| //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AArch64TargetLowering class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64ISelLowering.h" |
| #include "AArch64CallingConvention.h" |
| #include "AArch64MachineFunctionInfo.h" |
| #include "AArch64PerfectShuffle.h" |
| #include "AArch64RegisterInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "Utils/AArch64BaseInfo.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RuntimeLibcalls.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetCallingConv.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/OperandTraits.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <bitset> |
| #include <cassert> |
| #include <cctype> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <iterator> |
| #include <limits> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "aarch64-lower" |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| STATISTIC(NumShiftInserts, "Number of vector shift inserts"); |
| STATISTIC(NumOptimizedImms, "Number of times immediates were optimized"); |
| |
| static cl::opt<bool> |
| EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, |
| cl::desc("Allow AArch64 SLI/SRI formation"), |
| cl::init(false)); |
| |
| // FIXME: The necessary dtprel relocations don't seem to be supported |
| // well in the GNU bfd and gold linkers at the moment. Therefore, by |
| // default, for now, fall back to GeneralDynamic code generation. |
| cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration( |
| "aarch64-elf-ldtls-generation", cl::Hidden, |
| cl::desc("Allow AArch64 Local Dynamic TLS code generation"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden, |
| cl::desc("Enable AArch64 logical imm instruction " |
| "optimization"), |
| cl::init(true)); |
| |
| /// Value type used for condition codes. |
| static const MVT MVT_CC = MVT::i32; |
| |
| AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, |
| const AArch64Subtarget &STI) |
| : TargetLowering(TM), Subtarget(&STI) { |
| // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so |
| // we have to make something up. Arbitrarily, choose ZeroOrOne. |
| setBooleanContents(ZeroOrOneBooleanContent); |
| // When comparing vectors the result sets the different elements in the |
| // vector to all-one or all-zero. |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); |
| addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); |
| |
| if (Subtarget->hasFPARMv8()) { |
| addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); |
| addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); |
| addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); |
| addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); |
| } |
| |
| if (Subtarget->hasNEON()) { |
| addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); |
| addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); |
| // Someone set us up the NEON. |
| addDRTypeForNEON(MVT::v2f32); |
| addDRTypeForNEON(MVT::v8i8); |
| addDRTypeForNEON(MVT::v4i16); |
| addDRTypeForNEON(MVT::v2i32); |
| addDRTypeForNEON(MVT::v1i64); |
| addDRTypeForNEON(MVT::v1f64); |
| addDRTypeForNEON(MVT::v4f16); |
| |
| addQRTypeForNEON(MVT::v4f32); |
| addQRTypeForNEON(MVT::v2f64); |
| addQRTypeForNEON(MVT::v16i8); |
| addQRTypeForNEON(MVT::v8i16); |
| addQRTypeForNEON(MVT::v4i32); |
| addQRTypeForNEON(MVT::v2i64); |
| addQRTypeForNEON(MVT::v8f16); |
| } |
| |
| // Compute derived properties from the register classes |
| computeRegisterProperties(Subtarget->getRegisterInfo()); |
| |
| // Provide all sorts of operation actions |
| setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); |
| setOperationAction(ISD::SETCC, MVT::i32, Custom); |
| setOperationAction(ISD::SETCC, MVT::i64, Custom); |
| setOperationAction(ISD::SETCC, MVT::f16, Custom); |
| setOperationAction(ISD::SETCC, MVT::f32, Custom); |
| setOperationAction(ISD::SETCC, MVT::f64, Custom); |
| setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); |
| setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::i64, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f16, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT, MVT::f16, Custom); |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::JumpTable, MVT::i64, Custom); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); |
| |
| setOperationAction(ISD::FREM, MVT::f32, Expand); |
| setOperationAction(ISD::FREM, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f80, Expand); |
| |
| setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); |
| |
| // Custom lowering hooks are needed for XOR |
| // to fold it into CSINC/CSINV. |
| setOperationAction(ISD::XOR, MVT::i32, Custom); |
| setOperationAction(ISD::XOR, MVT::i64, Custom); |
| |
| // Virtually no operation on f128 is legal, but LLVM can't expand them when |
| // there's a valid register class, so we need custom operations in most cases. |
| setOperationAction(ISD::FABS, MVT::f128, Expand); |
| setOperationAction(ISD::FADD, MVT::f128, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); |
| setOperationAction(ISD::FCOS, MVT::f128, Expand); |
| setOperationAction(ISD::FDIV, MVT::f128, Custom); |
| setOperationAction(ISD::FMA, MVT::f128, Expand); |
| setOperationAction(ISD::FMUL, MVT::f128, Custom); |
| setOperationAction(ISD::FNEG, MVT::f128, Expand); |
| setOperationAction(ISD::FPOW, MVT::f128, Expand); |
| setOperationAction(ISD::FREM, MVT::f128, Expand); |
| setOperationAction(ISD::FRINT, MVT::f128, Expand); |
| setOperationAction(ISD::FSIN, MVT::f128, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f128, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f128, Expand); |
| setOperationAction(ISD::FSUB, MVT::f128, Custom); |
| setOperationAction(ISD::FTRUNC, MVT::f128, Expand); |
| setOperationAction(ISD::SETCC, MVT::f128, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f128, Custom); |
| setOperationAction(ISD::SELECT, MVT::f128, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); |
| setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); |
| |
| // Lowering for many of the conversions is actually specified by the non-f128 |
| // type. The LowerXXX function will be trivial when f128 isn't involved. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); |
| setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); |
| |
| // Variable arguments. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY, MVT::Other, Custom); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| |
| // Variable-sized objects. |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| if (Subtarget->isTargetWindows()) |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); |
| else |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); |
| |
| // Constant pool entries |
| setOperationAction(ISD::ConstantPool, MVT::i64, Custom); |
| |
| // BlockAddress |
