| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "SamplerCore.hpp" |
| |
| #include "Constants.hpp" |
| #include "PixelRoutine.hpp" |
| #include "System/Debug.hpp" |
| #include "Vulkan/VkSampler.hpp" |
| |
| namespace sw { |
| |
| SamplerCore::SamplerCore(Pointer<Byte> &constants, const Sampler &state, SamplerFunction function) |
| : constants(constants) |
| , state(state) |
| , function(function) |
| { |
| } |
| |
| SIMD::Float4 SamplerCore::sampleTexture(Pointer<Byte> &texture, SIMD::Float uvwa[4], const SIMD::Float &dRef, const Float &lodOrBias, const SIMD::Float &dsx, const SIMD::Float &dsy, SIMD::Int offset[4], const SIMD::Int &sample) |
| { |
| SIMD::Float4 c; |
| |
| for(int i = 0; i < SIMD::Width / 4; i++) |
| { |
| Float4 uvwa128[4]; |
| uvwa128[0] = Extract128(uvwa[0], i); |
| uvwa128[1] = Extract128(uvwa[1], i); |
| uvwa128[2] = Extract128(uvwa[2], i); |
| uvwa128[3] = Extract128(uvwa[3], i); |
| |
| Vector4i offset128; |
| offset128[0] = Extract128(offset[0], i); |
| offset128[1] = Extract128(offset[1], i); |
| offset128[2] = Extract128(offset[2], i); |
| offset128[3] = Extract128(offset[3], i); |
| |
| Vector4f c128 = sampleTexture128(texture, uvwa128, Extract128(dRef, i), lodOrBias, Extract128(dsx, i), Extract128(dsy, i), offset128, Extract128(sample, i)); |
| c.x = Insert128(c.x, c128.x, i); |
| c.y = Insert128(c.y, c128.y, i); |
| c.z = Insert128(c.z, c128.z, i); |
| c.w = Insert128(c.w, c128.w, i); |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::sampleTexture128(Pointer<Byte> &texture, Float4 uvwa[4], const Float4 &dRef, const Float &lodOrBias, const Float4 &dsx, const Float4 &dsy, Vector4i &offset, const Int4 &sample) |
| { |
| Vector4f c; |
| |
| Float4 u = uvwa[0]; |
| Float4 v = uvwa[1]; |
| Float4 w = uvwa[2]; |
| Float4 a; // Array layer coordinate |
| switch(state.textureType) |
| { |
| case VK_IMAGE_VIEW_TYPE_1D_ARRAY: a = uvwa[1]; break; |
| case VK_IMAGE_VIEW_TYPE_2D_ARRAY: a = uvwa[2]; break; |
| case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: a = uvwa[3]; break; |
| default: break; |
| } |
| |
| Float lod; |
| Float anisotropy; |
| Float4 uDelta; |
| Float4 vDelta; |
| Float4 M; // Major axis |
| |
| if(state.isCube()) |
| { |
| Int4 face = cubeFace(u, v, uvwa[0], uvwa[1], uvwa[2], M); |
| w = As<Float4>(face); |
| } |
| |
| // Determine if we can skip the LOD computation. This is the case when the mipmap has only one level, except for LOD query, |
| // where we have to return the computed value. Anisotropic filtering requires computing the anisotropy factor even for a single mipmap level. |
| bool singleMipLevel = (state.minLod == state.maxLod); |
| bool requiresLodComputation = (function == Query) || (state.textureFilter == FILTER_ANISOTROPIC); |
| bool skipLodComputation = singleMipLevel && !requiresLodComputation; |
| |
| if(skipLodComputation) |
| { |
| lod = state.minLod; |
| } |
| else if(function == Implicit || function == Bias || function == Grad || function == Query) |
| { |
| if(state.is1D()) |
| { |
| computeLod1D(texture, lod, u, dsx, dsy); |
| } |
| else if(state.is2D()) |
| { |
| computeLod2D(texture, lod, anisotropy, uDelta, vDelta, u, v, dsx, dsy); |
| } |
| else if(state.isCube()) |
| { |
| computeLodCube(texture, lod, uvwa[0], uvwa[1], uvwa[2], dsx, dsy, M); |
| } |
| else |
| { |
| computeLod3D(texture, lod, u, v, w, dsx, dsy); |
| } |
| |
| Float bias = state.mipLodBias; |
| |
| if(function == Bias) |
| { |
| // Add SPIR-V Bias operand to the sampler provided bias and clamp to maxSamplerLodBias limit. |
| bias = Min(Max(bias + lodOrBias, -vk::MAX_SAMPLER_LOD_BIAS), vk::MAX_SAMPLER_LOD_BIAS); |
| } |
| |
| lod += bias; |
| } |
| else if(function == Lod) |
| { |
| // Vulkan 1.1: "The absolute value of mipLodBias must be less than or equal to VkPhysicalDeviceLimits::maxSamplerLodBias" |
| // Hence no explicit clamping to maxSamplerLodBias is required in this case. |
| lod = lodOrBias + state.mipLodBias; |
| } |
| else if(function == Fetch) |
| { |
| // TODO: Eliminate int-float-int conversion. |
| lod = Float(As<Int>(lodOrBias)); |
| lod = Max(lod, state.minLod); |
| lod = Min(lod, state.maxLod); |
| } |
| else if(function == Base || function == Gather) |
| { |
| lod = Float(0); |
| } |
| else |
| UNREACHABLE("Sampler function %d", int(function)); |
| |
| if(function != Base && function != Fetch && function != Gather) |
| { |
| if(function == Query) |
| { |
| c.y = Float4(lod); // Unclamped LOD. |
| } |
| |
| if(!skipLodComputation) |
| { |
| lod = Max(lod, state.minLod); |
| lod = Min(lod, state.maxLod); |
| } |
| |
| if(function == Query) |
| { |
| if(state.mipmapFilter == MIPMAP_POINT) |
| { |
| lod = Round(lod); // TODO: Preferred formula is ceil(lod + 0.5) - 1 |
| } |
| |
| c.x = lod; |
| // c.y contains unclamped LOD. |
| |
| return c; |
| } |
| } |
| |
| bool force32BitFiltering = state.highPrecisionFiltering && !isYcbcrFormat() && (state.textureFilter != FILTER_POINT); |
| bool use32BitFiltering = hasFloatTexture() || hasUnnormalizedIntegerTexture() || force32BitFiltering || |
| state.isCube() || state.unnormalizedCoordinates || state.compareEnable || |
| borderModeActive() || (function == Gather) || (function == Fetch); |
| int numComponents = (function == Gather) ? 4 : textureComponentCount(); |
| |
| if(use32BitFiltering) |
| { |
| c = sampleFloatFilter(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta); |
| } |
| else // 16-bit filtering. |
| { |
| Vector4s cs = sampleFilter(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta); |
| |
| for(int component = 0; component < numComponents; component++) |
| { |
| if(hasUnsignedTextureComponent(component)) |
| { |
| c[component] = Float4(As<UShort4>(cs[component])); |
| } |
| else |
| { |
| c[component] = Float4(cs[component]); |
| } |
| } |
| } |
| |
| if(hasNormalizedFormat() && !state.compareEnable) |
| { |
| sw::float4 scale = getComponentScale(); |
| |
| for(int component = 0; component < numComponents; component++) |
| { |
| int texelComponent = (function == Gather) ? getGatherComponent() : component; |
| c[component] *= Float4(1.0f / scale[texelComponent]); |
| } |
| } |
| |
| if(state.textureFormat.isSignedNormalized()) |
| { |
| for(int component = 0; component < numComponents; component++) |
| { |
| c[component] = Max(c[component], Float4(-1.0f)); |
| } |
| } |
| |
| if(state.textureFilter != FILTER_GATHER) |
| { |
| if((state.swizzle.r != VK_COMPONENT_SWIZZLE_R) || |
| (state.swizzle.g != VK_COMPONENT_SWIZZLE_G) || |
| (state.swizzle.b != VK_COMPONENT_SWIZZLE_B) || |
| (state.swizzle.a != VK_COMPONENT_SWIZZLE_A)) |
| { |
| const Vector4f col = c; |
| bool integer = hasUnnormalizedIntegerTexture(); |
| c.x = applySwizzle(col, state.swizzle.r, integer); |
| c.y = applySwizzle(col, state.swizzle.g, integer); |
| c.z = applySwizzle(col, state.swizzle.b, integer); |
| c.w = applySwizzle(col, state.swizzle.a, integer); |
| } |
| } |
| else // Gather |
| { |
| VkComponentSwizzle swizzle = gatherSwizzle(); |
| |
| // R/G/B/A swizzles affect the component collected from each texel earlier. |
| // Handle the ZERO and ONE cases here because we don't need to know the format. |
| |
| if(swizzle == VK_COMPONENT_SWIZZLE_ZERO) |
| { |
| c.x = c.y = c.z = c.w = Float4(0); |
| } |
| else if(swizzle == VK_COMPONENT_SWIZZLE_ONE) |
| { |
| bool integer = hasUnnormalizedIntegerTexture(); |
| c.x = c.y = c.z = c.w = integer ? As<Float4>(Int4(1)) : RValue<Float4>(Float4(1.0f)); |
| } |
| } |
| |
| return c; |
| } |
| |
| Float4 SamplerCore::applySwizzle(const Vector4f &c, VkComponentSwizzle swizzle, bool integer) |
| { |
| switch(swizzle) |
| { |
| default: UNSUPPORTED("VkComponentSwizzle %d", (int)swizzle); |
| case VK_COMPONENT_SWIZZLE_R: return c.x; |
| case VK_COMPONENT_SWIZZLE_G: return c.y; |
| case VK_COMPONENT_SWIZZLE_B: return c.z; |
| case VK_COMPONENT_SWIZZLE_A: return c.w; |
| case VK_COMPONENT_SWIZZLE_ZERO: return Float4(0.0f, 0.0f, 0.0f, 0.0f); |
| case VK_COMPONENT_SWIZZLE_ONE: |
| if(integer) |
| { |
| return Float4(As<Float4>(sw::Int4(1, 1, 1, 1))); |
| } |
| else |
| { |
| return Float4(1.0f, 1.0f, 1.0f, 1.0f); |
| } |
| break; |
| } |
| }; |
| |
| Short4 SamplerCore::offsetSample(Short4 &uvw, Pointer<Byte> &mipmap, int halfOffset, bool wrap, int count, Float &lod) |
| { |
| Short4 offset = *Pointer<UShort4>(mipmap + halfOffset); |
| |
| if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) |
| { |
| offset &= Short4(CmpNLE(Float4(lod), Float4(0.0f))); |
| } |
| else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR) |
| { |
| offset &= Short4(CmpLE(Float4(lod), Float4(0.0f))); |
| } |
| |
| if(wrap) |
| { |
| switch(count) |
| { |
| case -1: return uvw - offset; |
| case 0: return uvw; |
| case +1: return uvw + offset; |
| case 2: return uvw + offset + offset; |
| } |
| } |
| else // Clamp or mirror |
| { |
| switch(count) |
| { |
| case -1: return SubSat(As<UShort4>(uvw), As<UShort4>(offset)); |
| case 0: return uvw; |
| case +1: return AddSat(As<UShort4>(uvw), As<UShort4>(offset)); |
| case 2: return AddSat(AddSat(As<UShort4>(uvw), As<UShort4>(offset)), As<UShort4>(offset)); |
| } |
| } |
| |
| return uvw; |
| } |
| |
| Vector4s SamplerCore::sampleFilter(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta) |
| { |
| Vector4s c = sampleAniso(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta, false); |
| |
| if(function == Fetch) |
| { |
| return c; |
| } |
| |
| if(state.mipmapFilter == MIPMAP_LINEAR) |
| { |
| Vector4s cc = sampleAniso(texture, u, v, w, a, offset, sample, lod, anisotropy, uDelta, vDelta, true); |
| |
| lod *= Float(1 << 16); |
| |
| UShort4 utri = UShort4(Float4(lod)); // TODO: Optimize |
| Short4 stri = utri >> 1; // TODO: Optimize |
| |
| if(hasUnsignedTextureComponent(0)) |
| cc.x = MulHigh(As<UShort4>(cc.x), utri); |
| else |
| cc.x = MulHigh(cc.x, stri); |
| if(hasUnsignedTextureComponent(1)) |
| cc.y = MulHigh(As<UShort4>(cc.y), utri); |
| else |
| cc.y = MulHigh(cc.y, stri); |
| if(hasUnsignedTextureComponent(2)) |
| cc.z = MulHigh(As<UShort4>(cc.z), utri); |
| else |
| cc.z = MulHigh(cc.z, stri); |
| if(hasUnsignedTextureComponent(3)) |
| cc.w = MulHigh(As<UShort4>(cc.w), utri); |
| else |
| cc.w = MulHigh(cc.w, stri); |
| |
| utri = ~utri; |
| stri = Short4(0x7FFF) - stri; |
| |
| if(hasUnsignedTextureComponent(0)) |
| c.x = MulHigh(As<UShort4>(c.x), utri); |
| else |
| c.x = MulHigh(c.x, stri); |
| if(hasUnsignedTextureComponent(1)) |
| c.y = MulHigh(As<UShort4>(c.y), utri); |
| else |
| c.y = MulHigh(c.y, stri); |
| if(hasUnsignedTextureComponent(2)) |
| c.z = MulHigh(As<UShort4>(c.z), utri); |
| else |
| c.z = MulHigh(c.z, stri); |
| if(hasUnsignedTextureComponent(3)) |
| c.w = MulHigh(As<UShort4>(c.w), utri); |
| else |
| c.w = MulHigh(c.w, stri); |
| |
| c.x += cc.x; |
| c.y += cc.y; |
| c.z += cc.z; |
| c.w += cc.w; |
| |
| if(!hasUnsignedTextureComponent(0)) c.x += c.x; |
| if(!hasUnsignedTextureComponent(1)) c.y += c.y; |
| if(!hasUnsignedTextureComponent(2)) c.z += c.z; |
| if(!hasUnsignedTextureComponent(3)) c.w += c.w; |
| } |
| |
| return c; |
| } |
| |
| Vector4s SamplerCore::sampleAniso(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, bool secondLOD) |
