| //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements sparse conditional constant propagation and merging: | 
 | // | 
 | // Specifically, this: | 
 | //   * Assumes values are constant unless proven otherwise | 
 | //   * Assumes BasicBlocks are dead unless proven otherwise | 
 | //   * Proves values to be constant, and replaces them with constants | 
 | //   * Proves conditional branches to be unconditional | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "sccp" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Transforms/IPO.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/Transforms/Utils/Local.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Support/CallSite.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/InstVisitor.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/PointerIntPair.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include <algorithm> | 
 | #include <map> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumInstRemoved, "Number of instructions removed"); | 
 | STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); | 
 |  | 
 | STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); | 
 | STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); | 
 | STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); | 
 |  | 
 | namespace { | 
 | /// LatticeVal class - This class represents the different lattice values that | 
 | /// an LLVM value may occupy.  It is a simple class with value semantics. | 
 | /// | 
 | class LatticeVal { | 
 |   enum LatticeValueTy { | 
 |     /// undefined - This LLVM Value has no known value yet. | 
 |     undefined, | 
 |      | 
 |     /// constant - This LLVM Value has a specific constant value. | 
 |     constant, | 
 |  | 
 |     /// forcedconstant - This LLVM Value was thought to be undef until | 
 |     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged | 
 |     /// with another (different) constant, it goes to overdefined, instead of | 
 |     /// asserting. | 
 |     forcedconstant, | 
 |      | 
 |     /// overdefined - This instruction is not known to be constant, and we know | 
 |     /// it has a value. | 
 |     overdefined | 
 |   }; | 
 |  | 
 |   /// Val: This stores the current lattice value along with the Constant* for | 
 |   /// the constant if this is a 'constant' or 'forcedconstant' value. | 
 |   PointerIntPair<Constant *, 2, LatticeValueTy> Val; | 
 |    | 
 |   LatticeValueTy getLatticeValue() const { | 
 |     return Val.getInt(); | 
 |   } | 
 |    | 
 | public: | 
 |   LatticeVal() : Val(0, undefined) {} | 
 |    | 
 |   bool isUndefined() const { return getLatticeValue() == undefined; } | 
 |   bool isConstant() const { | 
 |     return getLatticeValue() == constant || getLatticeValue() == forcedconstant; | 
 |   } | 
 |   bool isOverdefined() const { return getLatticeValue() == overdefined; } | 
 |    | 
 |   Constant *getConstant() const { | 
 |     assert(isConstant() && "Cannot get the constant of a non-constant!"); | 
 |     return Val.getPointer(); | 
 |   } | 
 |    | 
 |   /// markOverdefined - Return true if this is a change in status. | 
 |   bool markOverdefined() { | 
 |     if (isOverdefined()) | 
 |       return false; | 
 |      | 
 |     Val.setInt(overdefined); | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// markConstant - Return true if this is a change in status. | 
 |   bool markConstant(Constant *V) { | 
 |     if (getLatticeValue() == constant) { // Constant but not forcedconstant. | 
 |       assert(getConstant() == V && "Marking constant with different value"); | 
 |       return false; | 
 |     } | 
 |      | 
 |     if (isUndefined()) { | 
 |       Val.setInt(constant); | 
 |       assert(V && "Marking constant with NULL"); | 
 |       Val.setPointer(V); | 
 |     } else { | 
 |       assert(getLatticeValue() == forcedconstant &&  | 
 |              "Cannot move from overdefined to constant!"); | 
 |       // Stay at forcedconstant if the constant is the same. | 
 |       if (V == getConstant()) return false; | 
 |        | 
 |       // Otherwise, we go to overdefined.  Assumptions made based on the | 
 |       // forced value are possibly wrong.  Assuming this is another constant | 
 |       // could expose a contradiction. | 
 |       Val.setInt(overdefined); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// getConstantInt - If this is a constant with a ConstantInt value, return it | 
 |   /// otherwise return null. | 
 |   ConstantInt *getConstantInt() const { | 
 |     if (isConstant()) | 
 |       return dyn_cast<ConstantInt>(getConstant()); | 
 |     return 0; | 
 |   } | 
 |    | 
 |   void markForcedConstant(Constant *V) { | 
 |     assert(isUndefined() && "Can't force a defined value!"); | 
 |     Val.setInt(forcedconstant); | 
 |     Val.setPointer(V); | 
 |   } | 
 | }; | 
 | } // end anonymous namespace. | 
 |  | 
 |  | 
 | namespace { | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | /// SCCPSolver - This class is a general purpose solver for Sparse Conditional | 
 | /// Constant Propagation. | 
 | /// | 
 | class SCCPSolver : public InstVisitor<SCCPSolver> { | 
 |   const TargetData *TD; | 
 |   SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable. | 
 |   DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in. | 
 |  | 
 |   /// StructValueState - This maintains ValueState for values that have | 
 |   /// StructType, for example for formal arguments, calls, insertelement, etc. | 
 |   /// | 
 |   DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; | 
 |    | 
 |   /// GlobalValue - If we are tracking any values for the contents of a global | 
 |   /// variable, we keep a mapping from the constant accessor to the element of | 
 |   /// the global, to the currently known value.  If the value becomes | 
 |   /// overdefined, it's entry is simply removed from this map. | 
 |   DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; | 
 |  | 
 |   /// TrackedRetVals - If we are tracking arguments into and the return | 
 |   /// value out of a function, it will have an entry in this map, indicating | 
 |   /// what the known return value for the function is. | 
 |   DenseMap<Function*, LatticeVal> TrackedRetVals; | 
 |  | 
 |   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions | 
 |   /// that return multiple values. | 
 |   DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; | 
 |    | 
 |   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is | 
 |   /// represented here for efficient lookup. | 
 |   SmallPtrSet<Function*, 16> MRVFunctionsTracked; | 
 |  | 
 |   /// TrackingIncomingArguments - This is the set of functions for whose | 
 |   /// arguments we make optimistic assumptions about and try to prove as | 
 |   /// constants. | 
 |   SmallPtrSet<Function*, 16> TrackingIncomingArguments; | 
 |    | 
 |   /// The reason for two worklists is that overdefined is the lowest state | 
 |   /// on the lattice, and moving things to overdefined as fast as possible | 
 |   /// makes SCCP converge much faster. | 
 |   /// | 
 |   /// By having a separate worklist, we accomplish this because everything | 
 |   /// possibly overdefined will become overdefined at the soonest possible | 
 |   /// point. | 
 |   SmallVector<Value*, 64> OverdefinedInstWorkList; | 
 |   SmallVector<Value*, 64> InstWorkList; | 
 |  | 
 |  | 
 |   SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list | 
 |  | 
 |   /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not | 
 |   /// overdefined, despite the fact that the PHI node is overdefined. | 
 |   std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; | 
 |  | 
 |   /// KnownFeasibleEdges - Entries in this set are edges which have already had | 
 |   /// PHI nodes retriggered. | 
 |   typedef std::pair<BasicBlock*, BasicBlock*> Edge; | 
 |   DenseSet<Edge> KnownFeasibleEdges; | 
 | public: | 
 |   SCCPSolver(const TargetData *td) : TD(td) {} | 
 |  | 
 |   /// MarkBlockExecutable - This method can be used by clients to mark all of | 
 |   /// the blocks that are known to be intrinsically live in the processed unit. | 
 |   /// | 
 |   /// This returns true if the block was not considered live before. | 
 |   bool MarkBlockExecutable(BasicBlock *BB) { | 
 |     if (!BBExecutable.insert(BB)) return false; | 
 |     DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); | 
 |     BBWorkList.push_back(BB);  // Add the block to the work list! | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// TrackValueOfGlobalVariable - Clients can use this method to | 
 |   /// inform the SCCPSolver that it should track loads and stores to the | 
 |   /// specified global variable if it can.  This is only legal to call if | 
 |   /// performing Interprocedural SCCP. | 
 |   void TrackValueOfGlobalVariable(GlobalVariable *GV) { | 
 |     // We only track the contents of scalar globals. | 
 |     if (GV->getType()->getElementType()->isSingleValueType()) { | 
 |       LatticeVal &IV = TrackedGlobals[GV]; | 
 |       if (!isa<UndefValue>(GV->getInitializer())) | 
 |         IV.markConstant(GV->getInitializer()); | 
 |     } | 
 |   } | 
 |  | 
 |   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into | 
 |   /// and out of the specified function (which cannot have its address taken), | 
 |   /// this method must be called. | 
 |   void AddTrackedFunction(Function *F) { | 
 |     // Add an entry, F -> undef. | 
 |     if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { | 
 |       MRVFunctionsTracked.insert(F); | 
 |       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
 |         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), | 
 |                                                      LatticeVal())); | 
 |     } else | 
 |       TrackedRetVals.insert(std::make_pair(F, LatticeVal())); | 
 |   } | 
 |  | 
 |   void AddArgumentTrackedFunction(Function *F) { | 
 |     TrackingIncomingArguments.insert(F); | 
 |   } | 
 |    | 
 |   /// Solve - Solve for constants and executable blocks. | 
 |   /// | 
 |   void Solve(); | 
 |  | 
 |   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume | 
 |   /// that branches on undef values cannot reach any of their successors. | 
 |   /// However, this is not a safe assumption.  After we solve dataflow, this | 
 |   /// method should be use to handle this.  If this returns true, the solver | 
 |   /// should be rerun. | 
 |   bool ResolvedUndefsIn(Function &F); | 
 |  | 
 |   bool isBlockExecutable(BasicBlock *BB) const { | 
 |     return BBExecutable.count(BB); | 
 |   } | 
 |  | 
 |   LatticeVal getLatticeValueFor(Value *V) const { | 
 |     DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); | 
 |     assert(I != ValueState.end() && "V is not in valuemap!"); | 
 |     return I->second; | 
 |   } | 
 |    | 
 |   /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { | 
 |     DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =  | 
 |       StructValueState.find(std::make_pair(V, i)); | 
 |     assert(I != StructValueState.end() && "V is not in valuemap!"); | 
 |     return I->second; | 
 |   }*/ | 