| setOperationAction(ISD::BlockAddress, MVT::i64, Custom); |
| |
| // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. |
| setOperationAction(ISD::ADDC, MVT::i32, Custom); |
| setOperationAction(ISD::ADDE, MVT::i32, Custom); |
| setOperationAction(ISD::SUBC, MVT::i32, Custom); |
| setOperationAction(ISD::SUBE, MVT::i32, Custom); |
| setOperationAction(ISD::ADDC, MVT::i64, Custom); |
| setOperationAction(ISD::ADDE, MVT::i64, Custom); |
| setOperationAction(ISD::SUBC, MVT::i64, Custom); |
| setOperationAction(ISD::SUBE, MVT::i64, Custom); |
| |
| // AArch64 lacks both left-rotate and popcount instructions. |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i64, Expand); |
| for (MVT VT : MVT::vector_valuetypes()) { |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| } |
| |
| // AArch64 doesn't have {U|S}MUL_LOHI. |
| setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| |
| setOperationAction(ISD::CTPOP, MVT::i32, Custom); |
| setOperationAction(ISD::CTPOP, MVT::i64, Custom); |
| |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i64, Expand); |
| for (MVT VT : MVT::vector_valuetypes()) { |
| setOperationAction(ISD::SDIVREM, VT, Expand); |
| setOperationAction(ISD::UDIVREM, VT, Expand); |
| } |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i64, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| |
| // Custom lower Add/Sub/Mul with overflow. |
| setOperationAction(ISD::SADDO, MVT::i32, Custom); |
| setOperationAction(ISD::SADDO, MVT::i64, Custom); |
| setOperationAction(ISD::UADDO, MVT::i32, Custom); |
| setOperationAction(ISD::UADDO, MVT::i64, Custom); |
| setOperationAction(ISD::SSUBO, MVT::i32, Custom); |
| setOperationAction(ISD::SSUBO, MVT::i64, Custom); |
| setOperationAction(ISD::USUBO, MVT::i32, Custom); |
| setOperationAction(ISD::USUBO, MVT::i64, Custom); |
| setOperationAction(ISD::SMULO, MVT::i32, Custom); |
| setOperationAction(ISD::SMULO, MVT::i64, Custom); |
| setOperationAction(ISD::UMULO, MVT::i32, Custom); |
| setOperationAction(ISD::UMULO, MVT::i64, Custom); |
| |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| if (Subtarget->hasFullFP16()) |
| setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom); |
| else |
| setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); |
| |
| setOperationAction(ISD::FREM, MVT::f16, Promote); |
| setOperationAction(ISD::FREM, MVT::v4f16, Promote); |
| setOperationAction(ISD::FREM, MVT::v8f16, Promote); |
| setOperationAction(ISD::FPOW, MVT::f16, Promote); |
| setOperationAction(ISD::FPOW, MVT::v4f16, Promote); |
| setOperationAction(ISD::FPOW, MVT::v8f16, Promote); |
| setOperationAction(ISD::FPOWI, MVT::f16, Promote); |
| setOperationAction(ISD::FCOS, MVT::f16, Promote); |
| setOperationAction(ISD::FCOS, MVT::v4f16, Promote); |
| setOperationAction(ISD::FCOS, MVT::v8f16, Promote); |
| setOperationAction(ISD::FSIN, MVT::f16, Promote); |
| setOperationAction(ISD::FSIN, MVT::v4f16, Promote); |
| setOperationAction(ISD::FSIN, MVT::v8f16, Promote); |
| setOperationAction(ISD::FSINCOS, MVT::f16, Promote); |
| setOperationAction(ISD::FSINCOS, MVT::v4f16, Promote); |
| setOperationAction(ISD::FSINCOS, MVT::v8f16, Promote); |
| setOperationAction(ISD::FEXP, MVT::f16, Promote); |
| setOperationAction(ISD::FEXP, MVT::v4f16, Promote); |
| setOperationAction(ISD::FEXP, MVT::v8f16, Promote); |
| setOperationAction(ISD::FEXP2, MVT::f16, Promote); |
| setOperationAction(ISD::FEXP2, MVT::v4f16, Promote); |
| setOperationAction(ISD::FEXP2, MVT::v8f16, Promote); |
| setOperationAction(ISD::FLOG, MVT::f16, Promote); |
| setOperationAction(ISD::FLOG, MVT::v4f16, Promote); |
| setOperationAction(ISD::FLOG, MVT::v8f16, Promote); |
| setOperationAction(ISD::FLOG2, MVT::f16, Promote); |
| setOperationAction(ISD::FLOG2, MVT::v4f16, Promote); |
| setOperationAction(ISD::FLOG2, MVT::v8f16, Promote); |
| setOperationAction(ISD::FLOG10, MVT::f16, Promote); |
| setOperationAction(ISD::FLOG10, MVT::v4f16, Promote); |
| setOperationAction(ISD::FLOG10, MVT::v8f16, Promote); |
| |
| if (!Subtarget->hasFullFP16()) { |
| setOperationAction(ISD::SELECT, MVT::f16, Promote); |
| setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); |
| setOperationAction(ISD::SETCC, MVT::f16, Promote); |
| setOperationAction(ISD::BR_CC, MVT::f16, Promote); |
| setOperationAction(ISD::FADD, MVT::f16, Promote); |
| setOperationAction(ISD::FSUB, MVT::f16, Promote); |
| setOperationAction(ISD::FMUL, MVT::f16, Promote); |
| setOperationAction(ISD::FDIV, MVT::f16, Promote); |
| setOperationAction(ISD::FMA, MVT::f16, Promote); |
| setOperationAction(ISD::FNEG, MVT::f16, Promote); |
| setOperationAction(ISD::FABS, MVT::f16, Promote); |
| setOperationAction(ISD::FCEIL, MVT::f16, Promote); |
| setOperationAction(ISD::FSQRT, MVT::f16, Promote); |
| setOperationAction(ISD::FFLOOR, MVT::f16, Promote); |
| setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); |
| setOperationAction(ISD::FRINT, MVT::f16, Promote); |
| setOperationAction(ISD::FROUND, MVT::f16, Promote); |
| setOperationAction(ISD::FTRUNC, MVT::f16, Promote); |
| setOperationAction(ISD::FMINNUM, MVT::f16, Promote); |
| setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); |
| setOperationAction(ISD::FMINNAN, MVT::f16, Promote); |
| setOperationAction(ISD::FMAXNAN, MVT::f16, Promote); |
| |
| // promote v4f16 to v4f32 when that is known to be safe. |
| setOperationAction(ISD::FADD, MVT::v4f16, Promote); |
| setOperationAction(ISD::FSUB, MVT::v4f16, Promote); |
| setOperationAction(ISD::FMUL, MVT::v4f16, Promote); |
| setOperationAction(ISD::FDIV, MVT::v4f16, Promote); |
| setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote); |
| setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote); |
| AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); |
| AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); |
| AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); |
| AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); |
| AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32); |
| AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32); |
| |
| setOperationAction(ISD::FABS, MVT::v4f16, Expand); |
| setOperationAction(ISD::FNEG, MVT::v4f16, Expand); |
| setOperationAction(ISD::FROUND, MVT::v4f16, Expand); |
| setOperationAction(ISD::FMA, MVT::v4f16, Expand); |
| setOperationAction(ISD::SETCC, MVT::v4f16, Expand); |
| setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); |
| setOperationAction(ISD::SELECT, MVT::v4f16, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); |
| setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); |
| setOperationAction(ISD::FRINT, MVT::v4f16, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); |
| setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); |
| |
| setOperationAction(ISD::FABS, MVT::v8f16, Expand); |
| setOperationAction(ISD::FADD, MVT::v8f16, Expand); |
| setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); |
| setOperationAction(ISD::FDIV, MVT::v8f16, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); |
| setOperationAction(ISD::FMA, MVT::v8f16, Expand); |
| setOperationAction(ISD::FMUL, MVT::v8f16, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); |
| setOperationAction(ISD::FNEG, MVT::v8f16, Expand); |
| setOperationAction(ISD::FROUND, MVT::v8f16, Expand); |
| setOperationAction(ISD::FRINT, MVT::v8f16, Expand); |
| setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); |
| setOperationAction(ISD::FSUB, MVT::v8f16, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); |
| setOperationAction(ISD::SETCC, MVT::v8f16, Expand); |
| setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); |
| setOperationAction(ISD::SELECT, MVT::v8f16, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); |
| setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); |
| } |
| |
| // AArch64 has implementations of a lot of rounding-like FP operations. |
| for (MVT Ty : {MVT::f32, MVT::f64}) { |
| setOperationAction(ISD::FFLOOR, Ty, Legal); |
| setOperationAction(ISD::FNEARBYINT, Ty, Legal); |
| setOperationAction(ISD::FCEIL, Ty, Legal); |
| setOperationAction(ISD::FRINT, Ty, Legal); |
| setOperationAction(ISD::FTRUNC, Ty, Legal); |
| setOperationAction(ISD::FROUND, Ty, Legal); |
| setOperationAction(ISD::FMINNUM, Ty, Legal); |
| setOperationAction(ISD::FMAXNUM, Ty, Legal); |
| setOperationAction(ISD::FMINNAN, Ty, Legal); |
| setOperationAction(ISD::FMAXNAN, Ty, Legal); |
| } |
| |
| if (Subtarget->hasFullFP16()) { |
| setOperationAction(ISD::FNEARBYINT, MVT::f16, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::f16, Legal); |
| setOperationAction(ISD::FCEIL, MVT::f16, Legal); |
| setOperationAction(ISD::FRINT, MVT::f16, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f16, Legal); |
| setOperationAction(ISD::FROUND, MVT::f16, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::f16, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f16, Legal); |
| setOperationAction(ISD::FMINNAN, MVT::f16, Legal); |
| setOperationAction(ISD::FMAXNAN, MVT::f16, Legal); |
| } |
| |
| setOperationAction(ISD::PREFETCH, MVT::Other, Custom); |
| |
| setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); |
| |
| setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); |
| setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); |
| |
| // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0. |
| // This requires the Performance Monitors extension. |
| if (Subtarget->hasPerfMon()) |
| setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); |
| |
| if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && |
| getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { |
| // Issue __sincos_stret if available. |
| setOperationAction(ISD::FSINCOS, MVT::f64, Custom); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Custom); |
| } else { |
| setOperationAction(ISD::FSINCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::f32, Expand); |
| } |
| |
| // Make floating-point constants legal for the large code model, so they don't |
| // become loads from the constant pool. |
| if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| } |
| |
| // AArch64 does not have floating-point extending loads, i1 sign-extending |
| // load, floating-point truncating stores, or v2i32->v2i16 truncating store. |
| for (MVT VT : MVT::fp_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); |
| } |
| for (MVT VT : MVT::integer_valuetypes()) |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); |
| |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f80, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f64, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f32, Expand); |
| setTruncStoreAction(MVT::f128, MVT::f16, Expand); |
| |
| setOperationAction(ISD::BITCAST, MVT::i16, Custom); |
| setOperationAction(ISD::BITCAST, MVT::f16, Custom); |
| |
| // Indexed loads and stores are supported. |
| for (unsigned im = (unsigned)ISD::PRE_INC; |
| im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| setIndexedLoadAction(im, MVT::i8, Legal); |
| setIndexedLoadAction(im, MVT::i16, Legal); |
| setIndexedLoadAction(im, MVT::i32, Legal); |
| setIndexedLoadAction(im, MVT::i64, Legal); |
| setIndexedLoadAction(im, MVT::f64, Legal); |
| setIndexedLoadAction(im, MVT::f32, Legal); |
| setIndexedLoadAction(im, MVT::f16, Legal); |
| setIndexedStoreAction(im, MVT::i8, Legal); |
| setIndexedStoreAction(im, MVT::i16, Legal); |
| setIndexedStoreAction(im, MVT::i32, Legal); |
| setIndexedStoreAction(im, MVT::i64, Legal); |
| setIndexedStoreAction(im, MVT::f64, Legal); |
| setIndexedStoreAction(im, MVT::f32, Legal); |
| setIndexedStoreAction(im, MVT::f16, Legal); |
| } |
| |
| // Trap. |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // We combine OR nodes for bitfield operations. |
| setTargetDAGCombine(ISD::OR); |
| |
| // Vector add and sub nodes may conceal a high-half opportunity. |
| // Also, try to fold ADD into CSINC/CSINV.. |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::XOR); |
| setTargetDAGCombine(ISD::SINT_TO_FP); |
| setTargetDAGCombine(ISD::UINT_TO_FP); |
| |
| setTargetDAGCombine(ISD::FP_TO_SINT); |
| setTargetDAGCombine(ISD::FP_TO_UINT); |
| setTargetDAGCombine(ISD::FDIV); |
| |
| setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); |
| |
| setTargetDAGCombine(ISD::ANY_EXTEND); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| setTargetDAGCombine(ISD::SIGN_EXTEND); |
| setTargetDAGCombine(ISD::BITCAST); |
| setTargetDAGCombine(ISD::CONCAT_VECTORS); |
| setTargetDAGCombine(ISD::STORE); |
| if (Subtarget->supportsAddressTopByteIgnored()) |
| setTargetDAGCombine(ISD::LOAD); |
| |
| setTargetDAGCombine(ISD::MUL); |
| |
| setTargetDAGCombine(ISD::SELECT); |
| setTargetDAGCombine(ISD::VSELECT); |
| |
| setTargetDAGCombine(ISD::INTRINSIC_VOID); |
| setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); |
| setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); |
| |
| setTargetDAGCombine(ISD::GlobalAddress); |
| |
| // In case of strict alignment, avoid an excessive number of byte wide stores. |
| MaxStoresPerMemsetOptSize = 8; |
| MaxStoresPerMemset = Subtarget->requiresStrictAlign() |
| ? MaxStoresPerMemsetOptSize : 32; |
| |
| MaxGluedStoresPerMemcpy = 4; |
| MaxStoresPerMemcpyOptSize = 4; |
| MaxStoresPerMemcpy = Subtarget->requiresStrictAlign() |
| ? MaxStoresPerMemcpyOptSize : 16; |
| |
| MaxStoresPerMemmoveOptSize = MaxStoresPerMemmove = 4; |
| |
| setStackPointerRegisterToSaveRestore(AArch64::SP); |
| |
| setSchedulingPreference(Sched::Hybrid); |
| |
| EnableExtLdPromotion = true; |
| |
| // Set required alignment. |
| setMinFunctionAlignment(2); |
| // Set preferred alignments. |
| setPrefFunctionAlignment(STI.getPrefFunctionAlignment()); |
| setPrefLoopAlignment(STI.getPrefLoopAlignment()); |
