| bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { |
| if (SE.DT.dominates(IncV, InsertPos)) |
| return true; |
| |
| // InsertPos must itself dominate IncV so that IncV's new position satisfies |
| // its existing users. |
| if (isa<PHINode>(InsertPos) || |
| !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) |
| return false; |
| |
| if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) |
| return false; |
| |
| // Check that the chain of IV operands leading back to Phi can be hoisted. |
| SmallVector<Instruction*, 4> IVIncs; |
| for(;;) { |
| Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); |
| if (!Oper) |
| return false; |
| // IncV is safe to hoist. |
| IVIncs.push_back(IncV); |
| IncV = Oper; |
| if (SE.DT.dominates(IncV, InsertPos)) |
| break; |
| } |
| for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { |
| fixupInsertPoints(*I); |
| (*I)->moveBefore(InsertPos); |
| } |
| return true; |
| } |
| |
| /// Determine if this cyclic phi is in a form that would have been generated by |
| /// LSR. We don't care if the phi was actually expanded in this pass, as long |
| /// as it is in a low-cost form, for example, no implied multiplication. This |
| /// should match any patterns generated by getAddRecExprPHILiterally and |
| /// expandAddtoGEP. |
| bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, |
| const Loop *L) { |
| for(Instruction *IVOper = IncV; |
| (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), |
| /*allowScale=*/false));) { |
| if (IVOper == PN) |
| return true; |
| } |
| return false; |
| } |
| |
| /// expandIVInc - Expand an IV increment at Builder's current InsertPos. |
| /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may |
| /// need to materialize IV increments elsewhere to handle difficult situations. |
| Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, |
| Type *ExpandTy, Type *IntTy, |
| bool useSubtract) { |
| Value *IncV; |
| // If the PHI is a pointer, use a GEP, otherwise use an add or sub. |
| if (ExpandTy->isPointerTy()) { |
| PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); |
| // If the step isn't constant, don't use an implicitly scaled GEP, because |
| // that would require a multiply inside the loop. |
| if (!isa<ConstantInt>(StepV)) |
| GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), |
| GEPPtrTy->getAddressSpace()); |
| IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); |
| if (IncV->getType() != PN->getType()) { |
| IncV = Builder.CreateBitCast(IncV, PN->getType()); |
| rememberInstruction(IncV); |
| } |
| } else { |
| IncV = useSubtract ? |
| Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : |
| Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); |
| rememberInstruction(IncV); |
| } |
| return IncV; |
| } |
| |
| /// Hoist the addrec instruction chain rooted in the loop phi above the |
| /// position. This routine assumes that this is possible (has been checked). |
| void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, |
| Instruction *Pos, PHINode *LoopPhi) { |
| do { |
| if (DT->dominates(InstToHoist, Pos)) |
| break; |
| // Make sure the increment is where we want it. But don't move it |
| // down past a potential existing post-inc user. |
| fixupInsertPoints(InstToHoist); |
| InstToHoist->moveBefore(Pos); |
| Pos = InstToHoist; |
| InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); |
| } while (InstToHoist != LoopPhi); |
| } |
| |
| /// Check whether we can cheaply express the requested SCEV in terms of |
| /// the available PHI SCEV by truncation and/or inversion of the step. |
| static bool canBeCheaplyTransformed(ScalarEvolution &SE, |
| const SCEVAddRecExpr *Phi, |
| const SCEVAddRecExpr *Requested, |
| bool &InvertStep) { |
| Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); |
| Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); |
| |
| if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) |
| return false; |
| |
| // Try truncate it if necessary. |
| Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); |
| if (!Phi) |
| return false; |
| |
| // Check whether truncation will help. |
| if (Phi == Requested) { |
| InvertStep = false; |
| return true; |
| } |
| |
| // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. |
| if (SE.getAddExpr(Requested->getStart(), |
| SE.getNegativeSCEV(Requested)) == Phi) { |
| InvertStep = true; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { |
| if (!isa<IntegerType>(AR->getType())) |
| return false; |
| |
| unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); |
| Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); |
| const SCEV *Step = AR->getStepRecurrence(SE); |
| const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), |
| SE.getSignExtendExpr(AR, WideTy)); |
| const SCEV *ExtendAfterOp = |
| SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); |
| return ExtendAfterOp == OpAfterExtend; |
| } |
| |
| static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { |
| if (!isa<IntegerType>(AR->getType())) |
| return false; |
| |
| unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); |
| Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); |
| const SCEV *Step = AR->getStepRecurrence(SE); |
| const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), |
| SE.getZeroExtendExpr(AR, WideTy)); |
| const SCEV *ExtendAfterOp = |
| SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); |
| return ExtendAfterOp == OpAfterExtend; |
| } |
| |
| /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand |
| /// the base addrec, which is the addrec without any non-loop-dominating |
| /// values, and return the PHI. |
| PHINode * |
| SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, |
| const Loop *L, |
| Type *ExpandTy, |
| Type *IntTy, |
| Type *&TruncTy, |
| bool &InvertStep) { |
| assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); |
| |
| // Reuse a previously-inserted PHI, if present. |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| if (LatchBlock) { |
| PHINode *AddRecPhiMatch = nullptr; |
| Instruction *IncV = nullptr; |
| TruncTy = nullptr; |
| InvertStep = false; |
| |
| // Only try partially matching scevs that need truncation and/or |
| // step-inversion if we know this loop is outside the current loop. |
| bool TryNonMatchingSCEV = |
| IVIncInsertLoop && |
| SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); |
