| // Copyright (c) 2018 Google LLC. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASI, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |
| #define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |
| |
| #include <algorithm> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include "source/opt/tree_iterator.h" |
| |
| namespace spvtools { |
| namespace opt { |
| |
| class Loop; |
| class ScalarEvolutionAnalysis; |
| class SEConstantNode; |
| class SERecurrentNode; |
| class SEAddNode; |
| class SEMultiplyNode; |
| class SENegative; |
| class SEValueUnknown; |
| class SECantCompute; |
| |
| // Abstract class representing a node in the scalar evolution DAG. Each node |
| // contains a vector of pointers to its children and each subclass of SENode |
| // implements GetType and an As method to allow casting. SENodes can be hashed |
| // using the SENodeHash functor. The vector of children is sorted when a node is |
| // added. This is important as it allows the hash of X+Y to be the same as Y+X. |
| class SENode { |
| public: |
| enum SENodeType { |
| Constant, |
| RecurrentAddExpr, |
| Add, |
| Multiply, |
| Negative, |
| ValueUnknown, |
| CanNotCompute |
| }; |
| |
| using ChildContainerType = std::vector<SENode*>; |
| |
| explicit SENode(ScalarEvolutionAnalysis* parent_analysis) |
| : parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {} |
| |
| virtual SENodeType GetType() const = 0; |
| |
| virtual ~SENode() {} |
| |
| virtual inline void AddChild(SENode* child) { |
| // If this is a constant node, assert. |
| if (AsSEConstantNode()) { |
| assert(false && "Trying to add a child node to a constant!"); |
| } |
| |
| // Find the first point in the vector where |child| is greater than the node |
| // currently in the vector. |
| auto find_first_less_than = [child](const SENode* node) { |
| return child->unique_id_ <= node->unique_id_; |
| }; |
| |
| auto position = std::find_if_not(children_.begin(), children_.end(), |
| find_first_less_than); |
| // Children are sorted so the hashing and equality operator will be the same |
| // for a node with the same children. X+Y should be the same as Y+X. |
| children_.insert(position, child); |
| } |
| |
| // Get the type as an std::string. This is used to represent the node in the |
| // dot output and is used to hash the type as well. |
| std::string AsString() const; |
| |
| // Dump the SENode and its immediate children, if |recurse| is true then it |
| // will recurse through all children to print the DAG starting from this node |
| // as a root. |
| void DumpDot(std::ostream& out, bool recurse = false) const; |
| |
| // Checks if two nodes are the same by hashing them. |
| bool operator==(const SENode& other) const; |
| |
| // Checks if two nodes are not the same by comparing the hashes. |
| bool operator!=(const SENode& other) const; |
| |
| // Return the child node at |index|. |
| inline SENode* GetChild(size_t index) { return children_[index]; } |
| inline const SENode* GetChild(size_t index) const { return children_[index]; } |
| |
| // Iterator to iterate over the child nodes. |
| using iterator = ChildContainerType::iterator; |
| using const_iterator = ChildContainerType::const_iterator; |
| |
| // Iterate over immediate child nodes. |
| iterator begin() { return children_.begin(); } |
| iterator end() { return children_.end(); } |
| |
| // Constant overloads for iterating over immediate child nodes. |
| const_iterator begin() const { return children_.cbegin(); } |
| const_iterator end() const { return children_.cend(); } |
| const_iterator cbegin() { return children_.cbegin(); } |
| const_iterator cend() { return children_.cend(); } |
| |
| // Collect all the recurrent nodes in this SENode |
| std::vector<SERecurrentNode*> CollectRecurrentNodes() { |
| std::vector<SERecurrentNode*> recurrent_nodes{}; |
| |
| if (auto recurrent_node = AsSERecurrentNode()) { |
| recurrent_nodes.push_back(recurrent_node); |
| } |
| |
| for (auto child : GetChildren()) { |
| auto child_recurrent_nodes = child->CollectRecurrentNodes(); |