| |
| // Only change the limit for entries in a jump table if specified by |
| // the subtarget, but not at the command line. |
| unsigned MaxJT = STI.getMaximumJumpTableSize(); |
| if (MaxJT && getMaximumJumpTableSize() == 0) |
| setMaximumJumpTableSize(MaxJT); |
| |
| setHasExtractBitsInsn(true); |
| |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| if (Subtarget->hasNEON()) { |
| // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to |
| // silliness like this: |
| setOperationAction(ISD::FABS, MVT::v1f64, Expand); |
| setOperationAction(ISD::FADD, MVT::v1f64, Expand); |
| setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); |
| setOperationAction(ISD::FCOS, MVT::v1f64, Expand); |
| setOperationAction(ISD::FDIV, MVT::v1f64, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); |
| setOperationAction(ISD::FMA, MVT::v1f64, Expand); |
| setOperationAction(ISD::FMUL, MVT::v1f64, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); |
| setOperationAction(ISD::FNEG, MVT::v1f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::v1f64, Expand); |
| setOperationAction(ISD::FREM, MVT::v1f64, Expand); |
| setOperationAction(ISD::FROUND, MVT::v1f64, Expand); |
| setOperationAction(ISD::FRINT, MVT::v1f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::v1f64, Expand); |
| setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); |
| setOperationAction(ISD::FSUB, MVT::v1f64, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); |
| setOperationAction(ISD::SETCC, MVT::v1f64, Expand); |
| setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); |
| setOperationAction(ISD::SELECT, MVT::v1f64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); |
| setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); |
| |
| setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); |
| setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); |
| |
| setOperationAction(ISD::MUL, MVT::v1i64, Expand); |
| |
| // AArch64 doesn't have a direct vector ->f32 conversion instructions for |
| // elements smaller than i32, so promote the input to i32 first. |
| setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32); |
| setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32); |
| setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32); |
| setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32); |
| // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16 |
| // -> v8f16 conversions. |
| setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32); |
| setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32); |
| setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32); |
| setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32); |
| // Similarly, there is no direct i32 -> f64 vector conversion instruction. |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); |
| // Or, direct i32 -> f16 vector conversion. Set it so custom, so the |
| // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 |
| setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); |
| |
| setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); |
| setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); |
| |
| setOperationAction(ISD::CTTZ, MVT::v2i8, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v4i16, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v2i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v1i64, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v16i8, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v8i16, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v4i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::v2i64, Expand); |
| |
| // AArch64 doesn't have MUL.2d: |
| setOperationAction(ISD::MUL, MVT::v2i64, Expand); |
| // Custom handling for some quad-vector types to detect MULL. |
| setOperationAction(ISD::MUL, MVT::v8i16, Custom); |
| setOperationAction(ISD::MUL, MVT::v4i32, Custom); |
| setOperationAction(ISD::MUL, MVT::v2i64, Custom); |
| |
| // Vector reductions |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); |
| } |
| for (MVT VT : MVT::fp_valuetypes()) { |
| setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); |
| setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); |
| } |
| |
| setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); |
| setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); |
| // Likewise, narrowing and extending vector loads/stores aren't handled |
| // directly. |
| for (MVT VT : MVT::vector_valuetypes()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); |
| |
| if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) { |
| setOperationAction(ISD::MULHS, VT, Custom); |
| setOperationAction(ISD::MULHU, VT, Custom); |
| } else { |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| } |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| |
| for (MVT InnerVT : MVT::vector_valuetypes()) { |
| setTruncStoreAction(VT, InnerVT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); |
| } |
| } |
| |
| // AArch64 has implementations of a lot of rounding-like FP operations. |
| for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) { |
| setOperationAction(ISD::FFLOOR, Ty, Legal); |
| setOperationAction(ISD::FNEARBYINT, Ty, Legal); |
| setOperationAction(ISD::FCEIL, Ty, Legal); |
| setOperationAction(ISD::FRINT, Ty, Legal); |
| setOperationAction(ISD::FTRUNC, Ty, Legal); |
| setOperationAction(ISD::FROUND, Ty, Legal); |
| } |
| |
| setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom); |
| } |
| |
| PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive(); |
| } |
| |
| void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) { |
| assert(VT.isVector() && "VT should be a vector type"); |
| |
| if (VT.isFloatingPoint()) { |
| MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT(); |
| setOperationPromotedToType(ISD::LOAD, VT, PromoteTo); |
| setOperationPromotedToType(ISD::STORE, VT, PromoteTo); |
| } |
| |
| // Mark vector float intrinsics as expand. |
| if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { |
| setOperationAction(ISD::FSIN, VT, Expand); |
| setOperationAction(ISD::FCOS, VT, Expand); |
| setOperationAction(ISD::FPOW, VT, Expand); |
| setOperationAction(ISD::FLOG, VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FEXP, VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| |
| // But we do support custom-lowering for FCOPYSIGN. |
| setOperationAction(ISD::FCOPYSIGN, VT, Custom); |
| } |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); |
| setOperationAction(ISD::SRA, VT, Custom); |
| setOperationAction(ISD::SRL, VT, Custom); |
| setOperationAction(ISD::SHL, VT, Custom); |
| setOperationAction(ISD::AND, VT, Custom); |
| setOperationAction(ISD::OR, VT, Custom); |
| setOperationAction(ISD::SETCC, VT, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); |
| |