| { |
| Vector4s c; |
| |
| if(state.textureFilter != FILTER_ANISOTROPIC) |
| { |
| c = sampleQuad(texture, u, v, w, a, offset, sample, lod, secondLOD); |
| } |
| else |
| { |
| Int N = RoundInt(anisotropy); |
| |
| Vector4s cSum; |
| |
| cSum.x = Short4(0); |
| cSum.y = Short4(0); |
| cSum.z = Short4(0); |
| cSum.w = Short4(0); |
| |
| Float4 A = *Pointer<Float4>(constants + OFFSET(Constants, uvWeight) + 16 * N); |
| Float4 B = *Pointer<Float4>(constants + OFFSET(Constants, uvStart) + 16 * N); |
| UShort4 cw = *Pointer<UShort4>(constants + OFFSET(Constants, cWeight) + 8 * N); |
| Short4 sw = Short4(cw >> 1); |
| |
| Float4 du = uDelta; |
| Float4 dv = vDelta; |
| |
| Float4 u0 = u + B * du; |
| Float4 v0 = v + B * dv; |
| |
| du *= A; |
| dv *= A; |
| |
| Int i = 0; |
| |
| Do |
| { |
| c = sampleQuad(texture, u0, v0, w, a, offset, sample, lod, secondLOD); |
| |
| u0 += du; |
| v0 += dv; |
| |
| if(hasUnsignedTextureComponent(0)) |
| cSum.x += As<Short4>(MulHigh(As<UShort4>(c.x), cw)); |
| else |
| cSum.x += MulHigh(c.x, sw); |
| if(hasUnsignedTextureComponent(1)) |
| cSum.y += As<Short4>(MulHigh(As<UShort4>(c.y), cw)); |
| else |
| cSum.y += MulHigh(c.y, sw); |
| if(hasUnsignedTextureComponent(2)) |
| cSum.z += As<Short4>(MulHigh(As<UShort4>(c.z), cw)); |
| else |
| cSum.z += MulHigh(c.z, sw); |
| if(hasUnsignedTextureComponent(3)) |
| cSum.w += As<Short4>(MulHigh(As<UShort4>(c.w), cw)); |
| else |
| cSum.w += MulHigh(c.w, sw); |
| |
| i++; |
| } |
| Until(i >= N); |
| |
| if(hasUnsignedTextureComponent(0)) |
| c.x = cSum.x; |
| else |
| c.x = AddSat(cSum.x, cSum.x); |
| if(hasUnsignedTextureComponent(1)) |
| c.y = cSum.y; |
| else |
| c.y = AddSat(cSum.y, cSum.y); |
| if(hasUnsignedTextureComponent(2)) |
| c.z = cSum.z; |
| else |
| c.z = AddSat(cSum.z, cSum.z); |
| if(hasUnsignedTextureComponent(3)) |
| c.w = cSum.w; |
| else |
| c.w = AddSat(cSum.w, cSum.w); |
| } |
| |
| return c; |
| } |
| |
| Vector4s SamplerCore::sampleQuad(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) |
| { |
| if(state.textureType != VK_IMAGE_VIEW_TYPE_3D) |
| { |
| return sampleQuad2D(texture, u, v, w, a, offset, sample, lod, secondLOD); |
| } |
| else |
| { |
| return sample3D(texture, u, v, w, offset, sample, lod, secondLOD); |
| } |
| } |
| |
| void SamplerCore::bilinearInterpolateFloat(Vector4f &output, const Short4 &uuuu0, const Short4 &vvvv0, Vector4f &c00, Vector4f &c01, Vector4f &c10, Vector4f &c11, const Pointer<Byte> &mipmap, bool interpolateComponent0, bool interpolateComponent1, bool interpolateComponent2, bool interpolateComponent3) |
| { |
| int componentCount = textureComponentCount(); |
| |
| Float4 unnormalizedUUUU0 = (Float4(uuuu0) / Float4(1 << 16)) * Float4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, width))); |
| Float4 unnormalizedVVVV0 = (Float4(vvvv0) / Float4(1 << 16)) * Float4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, height))); |
| |
| Float4 frac0u = Frac(unnormalizedUUUU0); |
| Float4 frac0v = Frac(unnormalizedVVVV0); |
| |
| if(interpolateComponent0 && componentCount >= 1) |
| { |
| c00.x = Mix(c00.x, c10.x, frac0u); |
| c01.x = Mix(c01.x, c11.x, frac0u); |
| output.x = Mix(c00.x, c01.x, frac0v); |
| } |
| if(interpolateComponent1 && componentCount >= 2) |
| { |
| c00.y = Mix(c00.y, c10.y, frac0u); |
| c01.y = Mix(c01.y, c11.y, frac0u); |
| output.y = Mix(c00.y, c01.y, frac0v); |
| } |
| if(interpolateComponent2 && componentCount >= 3) |
| { |
| c00.z = Mix(c00.z, c10.z, frac0u); |
| c01.z = Mix(c01.z, c11.z, frac0u); |
| output.z = Mix(c00.z, c01.z, frac0v); |
| } |
| if(interpolateComponent3 && componentCount >= 4) |
| { |
| c00.w = Mix(c00.w, c10.w, frac0u); |
| c01.w = Mix(c01.w, c11.w, frac0u); |
| output.w = Mix(c00.w, c01.w, frac0v); |
| } |
| } |
| |
| void SamplerCore::bilinearInterpolate(Vector4s &output, const Short4 &uuuu0, const Short4 &vvvv0, Vector4s &c00, Vector4s &c01, Vector4s &c10, Vector4s &c11, const Pointer<Byte> &mipmap) |
| { |
| int componentCount = textureComponentCount(); |
| |
| // Fractions |
| UShort4 f0u = As<UShort4>(uuuu0) * UShort4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, width))); |
| UShort4 f0v = As<UShort4>(vvvv0) * UShort4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, height))); |
| |
| UShort4 f1u = ~f0u; |
| UShort4 f1v = ~f0v; |
| |
| UShort4 f0u0v = MulHigh(f0u, f0v); |
| UShort4 f1u0v = MulHigh(f1u, f0v); |
| UShort4 f0u1v = MulHigh(f0u, f1v); |
| UShort4 f1u1v = MulHigh(f1u, f1v); |
| |
| // Signed fractions |
| Short4 f1u1vs; |
| Short4 f0u1vs; |
| Short4 f1u0vs; |
| Short4 f0u0vs; |
| |
| if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3)) |
| { |
| f1u1vs = f1u1v >> 1; |
| f0u1vs = f0u1v >> 1; |
| f1u0vs = f1u0v >> 1; |
| f0u0vs = f0u0v >> 1; |
| } |
| |
| // Bilinear interpolation |
| if(componentCount >= 1) |
| { |
| if(has16bitTextureComponents() && hasUnsignedTextureComponent(0)) |
| { |
| c00.x = As<UShort4>(c00.x) - MulHigh(As<UShort4>(c00.x), f0u) + MulHigh(As<UShort4>(c10.x), f0u); |
| c01.x = As<UShort4>(c01.x) - MulHigh(As<UShort4>(c01.x), f0u) + MulHigh(As<UShort4>(c11.x), f0u); |
| output.x = As<UShort4>(c00.x) - MulHigh(As<UShort4>(c00.x), f0v) + MulHigh(As<UShort4>(c01.x), f0v); |
| } |
| else |
| { |
| if(hasUnsignedTextureComponent(0)) |
| { |
| c00.x = MulHigh(As<UShort4>(c00.x), f1u1v); |
| c10.x = MulHigh(As<UShort4>(c10.x), f0u1v); |
| c01.x = MulHigh(As<UShort4>(c01.x), f1u0v); |
| c11.x = MulHigh(As<UShort4>(c11.x), f0u0v); |
| } |
| else |
| { |
| c00.x = MulHigh(c00.x, f1u1vs); |
| c10.x = MulHigh(c10.x, f0u1vs); |
| c01.x = MulHigh(c01.x, f1u0vs); |
| c11.x = MulHigh(c11.x, f0u0vs); |
| } |
| |
| output.x = (c00.x + c10.x) + (c01.x + c11.x); |
| if(!hasUnsignedTextureComponent(0)) output.x = AddSat(output.x, output.x); // Correct for signed fractions |
| } |
| } |
| |
| if(componentCount >= 2) |
| { |
| if(has16bitTextureComponents() && hasUnsignedTextureComponent(1)) |
| { |
| c00.y = As<UShort4>(c00.y) - MulHigh(As<UShort4>(c00.y), f0u) + MulHigh(As<UShort4>(c10.y), f0u); |
| c01.y = As<UShort4>(c01.y) - MulHigh(As<UShort4>(c01.y), f0u) + MulHigh(As<UShort4>(c11.y), f0u); |
| output.y = As<UShort4>(c00.y) - MulHigh(As<UShort4>(c00.y), f0v) + MulHigh(As<UShort4>(c01.y), f0v); |
| } |
| else |
| { |
| if(hasUnsignedTextureComponent(1)) |
| { |
| c00.y = MulHigh(As<UShort4>(c00.y), f1u1v); |
| c10.y = MulHigh(As<UShort4>(c10.y), f0u1v); |
| c01.y = MulHigh(As<UShort4>(c01.y), f1u0v); |
| c11.y = MulHigh(As<UShort4>(c11.y), f0u0v); |
| } |
| else |
| { |
| c00.y = MulHigh(c00.y, f1u1vs); |
| c10.y = MulHigh(c10.y, f0u1vs); |
| c01.y = MulHigh(c01.y, f1u0vs); |
| c11.y = MulHigh(c11.y, f0u0vs); |
| } |
| |
| output.y = (c00.y + c10.y) + (c01.y + c11.y); |
| if(!hasUnsignedTextureComponent(1)) output.y = AddSat(output.y, output.y); // Correct for signed fractions |
| } |
| } |
| |
| if(componentCount >= 3) |
| { |
| if(has16bitTextureComponents() && hasUnsignedTextureComponent(2)) |
| { |
| c00.z = As<UShort4>(c00.z) - MulHigh(As<UShort4>(c00.z), f0u) + MulHigh(As<UShort4>(c10.z), f0u); |
| c01.z = As<UShort4>(c01.z) - MulHigh(As<UShort4>(c01.z), f0u) + MulHigh(As<UShort4>(c11.z), f0u); |
| output.z = As<UShort4>(c00.z) - MulHigh(As<UShort4>(c00.z), f0v) + MulHigh(As<UShort4>(c01.z), f0v); |
| } |
| else |
| { |
| if(hasUnsignedTextureComponent(2)) |
| { |
| c00.z = MulHigh(As<UShort4>(c00.z), f1u1v); |
| c10.z = MulHigh(As<UShort4>(c10.z), f0u1v); |
| c01.z = MulHigh(As<UShort4>(c01.z), f1u0v); |
| c11.z = MulHigh(As<UShort4>(c11.z), f0u0v); |
| } |
| else |
| { |
| c00.z = MulHigh(c00.z, f1u1vs); |
| c10.z = MulHigh(c10.z, f0u1vs); |
| c01.z = MulHigh(c01.z, f1u0vs); |
| c11.z = MulHigh(c11.z, f0u0vs); |
| } |
| |
| output.z = (c00.z + c10.z) + (c01.z + c11.z); |
| if(!hasUnsignedTextureComponent(2)) output.z = AddSat(output.z, output.z); // Correct for signed fractions |
| } |
| } |
| |
| if(componentCount >= 4) |
| { |
| if(has16bitTextureComponents() && hasUnsignedTextureComponent(3)) |
| { |
| c00.w = As<UShort4>(c00.w) - MulHigh(As<UShort4>(c00.w), f0u) + MulHigh(As<UShort4>(c10.w), f0u); |
| c01.w = As<UShort4>(c01.w) - MulHigh(As<UShort4>(c01.w), f0u) + MulHigh(As<UShort4>(c11.w), f0u); |
| output.w = As<UShort4>(c00.w) - MulHigh(As<UShort4>(c00.w), f0v) + MulHigh(As<UShort4>(c01.w), f0v); |
| } |
| else |
| { |
| if(hasUnsignedTextureComponent(3)) |
| { |
| c00.w = MulHigh(As<UShort4>(c00.w), f1u1v); |
| c10.w = MulHigh(As<UShort4>(c10.w), f0u1v); |
| c01.w = MulHigh(As<UShort4>(c01.w), f1u0v); |
| c11.w = MulHigh(As<UShort4>(c11.w), f0u0v); |
| } |
| else |
| { |
| c00.w = MulHigh(c00.w, f1u1vs); |
| c10.w = MulHigh(c10.w, f0u1vs); |
| c01.w = MulHigh(c01.w, f1u0vs); |
| c11.w = MulHigh(c11.w, f0u0vs); |
| } |
| |
| output.w = (c00.w + c10.w) + (c01.w + c11.w); |
| if(!hasUnsignedTextureComponent(3)) output.w = AddSat(output.w, output.w); // Correct for signed fractions |
| } |
| } |
| } |
| |
| Vector4s SamplerCore::sampleQuad2D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) |
| { |
| Vector4s c; |
| |
| bool gather = (state.textureFilter == FILTER_GATHER); |
| |
| Pointer<Byte> mipmap = selectMipmap(texture, lod, secondLOD); |
| Pointer<Byte> buffer = *Pointer<Pointer<Byte>>(mipmap + OFFSET(Mipmap, buffer)); |
| |
| applyOffset(u, v, w, offset, mipmap); |
| |
| Short4 uuuu = address(u, state.addressingModeU); |
| Short4 vvvv = address(v, state.addressingModeV); |
| Short4 wwww = address(w, state.addressingModeW); |
| Short4 layerIndex = computeLayerIndex16(a, mipmap); |
| |
| if(isYcbcrFormat()) |
| { |
| uint8_t lumaBits = 8; |
| uint8_t chromaBits = 8; |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: |
| case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: |
| lumaBits = 8; |
| chromaBits = 8; |
| break; |
| case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: |
| lumaBits = 10; |
| chromaBits = 10; |
| break; |
| default: |
| UNSUPPORTED("state.textureFormat %d", (int)state.textureFormat); |
| break; |
| } |
| |
| // TODO: investigate apparent precision losses in dEQP-VK.ycbcr when sampling and interpolating with Short4. |
| |
| // Unnnormalized YUV values in [0, 255] for 8-bit formats, [0, 1023] for 10-bit formats. |
| Vector4f yuv; |
| Vector4f yuv00; |
| Vector4f yuv10; |
| Vector4f yuv01; |
| Vector4f yuv11; |
| |
| if(state.textureFilter == FILTER_POINT) |
| { |
| sampleLumaTexel(yuv, uuuu, vvvv, wwww, layerIndex, sample, mipmap, buffer); |
| } |
| else |
| { |
| Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, -1, lod); |
| Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, -1, lod); |
| Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, +1, lod); |
| Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, +1, lod); |
| |
| sampleLumaTexel(yuv00, uuuu0, vvvv0, wwww, layerIndex, sample, mipmap, buffer); |
| sampleLumaTexel(yuv01, uuuu0, vvvv1, wwww, layerIndex, sample, mipmap, buffer); |
| sampleLumaTexel(yuv10, uuuu1, vvvv0, wwww, layerIndex, sample, mipmap, buffer); |
| sampleLumaTexel(yuv11, uuuu1, vvvv1, wwww, layerIndex, sample, mipmap, buffer); |
| |
