| // Copyright (c) 2018 Google LLC. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // This file implements the SSA rewriting algorithm proposed in |
| // |
| // Simple and Efficient Construction of Static Single Assignment Form. |
| // Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013) |
| // In: Jhala R., De Bosschere K. (eds) |
| // Compiler Construction. CC 2013. |
| // Lecture Notes in Computer Science, vol 7791. |
| // Springer, Berlin, Heidelberg |
| // |
| // https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6 |
| // |
| // In contrast to common eager algorithms based on dominance and dominance |
| // frontier information, this algorithm works backwards from load operations. |
| // |
| // When a target variable is loaded, it queries the variable's reaching |
| // definition. If the reaching definition is unknown at the current location, |
| // it searches backwards in the CFG, inserting Phi instructions at join points |
| // in the CFG along the way until it finds the desired store instruction. |
| // |
| // The algorithm avoids repeated lookups using memoization. |
| // |
| // For reducible CFGs, which are a superset of the structured CFGs in SPIRV, |
| // this algorithm is proven to produce minimal SSA. That is, it inserts the |
| // minimal number of Phi instructions required to ensure the SSA property, but |
| // some Phi instructions may be dead |
| // (https://en.wikipedia.org/wiki/Static_single_assignment_form). |
| |
| #include "source/opt/ssa_rewrite_pass.h" |
| |
| #include <memory> |
| #include <sstream> |
| |
| #include "source/opcode.h" |
| #include "source/opt/cfg.h" |
| #include "source/opt/mem_pass.h" |
| #include "source/util/make_unique.h" |
| |
| // Debug logging (0: Off, 1-N: Verbosity level). Replace this with the |
| // implementation done for |
| // https://github.com/KhronosGroup/SPIRV-Tools/issues/1351 |
| // #define SSA_REWRITE_DEBUGGING_LEVEL 3 |
| |
| #ifdef SSA_REWRITE_DEBUGGING_LEVEL |
| #include <ostream> |
| #else |
| #define SSA_REWRITE_DEBUGGING_LEVEL 0 |
| #endif |
| |
| namespace spvtools { |
| namespace opt { |
| |
| namespace { |
| const uint32_t kStoreValIdInIdx = 1; |
| const uint32_t kVariableInitIdInIdx = 1; |
| } // namespace |
| |
| std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const { |
| std::ostringstream str; |
| str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id() |
| << "]("; |
| if (phi_args_.size() > 0) { |
| uint32_t arg_ix = 0; |
| for (uint32_t pred_label : cfg->preds(bb_->id())) { |
| uint32_t arg_id = phi_args_[arg_ix++]; |
| str << "[%" << arg_id << ", bb(%" << pred_label << ")] "; |
| } |
| } |
| str << ")"; |
| if (copy_of_ != 0) { |
| str << " [COPY OF " << copy_of_ << "]"; |
| } |
| str << ((is_complete_) ? " [COMPLETE]" : " [INCOMPLETE]"); |
| |
| return str.str(); |
| } |
| |
| SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id, |
| BasicBlock* bb) { |
| // TODO(1841): Handle id overflow. |
| uint32_t phi_result_id = pass_->context()->TakeNextId(); |
| auto result = phi_candidates_.emplace( |
| phi_result_id, PhiCandidate(var_id, phi_result_id, bb)); |
| PhiCandidate& phi_candidate = result.first->second; |
| return phi_candidate; |
| } |
| |
| void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove, |
| uint32_t repl_id) { |
| for (uint32_t user_id : phi_to_remove.users()) { |
| PhiCandidate* user_phi = GetPhiCandidate(user_id); |
| if (user_phi) { |
| // If the user is a Phi candidate, replace all arguments that refer to |
| // |phi_to_remove.result_id()| with |repl_id|. |
| for (uint32_t& arg : user_phi->phi_args()) { |
| if (arg == phi_to_remove.result_id()) { |
| arg = repl_id; |
| } |
| } |
| } else { |
| // For regular loads, traverse the |load_replacement_| table looking for |
| // instances of |phi_to_remove|. |
| for (auto& it : load_replacement_) { |
| if (it.second == phi_to_remove.result_id()) { |
| it.second = repl_id; |
| } |
| } |
| } |
| } |
| } |
| |
| uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) { |
| uint32_t same_id = 0; |
| for (uint32_t arg_id : phi_candidate->phi_args()) { |
| if (arg_id == same_id || arg_id == phi_candidate->result_id()) { |