| setOperationAction(ISD::SELECT, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| for (MVT InnerVT : MVT::all_valuetypes()) |
| setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); |
| |
| // CNT supports only B element sizes. |
| if (VT != MVT::v8i8 && VT != MVT::v16i8) |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| |
| setOperationAction(ISD::FP_TO_SINT, VT, Custom); |
| setOperationAction(ISD::FP_TO_UINT, VT, Custom); |
| |
| if (!VT.isFloatingPoint()) |
| setOperationAction(ISD::ABS, VT, Legal); |
| |
| // [SU][MIN|MAX] are available for all NEON types apart from i64. |
| if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) |
| for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) |
| setOperationAction(Opcode, VT, Legal); |
| |
| // F[MIN|MAX][NUM|NAN] are available for all FP NEON types. |
| if (VT.isFloatingPoint() && |
| (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16())) |
| for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN, |
| ISD::FMINNUM, ISD::FMAXNUM}) |
| setOperationAction(Opcode, VT, Legal); |
| |
| if (Subtarget->isLittleEndian()) { |
| for (unsigned im = (unsigned)ISD::PRE_INC; |
| im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| setIndexedLoadAction(im, VT, Legal); |
| setIndexedStoreAction(im, VT, Legal); |
| } |
| } |
| } |
| |
| void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { |
| addRegisterClass(VT, &AArch64::FPR64RegClass); |
| addTypeForNEON(VT, MVT::v2i32); |
| } |
| |
| void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { |
| addRegisterClass(VT, &AArch64::FPR128RegClass); |
| addTypeForNEON(VT, MVT::v4i32); |
| } |
| |
| EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return MVT::i32; |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm, |
| const APInt &Demanded, |
| TargetLowering::TargetLoweringOpt &TLO, |
| unsigned NewOpc) { |
| uint64_t OldImm = Imm, NewImm, Enc; |
| uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask; |
| |
| // Return if the immediate is already all zeros, all ones, a bimm32 or a |
| // bimm64. |
| if (Imm == 0 || Imm == Mask || |
| AArch64_AM::isLogicalImmediate(Imm & Mask, Size)) |
| return false; |
| |
| unsigned EltSize = Size; |
| uint64_t DemandedBits = Demanded.getZExtValue(); |
| |
| // Clear bits that are not demanded. |
| Imm &= DemandedBits; |
| |
| while (true) { |
| // The goal here is to set the non-demanded bits in a way that minimizes |
| // the number of switching between 0 and 1. In order to achieve this goal, |
| // we set the non-demanded bits to the value of the preceding demanded bits. |
| // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a |
| // non-demanded bit), we copy bit0 (1) to the least significant 'x', |
| // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'. |
| // The final result is 0b11000011. |
| uint64_t NonDemandedBits = ~DemandedBits; |
| uint64_t InvertedImm = ~Imm & DemandedBits; |
| uint64_t RotatedImm = |
| ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) & |
| NonDemandedBits; |
| uint64_t Sum = RotatedImm + NonDemandedBits; |
| bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1)); |
| uint64_t Ones = (Sum + Carry) & NonDemandedBits; |
| NewImm = (Imm | Ones) & Mask; |
| |
| // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate |
| // or all-ones or all-zeros, in which case we can stop searching. Otherwise, |
| // we halve the element size and continue the search. |
| if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask))) |
| break; |
| |
| // We cannot shrink the element size any further if it is 2-bits. |
| if (EltSize == 2) |
| return false; |
| |
| EltSize /= 2; |
| Mask >>= EltSize; |
| uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize; |
| |
| // Return if there is mismatch in any of the demanded bits of Imm and Hi. |
| if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0) |
| return false; |
| |
| // Merge the upper and lower halves of Imm and DemandedBits. |
| Imm |= Hi; |
| DemandedBits |= DemandedBitsHi; |
| } |
| |
| ++NumOptimizedImms; |
| |
| // Replicate the element across the register width. |
| while (EltSize < Size) { |
| NewImm |= NewImm << EltSize; |
| EltSize *= 2; |
| } |
| |
| (void)OldImm; |
| assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 && |
| "demanded bits should never be altered"); |
| assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm"); |
| |
| // Create the new constant immediate node. |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue New; |
| |
| // If the new constant immediate is all-zeros or all-ones, let the target |
| // independent DAG combine optimize this node. |
| if (NewImm == 0 || NewImm == OrigMask) { |
| New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0), |
| TLO.DAG.getConstant(NewImm, DL, VT)); |
| // Otherwise, create a machine node so that target independent DAG combine |
| // doesn't undo this optimization. |
| } else { |
| Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size); |
| SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT); |
| New = SDValue( |
| TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0); |
| } |
| |
| return TLO.CombineTo(Op, New); |
| } |
| |
| bool AArch64TargetLowering::targetShrinkDemandedConstant( |
| SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const { |
| // Delay this optimization to as late as possible. |
| if (!TLO.LegalOps) |
| return false; |
| |
| if (!EnableOptimizeLogicalImm) |
| return false; |
| |
| EVT VT = Op.getValueType(); |
| if (VT.isVector()) |
| return false; |
| |
| unsigned Size = VT.getSizeInBits(); |
| assert((Size == 32 || Size == 64) && |
| "i32 or i64 is expected after legalization."); |
| |
| // Exit early if we demand all bits. |
| if (Demanded.countPopulation() == Size) |
| return false; |
| |
| unsigned NewOpc; |
| switch (Op.getOpcode()) { |
| default: |
| return false; |
| case ISD::AND: |
| NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri; |
| break; |
| case ISD::OR: |
| NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri; |
| break; |
| case ISD::XOR: |
| NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri; |
| break; |
| } |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (!C) |
| return false; |
| uint64_t Imm = C->getZExtValue(); |
| return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc); |
| } |
| |
| /// computeKnownBitsForTargetNode - Determine which of the bits specified in |
| /// Mask are known to be either zero or one and return them Known. |
| void AArch64TargetLowering::computeKnownBitsForTargetNode( |
| const SDValue Op, KnownBits &Known, |
| const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { |
| switch (Op.getOpcode()) { |
| default: |
| break; |
| case AArch64ISD::CSEL: { |
| KnownBits Known2; |
| DAG.computeKnownBits(Op->getOperand(0), Known, Depth + 1); |