 |  | 
 |   /// getTrackedRetVals - Get the inferred return value map. | 
 |   /// | 
 |   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { | 
 |     return TrackedRetVals; | 
 |   } | 
 |  | 
 |   /// getTrackedGlobals - Get and return the set of inferred initializers for | 
 |   /// global variables. | 
 |   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { | 
 |     return TrackedGlobals; | 
 |   } | 
 |  | 
 |   void markOverdefined(Value *V) { | 
 |     assert(!V->getType()->isStructTy() && "Should use other method"); | 
 |     markOverdefined(ValueState[V], V); | 
 |   } | 
 |  | 
 |   /// markAnythingOverdefined - Mark the specified value overdefined.  This | 
 |   /// works with both scalars and structs. | 
 |   void markAnythingOverdefined(Value *V) { | 
 |     if (StructType *STy = dyn_cast<StructType>(V->getType())) | 
 |       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
 |         markOverdefined(getStructValueState(V, i), V); | 
 |     else | 
 |       markOverdefined(V); | 
 |   } | 
 |    | 
 | private: | 
 |   // markConstant - Make a value be marked as "constant".  If the value | 
 |   // is not already a constant, add it to the instruction work list so that | 
 |   // the users of the instruction are updated later. | 
 |   // | 
 |   void markConstant(LatticeVal &IV, Value *V, Constant *C) { | 
 |     if (!IV.markConstant(C)) return; | 
 |     DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); | 
 |     if (IV.isOverdefined()) | 
 |       OverdefinedInstWorkList.push_back(V); | 
 |     else | 
 |       InstWorkList.push_back(V); | 
 |   } | 
 |    | 
 |   void markConstant(Value *V, Constant *C) { | 
 |     assert(!V->getType()->isStructTy() && "Should use other method"); | 
 |     markConstant(ValueState[V], V, C); | 
 |   } | 
 |  | 
 |   void markForcedConstant(Value *V, Constant *C) { | 
 |     assert(!V->getType()->isStructTy() && "Should use other method"); | 
 |     LatticeVal &IV = ValueState[V]; | 
 |     IV.markForcedConstant(C); | 
 |     DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); | 
 |     if (IV.isOverdefined()) | 
 |       OverdefinedInstWorkList.push_back(V); | 
 |     else | 
 |       InstWorkList.push_back(V); | 
 |   } | 
 |    | 
 |    | 
 |   // markOverdefined - Make a value be marked as "overdefined". If the | 
 |   // value is not already overdefined, add it to the overdefined instruction | 
 |   // work list so that the users of the instruction are updated later. | 
 |   void markOverdefined(LatticeVal &IV, Value *V) { | 
 |     if (!IV.markOverdefined()) return; | 
 |      | 
 |     DEBUG(dbgs() << "markOverdefined: "; | 
 |           if (Function *F = dyn_cast<Function>(V)) | 
 |             dbgs() << "Function '" << F->getName() << "'\n"; | 
 |           else | 
 |             dbgs() << *V << '\n'); | 
 |     // Only instructions go on the work list | 
 |     OverdefinedInstWorkList.push_back(V); | 
 |   } | 
 |  | 
 |   void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { | 
 |     if (IV.isOverdefined() || MergeWithV.isUndefined()) | 
 |       return;  // Noop. | 
 |     if (MergeWithV.isOverdefined()) | 
 |       markOverdefined(IV, V); | 
 |     else if (IV.isUndefined()) | 
 |       markConstant(IV, V, MergeWithV.getConstant()); | 
 |     else if (IV.getConstant() != MergeWithV.getConstant()) | 
 |       markOverdefined(IV, V); | 
 |   } | 
 |    | 
 |   void mergeInValue(Value *V, LatticeVal MergeWithV) { | 
 |     assert(!V->getType()->isStructTy() && "Should use other method"); | 
 |     mergeInValue(ValueState[V], V, MergeWithV); | 
 |   } | 
 |  | 
 |  | 
 |   /// getValueState - Return the LatticeVal object that corresponds to the | 
 |   /// value.  This function handles the case when the value hasn't been seen yet | 
 |   /// by properly seeding constants etc. | 
 |   LatticeVal &getValueState(Value *V) { | 
 |     assert(!V->getType()->isStructTy() && "Should use getStructValueState"); | 
 |  | 
 |     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = | 
 |       ValueState.insert(std::make_pair(V, LatticeVal())); | 
 |     LatticeVal &LV = I.first->second; | 
 |  | 
 |     if (!I.second) | 
 |       return LV;  // Common case, already in the map. | 
 |  | 
 |     if (Constant *C = dyn_cast<Constant>(V)) { | 
 |       // Undef values remain undefined. | 
 |       if (!isa<UndefValue>(V)) | 
 |         LV.markConstant(C);          // Constants are constant | 
 |     } | 
 |      | 
 |     // All others are underdefined by default. | 
 |     return LV; | 
 |   } | 
 |  | 
 |   /// getStructValueState - Return the LatticeVal object that corresponds to the | 
 |   /// value/field pair.  This function handles the case when the value hasn't | 
 |   /// been seen yet by properly seeding constants etc. | 
 |   LatticeVal &getStructValueState(Value *V, unsigned i) { | 
 |     assert(V->getType()->isStructTy() && "Should use getValueState"); | 
 |     assert(i < cast<StructType>(V->getType())->getNumElements() && | 
 |            "Invalid element #"); | 
 |  | 
 |     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, | 
 |               bool> I = StructValueState.insert( | 
 |                         std::make_pair(std::make_pair(V, i), LatticeVal())); | 
 |     LatticeVal &LV = I.first->second; | 
 |  | 
 |     if (!I.second) | 
 |       return LV;  // Common case, already in the map. | 
 |  | 
 |     if (Constant *C = dyn_cast<Constant>(V)) { | 
 |       if (isa<UndefValue>(C)) | 
 |         ; // Undef values remain undefined. | 
 |       else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) | 
 |         LV.markConstant(CS->getOperand(i));      // Constants are constant. | 
 |       else if (isa<ConstantAggregateZero>(C)) { | 
 |         Type *FieldTy = cast<StructType>(V->getType())->getElementType(i); | 
 |         LV.markConstant(Constant::getNullValue(FieldTy)); | 
 |       } else | 
 |         LV.markOverdefined();      // Unknown sort of constant. | 
 |     } | 
 |      | 
 |     // All others are underdefined by default. | 
 |     return LV; | 
 |   } | 
 |    | 
 |  | 
 |   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB | 
 |   /// work list if it is not already executable. | 
 |   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { | 
 |     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) | 
 |       return;  // This edge is already known to be executable! | 
 |  | 
 |     if (!MarkBlockExecutable(Dest)) { | 
 |       // If the destination is already executable, we just made an *edge* | 
 |       // feasible that wasn't before.  Revisit the PHI nodes in the block | 
 |       // because they have potentially new operands. | 
 |       DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() | 
 |             << " -> " << Dest->getName() << "\n"); | 
 |  | 
 |       PHINode *PN; | 
 |       for (BasicBlock::iterator I = Dest->begin(); | 
 |            (PN = dyn_cast<PHINode>(I)); ++I) | 
 |         visitPHINode(*PN); | 
 |     } | 
 |   } | 
 |  | 
 |   // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
 |   // successors are reachable from a given terminator instruction. | 
 |   // | 
 |   void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); | 
 |  | 
 |   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
 |   // block to the 'To' basic block is currently feasible. | 
 |   // | 
 |   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); | 
 |  | 
 |   // OperandChangedState - This method is invoked on all of the users of an | 
 |   // instruction that was just changed state somehow.  Based on this | 
 |   // information, we need to update the specified user of this instruction. | 
 |   // | 
 |   void OperandChangedState(Instruction *I) { | 
 |     if (BBExecutable.count(I->getParent()))   // Inst is executable? | 
 |       visit(*I); | 
 |   } | 
 |    | 
 |   /// RemoveFromOverdefinedPHIs - If I has any entries in the | 
 |   /// UsersOfOverdefinedPHIs map for PN, remove them now. | 
 |   void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) { | 
 |     if (UsersOfOverdefinedPHIs.empty()) return; | 
 |     typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; | 
 |     std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN); | 
 |     for (ItTy It = Range.first, E = Range.second; It != E;) { | 
 |       if (It->second == I) | 
 |         UsersOfOverdefinedPHIs.erase(It++); | 
 |       else | 
 |         ++It; | 
 |     } | 
 |   } | 
 |  | 
 |   /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS | 
 |   /// map for I and PN, but if one is there already, do not create another. | 
 |   /// (Duplicate entries do not break anything directly, but can lead to | 
 |   /// exponential growth of the table in rare cases.) | 
 |   void InsertInOverdefinedPHIs(Instruction *I, PHINode *PN) { | 
 |     typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; | 
 |     std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(PN); | 
 |     for (ItTy J = Range.first, E = Range.second; J != E; ++J) | 
 |       if (J->second == I) | 
 |         return; | 
 |     UsersOfOverdefinedPHIs.insert(std::make_pair(PN, I)); | 
 |   } | 
 |  | 
 | private: | 
 |   friend class InstVisitor<SCCPSolver>; | 
 |  | 
 |   // visit implementations - Something changed in this instruction.  Either an | 
 |   // operand made a transition, or the instruction is newly executable.  Change | 
 |   // the value type of I to reflect these changes if appropriate. | 
 |   void visitPHINode(PHINode &I); | 
 |  | 
 |   // Terminators | 
 |   void visitReturnInst(ReturnInst &I); | 
 |   void visitTerminatorInst(TerminatorInst &TI); | 
 |  | 
 |   void visitCastInst(CastInst &I); | 
 |   void visitSelectInst(SelectInst &I); | 
 |   void visitBinaryOperator(Instruction &I); | 
 |   void visitCmpInst(CmpInst &I); | 
 |   void visitExtractElementInst(ExtractElementInst &I); | 
 |   void visitInsertElementInst(InsertElementInst &I); | 
 |   void visitShuffleVectorInst(ShuffleVectorInst &I); | 
 |   void visitExtractValueInst(ExtractValueInst &EVI); | 
 |   void visitInsertValueInst(InsertValueInst &IVI); | 
 |   void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); } | 
 |  | 
 |   // Instructions that cannot be folded away. | 
 |   void visitStoreInst     (StoreInst &I); | 
 |   void visitLoadInst      (LoadInst &I); | 
 |   void visitGetElementPtrInst(GetElementPtrInst &I); | 
 |   void visitCallInst      (CallInst &I) { | 
 |     visitCallSite(&I); | 
 |   } | 
 |   void visitInvokeInst    (InvokeInst &II) { | 
 |     visitCallSite(&II); | 
 |     visitTerminatorInst(II); | 
 |   } | 
 |   void visitCallSite      (CallSite CS); | 
 |   void visitResumeInst    (TerminatorInst &I) { /*returns void*/ } | 
 |   void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ } | 
 |   void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } | 
 |   void visitFenceInst     (FenceInst &I) { /*returns void*/ } | 
 |   void visitAtomicCmpXchgInst (AtomicCmpXchgInst &I) { markOverdefined(&I); } | 
 |   void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); } | 