| |
| for (PHINode &PN : L->getHeader()->phis()) { |
| if (!SE.isSCEVable(PN.getType())) |
| continue; |
| |
| const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); |
| if (!PhiSCEV) |
| continue; |
| |
| bool IsMatchingSCEV = PhiSCEV == Normalized; |
| // We only handle truncation and inversion of phi recurrences for the |
| // expanded expression if the expanded expression's loop dominates the |
| // loop we insert to. Check now, so we can bail out early. |
| if (!IsMatchingSCEV && !TryNonMatchingSCEV) |
| continue; |
| |
| // TODO: this possibly can be reworked to avoid this cast at all. |
| Instruction *TempIncV = |
| dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); |
| if (!TempIncV) |
| continue; |
| |
| // Check whether we can reuse this PHI node. |
| if (LSRMode) { |
| if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) |
| continue; |
| if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) |
| continue; |
| } else { |
| if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) |
| continue; |
| } |
| |
| // Stop if we have found an exact match SCEV. |
| if (IsMatchingSCEV) { |
| IncV = TempIncV; |
| TruncTy = nullptr; |
| InvertStep = false; |
| AddRecPhiMatch = &PN; |
| break; |
| } |
| |
| // Try whether the phi can be translated into the requested form |
| // (truncated and/or offset by a constant). |
| if ((!TruncTy || InvertStep) && |
| canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { |
| // Record the phi node. But don't stop we might find an exact match |
| // later. |
| AddRecPhiMatch = &PN; |
| IncV = TempIncV; |
| TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); |
| } |
| } |
| |
| if (AddRecPhiMatch) { |
| // Potentially, move the increment. We have made sure in |
| // isExpandedAddRecExprPHI or hoistIVInc that this is possible. |
| if (L == IVIncInsertLoop) |
| hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); |
| |
| // Ok, the add recurrence looks usable. |
| // Remember this PHI, even in post-inc mode. |
| InsertedValues.insert(AddRecPhiMatch); |
| // Remember the increment. |
| rememberInstruction(IncV); |
| return AddRecPhiMatch; |
| } |
| } |
| |
| // Save the original insertion point so we can restore it when we're done. |
| SCEVInsertPointGuard Guard(Builder, this); |
| |
| // Another AddRec may need to be recursively expanded below. For example, if |
| // this AddRec is quadratic, the StepV may itself be an AddRec in this |
| // loop. Remove this loop from the PostIncLoops set before expanding such |
| // AddRecs. Otherwise, we cannot find a valid position for the step |
| // (i.e. StepV can never dominate its loop header). Ideally, we could do |
| // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, |
| // so it's not worth implementing SmallPtrSet::swap. |
| PostIncLoopSet SavedPostIncLoops = PostIncLoops; |
| PostIncLoops.clear(); |
| |
| // Expand code for the start value into the loop preheader. |
| assert(L->getLoopPreheader() && |
| "Can't expand add recurrences without a loop preheader!"); |
| Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, |
| L->getLoopPreheader()->getTerminator()); |
| |
| // StartV must have been be inserted into L's preheader to dominate the new |
| // phi. |
| assert(!isa<Instruction>(StartV) || |
| SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), |
| L->getHeader())); |
| |
| // Expand code for the step value. Do this before creating the PHI so that PHI |
| // reuse code doesn't see an incomplete PHI. |
| const SCEV *Step = Normalized->getStepRecurrence(SE); |
| // If the stride is negative, insert a sub instead of an add for the increment |
| // (unless it's a constant, because subtracts of constants are canonicalized |
| // to adds). |
| bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); |
| if (useSubtract) |
| Step = SE.getNegativeSCEV(Step); |
| // Expand the step somewhere that dominates the loop header. |
| Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); |
| |
| // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if |
| // we actually do emit an addition. It does not apply if we emit a |
| // subtraction. |
| bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); |
| bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); |
| |
| // Create the PHI. |
| BasicBlock *Header = L->getHeader(); |
| Builder.SetInsertPoint(Header, Header->begin()); |
| pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); |
| PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), |
| Twine(IVName) + ".iv"); |
| rememberInstruction(PN); |
| |
| // Create the step instructions and populate the PHI. |
| for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { |
| BasicBlock *Pred = *HPI; |
| |
| // Add a start value. |
| if (!L->contains(Pred)) { |
| PN->addIncoming(StartV, Pred); |
| continue; |
| } |
| |
| // Create a step value and add it to the PHI. |
| // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the |
| // instructions at IVIncInsertPos. |
| Instruction *InsertPos = L == IVIncInsertLoop ? |
| IVIncInsertPos : Pred->getTerminator(); |
| Builder.SetInsertPoint(InsertPos); |
| Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); |
| |
| if (isa<OverflowingBinaryOperator>(IncV)) { |
| if (IncrementIsNUW) |
| cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); |
| if (IncrementIsNSW) |
| cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); |
| } |
| PN->addIncoming(IncV, Pred); |
| } |
| |
| // After expanding subexpressions, restore the PostIncLoops set so the caller |
| // can ensure that IVIncrement dominates the current uses. |
| PostIncLoops = SavedPostIncLoops; |
| |
| // Remember this PHI, even in post-inc mode. |
| InsertedValues.insert(PN); |
| |
| return PN; |
| } |
| |
| Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { |
| Type *STy = S->getType(); |
| Type *IntTy = SE.getEffectiveSCEVType(STy); |
| const Loop *L = S->getLoop(); |
| |
| // Determine a normalized form of this expression, which is the expression |
| // before any post-inc adjustment is made. |
| const SCEVAddRecExpr *Normalized = S; |
| if (PostIncLoops.count(L)) { |
| PostIncLoopSet Loops; |
| Loops.insert(L); |
| Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); |
| } |
| |
| // Strip off any non-loop-dominating component from the addrec start. |
| const SCEV *Start = Normalized->getStart(); |