| bilinearInterpolateFloat(yuv, uuuu0, vvvv0, yuv00, yuv01, yuv10, yuv11, mipmap, false, true, false, false); |
| } |
| |
| // Pointers to the planes of YCbCr images are stored in consecutive mipmap levels. |
| Pointer<Byte> mipmapU = Pointer<Byte>(mipmap + 1 * sizeof(Mipmap)); |
| Pointer<Byte> mipmapV = Pointer<Byte>(mipmap + 2 * sizeof(Mipmap)); |
| Pointer<Byte> bufferU = *Pointer<Pointer<Byte>>(mipmapU + OFFSET(Mipmap, buffer)); // U/V for 2-plane interleaved formats. |
| Pointer<Byte> bufferV = *Pointer<Pointer<Byte>>(mipmapV + OFFSET(Mipmap, buffer)); |
| |
| // https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html#textures-implict-reconstruction |
| // but using normalized coordinates. |
| Float4 chromaU = u; |
| Float4 chromaV = v; |
| if(state.chromaXOffset == VK_CHROMA_LOCATION_COSITED_EVEN) |
| { |
| chromaU += (Float4(0.25f) / Float4(*Pointer<UInt4>(mipmapU + OFFSET(Mipmap, width)))); |
| } |
| if(state.chromaYOffset == VK_CHROMA_LOCATION_COSITED_EVEN) |
| { |
| chromaV += (Float4(0.25f) / Float4(*Pointer<UInt4>(mipmapU + OFFSET(Mipmap, height)))); |
| } |
| |
| Short4 chromaUUUU = address(chromaU, state.addressingModeU); |
| Short4 chromaVVVV = address(chromaV, state.addressingModeV); |
| |
| if(state.chromaFilter == FILTER_POINT) |
| { |
| sampleChromaTexel(yuv, chromaUUUU, chromaVVVV, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); |
| } |
| else |
| { |
| Short4 chromaUUUU0 = offsetSample(chromaUUUU, mipmapU, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, -1, lod); |
| Short4 chromaVVVV0 = offsetSample(chromaVVVV, mipmapU, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, -1, lod); |
| Short4 chromaUUUU1 = offsetSample(chromaUUUU, mipmapU, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, +1, lod); |
| Short4 chromaVVVV1 = offsetSample(chromaVVVV, mipmapU, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, +1, lod); |
| |
| sampleChromaTexel(yuv00, chromaUUUU0, chromaVVVV0, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); |
| sampleChromaTexel(yuv01, chromaUUUU0, chromaVVVV1, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); |
| sampleChromaTexel(yuv10, chromaUUUU1, chromaVVVV0, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); |
| sampleChromaTexel(yuv11, chromaUUUU1, chromaVVVV1, wwww, layerIndex, sample, mipmapU, bufferU, mipmapV, bufferV); |
| |
| bilinearInterpolateFloat(yuv, chromaUUUU0, chromaVVVV0, yuv00, yuv01, yuv10, yuv11, mipmapU, true, false, true, false); |
| } |
| |
| if(state.swappedChroma) |
| { |
| std::swap(yuv.x, yuv.z); |
| } |
| |
| if(state.ycbcrModel == VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) |
| { |
| // Scale to the output 15-bit. |
| c.x = UShort4(yuv.x) << (15 - chromaBits); |
| c.y = UShort4(yuv.y) << (15 - lumaBits); |
| c.z = UShort4(yuv.z) << (15 - chromaBits); |
| } |
| else |
| { |
| const float twoPowLumaBits = static_cast<float>(0x1u << lumaBits); |
| const float twoPowLumaBitsMinus8 = static_cast<float>(0x1u << (lumaBits - 8)); |
| const float twoPowChromaBits = static_cast<float>(0x1u << chromaBits); |
| const float twoPowChromaBitsMinus1 = static_cast<float>(0x1u << (chromaBits - 1)); |
| const float twoPowChromaBitsMinus8 = static_cast<float>(0x1u << (chromaBits - 8)); |
| |
| Float4 y = Float4(yuv.y); |
| Float4 u = Float4(yuv.z); |
| Float4 v = Float4(yuv.x); |
| |
| if(state.studioSwing) |
| { |
| // See https://www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.html#QUANTIZATION_NARROW |
| y = ((y / Float4(twoPowLumaBitsMinus8)) - Float4(16.0f)) / Float4(219.0f); |
| u = ((u / Float4(twoPowChromaBitsMinus8)) - Float4(128.0f)) / Float4(224.0f); |
| v = ((v / Float4(twoPowChromaBitsMinus8)) - Float4(128.0f)) / Float4(224.0f); |
| } |
| else |
| { |
| // See https://www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.html#QUANTIZATION_FULL |
| y = y / Float4(twoPowLumaBits - 1.0f); |
| u = (u - Float4(twoPowChromaBitsMinus1)) / Float4(twoPowChromaBits - 1.0f); |
| v = (v - Float4(twoPowChromaBitsMinus1)) / Float4(twoPowChromaBits - 1.0f); |
| } |
| |
| // Now, `y` is in [0, 1] and `u` and `v` are in [-0.5, 0.5]. |
| |
| if(state.ycbcrModel == VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY) |
| { |
| c.x = Short4(v * static_cast<float>(0x7FFF)); |
| c.y = Short4(y * static_cast<float>(0x7FFF)); |
| c.z = Short4(u * static_cast<float>(0x7FFF)); |
| } |
| else |
| { |
| // Generic YCbCr to RGB transformation: |
| // R = Y + 2 * (1 - Kr) * Cr |
| // G = Y - 2 * Kb * (1 - Kb) / Kg * Cb - 2 * Kr * (1 - Kr) / Kg * Cr |
| // B = Y + 2 * (1 - Kb) * Cb |
| |
| float Kb = 0.114f; |
| float Kr = 0.299f; |
| |
| switch(state.ycbcrModel) |
| { |
| case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709: |
| Kb = 0.0722f; |
| Kr = 0.2126f; |
| break; |
| case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601: |
| Kb = 0.114f; |
| Kr = 0.299f; |
| break; |
| case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020: |
| Kb = 0.0593f; |
| Kr = 0.2627f; |
| break; |
| default: |
| UNSUPPORTED("ycbcrModel %d", int(state.ycbcrModel)); |
| } |
| |
| const float Kg = 1.0f - Kr - Kb; |
| |
| const float Rr = 2 * (1 - Kr); |
| const float Gb = -2 * Kb * (1 - Kb) / Kg; |
| const float Gr = -2 * Kr * (1 - Kr) / Kg; |
| const float Bb = 2 * (1 - Kb); |
| |
| Float4 r = y + Float4(Rr) * v; |
| Float4 g = y + Float4(Gb) * u + Float4(Gr) * v; |
| Float4 b = y + Float4(Bb) * u; |
| |
| c.x = Short4(r * static_cast<float>(0x7FFF)); |
| c.y = Short4(g * static_cast<float>(0x7FFF)); |
| c.z = Short4(b * static_cast<float>(0x7FFF)); |
| } |
| } |
| } |
| else // !isYcbcrFormat() |
| { |
| if(state.textureFilter == FILTER_POINT) |
| { |
| c = sampleTexel(uuuu, vvvv, wwww, layerIndex, sample, mipmap, buffer); |
| } |
| else |
| { |
| Short4 uuuu0 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, -1, lod); |
| Short4 vvvv0 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, -1, lod); |
| Short4 uuuu1 = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, +1, lod); |
| Short4 vvvv1 = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, +1, lod); |
| |
| Vector4s c00 = sampleTexel(uuuu0, vvvv0, wwww, layerIndex, sample, mipmap, buffer); |
| Vector4s c10 = sampleTexel(uuuu1, vvvv0, wwww, layerIndex, sample, mipmap, buffer); |
| Vector4s c01 = sampleTexel(uuuu0, vvvv1, wwww, layerIndex, sample, mipmap, buffer); |
| Vector4s c11 = sampleTexel(uuuu1, vvvv1, wwww, layerIndex, sample, mipmap, buffer); |
| |
| if(!gather) // Blend |
| { |
| bilinearInterpolate(c, uuuu0, vvvv0, c00, c01, c10, c11, mipmap); |
| } |
| else |
| { |
| VkComponentSwizzle swizzle = gatherSwizzle(); |
| switch(swizzle) |
| { |
| case VK_COMPONENT_SWIZZLE_ZERO: |
| case VK_COMPONENT_SWIZZLE_ONE: |
| // Handled at the final component swizzle. |
| break; |
| default: |
| c.x = c01[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.y = c11[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.z = c10[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.w = c00[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| break; |
| } |
| } |
| } |
| } |
| |
| return c; |
| } |
| |
| Vector4s SamplerCore::sample3D(Pointer<Byte> &texture, Float4 &u_, Float4 &v_, Float4 &w_, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) |
| { |
| Vector4s c_; |
| |
| int componentCount = textureComponentCount(); |
| |
| Pointer<Byte> mipmap = selectMipmap(texture, lod, secondLOD); |
| Pointer<Byte> buffer = *Pointer<Pointer<Byte>>(mipmap + OFFSET(Mipmap, buffer)); |
| |
| applyOffset(u_, v_, w_, offset, mipmap); |
| |
| Short4 uuuu = address(u_, state.addressingModeU); |
| Short4 vvvv = address(v_, state.addressingModeV); |
| Short4 wwww = address(w_, state.addressingModeW); |
| |
| if(state.textureFilter == FILTER_POINT) |
| { |
| c_ = sampleTexel(uuuu, vvvv, wwww, 0, sample, mipmap, buffer); |
| } |
| else |
| { |
| Vector4s c[2][2][2]; |
| |
| Short4 u[2][2][2]; |
| Short4 v[2][2][2]; |
| Short4 s[2][2][2]; |
| |
| for(int i = 0; i < 2; i++) |
| { |
| for(int j = 0; j < 2; j++) |
| { |
| for(int k = 0; k < 2; k++) |
| { |
| u[i][j][k] = offsetSample(uuuu, mipmap, OFFSET(Mipmap, uHalf), state.addressingModeU == ADDRESSING_WRAP, i * 2 - 1, lod); |
| v[i][j][k] = offsetSample(vvvv, mipmap, OFFSET(Mipmap, vHalf), state.addressingModeV == ADDRESSING_WRAP, j * 2 - 1, lod); |
| s[i][j][k] = offsetSample(wwww, mipmap, OFFSET(Mipmap, wHalf), state.addressingModeW == ADDRESSING_WRAP, k * 2 - 1, lod); |
| } |
| } |
| } |
| |
| // Fractions |
| UShort4 f0u = As<UShort4>(u[0][0][0]) * UShort4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, width))); |
| UShort4 f0v = As<UShort4>(v[0][0][0]) * UShort4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, height))); |
| UShort4 f0s = As<UShort4>(s[0][0][0]) * UShort4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, depth))); |
| |
| UShort4 f1u = ~f0u; |
| UShort4 f1v = ~f0v; |
| UShort4 f1s = ~f0s; |
| |
| UShort4 f[2][2][2]; |
| Short4 fs[2][2][2]; |
| |
| f[1][1][1] = MulHigh(f1u, f1v); |
| f[0][1][1] = MulHigh(f0u, f1v); |
| f[1][0][1] = MulHigh(f1u, f0v); |
| f[0][0][1] = MulHigh(f0u, f0v); |
| f[1][1][0] = MulHigh(f1u, f1v); |
| f[0][1][0] = MulHigh(f0u, f1v); |
| f[1][0][0] = MulHigh(f1u, f0v); |
| f[0][0][0] = MulHigh(f0u, f0v); |
| |
| f[1][1][1] = MulHigh(f[1][1][1], f1s); |
| f[0][1][1] = MulHigh(f[0][1][1], f1s); |
| f[1][0][1] = MulHigh(f[1][0][1], f1s); |
| f[0][0][1] = MulHigh(f[0][0][1], f1s); |
| f[1][1][0] = MulHigh(f[1][1][0], f0s); |
| f[0][1][0] = MulHigh(f[0][1][0], f0s); |
| f[1][0][0] = MulHigh(f[1][0][0], f0s); |
| f[0][0][0] = MulHigh(f[0][0][0], f0s); |
| |
| // Signed fractions |
| if(!hasUnsignedTextureComponent(0) || !hasUnsignedTextureComponent(1) || !hasUnsignedTextureComponent(2) || !hasUnsignedTextureComponent(3)) |
| { |
| fs[0][0][0] = f[0][0][0] >> 1; |
| fs[0][0][1] = f[0][0][1] >> 1; |
| fs[0][1][0] = f[0][1][0] >> 1; |
| fs[0][1][1] = f[0][1][1] >> 1; |
| fs[1][0][0] = f[1][0][0] >> 1; |
| fs[1][0][1] = f[1][0][1] >> 1; |
| fs[1][1][0] = f[1][1][0] >> 1; |
| fs[1][1][1] = f[1][1][1] >> 1; |
| } |
| |
| for(int i = 0; i < 2; i++) |
| { |
| for(int j = 0; j < 2; j++) |
| { |
| for(int k = 0; k < 2; k++) |
| { |
| c[i][j][k] = sampleTexel(u[i][j][k], v[i][j][k], s[i][j][k], 0, sample, mipmap, buffer); |
| |
| if(componentCount >= 1) |
| { |
| if(hasUnsignedTextureComponent(0)) |
| c[i][j][k].x = MulHigh(As<UShort4>(c[i][j][k].x), f[1 - i][1 - j][1 - k]); |
| else |
| c[i][j][k].x = MulHigh(c[i][j][k].x, fs[1 - i][1 - j][1 - k]); |
| } |
| if(componentCount >= 2) |
| { |
| if(hasUnsignedTextureComponent(1)) |
| c[i][j][k].y = MulHigh(As<UShort4>(c[i][j][k].y), f[1 - i][1 - j][1 - k]); |
| else |
| c[i][j][k].y = MulHigh(c[i][j][k].y, fs[1 - i][1 - j][1 - k]); |
| } |
| if(componentCount >= 3) |
| { |
| if(hasUnsignedTextureComponent(2)) |
| c[i][j][k].z = MulHigh(As<UShort4>(c[i][j][k].z), f[1 - i][1 - j][1 - k]); |
| else |
| c[i][j][k].z = MulHigh(c[i][j][k].z, fs[1 - i][1 - j][1 - k]); |
| } |
| if(componentCount >= 4) |
| { |
| if(hasUnsignedTextureComponent(3)) |
| c[i][j][k].w = MulHigh(As<UShort4>(c[i][j][k].w), f[1 - i][1 - j][1 - k]); |
| else |
| c[i][j][k].w = MulHigh(c[i][j][k].w, fs[1 - i][1 - j][1 - k]); |
