| // Copyright (c) 2017 Google Inc. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #ifndef SOURCE_OPT_PROPAGATOR_H_ |
| #define SOURCE_OPT_PROPAGATOR_H_ |
| |
| #include <functional> |
| #include <queue> |
| #include <set> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "source/opt/ir_context.h" |
| #include "source/opt/module.h" |
| |
| namespace spvtools { |
| namespace opt { |
| |
| // Represents a CFG control edge. |
| struct Edge { |
| Edge(BasicBlock* b1, BasicBlock* b2) : source(b1), dest(b2) { |
| assert(source && "CFG edges cannot have a null source block."); |
| assert(dest && "CFG edges cannot have a null destination block."); |
| } |
| BasicBlock* source; |
| BasicBlock* dest; |
| bool operator<(const Edge& o) const { |
| return std::make_pair(source->id(), dest->id()) < |
| std::make_pair(o.source->id(), o.dest->id()); |
| } |
| }; |
| |
| // This class implements a generic value propagation algorithm based on the |
| // conditional constant propagation algorithm proposed in |
| // |
| // Constant propagation with conditional branches, |
| // Wegman and Zadeck, ACM TOPLAS 13(2):181-210. |
| // |
| // A Propagation Engine for GCC |
| // Diego Novillo, GCC Summit 2005 |
| // http://ols.fedoraproject.org/GCC/Reprints-2005/novillo-Reprint.pdf |
| // |
| // The purpose of this implementation is to act as a common framework for any |
| // transformation that needs to propagate values from statements producing new |
| // values to statements using those values. Simulation proceeds as follows: |
| // |
| // 1- Initially, all edges of the CFG are marked not executable and the CFG |
| // worklist is seeded with all the statements in the entry basic block. |
| // |
| // 2- Every instruction I is simulated by calling a pass-provided function |
| // |visit_fn|. This function is responsible for three things: |
| // |
| // (a) Keep a value table of interesting values. This table maps SSA IDs to |
| // their values. For instance, when implementing constant propagation, |
| // given a store operation 'OpStore %f %int_3', |visit_fn| should assign |
| // the value 3 to the table slot for %f. |
| // |
| // In general, |visit_fn| will need to use the value table to replace its |
| // operands, fold the result and decide whether a new value needs to be |
| // stored in the table. |visit_fn| should only create a new mapping in |
| // the value table if all the operands in the instruction are known and |
| // present in the value table. |
| // |
| // (b) Return a status indicator to direct the propagator logic. Once the |
| // instruction is simulated, the propagator needs to know whether this |
| // instruction produced something interesting. This is indicated via |
| // |visit_fn|'s return value: |
| // |
| // SSAPropagator::kNotInteresting: Instruction I produces nothing of |
| // interest and does not affect any of the work lists. The |
| // propagator will visit the statement again if any of its operands |
| // produce an interesting value in the future. |
| // |
| // |visit_fn| should always return this value when it is not sure |
| // whether the instruction will produce an interesting value in the |
| // future or not. For instance, for constant propagation, an OpIAdd |
| // instruction may produce a constant if its two operands are |
| // constant, but the first time we visit the instruction, we still |
| // may not have its operands in the value table. |
| // |
| // SSAPropagator::kVarying: The value produced by I cannot be determined |
| // at compile time. Further simulation of I is not required. The |
| // propagator will not visit this instruction again. Additionally, |
| // the propagator will add all the instructions at the end of SSA |
| // def-use edges to be simulated again. |
| // |
| // If I is a basic block terminator, it will mark all outgoing edges |
| // as executable so they are traversed one more time. Eventually |
| // the kVarying attribute will be spread out to all the data and |
| // control dependents for I. |
| // |
| // It is important for propagation to use kVarying as a bottom value |
| // for the propagation lattice. It should never be possible for an |
| // instruction to return kVarying once and kInteresting on a second |
| // visit. Otherwise, propagation would not stabilize. |
| // |