| DAG.computeKnownBits(Op->getOperand(1), Known2, Depth + 1); |
| Known.Zero &= Known2.Zero; |
| Known.One &= Known2.One; |
| break; |
| } |
| case ISD::INTRINSIC_W_CHAIN: { |
| ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); |
| Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); |
| switch (IntID) { |
| default: return; |
| case Intrinsic::aarch64_ldaxr: |
| case Intrinsic::aarch64_ldxr: { |
| unsigned BitWidth = Known.getBitWidth(); |
| EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); |
| unsigned MemBits = VT.getScalarSizeInBits(); |
| Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); |
| return; |
| } |
| } |
| break; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: |
| case ISD::INTRINSIC_VOID: { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (IntNo) { |
| default: |
| break; |
| case Intrinsic::aarch64_neon_umaxv: |
| case Intrinsic::aarch64_neon_uminv: { |
| // Figure out the datatype of the vector operand. The UMINV instruction |
| // will zero extend the result, so we can mark as known zero all the |
| // bits larger than the element datatype. 32-bit or larget doesn't need |
| // this as those are legal types and will be handled by isel directly. |
| MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); |
| unsigned BitWidth = Known.getBitWidth(); |
| if (VT == MVT::v8i8 || VT == MVT::v16i8) { |
| assert(BitWidth >= 8 && "Unexpected width!"); |
| APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); |
| Known.Zero |= Mask; |
| } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { |
| assert(BitWidth >= 16 && "Unexpected width!"); |
| APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); |
| Known.Zero |= Mask; |
| } |
| break; |
| } break; |
| } |
| } |
| } |
| } |
| |
| MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, |
| EVT) const { |
| return MVT::i64; |
| } |
| |
| bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, |
| unsigned AddrSpace, |
| unsigned Align, |
| bool *Fast) const { |
| if (Subtarget->requiresStrictAlign()) |
| return false; |
| |
| if (Fast) { |
| // Some CPUs are fine with unaligned stores except for 128-bit ones. |
| *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 || |
| // See comments in performSTORECombine() for more details about |
| // these conditions. |
| |
| // Code that uses clang vector extensions can mark that it |
| // wants unaligned accesses to be treated as fast by |
| // underspecifying alignment to be 1 or 2. |
| Align <= 2 || |
| |
| // Disregard v2i64. Memcpy lowering produces those and splitting |
| // them regresses performance on micro-benchmarks and olden/bh. |
| VT == MVT::v2i64; |
| } |
| return true; |
| } |
| |
| FastISel * |
| AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, |
| const TargetLibraryInfo *libInfo) const { |
| return AArch64::createFastISel(funcInfo, libInfo); |
| } |
| |
| const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((AArch64ISD::NodeType)Opcode) { |
| case AArch64ISD::FIRST_NUMBER: break; |
| case AArch64ISD::CALL: return "AArch64ISD::CALL"; |
| case AArch64ISD::ADRP: return "AArch64ISD::ADRP"; |
| case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow"; |
| case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot"; |
| case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG"; |
| case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND"; |
| case AArch64ISD::CSEL: return "AArch64ISD::CSEL"; |
| case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL"; |
| case AArch64ISD::CSINV: return "AArch64ISD::CSINV"; |
| case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG"; |
| case AArch64ISD::CSINC: return "AArch64ISD::CSINC"; |
| case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; |
| case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ"; |
| case AArch64ISD::ADC: return "AArch64ISD::ADC"; |
| case AArch64ISD::SBC: return "AArch64ISD::SBC"; |
| case AArch64ISD::ADDS: return "AArch64ISD::ADDS"; |
| case AArch64ISD::SUBS: return "AArch64ISD::SUBS"; |
| case AArch64ISD::ADCS: return "AArch64ISD::ADCS"; |
| case AArch64ISD::SBCS: return "AArch64ISD::SBCS"; |
| case AArch64ISD::ANDS: return "AArch64ISD::ANDS"; |
| case AArch64ISD::CCMP: return "AArch64ISD::CCMP"; |
| case AArch64ISD::CCMN: return "AArch64ISD::CCMN"; |
| case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP"; |
| case AArch64ISD::FCMP: return "AArch64ISD::FCMP"; |
| case AArch64ISD::DUP: return "AArch64ISD::DUP"; |
| case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8"; |
| case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16"; |
| case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32"; |
| case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64"; |
| case AArch64ISD::MOVI: return "AArch64ISD::MOVI"; |
| case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift"; |
| case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit"; |
| case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl"; |
| case AArch64ISD::FMOV: return "AArch64ISD::FMOV"; |
| case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift"; |
| case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl"; |
| case AArch64ISD::BICi: return "AArch64ISD::BICi"; |
| case AArch64ISD::ORRi: return "AArch64ISD::ORRi"; |
| case AArch64ISD::BSL: return "AArch64ISD::BSL"; |
| case AArch64ISD::NEG: return "AArch64ISD::NEG"; |
| case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; |
| case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1"; |
| case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2"; |
| case AArch64ISD::UZP1: return "AArch64ISD::UZP1"; |
| case AArch64ISD::UZP2: return "AArch64ISD::UZP2"; |
| case AArch64ISD::TRN1: return "AArch64ISD::TRN1"; |
| case AArch64ISD::TRN2: return "AArch64ISD::TRN2"; |
| case AArch64ISD::REV16: return "AArch64ISD::REV16"; |
| case AArch64ISD::REV32: return "AArch64ISD::REV32"; |
| case AArch64ISD::REV64: return "AArch64ISD::REV64"; |
| case AArch64ISD::EXT: return "AArch64ISD::EXT"; |
| case AArch64ISD::VSHL: return "AArch64ISD::VSHL"; |
| case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR"; |
| case AArch64ISD::VASHR: return "AArch64ISD::VASHR"; |
| case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ"; |
| case AArch64ISD::CMGE: return "AArch64ISD::CMGE"; |
| case AArch64ISD::CMGT: return "AArch64ISD::CMGT"; |
| case AArch64ISD::CMHI: return "AArch64ISD::CMHI"; |
| case AArch64ISD::CMHS: return "AArch64ISD::CMHS"; |
| case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ"; |
| case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE"; |
| case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT"; |
| case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz"; |
| case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz"; |
| case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz"; |
| case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz"; |