 |   void visitAllocaInst    (Instruction &I) { markOverdefined(&I); } | 
 |   void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); } | 
 |  | 
 |   void visitInstruction(Instruction &I) { | 
 |     // If a new instruction is added to LLVM that we don't handle. | 
 |     dbgs() << "SCCP: Don't know how to handle: " << I; | 
 |     markAnythingOverdefined(&I);   // Just in case | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 |  | 
 | // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
 | // successors are reachable from a given terminator instruction. | 
 | // | 
 | void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, | 
 |                                        SmallVector<bool, 16> &Succs) { | 
 |   Succs.resize(TI.getNumSuccessors()); | 
 |   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { | 
 |     if (BI->isUnconditional()) { | 
 |       Succs[0] = true; | 
 |       return; | 
 |     } | 
 |      | 
 |     LatticeVal BCValue = getValueState(BI->getCondition()); | 
 |     ConstantInt *CI = BCValue.getConstantInt(); | 
 |     if (CI == 0) { | 
 |       // Overdefined condition variables, and branches on unfoldable constant | 
 |       // conditions, mean the branch could go either way. | 
 |       if (!BCValue.isUndefined()) | 
 |         Succs[0] = Succs[1] = true; | 
 |       return; | 
 |     } | 
 |      | 
 |     // Constant condition variables mean the branch can only go a single way. | 
 |     Succs[CI->isZero()] = true; | 
 |     return; | 
 |   } | 
 |    | 
 |   if (isa<InvokeInst>(TI)) { | 
 |     // Invoke instructions successors are always executable. | 
 |     Succs[0] = Succs[1] = true; | 
 |     return; | 
 |   } | 
 |    | 
 |   if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { | 
 |     if (TI.getNumSuccessors() < 2) { | 
 |       Succs[0] = true; | 
 |       return; | 
 |     } | 
 |     LatticeVal SCValue = getValueState(SI->getCondition()); | 
 |     ConstantInt *CI = SCValue.getConstantInt(); | 
 |      | 
 |     if (CI == 0) {   // Overdefined or undefined condition? | 
 |       // All destinations are executable! | 
 |       if (!SCValue.isUndefined()) | 
 |         Succs.assign(TI.getNumSuccessors(), true); | 
 |       return; | 
 |     } | 
 |        | 
 |     Succs[SI->findCaseValue(CI)] = true; | 
 |     return; | 
 |   } | 
 |    | 
 |   // TODO: This could be improved if the operand is a [cast of a] BlockAddress. | 
 |   if (isa<IndirectBrInst>(&TI)) { | 
 |     // Just mark all destinations executable! | 
 |     Succs.assign(TI.getNumSuccessors(), true); | 
 |     return; | 
 |   } | 
 |    | 
 | #ifndef NDEBUG | 
 |   dbgs() << "Unknown terminator instruction: " << TI << '\n'; | 
 | #endif | 
 |   llvm_unreachable("SCCP: Don't know how to handle this terminator!"); | 
 | } | 
 |  | 
 |  | 
 | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
 | // block to the 'To' basic block is currently feasible. | 
 | // | 
 | bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { | 
 |   assert(BBExecutable.count(To) && "Dest should always be alive!"); | 
 |  | 
 |   // Make sure the source basic block is executable!! | 
 |   if (!BBExecutable.count(From)) return false; | 
 |  | 
 |   // Check to make sure this edge itself is actually feasible now. | 
 |   TerminatorInst *TI = From->getTerminator(); | 
 |   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
 |     if (BI->isUnconditional()) | 
 |       return true; | 
 |      | 
 |     LatticeVal BCValue = getValueState(BI->getCondition()); | 
 |  | 
 |     // Overdefined condition variables mean the branch could go either way, | 
 |     // undef conditions mean that neither edge is feasible yet. | 
 |     ConstantInt *CI = BCValue.getConstantInt(); | 
 |     if (CI == 0) | 
 |       return !BCValue.isUndefined(); | 
 |      | 
 |     // Constant condition variables mean the branch can only go a single way. | 
 |     return BI->getSuccessor(CI->isZero()) == To; | 
 |   } | 
 |    | 
 |   // Invoke instructions successors are always executable. | 
 |   if (isa<InvokeInst>(TI)) | 
 |     return true; | 
 |    | 
 |   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
 |     if (SI->getNumSuccessors() < 2) | 
 |       return true; | 
 |  | 
 |     LatticeVal SCValue = getValueState(SI->getCondition()); | 
 |     ConstantInt *CI = SCValue.getConstantInt(); | 
 |      | 
 |     if (CI == 0) | 
 |       return !SCValue.isUndefined(); | 
 |  | 
 |     // Make sure to skip the "default value" which isn't a value | 
 |     for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) | 
 |       if (SI->getSuccessorValue(i) == CI) // Found the taken branch. | 
 |         return SI->getSuccessor(i) == To; | 
 |  | 
 |     // If the constant value is not equal to any of the branches, we must | 
 |     // execute default branch. | 
 |     return SI->getDefaultDest() == To; | 
 |   } | 
 |    | 
 |   // Just mark all destinations executable! | 
 |   // TODO: This could be improved if the operand is a [cast of a] BlockAddress. | 
 |   if (isa<IndirectBrInst>(TI)) | 
 |     return true; | 
 |    | 
 | #ifndef NDEBUG | 
 |   dbgs() << "Unknown terminator instruction: " << *TI << '\n'; | 
 | #endif | 
 |   llvm_unreachable(0); | 
 | } | 
 |  | 
 | // visit Implementations - Something changed in this instruction, either an | 
 | // operand made a transition, or the instruction is newly executable.  Change | 
 | // the value type of I to reflect these changes if appropriate.  This method | 
 | // makes sure to do the following actions: | 
 | // | 
 | // 1. If a phi node merges two constants in, and has conflicting value coming | 
 | //    from different branches, or if the PHI node merges in an overdefined | 
 | //    value, then the PHI node becomes overdefined. | 
 | // 2. If a phi node merges only constants in, and they all agree on value, the | 
 | //    PHI node becomes a constant value equal to that. | 
 | // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant | 
 | // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined | 
 | // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined | 
 | // 6. If a conditional branch has a value that is constant, make the selected | 
 | //    destination executable | 
 | // 7. If a conditional branch has a value that is overdefined, make all | 
 | //    successors executable. | 
 | // | 
 | void SCCPSolver::visitPHINode(PHINode &PN) { | 
 |   // If this PN returns a struct, just mark the result overdefined. | 
 |   // TODO: We could do a lot better than this if code actually uses this. | 
 |   if (PN.getType()->isStructTy()) | 
 |     return markAnythingOverdefined(&PN); | 
 |    | 
 |   if (getValueState(&PN).isOverdefined()) { | 
 |     // There may be instructions using this PHI node that are not overdefined | 
 |     // themselves.  If so, make sure that they know that the PHI node operand | 
 |     // changed. | 
 |     typedef std::multimap<PHINode*, Instruction*>::iterator ItTy; | 
 |     std::pair<ItTy, ItTy> Range = UsersOfOverdefinedPHIs.equal_range(&PN); | 
 |      | 
 |     if (Range.first == Range.second) | 
 |       return; | 
 |      | 
 |     SmallVector<Instruction*, 16> Users; | 
 |     for (ItTy I = Range.first, E = Range.second; I != E; ++I) | 
 |       Users.push_back(I->second); | 
 |     while (!Users.empty()) | 
 |       visit(Users.pop_back_val()); | 
 |     return;  // Quick exit | 
 |   } | 
 |  | 
 |   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, | 
 |   // and slow us down a lot.  Just mark them overdefined. | 
 |   if (PN.getNumIncomingValues() > 64) | 
 |     return markOverdefined(&PN); | 
 |    | 
 |   // Look at all of the executable operands of the PHI node.  If any of them | 
 |   // are overdefined, the PHI becomes overdefined as well.  If they are all | 
 |   // constant, and they agree with each other, the PHI becomes the identical | 
 |   // constant.  If they are constant and don't agree, the PHI is overdefined. | 
 |   // If there are no executable operands, the PHI remains undefined. | 
 |   // | 
 |   Constant *OperandVal = 0; | 
 |   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |     LatticeVal IV = getValueState(PN.getIncomingValue(i)); | 
 |     if (IV.isUndefined()) continue;  // Doesn't influence PHI node. | 
 |  | 
 |     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) | 
 |       continue; | 
 |      | 
 |     if (IV.isOverdefined())    // PHI node becomes overdefined! | 
 |       return markOverdefined(&PN); | 
 |  | 
 |     if (OperandVal == 0) {   // Grab the first value. | 
 |       OperandVal = IV.getConstant(); | 
 |       continue; | 
 |     } | 
 |      | 
 |     // There is already a reachable operand.  If we conflict with it, | 
 |     // then the PHI node becomes overdefined.  If we agree with it, we | 
 |     // can continue on. | 
 |      | 
 |     // Check to see if there are two different constants merging, if so, the PHI | 
 |     // node is overdefined. | 
 |     if (IV.getConstant() != OperandVal) | 
 |       return markOverdefined(&PN); | 
 |   } | 
 |  | 
 |   // If we exited the loop, this means that the PHI node only has constant | 
 |   // arguments that agree with each other(and OperandVal is the constant) or | 
 |   // OperandVal is null because there are no defined incoming arguments.  If | 
 |   // this is the case, the PHI remains undefined. | 
 |   // | 
 |   if (OperandVal) | 
 |     markConstant(&PN, OperandVal);      // Acquire operand value | 
 | } | 
 |  | 
 |  | 
 |  | 
 |  | 
 | void SCCPSolver::visitReturnInst(ReturnInst &I) { | 
 |   if (I.getNumOperands() == 0) return;  // ret void | 
 |  | 
 |   Function *F = I.getParent()->getParent(); | 
 |   Value *ResultOp = I.getOperand(0); | 
 |    | 
 |   // If we are tracking the return value of this function, merge it in. | 
 |   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { | 
 |     DenseMap<Function*, LatticeVal>::iterator TFRVI = | 
 |       TrackedRetVals.find(F); | 
 |     if (TFRVI != TrackedRetVals.end()) { | 
 |       mergeInValue(TFRVI->second, F, getValueState(ResultOp)); | 
 |       return; | 
 |     } | 
 |   } | 
 |    | 
 |   // Handle functions that return multiple values. | 
 |   if (!TrackedMultipleRetVals.empty()) { | 
 |     if (StructType *STy = dyn_cast<StructType>(ResultOp->getType())) | 
 |       if (MRVFunctionsTracked.count(F)) | 
 |         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
 |           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, | 
 |                        getStructValueState(ResultOp, i)); | 
 |      | 
 |   } | 
 | } | 
 |  | 
 | void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { | 
 |   SmallVector<bool, 16> SuccFeasible; | 
 |   getFeasibleSuccessors(TI, SuccFeasible); | 
 |  | 
 |   BasicBlock *BB = TI.getParent(); | 
 |  | 
 |   // Mark all feasible successors executable. | 
 |   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) | 
 |     if (SuccFeasible[i]) | 
 |       markEdgeExecutable(BB, TI.getSuccessor(i)); | 
 | } | 
 |  | 
 | void SCCPSolver::visitCastInst(CastInst &I) { | 
 |   LatticeVal OpSt = getValueState(I.getOperand(0)); | 