| } |
| |
| if(i != 0 || j != 0 || k != 0) |
| { |
| if(componentCount >= 1) c[0][0][0].x += c[i][j][k].x; |
| if(componentCount >= 2) c[0][0][0].y += c[i][j][k].y; |
| if(componentCount >= 3) c[0][0][0].z += c[i][j][k].z; |
| if(componentCount >= 4) c[0][0][0].w += c[i][j][k].w; |
| } |
| } |
| } |
| } |
| |
| if(componentCount >= 1) c_.x = c[0][0][0].x; |
| if(componentCount >= 2) c_.y = c[0][0][0].y; |
| if(componentCount >= 3) c_.z = c[0][0][0].z; |
| if(componentCount >= 4) c_.w = c[0][0][0].w; |
| |
| // Correct for signed fractions |
| if(componentCount >= 1) |
| if(!hasUnsignedTextureComponent(0)) c_.x = AddSat(c_.x, c_.x); |
| if(componentCount >= 2) |
| if(!hasUnsignedTextureComponent(1)) c_.y = AddSat(c_.y, c_.y); |
| if(componentCount >= 3) |
| if(!hasUnsignedTextureComponent(2)) c_.z = AddSat(c_.z, c_.z); |
| if(componentCount >= 4) |
| if(!hasUnsignedTextureComponent(3)) c_.w = AddSat(c_.w, c_.w); |
| } |
| |
| return c_; |
| } |
| |
| Vector4f SamplerCore::sampleFloatFilter(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta) |
| { |
| Vector4f c = sampleFloatAniso(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta, false); |
| |
| if(function == Fetch) |
| { |
| return c; |
| } |
| |
| if(state.mipmapFilter == MIPMAP_LINEAR) |
| { |
| Vector4f cc = sampleFloatAniso(texture, u, v, w, a, dRef, offset, sample, lod, anisotropy, uDelta, vDelta, true); |
| |
| Float4 lod4 = Float4(Frac(lod)); |
| |
| c.x = (cc.x - c.x) * lod4 + c.x; |
| c.y = (cc.y - c.y) * lod4 + c.y; |
| c.z = (cc.z - c.z) * lod4 + c.z; |
| c.w = (cc.w - c.w) * lod4 + c.w; |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::sampleFloatAniso(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, bool secondLOD) |
| { |
| Vector4f c; |
| |
| if(state.textureFilter != FILTER_ANISOTROPIC) |
| { |
| c = sampleFloat(texture, u, v, w, a, dRef, offset, sample, lod, secondLOD); |
| } |
| else |
| { |
| Int N = RoundInt(anisotropy); |
| |
| Vector4f cSum; |
| |
| cSum.x = Float4(0.0f); |
| cSum.y = Float4(0.0f); |
| cSum.z = Float4(0.0f); |
| cSum.w = Float4(0.0f); |
| |
| Float4 A = *Pointer<Float4>(constants + OFFSET(Constants, uvWeight) + 16 * N); |
| Float4 B = *Pointer<Float4>(constants + OFFSET(Constants, uvStart) + 16 * N); |
| |
| Float4 du = uDelta; |
| Float4 dv = vDelta; |
| |
| Float4 u0 = u + B * du; |
| Float4 v0 = v + B * dv; |
| |
| du *= A; |
| dv *= A; |
| |
| Int i = 0; |
| |
| Do |
| { |
| c = sampleFloat(texture, u0, v0, w, a, dRef, offset, sample, lod, secondLOD); |
| |
| u0 += du; |
| v0 += dv; |
| |
| cSum.x += c.x * A; |
| cSum.y += c.y * A; |
| cSum.z += c.z * A; |
| cSum.w += c.w * A; |
| |
| i++; |
| } |
| Until(i >= N); |
| |
| c.x = cSum.x; |
| c.y = cSum.y; |
| c.z = cSum.z; |
| c.w = cSum.w; |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::sampleFloat(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) |
| { |
| if(state.textureType != VK_IMAGE_VIEW_TYPE_3D) |
| { |
| return sampleFloat2D(texture, u, v, w, a, dRef, offset, sample, lod, secondLOD); |
| } |
| else |
| { |
| return sampleFloat3D(texture, u, v, w, dRef, offset, sample, lod, secondLOD); |
| } |
| } |
| |
| Vector4f SamplerCore::sampleFloat2D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &a, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) |
| { |
| Vector4f c; |
| |
| int componentCount = textureComponentCount(); |
| bool gather = (state.textureFilter == FILTER_GATHER); |
| |
| Pointer<Byte> mipmap = selectMipmap(texture, lod, secondLOD); |
| Pointer<Byte> buffer = *Pointer<Pointer<Byte>>(mipmap + OFFSET(Mipmap, buffer)); |
| |
| applyOffset(u, v, w, offset, mipmap); |
| |
| Int4 x0, x1, y0, y1; |
| Float4 fu, fv; |
| Int4 filter = computeFilterOffset(lod); |
| address(u, x0, x1, fu, mipmap, filter, OFFSET(Mipmap, width), state.addressingModeU); |
| address(v, y0, y1, fv, mipmap, filter, OFFSET(Mipmap, height), state.addressingModeV); |
| |
| Int4 pitchP = As<Int4>(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, pitchP), 16)); |
| y0 *= pitchP; |
| |
| Int4 z; |
| if(state.isCube() || state.isArrayed()) |
| { |
| Int4 face = As<Int4>(w); |
| Int4 layerIndex = computeLayerIndex(a, mipmap); |
| |
| // For cube maps, the layer argument is per cube, each of which has 6 layers |
| if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) |
| { |
| layerIndex *= Int4(6); |
| } |
| |
| z = state.isCube() ? face : layerIndex; |
| |
| if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) |
| { |
| z += layerIndex; |
| } |
| |
| z *= *Pointer<Int4>(mipmap + OFFSET(Mipmap, sliceP), 16); |
| } |
| |
| if(state.textureFilter == FILTER_POINT || (function == Fetch)) |
| { |
| c = sampleTexel(x0, y0, z, dRef, sample, mipmap, buffer); |
| } |
| else |
| { |
| y1 *= pitchP; |
| |
| Vector4f c00 = sampleTexel(x0, y0, z, dRef, sample, mipmap, buffer); |
| Vector4f c10 = sampleTexel(x1, y0, z, dRef, sample, mipmap, buffer); |
| Vector4f c01 = sampleTexel(x0, y1, z, dRef, sample, mipmap, buffer); |
| Vector4f c11 = sampleTexel(x1, y1, z, dRef, sample, mipmap, buffer); |
| |
| if(!gather) // Blend |
| { |
| if(componentCount >= 1) c00.x = c00.x + fu * (c10.x - c00.x); |
| if(componentCount >= 2) c00.y = c00.y + fu * (c10.y - c00.y); |
| if(componentCount >= 3) c00.z = c00.z + fu * (c10.z - c00.z); |
| if(componentCount >= 4) c00.w = c00.w + fu * (c10.w - c00.w); |
| |
| if(componentCount >= 1) c01.x = c01.x + fu * (c11.x - c01.x); |
| if(componentCount >= 2) c01.y = c01.y + fu * (c11.y - c01.y); |
| if(componentCount >= 3) c01.z = c01.z + fu * (c11.z - c01.z); |
| if(componentCount >= 4) c01.w = c01.w + fu * (c11.w - c01.w); |
| |
| if(componentCount >= 1) c.x = c00.x + fv * (c01.x - c00.x); |
| if(componentCount >= 2) c.y = c00.y + fv * (c01.y - c00.y); |
| if(componentCount >= 3) c.z = c00.z + fv * (c01.z - c00.z); |
| if(componentCount >= 4) c.w = c00.w + fv * (c01.w - c00.w); |
| } |
| else // Gather |
| { |
| VkComponentSwizzle swizzle = gatherSwizzle(); |
| switch(swizzle) |
| { |
| case VK_COMPONENT_SWIZZLE_ZERO: |
| case VK_COMPONENT_SWIZZLE_ONE: |
| // Handled at the final component swizzle. |
| break; |
| default: |
| c.x = c01[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.y = c11[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.z = c10[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| c.w = c00[swizzle - VK_COMPONENT_SWIZZLE_R]; |
| break; |
| } |
| } |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::sampleFloat3D(Pointer<Byte> &texture, Float4 &u, Float4 &v, Float4 &w, const Float4 &dRef, Vector4i &offset, const Int4 &sample, Float &lod, bool secondLOD) |
| { |
| Vector4f c; |
| |
| int componentCount = textureComponentCount(); |
| |
| Pointer<Byte> mipmap = selectMipmap(texture, lod, secondLOD); |
| Pointer<Byte> buffer = *Pointer<Pointer<Byte>>(mipmap + OFFSET(Mipmap, buffer)); |
| |
| applyOffset(u, v, w, offset, mipmap); |
| |
| Int4 x0, x1, y0, y1, z0, z1; |
| Float4 fu, fv, fw; |
| Int4 filter = computeFilterOffset(lod); |
| address(u, x0, x1, fu, mipmap, filter, OFFSET(Mipmap, width), state.addressingModeU); |
| address(v, y0, y1, fv, mipmap, filter, OFFSET(Mipmap, height), state.addressingModeV); |
| address(w, z0, z1, fw, mipmap, filter, OFFSET(Mipmap, depth), state.addressingModeW); |
| |
| Int4 pitchP = As<Int4>(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, pitchP), 16)); |
| Int4 sliceP = As<Int4>(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, sliceP), 16)); |
| y0 *= pitchP; |
| z0 *= sliceP; |
| |
| if(state.textureFilter == FILTER_POINT || (function == Fetch)) |
| { |
| c = sampleTexel(x0, y0, z0, dRef, sample, mipmap, buffer); |
| } |
| else |
| { |
| y1 *= pitchP; |
| z1 *= sliceP; |
| |
| Vector4f c000 = sampleTexel(x0, y0, z0, dRef, sample, mipmap, buffer); |
| Vector4f c100 = sampleTexel(x1, y0, z0, dRef, sample, mipmap, buffer); |
| Vector4f c010 = sampleTexel(x0, y1, z0, dRef, sample, mipmap, buffer); |
| Vector4f c110 = sampleTexel(x1, y1, z0, dRef, sample, mipmap, buffer); |
| Vector4f c001 = sampleTexel(x0, y0, z1, dRef, sample, mipmap, buffer); |
| Vector4f c101 = sampleTexel(x1, y0, z1, dRef, sample, mipmap, buffer); |
| Vector4f c011 = sampleTexel(x0, y1, z1, dRef, sample, mipmap, buffer); |
| Vector4f c111 = sampleTexel(x1, y1, z1, dRef, sample, mipmap, buffer); |
| |
| // Blend first slice |
| if(componentCount >= 1) c000.x = c000.x + fu * (c100.x - c000.x); |
| if(componentCount >= 2) c000.y = c000.y + fu * (c100.y - c000.y); |
| if(componentCount >= 3) c000.z = c000.z + fu * (c100.z - c000.z); |
| if(componentCount >= 4) c000.w = c000.w + fu * (c100.w - c000.w); |
| |
| if(componentCount >= 1) c010.x = c010.x + fu * (c110.x - c010.x); |
| if(componentCount >= 2) c010.y = c010.y + fu * (c110.y - c010.y); |
| if(componentCount >= 3) c010.z = c010.z + fu * (c110.z - c010.z); |
| if(componentCount >= 4) c010.w = c010.w + fu * (c110.w - c010.w); |
| |
| if(componentCount >= 1) c000.x = c000.x + fv * (c010.x - c000.x); |
| if(componentCount >= 2) c000.y = c000.y + fv * (c010.y - c000.y); |
| if(componentCount >= 3) c000.z = c000.z + fv * (c010.z - c000.z); |
| if(componentCount >= 4) c000.w = c000.w + fv * (c010.w - c000.w); |
| |
| // Blend second slice |
| if(componentCount >= 1) c001.x = c001.x + fu * (c101.x - c001.x); |
| if(componentCount >= 2) c001.y = c001.y + fu * (c101.y - c001.y); |
| if(componentCount >= 3) c001.z = c001.z + fu * (c101.z - c001.z); |
| if(componentCount >= 4) c001.w = c001.w + fu * (c101.w - c001.w); |
| |
| if(componentCount >= 1) c011.x = c011.x + fu * (c111.x - c011.x); |
| if(componentCount >= 2) c011.y = c011.y + fu * (c111.y - c011.y); |
| if(componentCount >= 3) c011.z = c011.z + fu * (c111.z - c011.z); |
| if(componentCount >= 4) c011.w = c011.w + fu * (c111.w - c011.w); |
| |
| if(componentCount >= 1) c001.x = c001.x + fv * (c011.x - c001.x); |
| if(componentCount >= 2) c001.y = c001.y + fv * (c011.y - c001.y); |
| if(componentCount >= 3) c001.z = c001.z + fv * (c011.z - c001.z); |
| if(componentCount >= 4) c001.w = c001.w + fv * (c011.w - c001.w); |
| |
| // Blend slices |
| if(componentCount >= 1) c.x = c000.x + fw * (c001.x - c000.x); |
| if(componentCount >= 2) c.y = c000.y + fw * (c001.y - c000.y); |
| if(componentCount >= 3) c.z = c000.z + fw * (c001.z - c000.z); |
| if(componentCount >= 4) c.w = c000.w + fw * (c001.w - c000.w); |
| } |
| |
| return c; |
| } |
| |
| static Float log2sqrt(Float lod) |
| { |
| // log2(sqrt(lod)) // Equals 0.25 * log2(lod^2). |
| lod *= lod; // Squaring doubles the exponent and produces an extra bit of precision. |
| lod = Float(As<Int>(lod)) - Float(0x3F800000); // Interpret as integer and subtract the exponent bias. |
| lod *= As<Float>(Int(0x33000000)); // Scale by 0.25 * 2^-23 (mantissa length). |
| |
| return lod; |
| } |
| |
| static Float log2(Float lod) |
| { |
| lod *= lod; // Squaring doubles the exponent and produces an extra bit of precision. |
| lod = Float(As<Int>(lod)) - Float(0x3F800000); // Interpret as integer and subtract the exponent bias. |
| lod *= As<Float>(Int(0x33800000)); // Scale by 0.5 * 2^-23 (mantissa length). |
| |
| return lod; |