| // SSAPropagator::kInteresting: Instruction I produces a value that can |
| // be computed at compile time. In this case, |visit_fn| should |
| // create a new mapping between I's result ID and the produced |
| // value. Much like the kNotInteresting case, the propagator will |
| // visit this instruction again if any of its operands changes. |
| // This is useful when the statement changes from one interesting |
| // state to another. |
| // |
| // (c) For conditional branches, |visit_fn| may decide which edge to take out |
| // of I's basic block. For example, if the operand for an OpSwitch is |
| // known to take a specific constant value, |visit_fn| should figure out |
| // the destination basic block and pass it back by setting the second |
| // argument to |visit_fn|. |
| // |
| // At the end of propagation, values in the value table are guaranteed to be |
| // stable and can be replaced in the IR. |
| // |
| // 3- The propagator keeps two work queues. Instructions are only added to |
| // these queues if they produce an interesting or varying value. None of this |
| // should be handled by |visit_fn|. The propagator keeps track of this |
| // automatically (see SSAPropagator::Simulate for implementation). |
| // |
| // CFG blocks: contains the queue of blocks to be simulated. |
| // Blocks are added to this queue if their incoming edges are |
| // executable. |
| // |
| // SSA Edges: An SSA edge is a def-use edge between a value-producing |
| // instruction and its use instruction. The SSA edges list |
| // contains the statements at the end of a def-use edge that need |
| // to be re-visited when an instruction produces a kVarying or |
| // kInteresting result. |
| // |
| // 4- Simulation terminates when all work queues are drained. |
| // |
| // |
| // EXAMPLE: Basic constant store propagator. |
| // |
| // Suppose we want to propagate all constant assignments of the form "OpStore |
| // %id %cst" where "%id" is some variable and "%cst" an OpConstant. The |
| // following code builds a table |values| where every id that was assigned a |
| // constant value is mapped to the constant value it was assigned. |
| // |
| // auto ctx = BuildModule(...); |
| // std::map<uint32_t, uint32_t> values; |
| // const auto visit_fn = [&ctx, &values](Instruction* instr, |
| // BasicBlock** dest_bb) { |
| // if (instr->opcode() == SpvOpStore) { |
| // uint32_t rhs_id = instr->GetSingleWordOperand(1); |
| // Instruction* rhs_def = ctx->get_def_use_mgr()->GetDef(rhs_id); |
| // if (rhs_def->opcode() == SpvOpConstant) { |
| // uint32_t val = rhs_def->GetSingleWordOperand(2); |
| // values[rhs_id] = val; |
| // return SSAPropagator::kInteresting; |
| // } |
| // } |
| // return SSAPropagator::kVarying; |
| // }; |
| // SSAPropagator propagator(ctx.get(), &cfg, visit_fn); |
| // propagator.Run(&fn); |
| // |
| // Given the code: |
| // |
| // %int_4 = OpConstant %int 4 |
| // %int_3 = OpConstant %int 3 |
| // %int_1 = OpConstant %int 1 |
| // OpStore %x %int_4 |
| // OpStore %y %int_3 |
| // OpStore %z %int_1 |
| // |
| // After SSAPropagator::Run returns, the |values| map will contain the entries: |
| // values[%x] = 4, values[%y] = 3, and, values[%z] = 1. |
| class SSAPropagator { |
| public: |
| // Lattice values used for propagation. See class documentation for |
| // a description. |
| enum PropStatus { kNotInteresting, kInteresting, kVarying }; |
| |
| using VisitFunction = std::function<PropStatus(Instruction*, BasicBlock**)>; |
| |
| SSAPropagator(IRContext* context, const VisitFunction& visit_fn) |
| : ctx_(context), visit_fn_(visit_fn) {} |
| |
| // Runs the propagator on function |fn|. Returns true if changes were made to |
| // the function. Otherwise, it returns false. |
| bool Run(Function* fn); |
| |
| // Returns true if the |i|th argument for |phi| comes through a CFG edge that |
| // has been marked executable. |i| should be an index value accepted by |
| // Instruction::GetSingleWordOperand. |
| bool IsPhiArgExecutable(Instruction* phi, uint32_t i) const; |
| |
| // Returns true if |inst| has a recorded status. This will be true once |inst| |
| // has been simulated once. |
| bool HasStatus(Instruction* inst) const { return statuses_.count(inst); } |
| |
| // Returns the current propagation status of |inst|. Assumes |
| // |HasStatus(inst)| returns true. |