| const SCEV *PostLoopOffset = nullptr; |
| if (!SE.properlyDominates(Start, L->getHeader())) { |
| PostLoopOffset = Start; |
| Start = SE.getConstant(Normalized->getType(), 0); |
| Normalized = cast<SCEVAddRecExpr>( |
| SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), |
| Normalized->getLoop(), |
| Normalized->getNoWrapFlags(SCEV::FlagNW))); |
| } |
| |
| // Strip off any non-loop-dominating component from the addrec step. |
| const SCEV *Step = Normalized->getStepRecurrence(SE); |
| const SCEV *PostLoopScale = nullptr; |
| if (!SE.dominates(Step, L->getHeader())) { |
| PostLoopScale = Step; |
| Step = SE.getConstant(Normalized->getType(), 1); |
| if (!Start->isZero()) { |
| // The normalization below assumes that Start is constant zero, so if |
| // it isn't re-associate Start to PostLoopOffset. |
| assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); |
| PostLoopOffset = Start; |
| Start = SE.getConstant(Normalized->getType(), 0); |
| } |
| Normalized = |
| cast<SCEVAddRecExpr>(SE.getAddRecExpr( |
| Start, Step, Normalized->getLoop(), |
| Normalized->getNoWrapFlags(SCEV::FlagNW))); |
| } |
| |
| // Expand the core addrec. If we need post-loop scaling, force it to |
| // expand to an integer type to avoid the need for additional casting. |
| Type *ExpandTy = PostLoopScale ? IntTy : STy; |
| // We can't use a pointer type for the addrec if the pointer type is |
| // non-integral. |
| Type *AddRecPHIExpandTy = |
| DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; |
| |
| // In some cases, we decide to reuse an existing phi node but need to truncate |
| // it and/or invert the step. |
| Type *TruncTy = nullptr; |
| bool InvertStep = false; |
| PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, |
| IntTy, TruncTy, InvertStep); |
| |
| // Accommodate post-inc mode, if necessary. |
| Value *Result; |
| if (!PostIncLoops.count(L)) |
| Result = PN; |
| else { |
| // In PostInc mode, use the post-incremented value. |
| BasicBlock *LatchBlock = L->getLoopLatch(); |
| assert(LatchBlock && "PostInc mode requires a unique loop latch!"); |
| Result = PN->getIncomingValueForBlock(LatchBlock); |
| |
| // For an expansion to use the postinc form, the client must call |
| // expandCodeFor with an InsertPoint that is either outside the PostIncLoop |
| // or dominated by IVIncInsertPos. |
| if (isa<Instruction>(Result) && |
| !SE.DT.dominates(cast<Instruction>(Result), |
| &*Builder.GetInsertPoint())) { |
| // The induction variable's postinc expansion does not dominate this use. |
| // IVUsers tries to prevent this case, so it is rare. However, it can |
| // happen when an IVUser outside the loop is not dominated by the latch |
| // block. Adjusting IVIncInsertPos before expansion begins cannot handle |
| // all cases. Consider a phi outside whose operand is replaced during |
| // expansion with the value of the postinc user. Without fundamentally |
| // changing the way postinc users are tracked, the only remedy is |
| // inserting an extra IV increment. StepV might fold into PostLoopOffset, |
| // but hopefully expandCodeFor handles that. |
| bool useSubtract = |
| !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); |
| if (useSubtract) |
| Step = SE.getNegativeSCEV(Step); |
| Value *StepV; |
| { |
| // Expand the step somewhere that dominates the loop header. |
| SCEVInsertPointGuard Guard(Builder, this); |
| StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); |
| } |
| Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); |
| } |
| } |
| |
| // We have decided to reuse an induction variable of a dominating loop. Apply |
| // truncation and/or inversion of the step. |
| if (TruncTy) { |
| Type *ResTy = Result->getType(); |
| // Normalize the result type. |
| if (ResTy != SE.getEffectiveSCEVType(ResTy)) |
| Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); |
| // Truncate the result. |
| if (TruncTy != Result->getType()) { |
| Result = Builder.CreateTrunc(Result, TruncTy); |
| rememberInstruction(Result); |
| } |
| // Invert the result. |
| if (InvertStep) { |
| Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), |
| Result); |
| rememberInstruction(Result); |
| } |
| } |
| |
| // Re-apply any non-loop-dominating scale. |
| if (PostLoopScale) { |
| assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); |
| Result = InsertNoopCastOfTo(Result, IntTy); |
| Result = Builder.CreateMul(Result, |
| expandCodeFor(PostLoopScale, IntTy)); |
| rememberInstruction(Result); |
| } |
| |
| // Re-apply any non-loop-dominating offset. |
| if (PostLoopOffset) { |
| if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { |
| if (Result->getType()->isIntegerTy()) { |
| Value *Base = expandCodeFor(PostLoopOffset, ExpandTy); |
| Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); |
| } else { |
| Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); |
| } |
| } else { |
| Result = InsertNoopCastOfTo(Result, IntTy); |
| Result = Builder.CreateAdd(Result, |
| expandCodeFor(PostLoopOffset, IntTy)); |
| rememberInstruction(Result); |
| } |
| } |
| |
| return Result; |
| } |
| |
| Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { |
| if (!CanonicalMode) return expandAddRecExprLiterally(S); |
| |
| Type *Ty = SE.getEffectiveSCEVType(S->getType()); |
| const Loop *L = S->getLoop(); |
| |
| // First check for an existing canonical IV in a suitable type. |
| PHINode *CanonicalIV = nullptr; |
| if (PHINode *PN = L->getCanonicalInductionVariable()) |
| if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) |
| CanonicalIV = PN; |
| |
| // Rewrite an AddRec in terms of the canonical induction variable, if |
| // its type is more narrow. |
| if (CanonicalIV && |
| SE.getTypeSizeInBits(CanonicalIV->getType()) > |
| SE.getTypeSizeInBits(Ty)) { |
| SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); |
| for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) |
| NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); |
| Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), |
| S->getNoWrapFlags(SCEV::FlagNW))); |
| BasicBlock::iterator NewInsertPt = |
| findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock()); |
| V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, |
| &*NewInsertPt); |
| return V; |
| } |
| |
| // {X,+,F} --> X + {0,+,F} |
| if (!S->getStart()->isZero()) { |
| SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); |
| NewOps[0] = SE.getConstant(Ty, 0); |
| const SCEV *Rest = SE.getAddRecExpr(NewOps, L, |
| S->getNoWrapFlags(SCEV::FlagNW)); |
| |
| // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the |
| // comments on expandAddToGEP for details. |
| const SCEV *Base = S->getStart(); |
| // Dig into the expression to find the pointer base for a GEP. |
| const SCEV *ExposedRest = Rest; |
| ExposePointerBase(Base, ExposedRest, SE); |
| // If we found a pointer, expand the AddRec with a GEP. |
| if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { |
| // Make sure the Base isn't something exotic, such as a multiplied |
| // or divided pointer value. In those cases, the result type isn't |
| // actually a pointer type. |
| if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { |
| Value *StartV = expand(Base); |
| assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); |
| return expandAddToGEP(ExposedRest, PTy, Ty, StartV); |
| } |
| } |
| |
| // Just do a normal add. Pre-expand the operands to suppress folding. |
| // |
| // The LHS and RHS values are factored out of the expand call to make the |
| // output independent of the argument evaluation order. |
| const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); |
| const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); |
| return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); |
| } |
| |
| // If we don't yet have a canonical IV, create one. |
| if (!CanonicalIV) { |
| // Create and insert the PHI node for the induction variable in the |
| // specified loop. |
| BasicBlock *Header = L->getHeader(); |
| pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); |
| CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", |
| &Header->front()); |
| rememberInstruction(CanonicalIV); |
| |
| SmallSet<BasicBlock *, 4> PredSeen; |
| Constant *One = ConstantInt::get(Ty, 1); |
| for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { |
| BasicBlock *HP = *HPI; |
| if (!PredSeen.insert(HP).second) { |
| // There must be an incoming value for each predecessor, even the |
| // duplicates! |
| CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); |
| continue; |
| } |
| |
| if (L->contains(HP)) { |
| // Insert a unit add instruction right before the terminator |
| // corresponding to the back-edge. |
| Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, |
| "indvar.next", |
| HP->getTerminator()); |
| Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); |
| rememberInstruction(Add); |
| CanonicalIV->addIncoming(Add, HP); |
| } else { |
| CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); |
| } |
| } |
| } |
| |
| // {0,+,1} --> Insert a canonical induction variable into the loop! |
| if (S->isAffine() && S->getOperand(1)->isOne()) { |
| assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && |
| "IVs with types different from the canonical IV should " |
| "already have been handled!"); |
| return CanonicalIV; |
| } |
| |
| // {0,+,F} --> {0,+,1} * F |
| |
| // If this is a simple linear addrec, emit it now as a special case. |
| if (S->isAffine()) // {0,+,F} --> i*F |
| return |
| expand(SE.getTruncateOrNoop( |
| SE.getMulExpr(SE.getUnknown(CanonicalIV), |
| SE.getNoopOrAnyExtend(S->getOperand(1), |
| CanonicalIV->getType())), |
| Ty)); |
| |
| // If this is a chain of recurrences, turn it into a closed form, using the |
| // folders, then expandCodeFor the closed form. This allows the folders to |
| // simplify the expression without having to build a bunch of special code |
| // into this folder. |
| const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. |
| |
| // Promote S up to the canonical IV type, if the cast is foldable. |
| const SCEV *NewS = S; |
| const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); |
| if (isa<SCEVAddRecExpr>(Ext)) |
| NewS = Ext; |
| |
| const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); |
| //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; |
| |
| // Truncate the result down to the original type, if needed. |
| const SCEV *T = SE.getTruncateOrNoop(V, Ty); |
| return expand(T); |
| } |
| |
| Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { |
| Type *Ty = SE.getEffectiveSCEVType(S->getType()); |
| Value *V = expandCodeFor(S->getOperand(), |
| SE.getEffectiveSCEVType(S->getOperand()->getType())); |
| Value *I = Builder.CreateTrunc(V, Ty); |
| rememberInstruction(I); |
| return I; |
| } |
| |
| Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { |
| Type *Ty = SE.getEffectiveSCEVType(S->getType()); |
| Value *V = expandCodeFor(S->getOperand(), |
| SE.getEffectiveSCEVType(S->getOperand()->getType())); |
| Value *I = Builder.CreateZExt(V, Ty); |
| rememberInstruction(I); |
| return I; |
| } |
| |
| Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { |
| Type *Ty = SE.getEffectiveSCEVType(S->getType()); |
| Value *V = expandCodeFor(S->getOperand(), |
| SE.getEffectiveSCEVType(S->getOperand()->getType())); |
| Value *I = Builder.CreateSExt(V, Ty); |
| rememberInstruction(I); |
| return I; |
| } |
| |
| Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { |
| Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); |
| Type *Ty = LHS->getType(); |
| for (int i = S->getNumOperands()-2; i >= 0; --i) { |
| // In the case of mixed integer and pointer types, do the |
| // rest of the comparisons as integer. |
| if (S->getOperand(i)->getType() != Ty) { |
| Ty = SE.getEffectiveSCEVType(Ty); |
| LHS = InsertNoopCastOfTo(LHS, Ty); |
| } |
| Value *RHS = expandCodeFor(S->getOperand(i), Ty); |
| Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); |
| rememberInstruction(ICmp); |
| Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); |
| rememberInstruction(Sel); |
| LHS = Sel; |
| } |
| // In the case of mixed integer and pointer types, cast the |
| // final result back to the pointer type. |
| if (LHS->getType() != S->getType()) |
| LHS = InsertNoopCastOfTo(LHS, S->getType()); |
| return LHS; |
| } |
| |
| Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { |
| Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); |
| Type *Ty = LHS->getType(); |
| for (int i = S->getNumOperands()-2; i >= 0; --i) { |
| // In the case of mixed integer and pointer types, do the |
| // rest of the comparisons as integer. |
| if (S->getOperand(i)->getType() != Ty) { |