| recurrent_nodes.insert(recurrent_nodes.end(), |
| child_recurrent_nodes.begin(), |
| child_recurrent_nodes.end()); |
| } |
| |
| return recurrent_nodes; |
| } |
| |
| // Collect all the value unknown nodes in this SENode |
| std::vector<SEValueUnknown*> CollectValueUnknownNodes() { |
| std::vector<SEValueUnknown*> value_unknown_nodes{}; |
| |
| if (auto value_unknown_node = AsSEValueUnknown()) { |
| value_unknown_nodes.push_back(value_unknown_node); |
| } |
| |
| for (auto child : GetChildren()) { |
| auto child_value_unknown_nodes = child->CollectValueUnknownNodes(); |
| value_unknown_nodes.insert(value_unknown_nodes.end(), |
| child_value_unknown_nodes.begin(), |
| child_value_unknown_nodes.end()); |
| } |
| |
| return value_unknown_nodes; |
| } |
| |
| // Iterator to iterate over the entire DAG. Even though we are using the tree |
| // iterator it should still be safe to iterate over. However, nodes with |
| // multiple parents will be visited multiple times, unlike in a tree. |
| using dag_iterator = TreeDFIterator<SENode>; |
| using const_dag_iterator = TreeDFIterator<const SENode>; |
| |
| // Iterate over all child nodes in the graph. |
| dag_iterator graph_begin() { return dag_iterator(this); } |
| dag_iterator graph_end() { return dag_iterator(); } |
| const_dag_iterator graph_begin() const { return graph_cbegin(); } |
| const_dag_iterator graph_end() const { return graph_cend(); } |
| const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); } |
| const_dag_iterator graph_cend() const { return const_dag_iterator(); } |
| |
| // Return the vector of immediate children. |
| const ChildContainerType& GetChildren() const { return children_; } |
| ChildContainerType& GetChildren() { return children_; } |
| |
| // Return true if this node is a cant compute node. |
| bool IsCantCompute() const { return GetType() == CanNotCompute; } |
| |
| // Implements a casting method for each type. |
| #define DeclareCastMethod(target) \ |
| virtual target* As##target() { return nullptr; } \ |
| virtual const target* As##target() const { return nullptr; } |
| DeclareCastMethod(SEConstantNode); |
| DeclareCastMethod(SERecurrentNode); |
| DeclareCastMethod(SEAddNode); |
| DeclareCastMethod(SEMultiplyNode); |
| DeclareCastMethod(SENegative); |
| DeclareCastMethod(SEValueUnknown); |
| DeclareCastMethod(SECantCompute); |
| #undef DeclareCastMethod |
| |
| // Get the analysis which has this node in its cache. |
| inline ScalarEvolutionAnalysis* GetParentAnalysis() const { |
| return parent_analysis_; |
| } |
| |
| protected: |
| ChildContainerType children_; |
| |
| ScalarEvolutionAnalysis* parent_analysis_; |
| |
| // The unique id of this node, assigned on creation by incrementing the static |
| // node count. |
| uint32_t unique_id_; |
| |
| // The number of nodes created. |
| static uint32_t NumberOfNodes; |
| }; |
| |
| // Function object to handle the hashing of SENodes. Hashing algorithm hashes |
| // the type (as a string), the literal value of any constants, and the child |
| // pointers which are assumed to be unique. |
| struct SENodeHash { |
| size_t operator()(const std::unique_ptr<SENode>& node) const; |
| size_t operator()(const SENode* node) const; |
| }; |
| |
| // A node representing a constant integer. |
| class SEConstantNode : public SENode { |
| public: |
| SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value) |
| : SENode(parent_analysis), literal_value_(value) {} |
| |
| SENodeType GetType() const final { return Constant; } |
| |
| int64_t FoldToSingleValue() const { return literal_value_; } |
| |
| SEConstantNode* AsSEConstantNode() override { return this; } |
| const SEConstantNode* AsSEConstantNode() const override { return this; } |
| |
| inline void AddChild(SENode*) final { |
| assert(false && "Attempting to add a child to a constant node!"); |
| } |
| |
| protected: |
| int64_t literal_value_; |
| }; |
| |
| // A node representing a recurrent expression in the code. A recurrent |