| PropStatus Status(Instruction* inst) const { |
| return statuses_.find(inst)->second; |
| } |
| |
| // Records the propagation status |status| for |inst|. Returns true if the |
| // status for |inst| has changed or set was set for the first time. |
| bool SetStatus(Instruction* inst, PropStatus status); |
| |
| private: |
| // Initialize processing. |
| void Initialize(Function* fn); |
| |
| // Simulate the execution |block| by calling |visit_fn_| on every instruction |
| // in it. |
| bool Simulate(BasicBlock* block); |
| |
| // Simulate the execution of |instr| by replacing all the known values in |
| // every operand and determining whether the result is interesting for |
| // propagation. This invokes the callback function |visit_fn_| to determine |
| // the value computed by |instr|. |
| bool Simulate(Instruction* instr); |
| |
| // Returns true if |instr| should be simulated again. |
| bool ShouldSimulateAgain(Instruction* instr) const { |
| return do_not_simulate_.find(instr) == do_not_simulate_.end(); |
| } |
| |
| // Add |instr| to the set of instructions not to simulate again. |
| void DontSimulateAgain(Instruction* instr) { do_not_simulate_.insert(instr); } |
| |
| // Returns true if |block| has been simulated already. |
| bool BlockHasBeenSimulated(BasicBlock* block) const { |
| return simulated_blocks_.find(block) != simulated_blocks_.end(); |
| } |
| |
| // Marks block |block| as simulated. |
| void MarkBlockSimulated(BasicBlock* block) { |
| simulated_blocks_.insert(block); |
| } |
| |
| // Marks |edge| as executable. Returns false if the edge was already marked |
| // as executable. |
| bool MarkEdgeExecutable(const Edge& edge) { |
| return executable_edges_.insert(edge).second; |
| } |
| |
| // Returns true if |edge| has been marked as executable. |
| bool IsEdgeExecutable(const Edge& edge) const { |
| return executable_edges_.find(edge) != executable_edges_.end(); |
| } |
| |
| // Returns a pointer to the def-use manager for |ctx_|. |
| analysis::DefUseManager* get_def_use_mgr() const { |
| return ctx_->get_def_use_mgr(); |
| } |
| |
| // If the CFG edge |e| has not been executed, this function adds |e|'s |
| // destination block to the work list. |
| void AddControlEdge(const Edge& e); |
| |
| // Adds all the instructions that use the result of |instr| to the SSA edges |
| // work list. If |instr| produces no result id, this does nothing. |
| void AddSSAEdges(Instruction* instr); |
| |
| // IR context to use. |
| IRContext* ctx_; |
| |
| // Function that visits instructions during simulation. The output of this |
| // function is used to determine if the simulated instruction produced a value |
| // interesting for propagation. The function is responsible for keeping |
| // track of interesting values by storing them in some user-provided map. |
| VisitFunction visit_fn_; |
| |
| // SSA def-use edges to traverse. Each entry is a destination statement for an |
| // SSA def-use edge as returned by |def_use_manager_|. |
| std::queue<Instruction*> ssa_edge_uses_; |
| |
| // Blocks to simulate. |
| std::queue<BasicBlock*> blocks_; |
| |
| // Blocks simulated during propagation. |
| std::unordered_set<BasicBlock*> simulated_blocks_; |
| |
| // Set of instructions that should not be simulated again because they have |
| // been found to be in the kVarying state. |
| std::unordered_set<Instruction*> do_not_simulate_; |
| |
| // Map between a basic block and its predecessor edges. |
| // TODO(dnovillo): Move this to CFG and always build them. Alternately, |
| // move it to IRContext and build CFG preds/succs on-demand. |
| std::unordered_map<BasicBlock*, std::vector<Edge>> bb_preds_; |
| |
| // Map between a basic block and its successor edges. |
| // TODO(dnovillo): Move this to CFG and always build them. Alternately, |
| // move it to IRContext and build CFG preds/succs on-demand. |
| std::unordered_map<BasicBlock*, std::vector<Edge>> bb_succs_; |
| |
| // Set of executable CFG edges. |
| std::set<Edge> executable_edges_; |
| |
| // Tracks instruction propagation status. |
| std::unordered_map<Instruction*, SSAPropagator::PropStatus> statuses_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& str, |
| const SSAPropagator::PropStatus& status); |
| |
| } // namespace opt |
| } // namespace spvtools |
| |
| #endif // SOURCE_OPT_PROPAGATOR_H_ |