| Ty = SE.getEffectiveSCEVType(Ty); |
| LHS = InsertNoopCastOfTo(LHS, Ty); |
| } |
| Value *RHS = expandCodeFor(S->getOperand(i), Ty); |
| Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); |
| rememberInstruction(ICmp); |
| Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); |
| rememberInstruction(Sel); |
| LHS = Sel; |
| } |
| // In the case of mixed integer and pointer types, cast the |
| // final result back to the pointer type. |
| if (LHS->getType() != S->getType()) |
| LHS = InsertNoopCastOfTo(LHS, S->getType()); |
| return LHS; |
| } |
| |
| Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, |
| Instruction *IP) { |
| setInsertPoint(IP); |
| return expandCodeFor(SH, Ty); |
| } |
| |
| Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { |
| // Expand the code for this SCEV. |
| Value *V = expand(SH); |
| if (Ty) { |
| assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && |
| "non-trivial casts should be done with the SCEVs directly!"); |
| V = InsertNoopCastOfTo(V, Ty); |
| } |
| return V; |
| } |
| |
| ScalarEvolution::ValueOffsetPair |
| SCEVExpander::FindValueInExprValueMap(const SCEV *S, |
| const Instruction *InsertPt) { |
| SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S); |
| // If the expansion is not in CanonicalMode, and the SCEV contains any |
| // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. |
| if (CanonicalMode || !SE.containsAddRecurrence(S)) { |
| // If S is scConstant, it may be worse to reuse an existing Value. |
| if (S->getSCEVType() != scConstant && Set) { |
| // Choose a Value from the set which dominates the insertPt. |
| // insertPt should be inside the Value's parent loop so as not to break |
| // the LCSSA form. |
| for (auto const &VOPair : *Set) { |
| Value *V = VOPair.first; |
| ConstantInt *Offset = VOPair.second; |
| Instruction *EntInst = nullptr; |
| if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && |
| S->getType() == V->getType() && |
| EntInst->getFunction() == InsertPt->getFunction() && |
| SE.DT.dominates(EntInst, InsertPt) && |
| (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || |
| SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) |
| return {V, Offset}; |
| } |
| } |
| } |
| return {nullptr, nullptr}; |
| } |
| |
| // The expansion of SCEV will either reuse a previous Value in ExprValueMap, |
| // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, |
| // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded |
| // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, |
| // the expansion will try to reuse Value from ExprValueMap, and only when it |
| // fails, expand the SCEV literally. |
| Value *SCEVExpander::expand(const SCEV *S) { |
| // Compute an insertion point for this SCEV object. Hoist the instructions |
| // as far out in the loop nest as possible. |
| Instruction *InsertPt = &*Builder.GetInsertPoint(); |
| for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; |
| L = L->getParentLoop()) |
| if (SE.isLoopInvariant(S, L)) { |
| if (!L) break; |
| if (BasicBlock *Preheader = L->getLoopPreheader()) |
| InsertPt = Preheader->getTerminator(); |
| else { |
| // LSR sets the insertion point for AddRec start/step values to the |
| // block start to simplify value reuse, even though it's an invalid |
| // position. SCEVExpander must correct for this in all cases. |
| InsertPt = &*L->getHeader()->getFirstInsertionPt(); |
| } |
| } else { |
| // We can move insertion point only if there is no div or rem operations |
| // otherwise we are risky to move it over the check for zero denominator. |
| auto SafeToHoist = [](const SCEV *S) { |
| return !SCEVExprContains(S, [](const SCEV *S) { |
| if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { |
| if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) |
| // Division by non-zero constants can be hoisted. |
| return SC->getValue()->isZero(); |
| // All other divisions should not be moved as they may be |
| // divisions by zero and should be kept within the |
| // conditions of the surrounding loops that guard their |
| // execution (see PR35406). |
| return true; |
| } |
| return false; |
| }); |
| }; |
| // If the SCEV is computable at this level, insert it into the header |
| // after the PHIs (and after any other instructions that we've inserted |
| // there) so that it is guaranteed to dominate any user inside the loop. |
| if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L) && |
| SafeToHoist(S)) |
| InsertPt = &*L->getHeader()->getFirstInsertionPt(); |
| while (InsertPt->getIterator() != Builder.GetInsertPoint() && |
| (isInsertedInstruction(InsertPt) || |
| isa<DbgInfoIntrinsic>(InsertPt))) { |
| InsertPt = &*std::next(InsertPt->getIterator()); |
| } |
| break; |
| } |
| |
| // Check to see if we already expanded this here. |
| auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); |
| if (I != InsertedExpressions.end()) |
| return I->second; |
| |
| SCEVInsertPointGuard Guard(Builder, this); |
| Builder.SetInsertPoint(InsertPt); |
| |
| // Expand the expression into instructions. |
| ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); |
| Value *V = VO.first; |
| |
| if (!V) |
| V = visit(S); |
| else if (VO.second) { |
| if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { |
| Type *Ety = Vty->getPointerElementType(); |
| int64_t Offset = VO.second->getSExtValue(); |
| int64_t ESize = SE.getTypeSizeInBits(Ety); |
| if ((Offset * 8) % ESize == 0) { |
| ConstantInt *Idx = |
| ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); |
| V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); |
| } else { |
| ConstantInt *Idx = |
| ConstantInt::getSigned(VO.second->getType(), -Offset); |
| unsigned AS = Vty->getAddressSpace(); |
| V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); |
| V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, |
| "uglygep"); |
| V = Builder.CreateBitCast(V, Vty); |
| } |
| } else { |
| V = Builder.CreateSub(V, VO.second); |
| } |
| } |
| // Remember the expanded value for this SCEV at this location. |
| // |
| // This is independent of PostIncLoops. The mapped value simply materializes |
| // the expression at this insertion point. If the mapped value happened to be |
| // a postinc expansion, it could be reused by a non-postinc user, but only if |
| // its insertion point was already at the head of the loop. |