 |   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand | 
 |     markOverdefined(&I); | 
 |   else if (OpSt.isConstant())        // Propagate constant value | 
 |     markConstant(&I, ConstantExpr::getCast(I.getOpcode(),  | 
 |                                            OpSt.getConstant(), I.getType())); | 
 | } | 
 |  | 
 |  | 
 | void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { | 
 |   // If this returns a struct, mark all elements over defined, we don't track | 
 |   // structs in structs. | 
 |   if (EVI.getType()->isStructTy()) | 
 |     return markAnythingOverdefined(&EVI); | 
 |      | 
 |   // If this is extracting from more than one level of struct, we don't know. | 
 |   if (EVI.getNumIndices() != 1) | 
 |     return markOverdefined(&EVI); | 
 |  | 
 |   Value *AggVal = EVI.getAggregateOperand(); | 
 |   if (AggVal->getType()->isStructTy()) { | 
 |     unsigned i = *EVI.idx_begin(); | 
 |     LatticeVal EltVal = getStructValueState(AggVal, i); | 
 |     mergeInValue(getValueState(&EVI), &EVI, EltVal); | 
 |   } else { | 
 |     // Otherwise, must be extracting from an array. | 
 |     return markOverdefined(&EVI); | 
 |   } | 
 | } | 
 |  | 
 | void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { | 
 |   StructType *STy = dyn_cast<StructType>(IVI.getType()); | 
 |   if (STy == 0) | 
 |     return markOverdefined(&IVI); | 
 |    | 
 |   // If this has more than one index, we can't handle it, drive all results to | 
 |   // undef. | 
 |   if (IVI.getNumIndices() != 1) | 
 |     return markAnythingOverdefined(&IVI); | 
 |    | 
 |   Value *Aggr = IVI.getAggregateOperand(); | 
 |   unsigned Idx = *IVI.idx_begin(); | 
 |    | 
 |   // Compute the result based on what we're inserting. | 
 |   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
 |     // This passes through all values that aren't the inserted element. | 
 |     if (i != Idx) { | 
 |       LatticeVal EltVal = getStructValueState(Aggr, i); | 
 |       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); | 
 |       continue; | 
 |     } | 
 |      | 
 |     Value *Val = IVI.getInsertedValueOperand(); | 
 |     if (Val->getType()->isStructTy()) | 
 |       // We don't track structs in structs. | 
 |       markOverdefined(getStructValueState(&IVI, i), &IVI); | 
 |     else { | 
 |       LatticeVal InVal = getValueState(Val); | 
 |       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SCCPSolver::visitSelectInst(SelectInst &I) { | 
 |   // If this select returns a struct, just mark the result overdefined. | 
 |   // TODO: We could do a lot better than this if code actually uses this. | 
 |   if (I.getType()->isStructTy()) | 
 |     return markAnythingOverdefined(&I); | 
 |    | 
 |   LatticeVal CondValue = getValueState(I.getCondition()); | 
 |   if (CondValue.isUndefined()) | 
 |     return; | 
 |    | 
 |   if (ConstantInt *CondCB = CondValue.getConstantInt()) { | 
 |     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); | 
 |     mergeInValue(&I, getValueState(OpVal)); | 
 |     return; | 
 |   } | 
 |    | 
 |   // Otherwise, the condition is overdefined or a constant we can't evaluate. | 
 |   // See if we can produce something better than overdefined based on the T/F | 
 |   // value. | 
 |   LatticeVal TVal = getValueState(I.getTrueValue()); | 
 |   LatticeVal FVal = getValueState(I.getFalseValue()); | 
 |    | 
 |   // select ?, C, C -> C. | 
 |   if (TVal.isConstant() && FVal.isConstant() &&  | 
 |       TVal.getConstant() == FVal.getConstant()) | 
 |     return markConstant(&I, FVal.getConstant()); | 
 |  | 
 |   if (TVal.isUndefined())   // select ?, undef, X -> X. | 
 |     return mergeInValue(&I, FVal); | 
 |   if (FVal.isUndefined())   // select ?, X, undef -> X. | 
 |     return mergeInValue(&I, TVal); | 
 |   markOverdefined(&I); | 
 | } | 
 |  | 
 | // Handle Binary Operators. | 
 | void SCCPSolver::visitBinaryOperator(Instruction &I) { | 
 |   LatticeVal V1State = getValueState(I.getOperand(0)); | 
 |   LatticeVal V2State = getValueState(I.getOperand(1)); | 
 |    | 
 |   LatticeVal &IV = ValueState[&I]; | 
 |   if (IV.isOverdefined()) return; | 
 |  | 
 |   if (V1State.isConstant() && V2State.isConstant()) | 
 |     return markConstant(IV, &I, | 
 |                         ConstantExpr::get(I.getOpcode(), V1State.getConstant(), | 
 |                                           V2State.getConstant())); | 
 |    | 
 |   // If something is undef, wait for it to resolve. | 
 |   if (!V1State.isOverdefined() && !V2State.isOverdefined()) | 
 |     return; | 
 |    | 
 |   // Otherwise, one of our operands is overdefined.  Try to produce something | 
 |   // better than overdefined with some tricks. | 
 |    | 
 |   // If this is an AND or OR with 0 or -1, it doesn't matter that the other | 
 |   // operand is overdefined. | 
 |   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { | 
 |     LatticeVal *NonOverdefVal = 0; | 
 |     if (!V1State.isOverdefined()) | 
 |       NonOverdefVal = &V1State; | 
 |     else if (!V2State.isOverdefined()) | 
 |       NonOverdefVal = &V2State; | 
 |  | 
 |     if (NonOverdefVal) { | 
 |       if (NonOverdefVal->isUndefined()) { | 
 |         // Could annihilate value. | 
 |         if (I.getOpcode() == Instruction::And) | 
 |           markConstant(IV, &I, Constant::getNullValue(I.getType())); | 
 |         else if (VectorType *PT = dyn_cast<VectorType>(I.getType())) | 
 |           markConstant(IV, &I, Constant::getAllOnesValue(PT)); | 
 |         else | 
 |           markConstant(IV, &I, | 
 |                        Constant::getAllOnesValue(I.getType())); | 
 |         return; | 
 |       } | 
 |        | 
 |       if (I.getOpcode() == Instruction::And) { | 
 |         // X and 0 = 0 | 
 |         if (NonOverdefVal->getConstant()->isNullValue()) | 
 |           return markConstant(IV, &I, NonOverdefVal->getConstant()); | 
 |       } else { | 
 |         if (ConstantInt *CI = NonOverdefVal->getConstantInt()) | 
 |           if (CI->isAllOnesValue())     // X or -1 = -1 | 
 |             return markConstant(IV, &I, NonOverdefVal->getConstant()); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |  | 
 |   // If both operands are PHI nodes, it is possible that this instruction has | 
 |   // a constant value, despite the fact that the PHI node doesn't.  Check for | 
 |   // this condition now. | 
 |   if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) | 
 |     if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) | 
 |       if (PN1->getParent() == PN2->getParent()) { | 
 |         // Since the two PHI nodes are in the same basic block, they must have | 
 |         // entries for the same predecessors.  Walk the predecessor list, and | 
 |         // if all of the incoming values are constants, and the result of | 
 |         // evaluating this expression with all incoming value pairs is the | 
 |         // same, then this expression is a constant even though the PHI node | 
 |         // is not a constant! | 
 |         LatticeVal Result; | 
 |         for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { | 
 |           LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); | 
 |           BasicBlock *InBlock = PN1->getIncomingBlock(i); | 
 |           LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); | 
 |  | 
 |           if (In1.isOverdefined() || In2.isOverdefined()) { | 
 |             Result.markOverdefined(); | 
 |             break;  // Cannot fold this operation over the PHI nodes! | 
 |           } | 
 |            | 
 |           if (In1.isConstant() && In2.isConstant()) { | 
 |             Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), | 
 |                                             In2.getConstant()); | 
 |             if (Result.isUndefined()) | 
 |               Result.markConstant(V); | 
 |             else if (Result.isConstant() && Result.getConstant() != V) { | 
 |               Result.markOverdefined(); | 
 |               break; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         // If we found a constant value here, then we know the instruction is | 
 |         // constant despite the fact that the PHI nodes are overdefined. | 
 |         if (Result.isConstant()) { | 
 |           markConstant(IV, &I, Result.getConstant()); | 
 |           // Remember that this instruction is virtually using the PHI node | 
 |           // operands.  | 
 |           InsertInOverdefinedPHIs(&I, PN1); | 
 |           InsertInOverdefinedPHIs(&I, PN2); | 
 |           return; | 
 |         } | 
 |          | 
 |         if (Result.isUndefined()) | 
 |           return; | 
 |  | 
 |         // Okay, this really is overdefined now.  Since we might have | 
 |         // speculatively thought that this was not overdefined before, and | 
 |         // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, | 
 |         // make sure to clean out any entries that we put there, for | 
 |         // efficiency. | 
 |         RemoveFromOverdefinedPHIs(&I, PN1); | 
 |         RemoveFromOverdefinedPHIs(&I, PN2); | 
 |       } | 
 |  | 
 |   markOverdefined(&I); | 
 | } | 
 |  | 
 | // Handle ICmpInst instruction. | 
 | void SCCPSolver::visitCmpInst(CmpInst &I) { | 
 |   LatticeVal V1State = getValueState(I.getOperand(0)); | 
 |   LatticeVal V2State = getValueState(I.getOperand(1)); | 
 |  | 
 |   LatticeVal &IV = ValueState[&I]; | 
 |   if (IV.isOverdefined()) return; | 
 |  | 
 |   if (V1State.isConstant() && V2State.isConstant()) | 
 |     return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),  | 
 |                                                          V1State.getConstant(),  | 
 |                                                         V2State.getConstant())); | 
 |    | 
 |   // If operands are still undefined, wait for it to resolve. | 
 |   if (!V1State.isOverdefined() && !V2State.isOverdefined()) | 
 |     return; | 
 |    | 
 |   // If something is overdefined, use some tricks to avoid ending up and over | 
 |   // defined if we can. | 
 |    | 
 |   // If both operands are PHI nodes, it is possible that this instruction has | 
 |   // a constant value, despite the fact that the PHI node doesn't.  Check for | 
 |   // this condition now. | 
 |   if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) | 
 |     if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) | 
 |       if (PN1->getParent() == PN2->getParent()) { | 
 |         // Since the two PHI nodes are in the same basic block, they must have | 
 |         // entries for the same predecessors.  Walk the predecessor list, and | 
 |         // if all of the incoming values are constants, and the result of | 
 |         // evaluating this expression with all incoming value pairs is the | 
 |         // same, then this expression is a constant even though the PHI node | 
 |         // is not a constant! | 
 |         LatticeVal Result; | 
 |         for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { | 
 |           LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); | 