| // This is a self-reference operand or a reference to the same value ID. |
| continue; |
| } |
| if (same_id != 0) { |
| // This Phi candidate merges at least two values. Therefore, it is not |
| // trivial. |
| assert(phi_candidate->copy_of() == 0 && |
| "Phi candidate transitioning from copy to non-copy."); |
| return phi_candidate->result_id(); |
| } |
| same_id = arg_id; |
| } |
| |
| // The previous logic has determined that this Phi candidate |phi_candidate| |
| // is trivial. It is essentially the copy operation phi_candidate->phi_result |
| // = Phi(same, same, same, ...). Since it is not necessary, we can re-route |
| // all the users of |phi_candidate->phi_result| to all its users, and remove |
| // |phi_candidate|. |
| |
| // Mark the Phi candidate as a trivial copy of |same_id|, so it won't be |
| // generated. |
| phi_candidate->MarkCopyOf(same_id); |
| |
| assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments"); |
| |
| // Since |phi_candidate| always produces |same_id|, replace all the users of |
| // |phi_candidate| with |same_id|. |
| ReplacePhiUsersWith(*phi_candidate, same_id); |
| |
| return same_id; |
| } |
| |
| uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) { |
| assert(phi_candidate->phi_args().size() == 0 && |
| "Phi candidate already has arguments"); |
| |
| bool found_0_arg = false; |
| for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) { |
| BasicBlock* pred_bb = pass_->cfg()->block(pred); |
| |
| // If |pred_bb| is not sealed, use %0 to indicate that |
| // |phi_candidate| needs to be completed after the whole CFG has |
| // been processed. |
| // |
| // Note that we cannot call GetReachingDef() in these cases |
| // because this would generate an empty Phi candidate in |
| // |pred_bb|. When |pred_bb| is later processed, a new definition |
| // for |phi_candidate->var_id_| will be lost because |
| // |phi_candidate| will still be reached by the empty Phi. |
| // |
| // Consider: |
| // |
| // BB %23: |
| // %38 = Phi[%i](%int_0[%1], %39[%25]) |
| // |
| // ... |
| // |
| // BB %25: [Starts unsealed] |
| // %39 = Phi[%i]() |
| // %34 = ... |
| // OpStore %i %34 -> Currdef(%i) at %25 is %34 |
| // OpBranch %23 |
| // |
| // When we first create the Phi in %38, we add an operandless Phi in |
| // %39 to hold the unknown reaching def for %i. |
| // |
| // But then, when we go to complete %39 at the end. The reaching def |
| // for %i in %25's predecessor is %38 itself. So we miss the fact |
| // that %25 has a def for %i that should be used. |
| // |
| // By making the argument %0, we make |phi_candidate| incomplete, |
| // which will cause it to be completed after the whole CFG has |
| // been scanned. |
| uint32_t arg_id = IsBlockSealed(pred_bb) |
| ? GetReachingDef(phi_candidate->var_id(), pred_bb) |
| : 0; |
| phi_candidate->phi_args().push_back(arg_id); |
| |
| if (arg_id == 0) { |
| found_0_arg = true; |
| } else { |
| // If this argument is another Phi candidate, add |phi_candidate| to the |
| // list of users for the defining Phi. |
| PhiCandidate* defining_phi = GetPhiCandidate(arg_id); |
| if (defining_phi && defining_phi != phi_candidate) { |
| defining_phi->AddUser(phi_candidate->result_id()); |
| } |
| } |
| } |
| |
| // If we could not fill-in all the arguments of this Phi, mark it incomplete |
| // so it gets completed after the whole CFG has been processed. |
| if (found_0_arg) { |
| phi_candidate->MarkIncomplete(); |
| incomplete_phis_.push(phi_candidate); |
| return phi_candidate->result_id(); |
| } |
| |
| // Try to remove |phi_candidate|, if it's trivial. |
| uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate); |
| if (repl_id == phi_candidate->result_id()) { |
| // |phi_candidate| is complete and not trivial. Add it to the |
| // list of Phi candidates to generate. |
| phi_candidate->MarkComplete(); |
| phis_to_generate_.push_back(phi_candidate); |
| } |
| |
| return repl_id; |
| } |
| |
| uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) { |
| // If |var_id| has a definition in |bb|, return it. |
| const auto& bb_it = defs_at_block_.find(bb); |
| if (bb_it != defs_at_block_.end()) { |