| InsertedExpressions[std::make_pair(S, InsertPt)] = V; |
| return V; |
| } |
| |
| void SCEVExpander::rememberInstruction(Value *I) { |
| if (!PostIncLoops.empty()) |
| InsertedPostIncValues.insert(I); |
| else |
| InsertedValues.insert(I); |
| } |
| |
| /// getOrInsertCanonicalInductionVariable - This method returns the |
| /// canonical induction variable of the specified type for the specified |
| /// loop (inserting one if there is none). A canonical induction variable |
| /// starts at zero and steps by one on each iteration. |
| PHINode * |
| SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, |
| Type *Ty) { |
| assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); |
| |
| // Build a SCEV for {0,+,1}<L>. |
| // Conservatively use FlagAnyWrap for now. |
| const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), |
| SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); |
| |
| // Emit code for it. |
| SCEVInsertPointGuard Guard(Builder, this); |
| PHINode *V = |
| cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front())); |
| |
| return V; |
| } |
| |
| /// replaceCongruentIVs - Check for congruent phis in this loop header and |
| /// replace them with their most canonical representative. Return the number of |
| /// phis eliminated. |
| /// |
| /// This does not depend on any SCEVExpander state but should be used in |
| /// the same context that SCEVExpander is used. |
| unsigned |
| SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts, |
| const TargetTransformInfo *TTI) { |
| // Find integer phis in order of increasing width. |
| SmallVector<PHINode*, 8> Phis; |
| for (PHINode &PN : L->getHeader()->phis()) |
| Phis.push_back(&PN); |
| |
| if (TTI) |
| llvm::sort(Phis.begin(), Phis.end(), [](Value *LHS, Value *RHS) { |
| // Put pointers at the back and make sure pointer < pointer = false. |
| if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) |
| return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); |
| return RHS->getType()->getPrimitiveSizeInBits() < |
| LHS->getType()->getPrimitiveSizeInBits(); |
| }); |
| |
| unsigned NumElim = 0; |
| DenseMap<const SCEV *, PHINode *> ExprToIVMap; |
| // Process phis from wide to narrow. Map wide phis to their truncation |
| // so narrow phis can reuse them. |
| for (PHINode *Phi : Phis) { |
| auto SimplifyPHINode = [&](PHINode *PN) -> Value * { |
| if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) |
| return V; |
| if (!SE.isSCEVable(PN->getType())) |
| return nullptr; |
| auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); |
| if (!Const) |
| return nullptr; |
| return Const->getValue(); |
| }; |
| |
| // Fold constant phis. They may be congruent to other constant phis and |
| // would confuse the logic below that expects proper IVs. |
| if (Value *V = SimplifyPHINode(Phi)) { |
| if (V->getType() != Phi->getType()) |
| continue; |
| Phi->replaceAllUsesWith(V); |
| DeadInsts.emplace_back(Phi); |
| ++NumElim; |
| DEBUG_WITH_TYPE(DebugType, dbgs() |
| << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); |
| continue; |
| } |
| |
| if (!SE.isSCEVable(Phi->getType())) |
| continue; |
| |
| PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; |
| if (!OrigPhiRef) { |
| OrigPhiRef = Phi; |
| if (Phi->getType()->isIntegerTy() && TTI && |
| TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { |
| // This phi can be freely truncated to the narrowest phi type. Map the |
| // truncated expression to it so it will be reused for narrow types. |
| const SCEV *TruncExpr = |
| SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); |
| ExprToIVMap[TruncExpr] = Phi; |
| } |
| continue; |
| } |
| |
| // Replacing a pointer phi with an integer phi or vice-versa doesn't make |
| // sense. |
| if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) |
| continue; |
| |
| if (BasicBlock *LatchBlock = L->getLoopLatch()) { |
| Instruction *OrigInc = dyn_cast<Instruction>( |
| OrigPhiRef->getIncomingValueForBlock(LatchBlock)); |
| Instruction *IsomorphicInc = |
| dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); |
| |
| if (OrigInc && IsomorphicInc) { |
| // If this phi has the same width but is more canonical, replace the |
| // original with it. As part of the "more canonical" determination, |
| // respect a prior decision to use an IV chain. |
| if (OrigPhiRef->getType() == Phi->getType() && |
| !(ChainedPhis.count(Phi) || |
| isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && |
| (ChainedPhis.count(Phi) || |
| isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { |
| std::swap(OrigPhiRef, Phi); |
| std::swap(OrigInc, IsomorphicInc); |
| } |
| // Replacing the congruent phi is sufficient because acyclic |
| // redundancy elimination, CSE/GVN, should handle the |
| // rest. However, once SCEV proves that a phi is congruent, |
| // it's often the head of an IV user cycle that is isomorphic |
| // with the original phi. It's worth eagerly cleaning up the |
| // common case of a single IV increment so that DeleteDeadPHIs |
| // can remove cycles that had postinc uses. |
| const SCEV *TruncExpr = |
| SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); |
| if (OrigInc != IsomorphicInc && |
| TruncExpr == SE.getSCEV(IsomorphicInc) && |
| SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && |
| hoistIVInc(OrigInc, IsomorphicInc)) { |
| DEBUG_WITH_TYPE(DebugType, |
| dbgs() << "INDVARS: Eliminated congruent iv.inc: " |
| << *IsomorphicInc << '\n'); |
| Value *NewInc = OrigInc; |
| if (OrigInc->getType() != IsomorphicInc->getType()) { |
| Instruction *IP = nullptr; |
| if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) |
| IP = &*PN->getParent()->getFirstInsertionPt(); |
| else |
| IP = OrigInc->getNextNode(); |
| |
| IRBuilder<> Builder(IP); |
| Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); |
| NewInc = Builder.CreateTruncOrBitCast( |
| OrigInc, IsomorphicInc->getType(), IVName); |
| } |
| IsomorphicInc->replaceAllUsesWith(NewInc); |
| DeadInsts.emplace_back(IsomorphicInc); |
| } |
| } |
| } |
| DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " |
| << *Phi << '\n'); |
| ++NumElim; |
| Value *NewIV = OrigPhiRef; |
| if (OrigPhiRef->getType() != Phi->getType()) { |
| IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); |
| Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); |
| NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); |