 |           BasicBlock *InBlock = PN1->getIncomingBlock(i); | 
 |           LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); | 
 |  | 
 |           if (In1.isOverdefined() || In2.isOverdefined()) { | 
 |             Result.markOverdefined(); | 
 |             break;  // Cannot fold this operation over the PHI nodes! | 
 |           } | 
 |            | 
 |           if (In1.isConstant() && In2.isConstant()) { | 
 |             Constant *V = ConstantExpr::getCompare(I.getPredicate(),  | 
 |                                                    In1.getConstant(),  | 
 |                                                    In2.getConstant()); | 
 |             if (Result.isUndefined()) | 
 |               Result.markConstant(V); | 
 |             else if (Result.isConstant() && Result.getConstant() != V) { | 
 |               Result.markOverdefined(); | 
 |               break; | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         // If we found a constant value here, then we know the instruction is | 
 |         // constant despite the fact that the PHI nodes are overdefined. | 
 |         if (Result.isConstant()) { | 
 |           markConstant(&I, Result.getConstant()); | 
 |           // Remember that this instruction is virtually using the PHI node | 
 |           // operands. | 
 |           InsertInOverdefinedPHIs(&I, PN1); | 
 |           InsertInOverdefinedPHIs(&I, PN2); | 
 |           return; | 
 |         } | 
 |          | 
 |         if (Result.isUndefined()) | 
 |           return; | 
 |  | 
 |         // Okay, this really is overdefined now.  Since we might have | 
 |         // speculatively thought that this was not overdefined before, and | 
 |         // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, | 
 |         // make sure to clean out any entries that we put there, for | 
 |         // efficiency. | 
 |         RemoveFromOverdefinedPHIs(&I, PN1); | 
 |         RemoveFromOverdefinedPHIs(&I, PN2); | 
 |       } | 
 |  | 
 |   markOverdefined(&I); | 
 | } | 
 |  | 
 | void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { | 
 |   // TODO : SCCP does not handle vectors properly. | 
 |   return markOverdefined(&I); | 
 |  | 
 | #if 0 | 
 |   LatticeVal &ValState = getValueState(I.getOperand(0)); | 
 |   LatticeVal &IdxState = getValueState(I.getOperand(1)); | 
 |  | 
 |   if (ValState.isOverdefined() || IdxState.isOverdefined()) | 
 |     markOverdefined(&I); | 
 |   else if(ValState.isConstant() && IdxState.isConstant()) | 
 |     markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), | 
 |                                                      IdxState.getConstant())); | 
 | #endif | 
 | } | 
 |  | 
 | void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { | 
 |   // TODO : SCCP does not handle vectors properly. | 
 |   return markOverdefined(&I); | 
 | #if 0 | 
 |   LatticeVal &ValState = getValueState(I.getOperand(0)); | 
 |   LatticeVal &EltState = getValueState(I.getOperand(1)); | 
 |   LatticeVal &IdxState = getValueState(I.getOperand(2)); | 
 |  | 
 |   if (ValState.isOverdefined() || EltState.isOverdefined() || | 
 |       IdxState.isOverdefined()) | 
 |     markOverdefined(&I); | 
 |   else if(ValState.isConstant() && EltState.isConstant() && | 
 |           IdxState.isConstant()) | 
 |     markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), | 
 |                                                     EltState.getConstant(), | 
 |                                                     IdxState.getConstant())); | 
 |   else if (ValState.isUndefined() && EltState.isConstant() && | 
 |            IdxState.isConstant())  | 
 |     markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), | 
 |                                                    EltState.getConstant(), | 
 |                                                    IdxState.getConstant())); | 
 | #endif | 
 | } | 
 |  | 
 | void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { | 
 |   // TODO : SCCP does not handle vectors properly. | 
 |   return markOverdefined(&I); | 
 | #if 0 | 
 |   LatticeVal &V1State   = getValueState(I.getOperand(0)); | 
 |   LatticeVal &V2State   = getValueState(I.getOperand(1)); | 
 |   LatticeVal &MaskState = getValueState(I.getOperand(2)); | 
 |  | 
 |   if (MaskState.isUndefined() || | 
 |       (V1State.isUndefined() && V2State.isUndefined())) | 
 |     return;  // Undefined output if mask or both inputs undefined. | 
 |    | 
 |   if (V1State.isOverdefined() || V2State.isOverdefined() || | 
 |       MaskState.isOverdefined()) { | 
 |     markOverdefined(&I); | 
 |   } else { | 
 |     // A mix of constant/undef inputs. | 
 |     Constant *V1 = V1State.isConstant() ?  | 
 |         V1State.getConstant() : UndefValue::get(I.getType()); | 
 |     Constant *V2 = V2State.isConstant() ?  | 
 |         V2State.getConstant() : UndefValue::get(I.getType()); | 
 |     Constant *Mask = MaskState.isConstant() ?  | 
 |       MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); | 
 |     markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | // Handle getelementptr instructions.  If all operands are constants then we | 
 | // can turn this into a getelementptr ConstantExpr. | 
 | // | 
 | void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { | 
 |   if (ValueState[&I].isOverdefined()) return; | 
 |  | 
 |   SmallVector<Constant*, 8> Operands; | 
 |   Operands.reserve(I.getNumOperands()); | 
 |  | 
 |   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
 |     LatticeVal State = getValueState(I.getOperand(i)); | 
 |     if (State.isUndefined()) | 
 |       return;  // Operands are not resolved yet. | 
 |      | 
 |     if (State.isOverdefined()) | 
 |       return markOverdefined(&I); | 
 |  | 
 |     assert(State.isConstant() && "Unknown state!"); | 
 |     Operands.push_back(State.getConstant()); | 
 |   } | 
 |  | 
 |   Constant *Ptr = Operands[0]; | 
 |   ArrayRef<Constant *> Indices(Operands.begin() + 1, Operands.end()); | 
 |   markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, Indices)); | 
 | } | 
 |  | 
 | void SCCPSolver::visitStoreInst(StoreInst &SI) { | 
 |   // If this store is of a struct, ignore it. | 
 |   if (SI.getOperand(0)->getType()->isStructTy()) | 
 |     return; | 
 |    | 
 |   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) | 
 |     return; | 
 |    | 
 |   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); | 
 |   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); | 
 |   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; | 
 |  | 
 |   // Get the value we are storing into the global, then merge it. | 
 |   mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); | 
 |   if (I->second.isOverdefined()) | 
 |     TrackedGlobals.erase(I);      // No need to keep tracking this! | 
 | } | 
 |  | 
 |  | 
 | // Handle load instructions.  If the operand is a constant pointer to a constant | 
 | // global, we can replace the load with the loaded constant value! | 
 | void SCCPSolver::visitLoadInst(LoadInst &I) { | 
 |   // If this load is of a struct, just mark the result overdefined. | 
 |   if (I.getType()->isStructTy()) | 
 |     return markAnythingOverdefined(&I); | 
 |    | 
 |   LatticeVal PtrVal = getValueState(I.getOperand(0)); | 
 |   if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet! | 
 |    | 
 |   LatticeVal &IV = ValueState[&I]; | 
 |   if (IV.isOverdefined()) return; | 
 |  | 
 |   if (!PtrVal.isConstant() || I.isVolatile()) | 
 |     return markOverdefined(IV, &I); | 
 |      | 
 |   Constant *Ptr = PtrVal.getConstant(); | 
 |  | 
 |   // load null -> null | 
 |   if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) | 
 |     return markConstant(IV, &I, Constant::getNullValue(I.getType())); | 
 |    | 
 |   // Transform load (constant global) into the value loaded. | 
 |   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { | 
 |     if (!TrackedGlobals.empty()) { | 
 |       // If we are tracking this global, merge in the known value for it. | 
 |       DenseMap<GlobalVariable*, LatticeVal>::iterator It = | 
 |         TrackedGlobals.find(GV); | 
 |       if (It != TrackedGlobals.end()) { | 
 |         mergeInValue(IV, &I, It->second); | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Transform load from a constant into a constant if possible. | 
 |   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) | 
 |     return markConstant(IV, &I, C); | 
 |  | 
 |   // Otherwise we cannot say for certain what value this load will produce. | 
 |   // Bail out. | 
 |   markOverdefined(IV, &I); | 
 | } | 
 |  | 
 | void SCCPSolver::visitCallSite(CallSite CS) { | 
 |   Function *F = CS.getCalledFunction(); | 
 |   Instruction *I = CS.getInstruction(); | 
 |    | 
 |   // The common case is that we aren't tracking the callee, either because we | 
 |   // are not doing interprocedural analysis or the callee is indirect, or is | 
 |   // external.  Handle these cases first. | 
 |   if (F == 0 || F->isDeclaration()) { | 
 | CallOverdefined: | 
 |     // Void return and not tracking callee, just bail. | 
 |     if (I->getType()->isVoidTy()) return; | 
 |      | 
 |     // Otherwise, if we have a single return value case, and if the function is | 
 |     // a declaration, maybe we can constant fold it. | 
 |     if (F && F->isDeclaration() && !I->getType()->isStructTy() && | 
 |         canConstantFoldCallTo(F)) { | 
 |        | 
 |       SmallVector<Constant*, 8> Operands; | 
 |       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); | 
 |            AI != E; ++AI) { | 
 |         LatticeVal State = getValueState(*AI); | 
 |          | 
 |         if (State.isUndefined()) | 
 |           return;  // Operands are not resolved yet. | 
 |         if (State.isOverdefined()) | 
 |           return markOverdefined(I); | 
 |         assert(State.isConstant() && "Unknown state!"); | 
 |         Operands.push_back(State.getConstant()); | 
 |       } | 
 |       | 
 |       // If we can constant fold this, mark the result of the call as a | 
 |       // constant. | 
 |       if (Constant *C = ConstantFoldCall(F, Operands)) | 
 |         return markConstant(I, C); | 
 |     } | 
 |  | 
 |     // Otherwise, we don't know anything about this call, mark it overdefined. | 
 |     return markAnythingOverdefined(I); | 
 |   } | 
 |  | 
 |   // If this is a local function that doesn't have its address taken, mark its | 
 |   // entry block executable and merge in the actual arguments to the call into | 
 |   // the formal arguments of the function. | 
 |   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ | 
 |     MarkBlockExecutable(F->begin()); | 
 |      | 
 |     // Propagate information from this call site into the callee. | 
 |     CallSite::arg_iterator CAI = CS.arg_begin(); | 
 |     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
 |          AI != E; ++AI, ++CAI) { | 
 |       // If this argument is byval, and if the function is not readonly, there | 
 |       // will be an implicit copy formed of the input aggregate. | 
 |       if (AI->hasByValAttr() && !F->onlyReadsMemory()) { | 