| const auto& current_defs = bb_it->second; |
| const auto& var_it = current_defs.find(var_id); |
| if (var_it != current_defs.end()) { |
| return var_it->second; |
| } |
| } |
| |
| // Otherwise, look up the value for |var_id| in |bb|'s predecessors. |
| uint32_t val_id = 0; |
| auto& predecessors = pass_->cfg()->preds(bb->id()); |
| if (predecessors.size() == 1) { |
| // If |bb| has exactly one predecessor, we look for |var_id|'s definition |
| // there. |
| val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0])); |
| } else if (predecessors.size() > 1) { |
| // If there is more than one predecessor, this is a join block which may |
| // require a Phi instruction. This will act as |var_id|'s current |
| // definition to break potential cycles. |
| PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb); |
| WriteVariable(var_id, bb, phi_candidate.result_id()); |
| val_id = AddPhiOperands(&phi_candidate); |
| } |
| |
| // If we could not find a store for this variable in the path from the root |
| // of the CFG, the variable is not defined, so we use undef. |
| if (val_id == 0) { |
| val_id = pass_->GetUndefVal(var_id); |
| } |
| |
| WriteVariable(var_id, bb, val_id); |
| |
| return val_id; |
| } |
| |
| void SSARewriter::SealBlock(BasicBlock* bb) { |
| auto result = sealed_blocks_.insert(bb); |
| (void)result; |
| assert(result.second == true && |
| "Tried to seal the same basic block more than once."); |
| } |
| |
| void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) { |
| auto opcode = inst->opcode(); |
| assert((opcode == SpvOpStore || opcode == SpvOpVariable) && |
| "Expecting a store or a variable definition instruction."); |
| |
| uint32_t var_id = 0; |
| uint32_t val_id = 0; |
| if (opcode == SpvOpStore) { |
| (void)pass_->GetPtr(inst, &var_id); |
| val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx); |
| } else if (inst->NumInOperands() >= 2) { |
| var_id = inst->result_id(); |
| val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx); |
| } |
| if (pass_->IsTargetVar(var_id)) { |
| WriteVariable(var_id, bb, val_id); |
| |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
| std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': " |
| << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) |
| << "\n"; |
| #endif |
| } |
| } |
| |
| void SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) { |
| uint32_t var_id = 0; |
| (void)pass_->GetPtr(inst, &var_id); |
| if (pass_->IsTargetVar(var_id)) { |
| // Get the immediate reaching definition for |var_id|. |
| uint32_t val_id = GetReachingDef(var_id, bb); |
| |
| // Schedule a replacement for the result of this load instruction with |
| // |val_id|. After all the rewriting decisions are made, every use of |
| // this load will be replaced with |val_id|. |
| const uint32_t load_id = inst->result_id(); |
| assert(load_replacement_.count(load_id) == 0); |
| load_replacement_[load_id] = val_id; |
| PhiCandidate* defining_phi = GetPhiCandidate(val_id); |
| if (defining_phi) { |
| defining_phi->AddUser(load_id); |
| } |
| |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
| std::cerr << "\tFound load: " |
| << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) |
| << " (replacement for %" << load_id << " is %" << val_id << ")\n"; |
| #endif |
| } |
| } |
| |
| void SSARewriter::PrintPhiCandidates() const { |
| std::cerr << "\nPhi candidates:\n"; |
| for (const auto& phi_it : phi_candidates_) { |
| std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": " |
| << phi_it.second.PrettyPrint(pass_->cfg()) << "\n"; |
| } |
| std::cerr << "\n"; |
| } |
| |
| void SSARewriter::PrintReplacementTable() const { |
| std::cerr << "\nLoad replacement table\n"; |
| for (const auto& it : load_replacement_) { |
| std::cerr << "\t%" << it.first << " -> %" << it.second << "\n"; |
| } |
| std::cerr << "\n"; |
| } |
| |
| void SSARewriter::GenerateSSAReplacements(BasicBlock* bb) { |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
| std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n"; |
| std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) |
| << "\n"; |
| #endif |
| |
| for (auto& inst : *bb) { |
| auto opcode = inst.opcode(); |