| } |
| |
| void SamplerCore::computeLod1D(Pointer<Byte> &texture, Float &lod, Float4 &uuuu, const Float4 &dsx, const Float4 &dsy) |
| { |
| Float4 dudxy; |
| |
| if(function != Grad) // Implicit |
| { |
| dudxy = uuuu.yz - uuuu.xx; |
| } |
| else |
| { |
| dudxy = UnpackLow(dsx, dsy); |
| } |
| |
| // Scale by texture dimensions. |
| Float4 dUdxy = dudxy * *Pointer<Float4>(texture + OFFSET(Texture, widthWidthHeightHeight)); |
| |
| // Note we could take the absolute value here and omit the square root below, |
| // but this is more consistent with the 2D calculation and still cheap. |
| Float4 dU2dxy = dUdxy * dUdxy; |
| |
| lod = Max(Float(dU2dxy.x), Float(dU2dxy.y)); |
| lod = log2sqrt(lod); |
| } |
| |
| void SamplerCore::computeLod2D(Pointer<Byte> &texture, Float &lod, Float &anisotropy, Float4 &uDelta, Float4 &vDelta, Float4 &uuuu, Float4 &vvvv, const Float4 &dsx, const Float4 &dsy) |
| { |
| Float4 duvdxy; |
| |
| if(function != Grad) // Implicit |
| { |
| duvdxy = Float4(uuuu.yz, vvvv.yz) - Float4(uuuu.xx, vvvv.xx); |
| } |
| else |
| { |
| Float4 dudxy = Float4(dsx.xx, dsy.xx); |
| Float4 dvdxy = Float4(dsx.yy, dsy.yy); |
| |
| duvdxy = Float4(dudxy.xz, dvdxy.xz); |
| } |
| |
| // Scale by texture dimensions. |
| Float4 dUVdxy = duvdxy * *Pointer<Float4>(texture + OFFSET(Texture, widthWidthHeightHeight)); |
| |
| Float4 dUV2dxy = dUVdxy * dUVdxy; |
| Float4 dUV2 = dUV2dxy.xy + dUV2dxy.zw; |
| |
| lod = Max(Float(dUV2.x), Float(dUV2.y)); // Square length of major axis |
| |
| if(state.textureFilter == FILTER_ANISOTROPIC) |
| { |
| Float det = Abs(Float(dUVdxy.x) * Float(dUVdxy.w) - Float(dUVdxy.y) * Float(dUVdxy.z)); |
| |
| Float4 dudx = duvdxy.xxxx; |
| Float4 dudy = duvdxy.yyyy; |
| Float4 dvdx = duvdxy.zzzz; |
| Float4 dvdy = duvdxy.wwww; |
| |
| Int4 mask = As<Int4>(CmpNLT(dUV2.x, dUV2.y)); |
| uDelta = As<Float4>((As<Int4>(dudx) & mask) | ((As<Int4>(dudy) & ~mask))); |
| vDelta = As<Float4>((As<Int4>(dvdx) & mask) | ((As<Int4>(dvdy) & ~mask))); |
| |
| anisotropy = lod * Rcp(det, true /* relaxedPrecision */); |
| anisotropy = Min(anisotropy, state.maxAnisotropy); |
| |
| // TODO(b/151263485): While we always need `lod` above, when there's only |
| // a single mipmap level the following calculations could be skipped. |
| lod *= Rcp(anisotropy * anisotropy, true /* relaxedPrecision */); |
| } |
| |
| lod = log2sqrt(lod); // log2(sqrt(lod)) |
| } |
| |
| void SamplerCore::computeLodCube(Pointer<Byte> &texture, Float &lod, Float4 &u, Float4 &v, Float4 &w, const Float4 &dsx, const Float4 &dsy, Float4 &M) |
| { |
| Float4 dudxy, dvdxy, dsdxy; |
| |
| if(function != Grad) // Implicit |
| { |
| Float4 U = u * M; |
| Float4 V = v * M; |
| Float4 W = w * M; |
| |
| dudxy = Abs(U - U.xxxx); |
| dvdxy = Abs(V - V.xxxx); |
| dsdxy = Abs(W - W.xxxx); |
| } |
| else |
| { |
| dudxy = Float4(dsx.xx, dsy.xx); |
| dvdxy = Float4(dsx.yy, dsy.yy); |
| dsdxy = Float4(dsx.zz, dsy.zz); |
| |
| dudxy = Abs(dudxy * Float4(M.x)); |
| dvdxy = Abs(dvdxy * Float4(M.x)); |
| dsdxy = Abs(dsdxy * Float4(M.x)); |
| } |
| |
| // Compute the largest Manhattan distance in two dimensions. |
| // This takes the footprint across adjacent faces into account. |
| Float4 duvdxy = dudxy + dvdxy; |
| Float4 dusdxy = dudxy + dsdxy; |
| Float4 dvsdxy = dvdxy + dsdxy; |
| |
| dudxy = Max(Max(duvdxy, dusdxy), dvsdxy); |
| |
| lod = Max(Float(dudxy.y), Float(dudxy.z)); // TODO: Max(dudxy.y, dudxy.z); |
| |
| // Scale by texture dimension. |
| lod *= *Pointer<Float>(texture + OFFSET(Texture, width)); |
| |
| lod = log2(lod); |
| } |
| |
| void SamplerCore::computeLod3D(Pointer<Byte> &texture, Float &lod, Float4 &uuuu, Float4 &vvvv, Float4 &wwww, const Float4 &dsx, const Float4 &dsy) |
| { |
| Float4 dudxy, dvdxy, dsdxy; |
| |
| if(function != Grad) // Implicit |
| { |
| dudxy = uuuu - uuuu.xxxx; |
| dvdxy = vvvv - vvvv.xxxx; |
| dsdxy = wwww - wwww.xxxx; |
| } |
| else |
| { |
| dudxy = Float4(dsx.xx, dsy.xx); |
| dvdxy = Float4(dsx.yy, dsy.yy); |
| dsdxy = Float4(dsx.zz, dsy.zz); |
| } |
| |
| // Scale by texture dimensions. |
| dudxy *= *Pointer<Float4>(texture + OFFSET(Texture, width)); |
| dvdxy *= *Pointer<Float4>(texture + OFFSET(Texture, height)); |
| dsdxy *= *Pointer<Float4>(texture + OFFSET(Texture, depth)); |
| |
| dudxy *= dudxy; |
| dvdxy *= dvdxy; |
| dsdxy *= dsdxy; |
| |
| dudxy += dvdxy; |
| dudxy += dsdxy; |
| |
| lod = Max(Float(dudxy.y), Float(dudxy.z)); // TODO: Max(dudxy.y, dudxy.z); |
| |
| lod = log2sqrt(lod); // log2(sqrt(lod)) |
| } |
| |
| Int4 SamplerCore::cubeFace(Float4 &U, Float4 &V, Float4 &x, Float4 &y, Float4 &z, Float4 &M) |
| { |
| // TODO: Comply with Vulkan recommendation: |
| // Vulkan 1.1: "The rules should have as the first rule that rz wins over ry and rx, and the second rule that ry wins over rx." |
| |
| Int4 xn = CmpLT(x, 0.0f); // x < 0 |
| Int4 yn = CmpLT(y, 0.0f); // y < 0 |
| Int4 zn = CmpLT(z, 0.0f); // z < 0 |
| |
| Float4 absX = Abs(x); |
| Float4 absY = Abs(y); |
| Float4 absZ = Abs(z); |
| |
| Int4 xy = CmpNLE(absX, absY); // abs(x) > abs(y) |
| Int4 yz = CmpNLE(absY, absZ); // abs(y) > abs(z) |
| Int4 zx = CmpNLE(absZ, absX); // abs(z) > abs(x) |
| Int4 xMajor = xy & ~zx; // abs(x) > abs(y) && abs(x) > abs(z) |
| Int4 yMajor = yz & ~xy; // abs(y) > abs(z) && abs(y) > abs(x) |
| Int4 zMajor = zx & ~yz; // abs(z) > abs(x) && abs(z) > abs(y) |
| |
| // FACE_POSITIVE_X = 000b |
| // FACE_NEGATIVE_X = 001b |
| // FACE_POSITIVE_Y = 010b |
| // FACE_NEGATIVE_Y = 011b |
| // FACE_POSITIVE_Z = 100b |
| // FACE_NEGATIVE_Z = 101b |
| |
| Int yAxis = SignMask(yMajor); |
| Int zAxis = SignMask(zMajor); |
| |
| Int4 n = ((xn & xMajor) | (yn & yMajor) | (zn & zMajor)) & Int4(0x80000000); |
| Int negative = SignMask(n); |
| |
| Int faces = *Pointer<Int>(constants + OFFSET(Constants, transposeBit0) + negative * 4); |
| faces |= *Pointer<Int>(constants + OFFSET(Constants, transposeBit1) + yAxis * 4); |
| faces |= *Pointer<Int>(constants + OFFSET(Constants, transposeBit2) + zAxis * 4); |
| |
| Int4 face; |
| face.x = faces & 0x7; |
| face.y = (faces >> 4) & 0x7; |
| face.z = (faces >> 8) & 0x7; |
| face.w = (faces >> 12) & 0x7; |
| |
| M = Max(Max(absX, absY), absZ); |
| |
| // U = xMajor ? (neg ^ -z) : ((zMajor & neg) ^ x) |
| U = As<Float4>((xMajor & (n ^ As<Int4>(-z))) | (~xMajor & ((zMajor & n) ^ As<Int4>(x)))); |
| |
| // V = !yMajor ? -y : (n ^ z) |
| V = As<Float4>((~yMajor & As<Int4>(-y)) | (yMajor & (n ^ As<Int4>(z)))); |
| |
| M = reciprocal(M) * 0.5f; |
| U = U * M + 0.5f; |
| V = V * M + 0.5f; |
| |
| return face; |
| } |
| |
| void SamplerCore::applyOffset(Float4 &u, Float4 &v, Float4 &w, Vector4i &offset, Pointer<Byte> mipmap) |
| { |
| if(function.offset) |
| { |
| if(function == Fetch) |
| { |
| // Unnormalized coordinates |
| u = As<Float4>(As<Int4>(u) + offset.x); |
| if(state.is2D() || state.is3D() || state.isCube()) |
| { |
| v = As<Float4>(As<Int4>(v) + offset.y); |
| if(state.is3D()) |
| { |
| w = As<Float4>(As<Int4>(w) + offset.z); |
| } |
| } |
| } |
| else |
| { |
| // Normalized coordinates |
| UInt4 width = *Pointer<UInt4>(mipmap + OFFSET(Mipmap, width)); |
| u += Float4(offset.x) / Float4(width); |
| if(state.is2D() || state.is3D() || state.isCube()) |
| { |
| UInt4 height = *Pointer<UInt4>(mipmap + OFFSET(Mipmap, height)); |
| v += Float4(offset.y) / Float4(height); |
| if(state.is3D()) |
| { |
| UInt4 depth = *Pointer<UInt4>(mipmap + OFFSET(Mipmap, depth)); |
| w += Float4(offset.z) / Float4(depth); |
| } |
| } |
| } |
| } |
| } |
| |
| void SamplerCore::computeIndices(UInt index[4], Short4 uuuu, Short4 vvvv, Short4 wwww, const Short4 &layerIndex, const Int4 &sample, const Pointer<Byte> &mipmap) |
| { |
| uuuu = MulHigh(As<UShort4>(uuuu), UShort4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, width)))); |
| |
| UInt4 indices = Int4(uuuu); |
| |
| if(state.is2D() || state.is3D() || state.isCube()) |
| { |
| vvvv = MulHigh(As<UShort4>(vvvv), UShort4(*Pointer<UInt4>(mipmap + OFFSET(Mipmap, height)))); |
| |
| Short4 uv0uv1 = As<Short4>(UnpackLow(uuuu, vvvv)); |
| Short4 uv2uv3 = As<Short4>(UnpackHigh(uuuu, vvvv)); |
| Int2 i01 = MulAdd(uv0uv1, *Pointer<Short4>(mipmap + OFFSET(Mipmap, onePitchP))); |
| Int2 i23 = MulAdd(uv2uv3, *Pointer<Short4>(mipmap + OFFSET(Mipmap, onePitchP))); |
| |
| indices = UInt4(As<UInt2>(i01), As<UInt2>(i23)); |
| } |
| |
| if(state.is3D()) |
| { |
| wwww = MulHigh(As<UShort4>(wwww), UShort4(*Pointer<Int4>(mipmap + OFFSET(Mipmap, depth)))); |
| |
| indices += As<UInt4>(Int4(As<UShort4>(wwww))) * *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sliceP)); |
| } |
| |
| if(state.isArrayed()) |
| { |
| Int4 layer = Int4(As<UShort4>(layerIndex)); |
| |
| if(state.textureType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) |
| { |
| layer *= Int4(6); |
| } |
| |
| UInt4 layerOffset = As<UInt4>(layer) * *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sliceP)); |
| |
| indices += layerOffset; |
| } |
| |
| if(function.sample) |
| { |
| UInt4 sampleOffset = Min(As<UInt4>(sample), *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sampleMax), 16)) * |
| *Pointer<UInt4>(mipmap + OFFSET(Mipmap, samplePitchP), 16); |
| indices += sampleOffset; |
| } |
| |
| index[0] = Extract(indices, 0); |
| index[1] = Extract(indices, 1); |
| index[2] = Extract(indices, 2); |
| index[3] = Extract(indices, 3); |
| } |
| |
| void SamplerCore::computeIndices(UInt index[4], Int4 uuuu, Int4 vvvv, Int4 wwww, const Int4 &sample, Int4 valid, const Pointer<Byte> &mipmap) |
| { |
| UInt4 indices = uuuu; |
| |
| if(state.is2D() || state.is3D() || state.isCube()) |
| { |
| indices += As<UInt4>(vvvv); |
| } |
| |
| if(state.is3D() || state.isCube() || state.isArrayed()) |
| { |
| indices += As<UInt4>(wwww); |
| } |
| |
| if(function.sample) |
| { |
| indices += Min(As<UInt4>(sample), *Pointer<UInt4>(mipmap + OFFSET(Mipmap, sampleMax), 16)) * |
| *Pointer<UInt4>(mipmap + OFFSET(Mipmap, samplePitchP), 16); |
| } |
| |
| if(borderModeActive()) |
| { |
| // Texels out of range are still sampled before being replaced |
| // with the border color, so sample them at linear index 0. |
| indices &= As<UInt4>(valid); |
| } |
| |
| for(int i = 0; i < 4; i++) |
| { |
| index[i] = Extract(As<Int4>(indices), i); |
| } |
| } |
| |
| Vector4s SamplerCore::sampleTexel(UInt index[4], Pointer<Byte> buffer) |
| { |
| Vector4s c; |
| |
| if(has16bitPackedTextureFormat()) |
| { |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_R5G6B5_UNORM_PACK16: |
| c.z = (c.x & Short4(0x001Fu)) << 11; |
| c.y = (c.x & Short4(0x07E0u)) << 5; |
| c.x = (c.x & Short4(0xF800u)); |
| break; |
| case VK_FORMAT_B5G6R5_UNORM_PACK16: |
| c.z = (c.x & Short4(0xF800u)); |
| c.y = (c.x & Short4(0x07E0u)) << 5; |
| c.x = (c.x & Short4(0x001Fu)) << 11; |
| break; |
| case VK_FORMAT_R4G4B4A4_UNORM_PACK16: |
| c.w = (c.x << 12) & Short4(0xF000u); |
| c.z = (c.x << 8) & Short4(0xF000u); |
| c.y = (c.x << 4) & Short4(0xF000u); |
| c.x = (c.x) & Short4(0xF000u); |
| break; |
| case VK_FORMAT_B4G4R4A4_UNORM_PACK16: |
| c.w = (c.x << 12) & Short4(0xF000u); |
| c.z = (c.x) & Short4(0xF000u); |
| c.y = (c.x << 4) & Short4(0xF000u); |