 |         markOverdefined(AI); | 
 |         continue; | 
 |       } | 
 |        | 
 |       if (StructType *STy = dyn_cast<StructType>(AI->getType())) { | 
 |         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
 |           LatticeVal CallArg = getStructValueState(*CAI, i); | 
 |           mergeInValue(getStructValueState(AI, i), AI, CallArg); | 
 |         } | 
 |       } else { | 
 |         mergeInValue(AI, getValueState(*CAI)); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // If this is a single/zero retval case, see if we're tracking the function. | 
 |   if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) { | 
 |     if (!MRVFunctionsTracked.count(F)) | 
 |       goto CallOverdefined;  // Not tracking this callee. | 
 |      | 
 |     // If we are tracking this callee, propagate the result of the function | 
 |     // into this call site. | 
 |     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
 |       mergeInValue(getStructValueState(I, i), I,  | 
 |                    TrackedMultipleRetVals[std::make_pair(F, i)]); | 
 |   } else { | 
 |     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); | 
 |     if (TFRVI == TrackedRetVals.end()) | 
 |       goto CallOverdefined;  // Not tracking this callee. | 
 |        | 
 |     // If so, propagate the return value of the callee into this call result. | 
 |     mergeInValue(I, TFRVI->second); | 
 |   } | 
 | } | 
 |  | 
 | void SCCPSolver::Solve() { | 
 |   // Process the work lists until they are empty! | 
 |   while (!BBWorkList.empty() || !InstWorkList.empty() || | 
 |          !OverdefinedInstWorkList.empty()) { | 
 |     // Process the overdefined instruction's work list first, which drives other | 
 |     // things to overdefined more quickly. | 
 |     while (!OverdefinedInstWorkList.empty()) { | 
 |       Value *I = OverdefinedInstWorkList.pop_back_val(); | 
 |  | 
 |       DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); | 
 |  | 
 |       // "I" got into the work list because it either made the transition from | 
 |       // bottom to constant | 
 |       // | 
 |       // Anything on this worklist that is overdefined need not be visited | 
 |       // since all of its users will have already been marked as overdefined | 
 |       // Update all of the users of this instruction's value. | 
 |       // | 
 |       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
 |            UI != E; ++UI) | 
 |         if (Instruction *I = dyn_cast<Instruction>(*UI)) | 
 |           OperandChangedState(I); | 
 |     } | 
 |      | 
 |     // Process the instruction work list. | 
 |     while (!InstWorkList.empty()) { | 
 |       Value *I = InstWorkList.pop_back_val(); | 
 |  | 
 |       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); | 
 |  | 
 |       // "I" got into the work list because it made the transition from undef to | 
 |       // constant. | 
 |       // | 
 |       // Anything on this worklist that is overdefined need not be visited | 
 |       // since all of its users will have already been marked as overdefined. | 
 |       // Update all of the users of this instruction's value. | 
 |       // | 
 |       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) | 
 |         for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
 |              UI != E; ++UI) | 
 |           if (Instruction *I = dyn_cast<Instruction>(*UI)) | 
 |             OperandChangedState(I); | 
 |     } | 
 |  | 
 |     // Process the basic block work list. | 
 |     while (!BBWorkList.empty()) { | 
 |       BasicBlock *BB = BBWorkList.back(); | 
 |       BBWorkList.pop_back(); | 
 |  | 
 |       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); | 
 |  | 
 |       // Notify all instructions in this basic block that they are newly | 
 |       // executable. | 
 |       visit(BB); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// ResolvedUndefsIn - While solving the dataflow for a function, we assume | 
 | /// that branches on undef values cannot reach any of their successors. | 
 | /// However, this is not a safe assumption.  After we solve dataflow, this | 
 | /// method should be use to handle this.  If this returns true, the solver | 
 | /// should be rerun. | 
 | /// | 
 | /// This method handles this by finding an unresolved branch and marking it one | 
 | /// of the edges from the block as being feasible, even though the condition | 
 | /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the | 
 | /// CFG and only slightly pessimizes the analysis results (by marking one, | 
 | /// potentially infeasible, edge feasible).  This cannot usefully modify the | 
 | /// constraints on the condition of the branch, as that would impact other users | 
 | /// of the value. | 
 | /// | 
 | /// This scan also checks for values that use undefs, whose results are actually | 
 | /// defined.  For example, 'zext i8 undef to i32' should produce all zeros | 
 | /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, | 
 | /// even if X isn't defined. | 
 | bool SCCPSolver::ResolvedUndefsIn(Function &F) { | 
 |   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
 |     if (!BBExecutable.count(BB)) | 
 |       continue; | 
 |      | 
 |     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
 |       // Look for instructions which produce undef values. | 
 |       if (I->getType()->isVoidTy()) continue; | 
 |        | 
 |       if (StructType *STy = dyn_cast<StructType>(I->getType())) { | 
 |         // Only a few things that can be structs matter for undef. | 
 |  | 
 |         // Tracked calls must never be marked overdefined in ResolvedUndefsIn. | 
 |         if (CallSite CS = CallSite(I)) | 
 |           if (Function *F = CS.getCalledFunction()) | 
 |             if (MRVFunctionsTracked.count(F)) | 
 |               continue; | 
 |  | 
 |         // extractvalue and insertvalue don't need to be marked; they are | 
 |         // tracked as precisely as their operands.  | 
 |         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) | 
 |           continue; | 
 |  | 
 |         // Send the results of everything else to overdefined.  We could be | 
 |         // more precise than this but it isn't worth bothering. | 
 |         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
 |           LatticeVal &LV = getStructValueState(I, i); | 
 |           if (LV.isUndefined()) | 
 |             markOverdefined(LV, I); | 
 |         } | 
 |         continue; | 
 |       } | 
 |  | 
 |       LatticeVal &LV = getValueState(I); | 
 |       if (!LV.isUndefined()) continue; | 
 |  | 
 |       // extractvalue is safe; check here because the argument is a struct. | 
 |       if (isa<ExtractValueInst>(I)) | 
 |         continue; | 
 |  | 
 |       // Compute the operand LatticeVals, for convenience below. | 
 |       // Anything taking a struct is conservatively assumed to require | 
 |       // overdefined markings. | 
 |       if (I->getOperand(0)->getType()->isStructTy()) { | 
 |         markOverdefined(I); | 
 |         return true; | 
 |       } | 
 |       LatticeVal Op0LV = getValueState(I->getOperand(0)); | 
 |       LatticeVal Op1LV; | 
 |       if (I->getNumOperands() == 2) { | 
 |         if (I->getOperand(1)->getType()->isStructTy()) { | 
 |           markOverdefined(I); | 
 |           return true; | 
 |         } | 
 |  | 
 |         Op1LV = getValueState(I->getOperand(1)); | 
 |       } | 
 |       // If this is an instructions whose result is defined even if the input is | 
 |       // not fully defined, propagate the information. | 
 |       Type *ITy = I->getType(); | 
 |       switch (I->getOpcode()) { | 
 |       case Instruction::Add: | 
 |       case Instruction::Sub: | 
 |       case Instruction::Trunc: | 
 |       case Instruction::FPTrunc: | 
 |       case Instruction::BitCast: | 
 |         break; // Any undef -> undef | 
 |       case Instruction::FSub: | 
 |       case Instruction::FAdd: | 
 |       case Instruction::FMul: | 
 |       case Instruction::FDiv: | 
 |       case Instruction::FRem: | 
 |         // Floating-point binary operation: be conservative. | 
 |         if (Op0LV.isUndefined() && Op1LV.isUndefined()) | 
 |           markForcedConstant(I, Constant::getNullValue(ITy)); | 
 |         else | 
 |           markOverdefined(I); | 
 |         return true; | 
 |       case Instruction::ZExt: | 
 |       case Instruction::SExt: | 
 |       case Instruction::FPToUI: | 
 |       case Instruction::FPToSI: | 
 |       case Instruction::FPExt: | 
 |       case Instruction::PtrToInt: | 
 |       case Instruction::IntToPtr: | 
 |       case Instruction::SIToFP: | 
 |       case Instruction::UIToFP: | 
 |         // undef -> 0; some outputs are impossible | 
 |         markForcedConstant(I, Constant::getNullValue(ITy)); | 
 |         return true; | 
 |       case Instruction::Mul: | 
 |       case Instruction::And: | 
 |         // Both operands undef -> undef | 
 |         if (Op0LV.isUndefined() && Op1LV.isUndefined()) | 
 |           break; | 
 |         // undef * X -> 0.   X could be zero. | 
 |         // undef & X -> 0.   X could be zero. | 
 |         markForcedConstant(I, Constant::getNullValue(ITy)); | 
 |         return true; | 
 |  | 
 |       case Instruction::Or: | 
 |         // Both operands undef -> undef | 
 |         if (Op0LV.isUndefined() && Op1LV.isUndefined()) | 
 |           break; | 
 |         // undef | X -> -1.   X could be -1. | 
 |         markForcedConstant(I, Constant::getAllOnesValue(ITy)); | 
 |         return true; | 
 |  | 
 |       case Instruction::Xor: | 
 |         // undef ^ undef -> 0; strictly speaking, this is not strictly | 
 |         // necessary, but we try to be nice to people who expect this | 
 |         // behavior in simple cases | 
 |         if (Op0LV.isUndefined() && Op1LV.isUndefined()) { | 
 |           markForcedConstant(I, Constant::getNullValue(ITy)); | 
 |           return true; | 
 |         } | 
 |         // undef ^ X -> undef | 
 |         break; | 
 |  | 
 |       case Instruction::SDiv: | 
 |       case Instruction::UDiv: | 
 |       case Instruction::SRem: | 
 |       case Instruction::URem: | 
 |         // X / undef -> undef.  No change. | 
 |         // X % undef -> undef.  No change. | 
 |         if (Op1LV.isUndefined()) break; | 
 |          | 
 |         // undef / X -> 0.   X could be maxint. | 
 |         // undef % X -> 0.   X could be 1. | 
 |         markForcedConstant(I, Constant::getNullValue(ITy)); | 
 |         return true; | 
 |          | 
 |       case Instruction::AShr: | 
 |         // X >>a undef -> undef. | 
 |         if (Op1LV.isUndefined()) break; | 
 |  | 
 |         // undef >>a X -> all ones | 
 |         markForcedConstant(I, Constant::getAllOnesValue(ITy)); | 
 |         return true; | 
 |       case Instruction::LShr: | 
 |       case Instruction::Shl: | 
 |         // X << undef -> undef. | 
 |         // X >> undef -> undef. | 
 |         if (Op1LV.isUndefined()) break; | 
 |  | 
 |         // undef << X -> 0 | 
 |         // undef >> X -> 0 | 
 |         markForcedConstant(I, Constant::getNullValue(ITy)); | 