| // expression is an expression whose value can be expressed as a linear |
| // expression of the loop iterations. Such as an induction variable. The actual |
| // value of a recurrent expression is coefficent_ * iteration + offset_, hence |
| // an induction variable i=0, i++ becomes a recurrent expression with an offset |
| // of zero and a coefficient of one. |
| class SERecurrentNode : public SENode { |
| public: |
| SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop) |
| : SENode(parent_analysis), loop_(loop) {} |
| |
| SENodeType GetType() const final { return RecurrentAddExpr; } |
| |
| inline void AddCoefficient(SENode* child) { |
| coefficient_ = child; |
| SENode::AddChild(child); |
| } |
| |
| inline void AddOffset(SENode* child) { |
| offset_ = child; |
| SENode::AddChild(child); |
| } |
| |
| inline const SENode* GetCoefficient() const { return coefficient_; } |
| inline SENode* GetCoefficient() { return coefficient_; } |
| |
| inline const SENode* GetOffset() const { return offset_; } |
| inline SENode* GetOffset() { return offset_; } |
| |
| // Return the loop which this recurrent expression is recurring within. |
| const Loop* GetLoop() const { return loop_; } |
| |
| SERecurrentNode* AsSERecurrentNode() override { return this; } |
| const SERecurrentNode* AsSERecurrentNode() const override { return this; } |
| |
| private: |
| SENode* coefficient_; |
| SENode* offset_; |
| const Loop* loop_; |
| }; |
| |
| // A node representing an addition operation between child nodes. |
| class SEAddNode : public SENode { |
| public: |
| explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis) |
| : SENode(parent_analysis) {} |
| |
| SENodeType GetType() const final { return Add; } |
| |
| SEAddNode* AsSEAddNode() override { return this; } |
| const SEAddNode* AsSEAddNode() const override { return this; } |
| }; |
| |
| // A node representing a multiply operation between child nodes. |
| class SEMultiplyNode : public SENode { |
| public: |
| explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis) |
| : SENode(parent_analysis) {} |
| |
| SENodeType GetType() const final { return Multiply; } |
| |
| SEMultiplyNode* AsSEMultiplyNode() override { return this; } |
| const SEMultiplyNode* AsSEMultiplyNode() const override { return this; } |
| }; |
| |
| // A node representing a unary negative operation. |
| class SENegative : public SENode { |
| public: |
| explicit SENegative(ScalarEvolutionAnalysis* parent_analysis) |
| : SENode(parent_analysis) {} |
| |
| SENodeType GetType() const final { return Negative; } |
| |
| SENegative* AsSENegative() override { return this; } |
| const SENegative* AsSENegative() const override { return this; } |
| }; |
| |
| // A node representing a value which we do not know the value of, such as a load |
| // instruction. |
| class SEValueUnknown : public SENode { |
| public: |
| // SEValueUnknowns must come from an instruction |unique_id| is the unique id |
| // of that instruction. This is so we cancompare value unknowns and have a |
| // unique value unknown for each instruction. |
| SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id) |
| : SENode(parent_analysis), result_id_(result_id) {} |
| |
| SENodeType GetType() const final { return ValueUnknown; } |
| |
| SEValueUnknown* AsSEValueUnknown() override { return this; } |
| const SEValueUnknown* AsSEValueUnknown() const override { return this; } |
| |
| inline uint32_t ResultId() const { return result_id_; } |
| |
| private: |
| uint32_t result_id_; |
| }; |
| |
| // A node which we cannot reason about at all. |
| class SECantCompute : public SENode { |
| public: |
| explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis) |
| : SENode(parent_analysis) {} |
| |
| SENodeType GetType() const final { return CanNotCompute; } |
| |
| SECantCompute* AsSECantCompute() override { return this; } |
| const SECantCompute* AsSECantCompute() const override { return this; } |
| }; |
| |
| } // namespace opt |
| } // namespace spvtools |
| #endif // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_ |