| case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz"; |
| case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz"; |
| case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz"; |
| case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz"; |
| case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz"; |
| case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz"; |
| case AArch64ISD::SADDV: return "AArch64ISD::SADDV"; |
| case AArch64ISD::UADDV: return "AArch64ISD::UADDV"; |
| case AArch64ISD::SMINV: return "AArch64ISD::SMINV"; |
| case AArch64ISD::UMINV: return "AArch64ISD::UMINV"; |
| case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV"; |
| case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV"; |
| case AArch64ISD::NOT: return "AArch64ISD::NOT"; |
| case AArch64ISD::BIT: return "AArch64ISD::BIT"; |
| case AArch64ISD::CBZ: return "AArch64ISD::CBZ"; |
| case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ"; |
| case AArch64ISD::TBZ: return "AArch64ISD::TBZ"; |
| case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ"; |
| case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; |
| case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH"; |
| case AArch64ISD::SITOF: return "AArch64ISD::SITOF"; |
| case AArch64ISD::UITOF: return "AArch64ISD::UITOF"; |
| case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST"; |
| case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I"; |
| case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I"; |
| case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I"; |
| case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I"; |
| case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I"; |
| case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; |
| case AArch64ISD::LD2post: return "AArch64ISD::LD2post"; |
| case AArch64ISD::LD3post: return "AArch64ISD::LD3post"; |
| case AArch64ISD::LD4post: return "AArch64ISD::LD4post"; |
| case AArch64ISD::ST2post: return "AArch64ISD::ST2post"; |
| case AArch64ISD::ST3post: return "AArch64ISD::ST3post"; |
| case AArch64ISD::ST4post: return "AArch64ISD::ST4post"; |
| case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post"; |
| case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post"; |
| case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post"; |
| case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post"; |
| case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post"; |
| case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post"; |
| case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost"; |
| case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost"; |
| case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost"; |
| case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost"; |
| case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost"; |
| case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost"; |
| case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost"; |
| case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost"; |
| case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost"; |
| case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost"; |
| case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost"; |
| case AArch64ISD::SMULL: return "AArch64ISD::SMULL"; |
| case AArch64ISD::UMULL: return "AArch64ISD::UMULL"; |
| case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE"; |
| case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS"; |
| case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE"; |
| case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS"; |
| } |
| return nullptr; |
| } |
| |
| MachineBasicBlock * |
| AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI, |
| MachineBasicBlock *MBB) const { |
| // We materialise the F128CSEL pseudo-instruction as some control flow and a |
| // phi node: |
| |
| // OrigBB: |
| // [... previous instrs leading to comparison ...] |
| // b.ne TrueBB |
| // b EndBB |
| // TrueBB: |
| // ; Fallthrough |
| // EndBB: |
| // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] |
| |
| MachineFunction *MF = MBB->getParent(); |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| DebugLoc DL = MI.getDebugLoc(); |
| MachineFunction::iterator It = ++MBB->getIterator(); |
| |
| unsigned DestReg = MI.getOperand(0).getReg(); |
| unsigned IfTrueReg = MI.getOperand(1).getReg(); |
| unsigned IfFalseReg = MI.getOperand(2).getReg(); |
| unsigned CondCode = MI.getOperand(3).getImm(); |
| bool NZCVKilled = MI.getOperand(4).isKill(); |
| |
| MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, TrueBB); |
| MF->insert(It, EndBB); |
| |
| // Transfer rest of current basic-block to EndBB |
| EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), |
| MBB->end()); |
| EndBB->transferSuccessorsAndUpdatePHIs(MBB); |
| |
| BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); |
| BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); |
| MBB->addSuccessor(TrueBB); |
| MBB->addSuccessor(EndBB); |
| |
| // TrueBB falls through to the end. |
| TrueBB->addSuccessor(EndBB); |
| |
| if (!NZCVKilled) { |
| TrueBB->addLiveIn(AArch64::NZCV); |
| EndBB->addLiveIn(AArch64::NZCV); |
| } |
| |
| BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) |
| .addReg(IfTrueReg) |
| .addMBB(TrueBB) |
| .addReg(IfFalseReg) |
| .addMBB(MBB); |
| |
| MI.eraseFromParent(); |
| return EndBB; |
| } |
| |
| MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter( |
| MachineInstr &MI, MachineBasicBlock *BB) const { |
| switch (MI.getOpcode()) { |
| default: |
| #ifndef NDEBUG |
| MI.dump(); |
| #endif |
| llvm_unreachable("Unexpected instruction for custom inserter!"); |
| |
| case AArch64::F128CSEL: |
| return EmitF128CSEL(MI, BB); |
| |
| case TargetOpcode::STACKMAP: |
| case TargetOpcode::PATCHPOINT: |
| return emitPatchPoint(MI, BB); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64 Lowering private implementation. |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 |
| /// CC |
| static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unknown condition code!"); |
| case ISD::SETNE: |
| return AArch64CC::NE; |
| case ISD::SETEQ: |
| return AArch64CC::EQ; |
| case ISD::SETGT: |
| return AArch64CC::GT; |
| case ISD::SETGE: |
| return AArch64CC::GE; |
| case ISD::SETLT: |
| return AArch64CC::LT; |
| case ISD::SETLE: |
| return AArch64CC::LE; |
| case ISD::SETUGT: |
| return AArch64CC::HI; |
| case ISD::SETUGE: |
| return AArch64CC::HS; |
| case ISD::SETULT: |
| return AArch64CC::LO; |
| case ISD::SETULE: |
| return AArch64CC::LS; |
| } |
| } |
| |
| /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. |
| static void changeFPCCToAArch64CC(ISD::CondCode CC, |
| AArch64CC::CondCode &CondCode, |
| AArch64CC::CondCode &CondCode2) { |
| CondCode2 = AArch64CC::AL; |