 |         return true; | 
 |       case Instruction::Select: | 
 |         Op1LV = getValueState(I->getOperand(1)); | 
 |         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y. | 
 |         if (Op0LV.isUndefined()) { | 
 |           if (!Op1LV.isConstant())  // Pick the constant one if there is any. | 
 |             Op1LV = getValueState(I->getOperand(2)); | 
 |         } else if (Op1LV.isUndefined()) { | 
 |           // c ? undef : undef -> undef.  No change. | 
 |           Op1LV = getValueState(I->getOperand(2)); | 
 |           if (Op1LV.isUndefined()) | 
 |             break; | 
 |           // Otherwise, c ? undef : x -> x. | 
 |         } else { | 
 |           // Leave Op1LV as Operand(1)'s LatticeValue. | 
 |         } | 
 |          | 
 |         if (Op1LV.isConstant()) | 
 |           markForcedConstant(I, Op1LV.getConstant()); | 
 |         else | 
 |           markOverdefined(I); | 
 |         return true; | 
 |       case Instruction::Load: | 
 |         // A load here means one of two things: a load of undef from a global, | 
 |         // a load from an unknown pointer.  Either way, having it return undef | 
 |         // is okay. | 
 |         break; | 
 |       case Instruction::ICmp: | 
 |         // X == undef -> undef.  Other comparisons get more complicated. | 
 |         if (cast<ICmpInst>(I)->isEquality()) | 
 |           break; | 
 |         markOverdefined(I); | 
 |         return true; | 
 |       case Instruction::Call: | 
 |       case Instruction::Invoke: { | 
 |         // There are two reasons a call can have an undef result | 
 |         // 1. It could be tracked. | 
 |         // 2. It could be constant-foldable. | 
 |         // Because of the way we solve return values, tracked calls must | 
 |         // never be marked overdefined in ResolvedUndefsIn. | 
 |         if (Function *F = CallSite(I).getCalledFunction()) | 
 |           if (TrackedRetVals.count(F)) | 
 |             break; | 
 |  | 
 |         // If the call is constant-foldable, we mark it overdefined because | 
 |         // we do not know what return values are valid. | 
 |         markOverdefined(I); | 
 |         return true; | 
 |       } | 
 |       default: | 
 |         // If we don't know what should happen here, conservatively mark it | 
 |         // overdefined. | 
 |         markOverdefined(I); | 
 |         return true; | 
 |       } | 
 |     } | 
 |    | 
 |     // Check to see if we have a branch or switch on an undefined value.  If so | 
 |     // we force the branch to go one way or the other to make the successor | 
 |     // values live.  It doesn't really matter which way we force it. | 
 |     TerminatorInst *TI = BB->getTerminator(); | 
 |     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
 |       if (!BI->isConditional()) continue; | 
 |       if (!getValueState(BI->getCondition()).isUndefined()) | 
 |         continue; | 
 |      | 
 |       // If the input to SCCP is actually branch on undef, fix the undef to | 
 |       // false. | 
 |       if (isa<UndefValue>(BI->getCondition())) { | 
 |         BI->setCondition(ConstantInt::getFalse(BI->getContext())); | 
 |         markEdgeExecutable(BB, TI->getSuccessor(1)); | 
 |         return true; | 
 |       } | 
 |        | 
 |       // Otherwise, it is a branch on a symbolic value which is currently | 
 |       // considered to be undef.  Handle this by forcing the input value to the | 
 |       // branch to false. | 
 |       markForcedConstant(BI->getCondition(), | 
 |                          ConstantInt::getFalse(TI->getContext())); | 
 |       return true; | 
 |     } | 
 |      | 
 |     if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
 |       if (SI->getNumSuccessors() < 2)   // no cases | 
 |         continue; | 
 |       if (!getValueState(SI->getCondition()).isUndefined()) | 
 |         continue; | 
 |        | 
 |       // If the input to SCCP is actually switch on undef, fix the undef to | 
 |       // the first constant. | 
 |       if (isa<UndefValue>(SI->getCondition())) { | 
 |         SI->setCondition(SI->getCaseValue(1)); | 
 |         markEdgeExecutable(BB, TI->getSuccessor(1)); | 
 |         return true; | 
 |       } | 
 |        | 
 |       markForcedConstant(SI->getCondition(), SI->getCaseValue(1)); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | namespace { | 
 |   //===--------------------------------------------------------------------===// | 
 |   // | 
 |   /// SCCP Class - This class uses the SCCPSolver to implement a per-function | 
 |   /// Sparse Conditional Constant Propagator. | 
 |   /// | 
 |   struct SCCP : public FunctionPass { | 
 |     static char ID; // Pass identification, replacement for typeid | 
 |     SCCP() : FunctionPass(ID) { | 
 |       initializeSCCPPass(*PassRegistry::getPassRegistry()); | 
 |     } | 
 |  | 
 |     // runOnFunction - Run the Sparse Conditional Constant Propagation | 
 |     // algorithm, and return true if the function was modified. | 
 |     // | 
 |     bool runOnFunction(Function &F); | 
 |   }; | 
 | } // end anonymous namespace | 
 |  | 
 | char SCCP::ID = 0; | 
 | INITIALIZE_PASS(SCCP, "sccp", | 
 |                 "Sparse Conditional Constant Propagation", false, false) | 
 |  | 
 | // createSCCPPass - This is the public interface to this file. | 
 | FunctionPass *llvm::createSCCPPass() { | 
 |   return new SCCP(); | 
 | } | 
 |  | 
 | static void DeleteInstructionInBlock(BasicBlock *BB) { | 
 |   DEBUG(dbgs() << "  BasicBlock Dead:" << *BB); | 
 |   ++NumDeadBlocks; | 
 |  | 
 |   // Check to see if there are non-terminating instructions to delete. | 
 |   if (isa<TerminatorInst>(BB->begin())) | 
 |     return; | 
 |  | 
 |   // Delete the instructions backwards, as it has a reduced likelihood of having | 
 |   // to update as many def-use and use-def chains. | 
 |   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. | 
 |   while (EndInst != BB->begin()) { | 
 |     // Delete the next to last instruction. | 
 |     BasicBlock::iterator I = EndInst; | 
 |     Instruction *Inst = --I; | 
 |     if (!Inst->use_empty()) | 
 |       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); | 
 |     if (isa<LandingPadInst>(Inst)) { | 
 |       EndInst = Inst; | 
 |       continue; | 
 |     } | 
 |     BB->getInstList().erase(Inst); | 
 |     ++NumInstRemoved; | 
 |   } | 
 | } | 
 |  | 
 | // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, | 
 | // and return true if the function was modified. | 
 | // | 
 | bool SCCP::runOnFunction(Function &F) { | 
 |   DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); | 
 |   SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); | 
 |  | 
 |   // Mark the first block of the function as being executable. | 
 |   Solver.MarkBlockExecutable(F.begin()); | 
 |  | 
 |   // Mark all arguments to the function as being overdefined. | 
 |   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) | 
 |     Solver.markAnythingOverdefined(AI); | 
 |  | 
 |   // Solve for constants. | 
 |   bool ResolvedUndefs = true; | 
 |   while (ResolvedUndefs) { | 
 |     Solver.Solve(); | 
 |     DEBUG(dbgs() << "RESOLVING UNDEFs\n"); | 
 |     ResolvedUndefs = Solver.ResolvedUndefsIn(F); | 
 |   } | 
 |  | 
 |   bool MadeChanges = false; | 
 |  | 
 |   // If we decided that there are basic blocks that are dead in this function, | 
 |   // delete their contents now.  Note that we cannot actually delete the blocks, | 
 |   // as we cannot modify the CFG of the function. | 
 |  | 
 |   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
 |     if (!Solver.isBlockExecutable(BB)) { | 
 |       DeleteInstructionInBlock(BB); | 
 |       MadeChanges = true; | 
 |       continue; | 
 |     } | 
 |    | 
 |     // Iterate over all of the instructions in a function, replacing them with | 
 |     // constants if we have found them to be of constant values. | 
 |     // | 
 |     for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { | 
 |       Instruction *Inst = BI++; | 
 |       if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) | 
 |         continue; | 
 |        | 
 |       // TODO: Reconstruct structs from their elements. | 
 |       if (Inst->getType()->isStructTy()) | 
 |         continue; | 
 |        | 
 |       LatticeVal IV = Solver.getLatticeValueFor(Inst); | 
 |       if (IV.isOverdefined()) | 
 |         continue; | 
 |        | 
 |       Constant *Const = IV.isConstant() | 
 |         ? IV.getConstant() : UndefValue::get(Inst->getType()); | 
 |       DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst); | 
 |  | 
 |       // Replaces all of the uses of a variable with uses of the constant. | 
 |       Inst->replaceAllUsesWith(Const); | 
 |        | 
 |       // Delete the instruction. | 
 |       Inst->eraseFromParent(); | 
 |        | 
 |       // Hey, we just changed something! | 
 |       MadeChanges = true; | 
 |       ++NumInstRemoved; | 
 |     } | 
 |   } | 
 |  | 
 |   return MadeChanges; | 
 | } | 
 |  | 
 | namespace { | 
 |   //===--------------------------------------------------------------------===// | 
 |   // | 
 |   /// IPSCCP Class - This class implements interprocedural Sparse Conditional | 
 |   /// Constant Propagation. | 
 |   /// | 
 |   struct IPSCCP : public ModulePass { | 
 |     static char ID; | 
 |     IPSCCP() : ModulePass(ID) { | 
 |       initializeIPSCCPPass(*PassRegistry::getPassRegistry()); | 
 |     } | 
 |     bool runOnModule(Module &M); | 
 |   }; | 
 | } // end anonymous namespace | 
 |  | 
 | char IPSCCP::ID = 0; | 
 | INITIALIZE_PASS(IPSCCP, "ipsccp", | 
 |                 "Interprocedural Sparse Conditional Constant Propagation", | 
 |                 false, false) | 
 |  | 
 | // createIPSCCPPass - This is the public interface to this file. | 
 | ModulePass *llvm::createIPSCCPPass() { | 
 |   return new IPSCCP(); | 
 | } | 
 |  | 
 |  | 
 | static bool AddressIsTaken(const GlobalValue *GV) { | 
 |   // Delete any dead constantexpr klingons. | 
 |   GV->removeDeadConstantUsers(); | 
 |  | 
 |   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); | 
 |        UI != E; ++UI) { | 
 |     const User *U = *UI; | 
 |     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
 |       if (SI->getOperand(0) == GV || SI->isVolatile()) | 
 |         return true;  // Storing addr of GV. | 
 |     } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) { | 
 |       // Make sure we are calling the function, not passing the address. | 
 |       ImmutableCallSite CS(cast<Instruction>(U)); | 
 |       if (!CS.isCallee(UI)) | 
 |         return true; | 
 |     } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { | 
 |       if (LI->isVolatile()) | 
 |         return true; | 
 |     } else if (isa<BlockAddress>(U)) { | 
 |       // blockaddress doesn't take the address of the function, it takes addr | 
 |       // of label. | 
 |     } else { | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool IPSCCP::runOnModule(Module &M) { | 
 |   SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); | 
 |  | 