| if (opcode == SpvOpStore || opcode == SpvOpVariable) { |
| ProcessStore(&inst, bb); |
| } else if (inst.opcode() == SpvOpLoad) { |
| ProcessLoad(&inst, bb); |
| } |
| } |
| |
| // Seal |bb|. This means that all the stores in it have been scanned and it's |
| // ready to feed them into its successors. |
| SealBlock(bb); |
| |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
| PrintPhiCandidates(); |
| PrintReplacementTable(); |
| std::cerr << "\n\n"; |
| #endif |
| } |
| |
| uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) { |
| uint32_t val_id = repl.second; |
| auto it = load_replacement_.find(val_id); |
| while (it != load_replacement_.end()) { |
| val_id = it->second; |
| it = load_replacement_.find(val_id); |
| } |
| return val_id; |
| } |
| |
| uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate, |
| uint32_t ix) { |
| assert(phi_candidate->IsReady() && |
| "Tried to get the final argument from an incomplete/trivial Phi"); |
| |
| uint32_t arg_id = phi_candidate->phi_args()[ix]; |
| while (arg_id != 0) { |
| PhiCandidate* phi_user = GetPhiCandidate(arg_id); |
| if (phi_user == nullptr || phi_user->IsReady()) { |
| // If the argument is not a Phi or it's a Phi candidate ready to be |
| // emitted, return it. |
| return arg_id; |
| } |
| arg_id = phi_user->copy_of(); |
| } |
| |
| assert(false && |
| "No Phi candidates in the copy-of chain are ready to be generated"); |
| |
| return 0; |
| } |
| |
| bool SSARewriter::ApplyReplacements() { |
| bool modified = false; |
| |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 2 |
| std::cerr << "\n\nApplying replacement decisions to IR\n\n"; |
| PrintPhiCandidates(); |
| PrintReplacementTable(); |
| std::cerr << "\n\n"; |
| #endif |
| |
| // Add Phi instructions from completed Phi candidates. |
| std::vector<Instruction*> generated_phis; |
| for (const PhiCandidate* phi_candidate : phis_to_generate_) { |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 2 |
| std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg()) |
| << "\n"; |
| #endif |
| |
| assert(phi_candidate->is_complete() && |
| "Tried to instantiate a Phi instruction from an incomplete Phi " |
| "candidate"); |
| |
| // Build the vector of operands for the new OpPhi instruction. |
| uint32_t type_id = pass_->GetPointeeTypeId( |
| pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id())); |
| std::vector<Operand> phi_operands; |
| uint32_t arg_ix = 0; |
| std::unordered_map<uint32_t, uint32_t> already_seen; |
| for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) { |
| uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++); |
| if (already_seen.count(pred_label) == 0) { |
| phi_operands.push_back( |
| {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}}); |
| phi_operands.push_back( |
| {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}}); |
| already_seen[pred_label] = op_val_id; |
| } else { |
| // It is possible that there are two edges from the same parent block. |
| // Since the OpPhi can have only one entry for each parent, we have to |
| // make sure the two edges are consistent with each other. |
| assert(already_seen[pred_label] == op_val_id && |
| "Inconsistent value for duplicate edges."); |
| } |
| } |
| |
| // Generate a new OpPhi instruction and insert it in its basic |
| // block. |
| std::unique_ptr<Instruction> phi_inst( |
| new Instruction(pass_->context(), SpvOpPhi, type_id, |
| phi_candidate->result_id(), phi_operands)); |
| generated_phis.push_back(phi_inst.get()); |
| pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst); |
| pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb()); |
| auto insert_it = phi_candidate->bb()->begin(); |
| insert_it.InsertBefore(std::move(phi_inst)); |
| pass_->context()->get_decoration_mgr()->CloneDecorations( |
| phi_candidate->var_id(), phi_candidate->result_id(), |
| {SpvDecorationRelaxedPrecision}); |
| |
| modified = true; |
| } |
| |
| // Scan uses for all inserted Phi instructions. Do this separately from the |
| // registration of the Phi instruction itself to avoid trying to analyze uses |
| // of Phi instructions that have not been registered yet. |