| } |
| Phi->replaceAllUsesWith(NewIV); |
| DeadInsts.emplace_back(Phi); |
| } |
| return NumElim; |
| } |
| |
| Value *SCEVExpander::getExactExistingExpansion(const SCEV *S, |
| const Instruction *At, Loop *L) { |
| Optional<ScalarEvolution::ValueOffsetPair> VO = |
| getRelatedExistingExpansion(S, At, L); |
| if (VO && VO.getValue().second == nullptr) |
| return VO.getValue().first; |
| return nullptr; |
| } |
| |
| Optional<ScalarEvolution::ValueOffsetPair> |
| SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, |
| Loop *L) { |
| using namespace llvm::PatternMatch; |
| |
| SmallVector<BasicBlock *, 4> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| |
| // Look for suitable value in simple conditions at the loop exits. |
| for (BasicBlock *BB : ExitingBlocks) { |
| ICmpInst::Predicate Pred; |
| Instruction *LHS, *RHS; |
| BasicBlock *TrueBB, *FalseBB; |
| |
| if (!match(BB->getTerminator(), |
| m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), |
| TrueBB, FalseBB))) |
| continue; |
| |
| if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) |
| return ScalarEvolution::ValueOffsetPair(LHS, nullptr); |
| |
| if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) |
| return ScalarEvolution::ValueOffsetPair(RHS, nullptr); |
| } |
| |
| // Use expand's logic which is used for reusing a previous Value in |
| // ExprValueMap. |
| ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); |
| if (VO.first) |
| return VO; |
| |
| // There is potential to make this significantly smarter, but this simple |
| // heuristic already gets some interesting cases. |
| |
| // Can not find suitable value. |
| return None; |
| } |
| |
| bool SCEVExpander::isHighCostExpansionHelper( |
| const SCEV *S, Loop *L, const Instruction *At, |
| SmallPtrSetImpl<const SCEV *> &Processed) { |
| |
| // If we can find an existing value for this scev available at the point "At" |
| // then consider the expression cheap. |
| if (At && getRelatedExistingExpansion(S, At, L)) |
| return false; |
| |
| // Zero/One operand expressions |
| switch (S->getSCEVType()) { |
| case scUnknown: |
| case scConstant: |
| return false; |
| case scTruncate: |
| return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(), |
| L, At, Processed); |
| case scZeroExtend: |
| return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(), |
| L, At, Processed); |
| case scSignExtend: |
| return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(), |
| L, At, Processed); |
| } |
| |
| if (!Processed.insert(S).second) |
| return false; |
| |
| if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { |
| // If the divisor is a power of two and the SCEV type fits in a native |
| // integer, consider the division cheap irrespective of whether it occurs in |
| // the user code since it can be lowered into a right shift. |
| if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) |
| if (SC->getAPInt().isPowerOf2()) { |
| const DataLayout &DL = |
| L->getHeader()->getParent()->getParent()->getDataLayout(); |
| unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth(); |
| return DL.isIllegalInteger(Width); |
| } |
| |
| // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or |
| // HowManyLessThans produced to compute a precise expression, rather than a |
| // UDiv from the user's code. If we can't find a UDiv in the code with some |
| // simple searching, assume the former consider UDivExpr expensive to |
| // compute. |
| BasicBlock *ExitingBB = L->getExitingBlock(); |
| if (!ExitingBB) |
| return true; |
| |
| // At the beginning of this function we already tried to find existing value |
| // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern |
| // involving division. This is just a simple search heuristic. |
| if (!At) |
| At = &ExitingBB->back(); |
| if (!getRelatedExistingExpansion( |
| SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L)) |
| return true; |
| } |
| |
| // HowManyLessThans uses a Max expression whenever the loop is not guarded by |
| // the exit condition. |
| if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) |
| return true; |
| |
| // Recurse past nary expressions, which commonly occur in the |
| // BackedgeTakenCount. They may already exist in program code, and if not, |
| // they are not too expensive rematerialize. |
| if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { |
| for (auto *Op : NAry->operands()) |
| if (isHighCostExpansionHelper(Op, L, At, Processed)) |
| return true; |
| } |
| |
| // If we haven't recognized an expensive SCEV pattern, assume it's an |
| // expression produced by program code. |
| return false; |
| } |
| |
| Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, |
| Instruction *IP) { |
| assert(IP); |
| switch (Pred->getKind()) { |
| case SCEVPredicate::P_Union: |
| return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); |
| case SCEVPredicate::P_Equal: |
| return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); |
| case SCEVPredicate::P_Wrap: { |
| auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); |
| return expandWrapPredicate(AddRecPred, IP); |
| } |
| } |
| llvm_unreachable("Unknown SCEV predicate type"); |
| } |
| |
| Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, |
| Instruction *IP) { |
| Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); |
| Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); |
| |
| Builder.SetInsertPoint(IP); |
| auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); |
| return I; |
| } |
| |
| Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, |
| Instruction *Loc, bool Signed) { |
| assert(AR->isAffine() && "Cannot generate RT check for " |
| "non-affine expression"); |
| |
| SCEVUnionPredicate Pred; |
| const SCEV *ExitCount = |
| SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); |
| |
| assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); |
| |
| const SCEV *Step = AR->getStepRecurrence(SE); |
| const SCEV *Start = AR->getStart(); |
| |
| Type *ARTy = AR->getType(); |
| unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); |
| unsigned DstBits = SE.getTypeSizeInBits(ARTy); |
| |
| // The expression {Start,+,Step} has nusw/nssw if |
| // Step < 0, Start - |Step| * Backedge <= Start |
| // Step >= 0, Start + |Step| * Backedge > Start |
| // and |Step| * Backedge doesn't unsigned overflow. |