 |   // AddressTakenFunctions - This set keeps track of the address-taken functions | 
 |   // that are in the input.  As IPSCCP runs through and simplifies code, | 
 |   // functions that were address taken can end up losing their | 
 |   // address-taken-ness.  Because of this, we keep track of their addresses from | 
 |   // the first pass so we can use them for the later simplification pass. | 
 |   SmallPtrSet<Function*, 32> AddressTakenFunctions; | 
 |    | 
 |   // Loop over all functions, marking arguments to those with their addresses | 
 |   // taken or that are external as overdefined. | 
 |   // | 
 |   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { | 
 |     if (F->isDeclaration()) | 
 |       continue; | 
 |      | 
 |     // If this is a strong or ODR definition of this function, then we can | 
 |     // propagate information about its result into callsites of it. | 
 |     if (!F->mayBeOverridden()) | 
 |       Solver.AddTrackedFunction(F); | 
 |      | 
 |     // If this function only has direct calls that we can see, we can track its | 
 |     // arguments and return value aggressively, and can assume it is not called | 
 |     // unless we see evidence to the contrary. | 
 |     if (F->hasLocalLinkage()) { | 
 |       if (AddressIsTaken(F)) | 
 |         AddressTakenFunctions.insert(F); | 
 |       else { | 
 |         Solver.AddArgumentTrackedFunction(F); | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     // Assume the function is called. | 
 |     Solver.MarkBlockExecutable(F->begin()); | 
 |      | 
 |     // Assume nothing about the incoming arguments. | 
 |     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
 |          AI != E; ++AI) | 
 |       Solver.markAnythingOverdefined(AI); | 
 |   } | 
 |  | 
 |   // Loop over global variables.  We inform the solver about any internal global | 
 |   // variables that do not have their 'addresses taken'.  If they don't have | 
 |   // their addresses taken, we can propagate constants through them. | 
 |   for (Module::global_iterator G = M.global_begin(), E = M.global_end(); | 
 |        G != E; ++G) | 
 |     if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) | 
 |       Solver.TrackValueOfGlobalVariable(G); | 
 |  | 
 |   // Solve for constants. | 
 |   bool ResolvedUndefs = true; | 
 |   while (ResolvedUndefs) { | 
 |     Solver.Solve(); | 
 |  | 
 |     DEBUG(dbgs() << "RESOLVING UNDEFS\n"); | 
 |     ResolvedUndefs = false; | 
 |     for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) | 
 |       ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); | 
 |   } | 
 |  | 
 |   bool MadeChanges = false; | 
 |  | 
 |   // Iterate over all of the instructions in the module, replacing them with | 
 |   // constants if we have found them to be of constant values. | 
 |   // | 
 |   SmallVector<BasicBlock*, 512> BlocksToErase; | 
 |  | 
 |   for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { | 
 |     if (Solver.isBlockExecutable(F->begin())) { | 
 |       for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
 |            AI != E; ++AI) { | 
 |         if (AI->use_empty() || AI->getType()->isStructTy()) continue; | 
 |          | 
 |         // TODO: Could use getStructLatticeValueFor to find out if the entire | 
 |         // result is a constant and replace it entirely if so. | 
 |  | 
 |         LatticeVal IV = Solver.getLatticeValueFor(AI); | 
 |         if (IV.isOverdefined()) continue; | 
 |          | 
 |         Constant *CST = IV.isConstant() ? | 
 |         IV.getConstant() : UndefValue::get(AI->getType()); | 
 |         DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n"); | 
 |          | 
 |         // Replaces all of the uses of a variable with uses of the | 
 |         // constant. | 
 |         AI->replaceAllUsesWith(CST); | 
 |         ++IPNumArgsElimed; | 
 |       } | 
 |     } | 
 |  | 
 |     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { | 
 |       if (!Solver.isBlockExecutable(BB)) { | 
 |         DeleteInstructionInBlock(BB); | 
 |         MadeChanges = true; | 
 |  | 
 |         TerminatorInst *TI = BB->getTerminator(); | 
 |         for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { | 
 |           BasicBlock *Succ = TI->getSuccessor(i); | 
 |           if (!Succ->empty() && isa<PHINode>(Succ->begin())) | 
 |             TI->getSuccessor(i)->removePredecessor(BB); | 
 |         } | 
 |         if (!TI->use_empty()) | 
 |           TI->replaceAllUsesWith(UndefValue::get(TI->getType())); | 
 |         TI->eraseFromParent(); | 
 |  | 
 |         if (&*BB != &F->front()) | 
 |           BlocksToErase.push_back(BB); | 
 |         else | 
 |           new UnreachableInst(M.getContext(), BB); | 
 |         continue; | 
 |       } | 
 |        | 
 |       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { | 
 |         Instruction *Inst = BI++; | 
 |         if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) | 
 |           continue; | 
 |          | 
 |         // TODO: Could use getStructLatticeValueFor to find out if the entire | 
 |         // result is a constant and replace it entirely if so. | 
 |          | 
 |         LatticeVal IV = Solver.getLatticeValueFor(Inst); | 
 |         if (IV.isOverdefined()) | 
 |           continue; | 
 |          | 
 |         Constant *Const = IV.isConstant() | 
 |           ? IV.getConstant() : UndefValue::get(Inst->getType()); | 
 |         DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst); | 
 |  | 
 |         // Replaces all of the uses of a variable with uses of the | 
 |         // constant. | 
 |         Inst->replaceAllUsesWith(Const); | 
 |          | 
 |         // Delete the instruction. | 
 |         if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) | 
 |           Inst->eraseFromParent(); | 
 |  | 
 |         // Hey, we just changed something! | 
 |         MadeChanges = true; | 
 |         ++IPNumInstRemoved; | 
 |       } | 
 |     } | 
 |  | 
 |     // Now that all instructions in the function are constant folded, erase dead | 
 |     // blocks, because we can now use ConstantFoldTerminator to get rid of | 
 |     // in-edges. | 
 |     for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { | 
 |       // If there are any PHI nodes in this successor, drop entries for BB now. | 
 |       BasicBlock *DeadBB = BlocksToErase[i]; | 
 |       for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); | 
 |            UI != UE; ) { | 
 |         // Grab the user and then increment the iterator early, as the user | 
 |         // will be deleted. Step past all adjacent uses from the same user. | 
 |         Instruction *I = dyn_cast<Instruction>(*UI); | 
 |         do { ++UI; } while (UI != UE && *UI == I); | 
 |  | 
 |         // Ignore blockaddress users; BasicBlock's dtor will handle them. | 
 |         if (!I) continue; | 
 |  | 
 |         bool Folded = ConstantFoldTerminator(I->getParent()); | 
 |         if (!Folded) { | 
 |           // The constant folder may not have been able to fold the terminator | 
 |           // if this is a branch or switch on undef.  Fold it manually as a | 
 |           // branch to the first successor. | 
 | #ifndef NDEBUG | 
 |           if (BranchInst *BI = dyn_cast<BranchInst>(I)) { | 
 |             assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && | 
 |                    "Branch should be foldable!"); | 
 |           } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { | 
 |             assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); | 
 |           } else { | 
 |             llvm_unreachable("Didn't fold away reference to block!"); | 
 |           } | 
 | #endif | 
 |            | 
 |           // Make this an uncond branch to the first successor. | 
 |           TerminatorInst *TI = I->getParent()->getTerminator(); | 
 |           BranchInst::Create(TI->getSuccessor(0), TI); | 
 |            | 
 |           // Remove entries in successor phi nodes to remove edges. | 
 |           for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) | 
 |             TI->getSuccessor(i)->removePredecessor(TI->getParent()); | 
 |            | 
 |           // Remove the old terminator. | 
 |           TI->eraseFromParent(); | 
 |         } | 
 |       } | 
 |  | 
 |       // Finally, delete the basic block. | 
 |       F->getBasicBlockList().erase(DeadBB); | 
 |     } | 
 |     BlocksToErase.clear(); | 
 |   } | 
 |  | 
 |   // If we inferred constant or undef return values for a function, we replaced | 
 |   // all call uses with the inferred value.  This means we don't need to bother | 
 |   // actually returning anything from the function.  Replace all return | 
 |   // instructions with return undef. | 
 |   // | 
 |   // Do this in two stages: first identify the functions we should process, then | 
 |   // actually zap their returns.  This is important because we can only do this | 
 |   // if the address of the function isn't taken.  In cases where a return is the | 
 |   // last use of a function, the order of processing functions would affect | 
 |   // whether other functions are optimizable. | 
 |   SmallVector<ReturnInst*, 8> ReturnsToZap; | 
 |    | 
 |   // TODO: Process multiple value ret instructions also. | 
 |   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); | 
 |   for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), | 
 |        E = RV.end(); I != E; ++I) { | 
 |     Function *F = I->first; | 
 |     if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) | 
 |       continue; | 
 |    | 
 |     // We can only do this if we know that nothing else can call the function. | 
 |     if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) | 
 |       continue; | 
 |      | 
 |     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) | 
 |       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) | 
 |         if (!isa<UndefValue>(RI->getOperand(0))) | 
 |           ReturnsToZap.push_back(RI); | 
 |   } | 
 |  | 
 |   // Zap all returns which we've identified as zap to change. | 
 |   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { | 
 |     Function *F = ReturnsToZap[i]->getParent()->getParent(); | 
 |     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); | 
 |   } | 
 |      | 
 |   // If we inferred constant or undef values for globals variables, we can delete | 
 |   // the global and any stores that remain to it. | 
 |   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); | 
 |   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), | 
 |          E = TG.end(); I != E; ++I) { | 
 |     GlobalVariable *GV = I->first; | 
 |     assert(!I->second.isOverdefined() && | 
 |            "Overdefined values should have been taken out of the map!"); | 
 |     DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); | 
 |     while (!GV->use_empty()) { | 
 |       StoreInst *SI = cast<StoreInst>(GV->use_back()); | 
 |       SI->eraseFromParent(); | 
 |     } | 
 |     M.getGlobalList().erase(GV); | 
 |     ++IPNumGlobalConst; | 
 |   } | 
 |  | 
 |   return MadeChanges; | 
 | } |