| for (Instruction* phi_inst : generated_phis) { |
| pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst); |
| } |
| |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
| std::cerr << "\n\nReplacing the result of load instructions with the " |
| "corresponding SSA id\n\n"; |
| #endif |
| |
| // Apply replacements from the load replacement table. |
| for (auto& repl : load_replacement_) { |
| uint32_t load_id = repl.first; |
| uint32_t val_id = GetReplacement(repl); |
| Instruction* load_inst = |
| pass_->context()->get_def_use_mgr()->GetDef(load_id); |
| |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 2 |
| std::cerr << "\t" |
| << load_inst->PrettyPrint( |
| SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES) |
| << " (%" << load_id << " -> %" << val_id << ")\n"; |
| #endif |
| |
| // Remove the load instruction and replace all the uses of this load's |
| // result with |val_id|. Kill any names or decorates using the load's |
| // result before replacing to prevent incorrect replacement in those |
| // instructions. |
| pass_->context()->KillNamesAndDecorates(load_id); |
| pass_->context()->ReplaceAllUsesWith(load_id, val_id); |
| pass_->context()->KillInst(load_inst); |
| modified = true; |
| } |
| |
| return modified; |
| } |
| |
| void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) { |
| assert(phi_candidate->phi_args().size() > 0 && |
| "Phi candidate should have arguments"); |
| |
| uint32_t ix = 0; |
| for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) { |
| BasicBlock* pred_bb = pass_->cfg()->block(pred); |
| uint32_t& arg_id = phi_candidate->phi_args()[ix++]; |
| if (arg_id == 0) { |
| // If |pred_bb| is still not sealed, it means it's unreachable. In this |
| // case, we just use Undef as an argument. |
| arg_id = IsBlockSealed(pred_bb) |
| ? GetReachingDef(phi_candidate->var_id(), pred_bb) |
| : pass_->GetUndefVal(phi_candidate->var_id()); |
| } |
| } |
| |
| // This candidate is now completed. |
| phi_candidate->MarkComplete(); |
| |
| // If |phi_candidate| is not trivial, add it to the list of Phis to generate. |
| if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) { |
| // If we could not remove |phi_candidate|, it means that it is complete |
| // and not trivial. Add it to the list of Phis to generate. |
| assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial."); |
| phis_to_generate_.push_back(phi_candidate); |
| } |
| } |
| |
| void SSARewriter::FinalizePhiCandidates() { |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 1 |
| std::cerr << "Finalizing Phi candidates:\n\n"; |
| PrintPhiCandidates(); |
| std::cerr << "\n"; |
| #endif |
| |
| // Now, complete the collected candidates. |
| while (incomplete_phis_.size() > 0) { |
| PhiCandidate* phi_candidate = incomplete_phis_.front(); |
| incomplete_phis_.pop(); |
| FinalizePhiCandidate(phi_candidate); |
| } |
| } |
| |
| bool SSARewriter::RewriteFunctionIntoSSA(Function* fp) { |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 0 |
| std::cerr << "Function before SSA rewrite:\n" |
| << fp->PrettyPrint(0) << "\n\n\n"; |
| #endif |
| |
| // Collect variables that can be converted into SSA IDs. |
| pass_->CollectTargetVars(fp); |
| |
| // Generate all the SSA replacements and Phi candidates. This will |
| // generate incomplete and trivial Phis. |
| pass_->cfg()->ForEachBlockInReversePostOrder( |
| fp->entry().get(), |
| [this](BasicBlock* bb) { GenerateSSAReplacements(bb); }); |
| |
| // Remove trivial Phis and add arguments to incomplete Phis. |
| FinalizePhiCandidates(); |
| |
| // Finally, apply all the replacements in the IR. |
| bool modified = ApplyReplacements(); |
| |
| #if SSA_REWRITE_DEBUGGING_LEVEL > 0 |
| std::cerr << "\n\n\nFunction after SSA rewrite:\n" |
| << fp->PrettyPrint(0) << "\n"; |
| #endif |
| |
| return modified; |
| } |
| |
| Pass::Status SSARewritePass::Process() { |
| bool modified = false; |
| for (auto& fn : *get_module()) { |
| modified |= SSARewriter(this).RewriteFunctionIntoSSA(&fn); |
| } |
| return modified ? Pass::Status::SuccessWithChange |
| : Pass::Status::SuccessWithoutChange; |
| } |
| |
| } // namespace opt |
| } // namespace spvtools |