| |
| IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); |
| Builder.SetInsertPoint(Loc); |
| Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); |
| |
| IntegerType *Ty = |
| IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); |
| Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; |
| |
| Value *StepValue = expandCodeFor(Step, Ty, Loc); |
| Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); |
| Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc); |
| |
| ConstantInt *Zero = |
| ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); |
| |
| Builder.SetInsertPoint(Loc); |
| // Compute |Step| |
| Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); |
| Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); |
| |
| // Get the backedge taken count and truncate or extended to the AR type. |
| Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); |
| auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), |
| Intrinsic::umul_with_overflow, Ty); |
| |
| // Compute |Step| * Backedge |
| CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); |
| Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); |
| Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); |
| |
| // Compute: |
| // Start + |Step| * Backedge < Start |
| // Start - |Step| * Backedge > Start |
| Value *Add = nullptr, *Sub = nullptr; |
| if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { |
| const SCEV *MulS = SE.getSCEV(MulV); |
| const SCEV *NegMulS = SE.getNegativeSCEV(MulS); |
| Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), |
| ARPtrTy); |
| Sub = Builder.CreateBitCast( |
| expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); |
| } else { |
| Add = Builder.CreateAdd(StartValue, MulV); |
| Sub = Builder.CreateSub(StartValue, MulV); |
| } |
| |
| Value *EndCompareGT = Builder.CreateICmp( |
| Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); |
| |
| Value *EndCompareLT = Builder.CreateICmp( |
| Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); |
| |
| // Select the answer based on the sign of Step. |
| Value *EndCheck = |
| Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); |
| |
| // If the backedge taken count type is larger than the AR type, |
| // check that we don't drop any bits by truncating it. If we are |
| // dropping bits, then we have overflow (unless the step is zero). |
| if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { |
| auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); |
| auto *BackedgeCheck = |
| Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, |
| ConstantInt::get(Loc->getContext(), MaxVal)); |
| BackedgeCheck = Builder.CreateAnd( |
| BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); |
| |
| EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); |
| } |
| |
| EndCheck = Builder.CreateOr(EndCheck, OfMul); |
| return EndCheck; |
| } |
| |
| Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, |
| Instruction *IP) { |
| const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); |
| Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; |
| |
| // Add a check for NUSW |
| if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) |
| NUSWCheck = generateOverflowCheck(A, IP, false); |
| |
| // Add a check for NSSW |
| if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) |
| NSSWCheck = generateOverflowCheck(A, IP, true); |
| |
| if (NUSWCheck && NSSWCheck) |
| return Builder.CreateOr(NUSWCheck, NSSWCheck); |
| |
| if (NUSWCheck) |
| return NUSWCheck; |
| |
| if (NSSWCheck) |
| return NSSWCheck; |
| |
| return ConstantInt::getFalse(IP->getContext()); |
| } |
| |
| Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, |
| Instruction *IP) { |
| auto *BoolType = IntegerType::get(IP->getContext(), 1); |
| Value *Check = ConstantInt::getNullValue(BoolType); |
| |
| // Loop over all checks in this set. |
| for (auto Pred : Union->getPredicates()) { |
| auto *NextCheck = expandCodeForPredicate(Pred, IP); |
| Builder.SetInsertPoint(IP); |
| Check = Builder.CreateOr(Check, NextCheck); |
| } |
| |
| return Check; |
| } |
| |
| namespace { |
| // Search for a SCEV subexpression that is not safe to expand. Any expression |
| // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely |
| // UDiv expressions. We don't know if the UDiv is derived from an IR divide |
| // instruction, but the important thing is that we prove the denominator is |
| // nonzero before expansion. |
| // |
| // IVUsers already checks that IV-derived expressions are safe. So this check is |
| // only needed when the expression includes some subexpression that is not IV |
| // derived. |
| // |
| // Currently, we only allow division by a nonzero constant here. If this is |
| // inadequate, we could easily allow division by SCEVUnknown by using |
| // ValueTracking to check isKnownNonZero(). |
| // |
| // We cannot generally expand recurrences unless the step dominates the loop |
| // header. The expander handles the special case of affine recurrences by |
| // scaling the recurrence outside the loop, but this technique isn't generally |
| // applicable. Expanding a nested recurrence outside a loop requires computing |
| // binomial coefficients. This could be done, but the recurrence has to be in a |
| // perfectly reduced form, which can't be guaranteed. |
| struct SCEVFindUnsafe { |
| ScalarEvolution &SE; |
| bool IsUnsafe; |
| |
| SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} |
| |
| bool follow(const SCEV *S) { |
| if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { |
| const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); |
| if (!SC || SC->getValue()->isZero()) { |
| IsUnsafe = true; |
| return false; |
| } |
| } |
| if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| const SCEV *Step = AR->getStepRecurrence(SE); |
| if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { |
| IsUnsafe = true; |
| return false; |
| } |
| } |
| return true; |
| } |
| bool isDone() const { return IsUnsafe; } |
| }; |
| } |
| |
| namespace llvm { |
| bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { |
| SCEVFindUnsafe Search(SE); |
| visitAll(S, Search); |
| return !Search.IsUnsafe; |
| } |
| |
| bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, |
| ScalarEvolution &SE) { |
| return isSafeToExpand(S, SE) && SE.dominates(S, InsertionPoint->getParent()); |
| } |
| } |