| c.x = (c.x << 8) & Short4(0xF000u); |
| break; |
| case VK_FORMAT_A4R4G4B4_UNORM_PACK16: |
| c.w = (c.x) & Short4(0xF000u); |
| c.z = (c.x << 12) & Short4(0xF000u); |
| c.y = (c.x << 8) & Short4(0xF000u); |
| c.x = (c.x << 4) & Short4(0xF000u); |
| break; |
| case VK_FORMAT_A4B4G4R4_UNORM_PACK16: |
| c.w = (c.x) & Short4(0xF000u); |
| c.z = (c.x << 4) & Short4(0xF000u); |
| c.y = (c.x << 8) & Short4(0xF000u); |
| c.x = (c.x << 12) & Short4(0xF000u); |
| break; |
| case VK_FORMAT_R5G5B5A1_UNORM_PACK16: |
| c.w = (c.x << 15) & Short4(0x8000u); |
| c.z = (c.x << 10) & Short4(0xF800u); |
| c.y = (c.x << 5) & Short4(0xF800u); |
| c.x = (c.x) & Short4(0xF800u); |
| break; |
| case VK_FORMAT_B5G5R5A1_UNORM_PACK16: |
| c.w = (c.x << 15) & Short4(0x8000u); |
| c.z = (c.x) & Short4(0xF800u); |
| c.y = (c.x << 5) & Short4(0xF800u); |
| c.x = (c.x << 10) & Short4(0xF800u); |
| break; |
| case VK_FORMAT_A1R5G5B5_UNORM_PACK16: |
| c.w = (c.x) & Short4(0x8000u); |
| c.z = (c.x << 11) & Short4(0xF800u); |
| c.y = (c.x << 6) & Short4(0xF800u); |
| c.x = (c.x << 1) & Short4(0xF800u); |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| else if(has8bitTextureComponents()) |
| { |
| switch(textureComponentCount()) |
| { |
| case 4: |
| { |
| Byte4 c0 = Pointer<Byte4>(buffer)[index[0]]; |
| Byte4 c1 = Pointer<Byte4>(buffer)[index[1]]; |
| Byte4 c2 = Pointer<Byte4>(buffer)[index[2]]; |
| Byte4 c3 = Pointer<Byte4>(buffer)[index[3]]; |
| c.x = Unpack(c0, c1); |
| c.y = Unpack(c2, c3); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| c.z = As<Short4>(UnpackLow(c.x, c.y)); |
| c.x = As<Short4>(UnpackHigh(c.x, c.y)); |
| c.y = c.z; |
| c.w = c.x; |
| c.z = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.z)); |
| c.y = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.y)); |
| c.x = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.x)); |
| c.w = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.w)); |
| break; |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_R8G8B8A8_SINT: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| case VK_FORMAT_A8B8G8R8_UNORM_PACK32: |
| case VK_FORMAT_A8B8G8R8_SNORM_PACK32: |
| case VK_FORMAT_A8B8G8R8_SINT_PACK32: |
| case VK_FORMAT_A8B8G8R8_SRGB_PACK32: |
| c.z = As<Short4>(UnpackHigh(c.x, c.y)); |
| c.x = As<Short4>(UnpackLow(c.x, c.y)); |
| c.y = c.x; |
| c.w = c.z; |
| c.x = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.x)); |
| c.y = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.y)); |
| c.z = UnpackLow(As<Byte8>(Short4(0)), As<Byte8>(c.z)); |
| c.w = UnpackHigh(As<Byte8>(Short4(0)), As<Byte8>(c.w)); |
| // Propagate sign bit |
| if(state.textureFormat == VK_FORMAT_R8G8B8A8_SINT || |
| state.textureFormat == VK_FORMAT_A8B8G8R8_SINT_PACK32) |
| { |
| c.x >>= 8; |
| c.y >>= 8; |
| c.z >>= 8; |
| c.w >>= 8; |
| } |
| break; |
| case VK_FORMAT_R8G8B8A8_UINT: |
| case VK_FORMAT_A8B8G8R8_UINT_PACK32: |
| c.z = As<Short4>(UnpackHigh(c.x, c.y)); |
| c.x = As<Short4>(UnpackLow(c.x, c.y)); |
| c.y = c.x; |
| c.w = c.z; |
| c.x = UnpackLow(As<Byte8>(c.x), As<Byte8>(Short4(0))); |
| c.y = UnpackHigh(As<Byte8>(c.y), As<Byte8>(Short4(0))); |
| c.z = UnpackLow(As<Byte8>(c.z), As<Byte8>(Short4(0))); |
| c.w = UnpackHigh(As<Byte8>(c.w), As<Byte8>(Short4(0))); |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| break; |
| case 2: |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_R8G8_UNORM: |
| case VK_FORMAT_R8G8_SNORM: |
| case VK_FORMAT_R8G8_SRGB: |
| c.y = (c.x & Short4(0xFF00u)); |
| c.x = (c.x << 8); |
| break; |
| case VK_FORMAT_R8G8_SINT: |
| c.y = c.x >> 8; |
| c.x = (c.x << 8) >> 8; // Propagate sign bit |
| break; |
| case VK_FORMAT_R8G8_UINT: |
| c.y = As<Short4>(As<UShort4>(c.x) >> 8); |
| c.x &= Short4(0x00FFu); |
| break; |
| default: |
| ASSERT(false); |
| } |
| break; |
| case 1: |
| { |
| Int c0 = Int(*Pointer<Byte>(buffer + index[0])); |
| Int c1 = Int(*Pointer<Byte>(buffer + index[1])); |
| Int c2 = Int(*Pointer<Byte>(buffer + index[2])); |
| Int c3 = Int(*Pointer<Byte>(buffer + index[3])); |
| c0 = c0 | (c1 << 8) | (c2 << 16) | (c3 << 24); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_R8_SINT: |
| case VK_FORMAT_R8_UINT: |
| case VK_FORMAT_S8_UINT: |
| { |
| Int zero(0); |
| c.x = Unpack(As<Byte4>(c0), As<Byte4>(zero)); |
| // Propagate sign bit |
| if(state.textureFormat == VK_FORMAT_R8_SINT) |
| { |
| c.x = (c.x << 8) >> 8; |
| } |
| } |
| break; |
| case VK_FORMAT_R8_SNORM: |
| case VK_FORMAT_R8_UNORM: |
| case VK_FORMAT_R8_SRGB: |
| // TODO: avoid populating the low bits at all. |
| c.x = Unpack(As<Byte4>(c0)); |
| c.x &= Short4(0xFF00u); |
| break; |
| default: |
| c.x = Unpack(As<Byte4>(c0)); |
| break; |
| } |
| } |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| else if(has16bitTextureComponents()) |
| { |
| switch(textureComponentCount()) |
| { |
| case 4: |
| c.x = Pointer<Short4>(buffer)[index[0]]; |
| c.y = Pointer<Short4>(buffer)[index[1]]; |
| c.z = Pointer<Short4>(buffer)[index[2]]; |
| c.w = Pointer<Short4>(buffer)[index[3]]; |
| transpose4x4(c.x, c.y, c.z, c.w); |
| break; |
| case 2: |
| c.x = *Pointer<Short4>(buffer + 4 * index[0]); |
| c.x = As<Short4>(UnpackLow(c.x, *Pointer<Short4>(buffer + 4 * index[1]))); |
| c.z = *Pointer<Short4>(buffer + 4 * index[2]); |
| c.z = As<Short4>(UnpackLow(c.z, *Pointer<Short4>(buffer + 4 * index[3]))); |
| c.y = c.x; |
| c.x = UnpackLow(As<Int2>(c.x), As<Int2>(c.z)); |
| c.y = UnpackHigh(As<Int2>(c.y), As<Int2>(c.z)); |
| break; |
| case 1: |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[0]], 0); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[1]], 1); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[2]], 2); |
| c.x = Insert(c.x, Pointer<Short>(buffer)[index[3]], 3); |
| break; |
| default: |
| ASSERT(false); |
| } |
| } |
| else if(state.textureFormat == VK_FORMAT_A2B10G10R10_UNORM_PACK32) |
| { |
| Int4 cc; |
| cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3); |
| |
| c.x = Short4(cc << 6) & Short4(0xFFC0u); |
| c.y = Short4(cc >> 4) & Short4(0xFFC0u); |
| c.z = Short4(cc >> 14) & Short4(0xFFC0u); |
| c.w = Short4(cc >> 16) & Short4(0xC000u); |
| } |
| else if(state.textureFormat == VK_FORMAT_A2R10G10B10_UNORM_PACK32) |
| { |
| Int4 cc; |
| cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3); |
| |
| c.x = Short4(cc >> 14) & Short4(0xFFC0u); |
| c.y = Short4(cc >> 4) & Short4(0xFFC0u); |
| c.z = Short4(cc << 6) & Short4(0xFFC0u); |
| c.w = Short4(cc >> 16) & Short4(0xC000u); |
| } |
| else if(state.textureFormat == VK_FORMAT_A2B10G10R10_UINT_PACK32) |
| { |
| Int4 cc; |
| cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3); |
| |
| c.x = Short4(cc & Int4(0x3FF)); |
| c.y = Short4((cc >> 10) & Int4(0x3FF)); |
| c.z = Short4((cc >> 20) & Int4(0x3FF)); |
| c.w = Short4((cc >> 30) & Int4(0x3)); |
| } |
| else if(state.textureFormat == VK_FORMAT_A2R10G10B10_UINT_PACK32) |
| { |
| Int4 cc; |
| cc = Insert(cc, Pointer<Int>(buffer)[index[0]], 0); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[1]], 1); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[2]], 2); |
| cc = Insert(cc, Pointer<Int>(buffer)[index[3]], 3); |
| |
| c.z = Short4((cc & Int4(0x3FF))); |
| c.y = Short4(((cc >> 10) & Int4(0x3FF))); |
| c.x = Short4(((cc >> 20) & Int4(0x3FF))); |
| c.w = Short4(((cc >> 30) & Int4(0x3))); |
| } |
| else |
| ASSERT(false); |
| |
| if(state.textureFormat.isSRGBformat()) |
| { |
| for(int i = 0; i < textureComponentCount(); i++) |
| { |
| if(isRGBComponent(i)) |
| { |
| // The current table-based sRGB conversion requires 0xFF00 to represent 1.0. |
| ASSERT(state.textureFormat.has8bitTextureComponents()); |
| |
| sRGBtoLinearFF00(c[i]); |
| } |
| } |
| } |
| |
| return c; |
| } |
| |
| void SamplerCore::sampleLumaTexel(Vector4f &output, Short4 &uuuu, Short4 &vvvv, Short4 &wwww, const Short4 &layerIndex, const Int4 &sample, Pointer<Byte> &lumaMipmap, Pointer<Byte> lumaBuffer) |
| { |
| ASSERT(isYcbcrFormat()); |
| |
| UInt index[4]; |
| computeIndices(index, uuuu, vvvv, wwww, layerIndex, sample, lumaMipmap); |
| |
| // Luminance (either 8-bit or 10-bit in bottom bits). |
| UShort4 Y; |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: |
| case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: |
| { |
| Y = Insert(Y, UShort(lumaBuffer[index[0]]), 0); |
| Y = Insert(Y, UShort(lumaBuffer[index[1]]), 1); |
| Y = Insert(Y, UShort(lumaBuffer[index[2]]), 2); |
| Y = Insert(Y, UShort(lumaBuffer[index[3]]), 3); |
| } |
| break; |
| case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: |
| { |
| Y = Insert(Y, Pointer<UShort>(lumaBuffer)[index[0]], 0); |
| Y = Insert(Y, Pointer<UShort>(lumaBuffer)[index[1]], 1); |
| Y = Insert(Y, Pointer<UShort>(lumaBuffer)[index[2]], 2); |
| Y = Insert(Y, Pointer<UShort>(lumaBuffer)[index[3]], 3); |
| // Top 10 bits of each 16 bits: |
| Y = (Y & UShort4(0xFFC0u)) >> 6; |
| } |
| break; |
| default: |
| UNSUPPORTED("state.textureFormat %d", (int)state.textureFormat); |
| break; |
| } |
| |
| output.y = Float4(Y); |
| } |
| |
| void SamplerCore::sampleChromaTexel(Vector4f &output, Short4 &uuuu, Short4 &vvvv, Short4 &wwww, const Short4 &layerIndex, const Int4 &sample, Pointer<Byte> &mipmapU, Pointer<Byte> bufferU, Pointer<Byte> &mipmapV, Pointer<Byte> bufferV) |
| { |
| ASSERT(isYcbcrFormat()); |
| |
| UInt index[4]; |
| |
| // Chroma (either 8-bit or 10-bit in bottom bits). |
| UShort4 U, V; |
| computeIndices(index, uuuu, vvvv, wwww, layerIndex, sample, mipmapU); |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: |
| { |
| U = Insert(U, UShort(bufferU[index[0]]), 0); |
| U = Insert(U, UShort(bufferU[index[1]]), 1); |
| U = Insert(U, UShort(bufferU[index[2]]), 2); |
| U = Insert(U, UShort(bufferU[index[3]]), 3); |
| |
| V = Insert(V, UShort(bufferV[index[0]]), 0); |
| V = Insert(V, UShort(bufferV[index[1]]), 1); |
| V = Insert(V, UShort(bufferV[index[2]]), 2); |
| V = Insert(V, UShort(bufferV[index[3]]), 3); |
| } |
| break; |
| case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: |
| { |
| UShort4 UV; |
| UV = Insert(UV, Pointer<UShort>(bufferU)[index[0]], 0); |
| UV = Insert(UV, Pointer<UShort>(bufferU)[index[1]], 1); |
| UV = Insert(UV, Pointer<UShort>(bufferU)[index[2]], 2); |
| UV = Insert(UV, Pointer<UShort>(bufferU)[index[3]], 3); |
| |
| U = (UV & UShort4(0x00FFu)); |
| V = (UV & UShort4(0xFF00u)) >> 8; |
| } |
| break; |
| case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: |
| { |
| UInt4 UV; |
| UV = Insert(UV, Pointer<UInt>(bufferU)[index[0]], 0); |
| UV = Insert(UV, Pointer<UInt>(bufferU)[index[1]], 1); |
| UV = Insert(UV, Pointer<UInt>(bufferU)[index[2]], 2); |
| UV = Insert(UV, Pointer<UInt>(bufferU)[index[3]], 3); |
| // Top 10 bits of first 16-bits: |
| U = UShort4((UV & UInt4(0x0000FFC0u)) >> 6); |
| // Top 10 bits of second 16-bits: |
| V = UShort4((UV & UInt4(0xFFC00000u)) >> 22); |
| } |
| break; |
| default: |
| UNSUPPORTED("state.textureFormat %d", (int)state.textureFormat); |
| break; |
| } |
| |
| output.x = Float4(V); |
| output.z = Float4(U); |
| } |
| |
| Vector4s SamplerCore::sampleTexel(Short4 &uuuu, Short4 &vvvv, Short4 &wwww, const Short4 &layerIndex, const Int4 &sample, Pointer<Byte> &mipmap, Pointer<Byte> buffer) |
| { |
| ASSERT(!isYcbcrFormat()); |
| |
| UInt index[4]; |
| computeIndices(index, uuuu, vvvv, wwww, layerIndex, sample, mipmap); |
| |
| return sampleTexel(index, buffer); |
| } |
| |
| Vector4f SamplerCore::sampleTexel(Int4 &uuuu, Int4 &vvvv, Int4 &wwww, const Float4 &dRef, const Int4 &sample, Pointer<Byte> &mipmap, Pointer<Byte> buffer) |
| { |
| Int4 valid; |
| |
| if(borderModeActive()) |
| { |
| // Valid texels have positive coordinates. |
| Int4 negative = uuuu; |
| if(state.is2D() || state.is3D() || state.isCube()) negative |= vvvv; |
| if(state.is3D() || state.isCube() || state.isArrayed()) negative |= wwww; |
| valid = CmpNLT(negative, Int4(0)); |
| } |
| |
| UInt index[4]; |
| computeIndices(index, uuuu, vvvv, wwww, sample, valid, mipmap); |
| |
| Vector4f c; |
| |
| if(hasFloatTexture() || has32bitIntegerTextureComponents()) |
| { |
| UInt4 t0, t1, t2, t3; |
| |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_R16_SFLOAT: |
| t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 2)); |
| t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 2)); |
| t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 2)); |
| t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 2)); |
| |
| c.x.x = Extract(As<Float4>(halfToFloatBits(t0)), 0); |
| c.x.y = Extract(As<Float4>(halfToFloatBits(t1)), 0); |
| c.x.z = Extract(As<Float4>(halfToFloatBits(t2)), 0); |
| c.x.w = Extract(As<Float4>(halfToFloatBits(t3)), 0); |
| break; |
| case VK_FORMAT_R16G16_SFLOAT: |
| t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 4)); |
| t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 4)); |
| t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 4)); |
| t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 4)); |
| |
| // TODO: shuffles |
| c.x = As<Float4>(halfToFloatBits(t0)); |
| c.y = As<Float4>(halfToFloatBits(t1)); |
| c.z = As<Float4>(halfToFloatBits(t2)); |
| c.w = As<Float4>(halfToFloatBits(t3)); |
| transpose4x4(c.x, c.y, c.z, c.w); |
| break; |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| t0 = Int4(*Pointer<UShort4>(buffer + index[0] * 8)); |
| t1 = Int4(*Pointer<UShort4>(buffer + index[1] * 8)); |
| t2 = Int4(*Pointer<UShort4>(buffer + index[2] * 8)); |
| t3 = Int4(*Pointer<UShort4>(buffer + index[3] * 8)); |
| |
| c.x = As<Float4>(halfToFloatBits(t0)); |
| c.y = As<Float4>(halfToFloatBits(t1)); |
| c.z = As<Float4>(halfToFloatBits(t2)); |
| c.w = As<Float4>(halfToFloatBits(t3)); |
| transpose4x4(c.x, c.y, c.z, c.w); |
| break; |
| case VK_FORMAT_R32_SFLOAT: |
| case VK_FORMAT_R32_SINT: |
| case VK_FORMAT_R32_UINT: |
| case VK_FORMAT_D32_SFLOAT: |
| // TODO: Optimal shuffling? |
| c.x.x = *Pointer<Float>(buffer + index[0] * 4); |
| c.x.y = *Pointer<Float>(buffer + index[1] * 4); |
| c.x.z = *Pointer<Float>(buffer + index[2] * 4); |
| c.x.w = *Pointer<Float>(buffer + index[3] * 4); |
| break; |
| case VK_FORMAT_R32G32_SFLOAT: |
| case VK_FORMAT_R32G32_SINT: |
| case VK_FORMAT_R32G32_UINT: |
| // TODO: Optimal shuffling? |
| c.x.xy = *Pointer<Float4>(buffer + index[0] * 8); |
| c.x.zw = *Pointer<Float4>(buffer + index[1] * 8 - 8); |
| c.z.xy = *Pointer<Float4>(buffer + index[2] * 8); |
| c.z.zw = *Pointer<Float4>(buffer + index[3] * 8 - 8); |
| c.y = c.x; |
| c.x = Float4(c.x.xz, c.z.xz); |
| c.y = Float4(c.y.yw, c.z.yw); |
| break; |
| case VK_FORMAT_R32G32B32A32_SFLOAT: |
| case VK_FORMAT_R32G32B32A32_SINT: |
| case VK_FORMAT_R32G32B32A32_UINT: |
| c.x = *Pointer<Float4>(buffer + index[0] * 16, 16); |
| c.y = *Pointer<Float4>(buffer + index[1] * 16, 16); |
| c.z = *Pointer<Float4>(buffer + index[2] * 16, 16); |
| c.w = *Pointer<Float4>(buffer + index[3] * 16, 16); |
| transpose4x4(c.x, c.y, c.z, c.w); |
| break; |
| case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: |
| { |
| Float4 t; // TODO: add Insert(UInt4, RValue<UInt>) |
| t.x = *Pointer<Float>(buffer + index[0] * 4); |
| t.y = *Pointer<Float>(buffer + index[1] * 4); |
| t.z = *Pointer<Float>(buffer + index[2] * 4); |
| t.w = *Pointer<Float>(buffer + index[3] * 4); |
| t0 = As<UInt4>(t); |
| c.w = Float4(UInt4(1) << ((t0 >> 27) & UInt4(0x1F))) * Float4(1.0f / (1 << 24)); |
| c.x = Float4(t0 & UInt4(0x1FF)) * c.w; |
| c.y = Float4((t0 >> 9) & UInt4(0x1FF)) * c.w; |
| c.z = Float4((t0 >> 18) & UInt4(0x1FF)) * c.w; |
| } |
| break; |
| case VK_FORMAT_B10G11R11_UFLOAT_PACK32: |
| { |
| Float4 t; // TODO: add Insert(UInt4, RValue<UInt>) |
| t.x = *Pointer<Float>(buffer + index[0] * 4); |
| t.y = *Pointer<Float>(buffer + index[1] * 4); |
| t.z = *Pointer<Float>(buffer + index[2] * 4); |
| t.w = *Pointer<Float>(buffer + index[3] * 4); |
| t0 = As<UInt4>(t); |
| c.x = As<Float4>(halfToFloatBits((t0 << 4) & UInt4(0x7FF0))); |
| c.y = As<Float4>(halfToFloatBits((t0 >> 7) & UInt4(0x7FF0))); |
| c.z = As<Float4>(halfToFloatBits((t0 >> 17) & UInt4(0x7FE0))); |
| } |
| break; |
| default: |
| UNSUPPORTED("Format %d", VkFormat(state.textureFormat)); |
| } |
| } |
| else |
| { |
| ASSERT(!isYcbcrFormat()); |
| |
| Vector4s cs = sampleTexel(index, buffer); |
| |
| bool isInteger = state.textureFormat.isUnnormalizedInteger(); |
| int componentCount = textureComponentCount(); |
| for(int n = 0; n < componentCount; n++) |
| { |
| if(hasUnsignedTextureComponent(n)) |
| { |
| if(isInteger) |
| { |
| c[n] = As<Float4>(Int4(As<UShort4>(cs[n]))); |
| } |
| else |
| { |
| c[n] = Float4(As<UShort4>(cs[n])); |
| } |
| } |
| else |
| { |
| if(isInteger) |
| { |
| c[n] = As<Float4>(Int4(cs[n])); |
| } |
| else |
| { |
| c[n] = Float4(cs[n]); |
| } |
| } |
| } |
| } |
| |
| if(borderModeActive()) |
| { |
| c = replaceBorderTexel(c, valid); |
| } |
| |
| if(state.compareEnable) |
| { |
| Float4 ref = dRef; |
| |
| if(!hasFloatTexture()) |
| { |
| // D16_UNORM: clamp reference, normalize texel value |
| ref = Min(Max(ref, Float4(0.0f)), Float4(1.0f)); |
| c.x = c.x * Float4(1.0f / 0xFFFF); |
| } |
| |
| Int4 boolean; |
| |
| switch(state.compareOp) |
| { |
| case VK_COMPARE_OP_LESS_OR_EQUAL: boolean = CmpLE(ref, c.x); break; |
| case VK_COMPARE_OP_GREATER_OR_EQUAL: boolean = CmpNLT(ref, c.x); break; |
| case VK_COMPARE_OP_LESS: boolean = CmpLT(ref, c.x); break; |
| case VK_COMPARE_OP_GREATER: boolean = CmpNLE(ref, c.x); break; |
| case VK_COMPARE_OP_EQUAL: boolean = CmpEQ(ref, c.x); break; |
| case VK_COMPARE_OP_NOT_EQUAL: boolean = CmpNEQ(ref, c.x); break; |
| case VK_COMPARE_OP_ALWAYS: boolean = Int4(-1); break; |
| case VK_COMPARE_OP_NEVER: boolean = Int4(0); break; |
| default: ASSERT(false); |
| } |
| |
| c.x = As<Float4>(boolean & As<Int4>(Float4(1.0f))); |
| c.y = Float4(0.0f); |
| c.z = Float4(0.0f); |
| c.w = Float4(1.0f); |
| } |
| |
| return c; |
| } |
| |
| Vector4f SamplerCore::replaceBorderTexel(const Vector4f &c, Int4 valid) |
| { |
| Vector4i border; |
| |
| const bool scaled = hasNormalizedFormat(); |
| const sw::float4 scaleComp = scaled ? getComponentScale() : sw::float4(1.0f, 1.0f, 1.0f, 1.0f); |
| |
| switch(state.border) |
| { |
| case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK: |
| case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK: |
| border.x = Int4(0); |
| border.y = Int4(0); |
| border.z = Int4(0); |
| border.w = Int4(0); |
| break; |
| case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK: |
| border.x = Int4(0); |
| border.y = Int4(0); |
| border.z = Int4(0); |
| border.w = Int4(bit_cast<int>(scaleComp.w)); |
| break; |
| case VK_BORDER_COLOR_INT_OPAQUE_BLACK: |
| border.x = Int4(0); |
| border.y = Int4(0); |
| border.z = Int4(0); |
| border.w = Int4(1); |
| break; |
| case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE: |
| border.x = Int4(bit_cast<int>(scaleComp.x)); |
| border.y = Int4(bit_cast<int>(scaleComp.y)); |
| border.z = Int4(bit_cast<int>(scaleComp.z)); |
| border.w = Int4(bit_cast<int>(scaleComp.w)); |
| break; |
| case VK_BORDER_COLOR_INT_OPAQUE_WHITE: |
| border.x = Int4(1); |
| border.y = Int4(1); |
| border.z = Int4(1); |
| border.w = Int4(1); |
| break; |
| case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT: |
| // This bit-casts from float to int in C++ code instead of Reactor code |
| // because Reactor does not guarantee preserving infinity (b/140302841). |
| border.x = Int4(bit_cast<int>(scaleComp.x * state.customBorder.float32[0])); |
| border.y = Int4(bit_cast<int>(scaleComp.y * state.customBorder.float32[1])); |
| border.z = Int4(bit_cast<int>(scaleComp.z * state.customBorder.float32[2])); |
| border.w = Int4(bit_cast<int>(scaleComp.w * state.customBorder.float32[3])); |
| break; |
| case VK_BORDER_COLOR_INT_CUSTOM_EXT: |
| border.x = Int4(state.customBorder.int32[0]); |
| border.y = Int4(state.customBorder.int32[1]); |
| border.z = Int4(state.customBorder.int32[2]); |
| border.w = Int4(state.customBorder.int32[3]); |
| break; |
| default: |
| UNSUPPORTED("sint/uint/sfloat border: %u", state.border); |
| } |
| |
| Vector4f out; |
| out.x = As<Float4>((valid & As<Int4>(c.x)) | (~valid & border.x)); // TODO: IfThenElse() |
| out.y = As<Float4>((valid & As<Int4>(c.y)) | (~valid & border.y)); |
| out.z = As<Float4>((valid & As<Int4>(c.z)) | (~valid & border.z)); |
| out.w = As<Float4>((valid & As<Int4>(c.w)) | (~valid & border.w)); |
| |
| return out; |
| } |
| |
| Pointer<Byte> SamplerCore::selectMipmap(const Pointer<Byte> &texture, const Float &lod, bool secondLOD) |
| { |
| Pointer<Byte> mipmap0 = texture + OFFSET(Texture, mipmap[0]); |
| |
| if(state.mipmapFilter == MIPMAP_NONE) |
| { |
| return mipmap0; |
| } |
| |
| Int ilod; |
| |
| if(state.mipmapFilter == MIPMAP_POINT) |
| { |
| // TODO: Preferred formula is ceil(lod + 0.5) - 1 |
| ilod = RoundInt(lod); |
| } |
| else // MIPMAP_LINEAR |
| { |
| ilod = Int(lod); |
| } |
| |
| return mipmap0 + ilod * sizeof(Mipmap) + secondLOD * sizeof(Mipmap); |
| } |
| |
| Int4 SamplerCore::computeFilterOffset(Float &lod) |
| { |
| if(state.textureFilter == FILTER_POINT) |
| { |
| return Int4(0); |
| } |
| else if(state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) |
| { |
| return CmpNLE(Float4(lod), Float4(0.0f)); |
| } |
| else if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR) |
| { |
| return CmpLE(Float4(lod), Float4(0.0f)); |
| } |
| |
| return Int4(~0); |
| } |
| |
| Short4 SamplerCore::address(const Float4 &uw, AddressingMode addressingMode) |
| { |
| if(addressingMode == ADDRESSING_UNUSED) |
| { |
| return Short4(0); // TODO(b/134669567): Optimize for 1D filtering |
| } |
| else if(addressingMode == ADDRESSING_CLAMP || addressingMode == ADDRESSING_BORDER) |
| { |
| Float4 clamp = Min(Max(uw, Float4(0.0f)), Float4(65535.0f / 65536.0f)); |
| |
| return Short4(Int4(clamp * Float4(1 << 16))); |
| } |
| else if(addressingMode == ADDRESSING_MIRROR) |
| { |
| Int4 convert = Int4(uw * Float4(1 << 16)); |
| Int4 mirror = (convert << 15) >> 31; |
| |
| convert ^= mirror; |
| |
| return Short4(convert); |
| } |
| else if(addressingMode == ADDRESSING_MIRRORONCE) |
| { |
| // Absolute value |
| Int4 convert = Int4(Abs(uw * Float4(1 << 16))); |
| |
| // Clamp |
| convert -= Int4(0x00008000, 0x00008000, 0x00008000, 0x00008000); |
| convert = As<Int4>(PackSigned(convert, convert)); |
| |
| return As<Short4>(Int2(convert)) + Short4(0x8000u); |
| } |
| else // Wrap |
| { |
| return Short4(Int4(uw * Float4(1 << 16))); |
| } |
| } |
| |
| Short4 SamplerCore::computeLayerIndex16(const Float4 &a, Pointer<Byte> &mipmap) |
| { |
| if(!state.isArrayed()) |
| { |
| return {}; |
| } |
| |
| Int4 layers = *Pointer<Int4>(mipmap + OFFSET(Mipmap, depth)); |
| |
| return Short4(Min(Max(RoundInt(a), Int4(0)), layers - Int4(1))); |
| } |
| |
| // TODO: Eliminate when the gather + mirror addressing case is handled by mirroring the footprint. |
| static Int4 mirror(Int4 n) |
| { |
| auto positive = CmpNLT(n, Int4(0)); |
| return (positive & n) | (~positive & (-(Int4(1) + n))); |
| } |
| |
| static Int4 mod(Int4 n, Int4 d) |
| { |
| auto x = n % d; |
| auto positive = CmpNLT(x, Int4(0)); |
| return (positive & x) | (~positive & (x + d)); |
| } |
| |
| void SamplerCore::address(const Float4 &uvw, Int4 &xyz0, Int4 &xyz1, Float4 &f, Pointer<Byte> &mipmap, Int4 &filter, int whd, AddressingMode addressingMode) |
| { |
| if(addressingMode == ADDRESSING_UNUSED) |
| { |
| f = Float4(0.0f); // TODO(b/134669567): Optimize for 1D filtering |
| return; |
| } |
| |
| Int4 dim = As<Int4>(*Pointer<UInt4>(mipmap + whd, 16)); |
| Int4 maxXYZ = dim - Int4(1); |
| |
| if(function == Fetch) // Unnormalized coordinates |
| { |
| Int4 xyz = As<Int4>(uvw); |
| xyz0 = Min(Max(xyz, Int4(0)), maxXYZ); |
| |
| // VK_EXT_image_robustness requires checking for out-of-bounds accesses. |
| // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. |
| // If the above clamping altered the result, the access is out-of-bounds. |
| // In that case set the coordinate to -1 to perform texel replacement later. |
| Int4 outOfBounds = CmpNEQ(xyz, xyz0); |
| xyz0 |= outOfBounds; |
| } |
| else if(addressingMode == ADDRESSING_CUBEFACE) |
| { |
| xyz0 = As<Int4>(uvw); |
| } |
| else |
| { |
| const int oneBits = 0x3F7FFFFF; // Value just under 1.0f |
| |
| Float4 coord = uvw; |
| |
| if(state.unnormalizedCoordinates) |
| { |
| switch(addressingMode) |
| { |
| case ADDRESSING_CLAMP: |
| coord = Min(Max(coord, Float4(0.0f)), Float4(dim) * As<Float4>(Int4(oneBits))); |
| break; |
| case ADDRESSING_BORDER: |
| // Don't map to a valid range here. |
| break; |
| default: |
| // "If unnormalizedCoordinates is VK_TRUE, addressModeU and addressModeV must each be |
| // either VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE or VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER" |
| UNREACHABLE("addressingMode %d", int(addressingMode)); |
| break; |
| } |
| } |
| else if(state.textureFilter == FILTER_GATHER && addressingMode == ADDRESSING_MIRROR) |
| { |
| // Gather requires the 'footprint' of the texels from which a component is taken, to also mirror around. |
| // Therefore we can't just compute one texel's location and find the other ones at +1 offsets from it. |
| // Here we handle that case separately by doing the mirroring per texel coordinate. |
| // TODO: Mirror the footprint by adjusting the sign of the 0.5f and 1 offsets. |
| |
| coord = coord * Float4(dim); |
| coord -= Float4(0.5f); |
| Float4 floor = Floor(coord); |
| xyz0 = Int4(floor); |
| xyz1 = xyz0 + Int4(1); |
| |
| xyz0 = (maxXYZ)-mirror(mod(xyz0, Int4(2) * dim) - dim); |
| xyz1 = (maxXYZ)-mirror(mod(xyz1, Int4(2) * dim) - dim); |
| |
| return; |
| } |
| else |
| { |
| switch(addressingMode) |
| { |
| case ADDRESSING_CLAMP: |
| case ADDRESSING_SEAMLESS: |
| // While cube face coordinates are nominally already in the [0.0, 1.0] range |
| // due to the projection, and numerical imprecision is tolerated due to the |
| // border of pixels for seamless filtering, the projection doesn't cause |
| // range normalization for Inf and NaN values. So we always clamp. |
| { |
| Float4 one = As<Float4>(Int4(oneBits)); |
| coord = Min(Max(coord, Float4(0.0f)), one); |
| } |
| break; |
| case ADDRESSING_MIRROR: |
| { |
| Float4 one = As<Float4>(Int4(oneBits)); |
| coord = coord * Float4(0.5f); |
| coord = Float4(2.0f) * Abs(coord - Round(coord)); |
| coord = Min(coord, one); |
| } |
| break; |
| case ADDRESSING_MIRRORONCE: |
| { |
| Float4 one = As<Float4>(Int4(oneBits)); |
| coord = Min(Abs(coord), one); |
| } |
| break; |
| case ADDRESSING_BORDER: |
| // Don't map to a valid range here. |
| break; |
| default: // Wrap |
| coord = Frac(coord); |
| break; |
| } |
| |
| coord = coord * Float4(dim); |
| } |
| |
| if(state.textureFilter == FILTER_POINT) |
| { |
| if(addressingMode == ADDRESSING_BORDER) |
| { |
| xyz0 = Int4(Floor(coord)); |
| } |
| else // Can't have negative coordinates, so floor() is redundant when casting to int. |
| { |
| xyz0 = Int4(coord); |
| } |
| } |
| else |
| { |
| if(state.textureFilter == FILTER_MIN_POINT_MAG_LINEAR || |
| state.textureFilter == FILTER_MIN_LINEAR_MAG_POINT) |
| { |
| coord -= As<Float4>(As<Int4>(Float4(0.5f)) & filter); |
| } |
| else |
| { |
| coord -= Float4(0.5f); |
| } |
| |
| Float4 floor = Floor(coord); |
| xyz0 = Int4(floor); |
| f = coord - floor; |
| } |
| |
| if(addressingMode == ADDRESSING_SEAMLESS) // Adjust for border. |
| { |
| xyz0 += Int4(1); |
| } |
| |
| xyz1 = xyz0 - filter; // Increment |
| |
| if(addressingMode == ADDRESSING_BORDER) |
| { |
| // Replace the coordinates with -1 if they're out of range. |
| Int4 border0 = CmpLT(xyz0, Int4(0)) | CmpNLT(xyz0, dim); |
| Int4 border1 = CmpLT(xyz1, Int4(0)) | CmpNLT(xyz1, dim); |
| xyz0 |= border0; |
| xyz1 |= border1; |
| } |
| else if(state.textureFilter != FILTER_POINT) |
| { |
| switch(addressingMode) |
| { |
| case ADDRESSING_SEAMLESS: |
| break; |
| case ADDRESSING_MIRROR: |
| case ADDRESSING_MIRRORONCE: |
| case ADDRESSING_CLAMP: |
| xyz0 = Max(xyz0, Int4(0)); |
| xyz1 = Min(xyz1, maxXYZ); |
| break; |
| default: // Wrap |
| { |
| Int4 under = CmpLT(xyz0, Int4(0)); |
| xyz0 = (under & maxXYZ) | (~under & xyz0); // xyz < 0 ? dim - 1 : xyz // TODO: IfThenElse() |
| |
| Int4 nover = CmpLT(xyz1, dim); |
| xyz1 = nover & xyz1; // xyz >= dim ? 0 : xyz |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| Int4 SamplerCore::computeLayerIndex(const Float4 &a, Pointer<Byte> &mipmap) |
| { |
| if(!state.isArrayed()) |
| { |
| return {}; |
| } |
| |
| Int4 layers = *Pointer<Int4>(mipmap + OFFSET(Mipmap, depth), 16); |
| Int4 maxLayer = layers - Int4(1); |
| |
| if(function == Fetch) // Unnormalized coordinates |
| { |
| Int4 xyz = As<Int4>(a); |
| Int4 xyz0 = Min(Max(xyz, Int4(0)), maxLayer); |
| |
| // VK_EXT_image_robustness requires checking for out-of-bounds accesses. |
| // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. |
| // If the above clamping altered the result, the access is out-of-bounds. |
| // In that case set the coordinate to -1 to perform texel replacement later. |
| Int4 outOfBounds = CmpNEQ(xyz, xyz0); |
| xyz0 |= outOfBounds; |
| |
| return xyz0; |
| } |
| else |
| { |
| return Min(Max(RoundInt(a), Int4(0)), maxLayer); |
| } |
| } |
| |
| void SamplerCore::sRGBtoLinearFF00(Short4 &c) |
| { |
| c = As<UShort4>(c) >> 8; |
| |
| Pointer<Byte> LUT = Pointer<Byte>(constants + OFFSET(Constants, sRGBtoLinearFF_FF00)); |
| |
| c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 0))), 0); |
| c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 1))), 1); |
| c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 2))), 2); |
| c = Insert(c, *Pointer<Short>(LUT + 2 * Int(Extract(c, 3))), 3); |
| } |
| |
| bool SamplerCore::hasNormalizedFormat() const |
| { |
| return state.textureFormat.isSignedNormalized() || state.textureFormat.isUnsignedNormalized(); |
| } |
| |
| bool SamplerCore::hasFloatTexture() const |
| { |
| return state.textureFormat.isFloatFormat(); |
| } |
| |
| bool SamplerCore::hasUnnormalizedIntegerTexture() const |
| { |
| return state.textureFormat.isUnnormalizedInteger(); |
| } |
| |
| bool SamplerCore::hasUnsignedTextureComponent(int component) const |
| { |
| return state.textureFormat.isUnsignedComponent(component); |
| } |
| |
| int SamplerCore::textureComponentCount() const |
| { |
| return state.textureFormat.componentCount(); |
| } |
| |
| bool SamplerCore::has16bitPackedTextureFormat() const |
| { |
| return state.textureFormat.has16bitPackedTextureFormat(); |
| } |
| |
| bool SamplerCore::has8bitTextureComponents() const |
| { |
| return state.textureFormat.has8bitTextureComponents(); |
| } |
| |
| bool SamplerCore::has16bitTextureComponents() const |
| { |
| return state.textureFormat.has16bitTextureComponents(); |
| } |
| |
| bool SamplerCore::has32bitIntegerTextureComponents() const |
| { |
| return state.textureFormat.has32bitIntegerTextureComponents(); |
| } |
| |
| bool SamplerCore::isYcbcrFormat() const |
| { |
| return state.textureFormat.isYcbcrFormat(); |
| } |
| |
| bool SamplerCore::isRGBComponent(int component) const |
| { |
| return state.textureFormat.isRGBComponent(component); |
| } |
| |
| bool SamplerCore::borderModeActive() const |
| { |
| return state.addressingModeU == ADDRESSING_BORDER || |
| state.addressingModeV == ADDRESSING_BORDER || |
| state.addressingModeW == ADDRESSING_BORDER; |
| } |
| |
| VkComponentSwizzle SamplerCore::gatherSwizzle() const |
| { |
| switch(state.gatherComponent) |
| { |
| case 0: return state.swizzle.r; |
| case 1: return state.swizzle.g; |
| case 2: return state.swizzle.b; |
| case 3: return state.swizzle.a; |
| default: |
| UNREACHABLE("Invalid component"); |
| return VK_COMPONENT_SWIZZLE_R; |
| } |
| } |
| |
| sw::float4 SamplerCore::getComponentScale() const |
| { |
| // TODO(b/204709464): Unlike other formats, the fixed-point representation of the formats below are handled with bit extension. |
| // This special handling of such formats should be removed later. |
| switch(state.textureFormat) |
| { |
| case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: |
| case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: |
| case VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16: |
| return sw::float4(0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF); |
| default: |
| break; |
| }; |
| |
| const sw::int4 bits = state.textureFormat.bitsPerComponent(); |
| const sw::int4 shift = sw::int4(16 - bits.x, 16 - bits.y, 16 - bits.z, 16 - bits.w); |
| const uint16_t sign = state.textureFormat.isUnsigned() ? 0xFFFF : 0x7FFF; |
| |
| return sw::float4(static_cast<uint16_t>(0xFFFF << shift.x) & sign, |
| static_cast<uint16_t>(0xFFFF << shift.y) & sign, |
| static_cast<uint16_t>(0xFFFF << shift.z) & sign, |
| static_cast<uint16_t>(0xFFFF << shift.w) & sign); |
| } |
| |
| int SamplerCore::getGatherComponent() const |
| { |
| VkComponentSwizzle swizzle = gatherSwizzle(); |
| |
| switch(swizzle) |
| { |
| default: UNSUPPORTED("VkComponentSwizzle %d", (int)swizzle); return 0; |
| case VK_COMPONENT_SWIZZLE_R: |
| case VK_COMPONENT_SWIZZLE_G: |
| case VK_COMPONENT_SWIZZLE_B: |
| case VK_COMPONENT_SWIZZLE_A: |
| // Normalize all components using the gather component scale. |
| return swizzle - VK_COMPONENT_SWIZZLE_R; |
| case VK_COMPONENT_SWIZZLE_ZERO: |
| case VK_COMPONENT_SWIZZLE_ONE: |
| // These cases are handled later. |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| } // namespace sw |