| switch (CC) { |
| default: |
| llvm_unreachable("Unknown FP condition!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: |
| CondCode = AArch64CC::EQ; |
| break; |
| case ISD::SETGT: |
| case ISD::SETOGT: |
| CondCode = AArch64CC::GT; |
| break; |
| case ISD::SETGE: |
| case ISD::SETOGE: |
| CondCode = AArch64CC::GE; |
| break; |
| case ISD::SETOLT: |
| CondCode = AArch64CC::MI; |
| break; |
| case ISD::SETOLE: |
| CondCode = AArch64CC::LS; |
| break; |
| case ISD::SETONE: |
| CondCode = AArch64CC::MI; |
| CondCode2 = AArch64CC::GT; |
| break; |
| case ISD::SETO: |
| CondCode = AArch64CC::VC; |
| break; |
| case ISD::SETUO: |
| CondCode = AArch64CC::VS; |
| break; |
| case ISD::SETUEQ: |
| CondCode = AArch64CC::EQ; |
| CondCode2 = AArch64CC::VS; |
| break; |
| case ISD::SETUGT: |
| CondCode = AArch64CC::HI; |
| break; |
| case ISD::SETUGE: |
| CondCode = AArch64CC::PL; |
| break; |
| case ISD::SETLT: |
| case ISD::SETULT: |
| CondCode = AArch64CC::LT; |
| break; |
| case ISD::SETLE: |
| case ISD::SETULE: |
| CondCode = AArch64CC::LE; |
| break; |
| case ISD::SETNE: |
| case ISD::SETUNE: |
| CondCode = AArch64CC::NE; |
| break; |
| } |
| } |
| |
| /// Convert a DAG fp condition code to an AArch64 CC. |
| /// This differs from changeFPCCToAArch64CC in that it returns cond codes that |
| /// should be AND'ed instead of OR'ed. |
| static void changeFPCCToANDAArch64CC(ISD::CondCode CC, |
| AArch64CC::CondCode &CondCode, |
| AArch64CC::CondCode &CondCode2) { |
| CondCode2 = AArch64CC::AL; |
| switch (CC) { |
| default: |
| changeFPCCToAArch64CC(CC, CondCode, CondCode2); |
| assert(CondCode2 == AArch64CC::AL); |
| break; |
| case ISD::SETONE: |
| // (a one b) |
| // == ((a olt b) || (a ogt b)) |
| // == ((a ord b) && (a une b)) |
| CondCode = AArch64CC::VC; |
| CondCode2 = AArch64CC::NE; |
| break; |
| case ISD::SETUEQ: |
| // (a ueq b) |
| // == ((a uno b) || (a oeq b)) |
| // == ((a ule b) && (a uge b)) |
| CondCode = AArch64CC::PL; |
| CondCode2 = AArch64CC::LE; |
| break; |
| } |
| } |
| |
| /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 |
| /// CC usable with the vector instructions. Fewer operations are available |
| /// without a real NZCV register, so we have to use less efficient combinations |
| /// to get the same effect. |
| static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, |
| AArch64CC::CondCode &CondCode, |
| AArch64CC::CondCode &CondCode2, |
| bool &Invert) { |
| Invert = false; |
| switch (CC) { |
| default: |
| // Mostly the scalar mappings work fine. |
| changeFPCCToAArch64CC(CC, CondCode, CondCode2); |
| break; |
| case ISD::SETUO: |
| Invert = true; |
| LLVM_FALLTHROUGH; |
| case ISD::SETO: |
| CondCode = AArch64CC::MI; |
| CondCode2 = AArch64CC::GE; |
| break; |
| case ISD::SETUEQ: |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| // All of the compare-mask comparisons are ordered, but we can switch |
| // between the two by a double inversion. E.g. ULE == !OGT. |
| Invert = true; |
| changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2); |
| break; |
| } |
| } |
| |
| static bool isLegalArithImmed(uint64_t C) { |
| // Matches AArch64DAGToDAGISel::SelectArithImmed(). |
| bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); |
| LLVM_DEBUG(dbgs() << "Is imm " << C |
| << " legal: " << (IsLegal ? "yes\n" : "no\n")); |
| return IsLegal; |
| } |
| |
| static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| const SDLoc &dl, SelectionDAG &DAG) { |
| EVT VT = LHS.getValueType(); |
| const bool FullFP16 = |
| static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); |
| |
| if (VT.isFloatingPoint()) { |
| assert(VT != MVT::f128); |
| if (VT == MVT::f16 && !FullFP16) { |
| LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); |
| RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); |
| VT = MVT::f32; |
| } |
| return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); |
| } |
| |
| // The CMP instruction is just an alias for SUBS, and representing it as |
| // SUBS means that it's possible to get CSE with subtract operations. |
| // A later phase can perform the optimization of setting the destination |
| // register to WZR/XZR if it ends up being unused. |
| unsigned Opcode = AArch64ISD::SUBS; |
| |
| if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on |
| // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags |
| // can be set differently by this operation. It comes down to whether |
| // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then |
| // everything is fine. If not then the optimization is wrong. Thus general |
| // comparisons are only valid if op2 != 0. |
| |
| // So, finally, the only LLVM-native comparisons that don't mention C and V |
| // are SETEQ and SETNE. They're the only ones we can safely use CMN for in |
| // the absence of information about op2. |
| Opcode = AArch64ISD::ADDS; |
| RHS = RHS.getOperand(1); |
| } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) && |
| !isUnsignedIntSetCC(CC)) { |
| // Similarly, (CMP (and X, Y), 0) can be implemented with a TST |
| // (a.k.a. ANDS) except that the flags are only guaranteed to work for one |
| // of the signed comparisons. |
| Opcode = AArch64ISD::ANDS; |
| RHS = LHS.getOperand(1); |
| LHS = LHS.getOperand(0); |
| } |
| |
| return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) |
| .getValue(1); |
| } |
| |
| /// \defgroup AArch64CCMP CMP;CCMP matching |
| /// |
| /// These functions deal with the formation of CMP;CCMP;... sequences. |
| /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of |
| /// a comparison. They set the NZCV flags to a predefined value if their |
| /// predicate is false. This allows to express arbitrary conjunctions, for |
| /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))" |
| /// expressed as: |
| /// cmp A |
| /// ccmp B, inv(CB), CA |
| /// check for CB flags |
| /// |
| /// In general we can create code for arbitrary "... (and (and A B) C)" |
| /// sequences. We can also implement some "or" expressions, because "(or A B)" |
| /// is equivalent to "not (and (not A) (not B))" and we can implement some |
| /// negation operations: |
| /// We can negate the results of a single comparison by inverting the flags |
| /// used when the predicate fails and inverting the flags tested in the next |
| /// instruction; We can also negate the results of the whole previous |
| /// conditional compare sequence by inverting the flags tested in the next |
| /// instruction. However there is no way to negate the result of a partial |
| /// sequence. |
| /// |
| /// Therefore on encountering an "or" expression we can negate the subtree on |
| /// one side and have to be able to push the negate to the leafs of the subtree |
| /// on the other side (see also the comments in code). As complete example: |
| /// "or (or (setCA (cmp A)) (setCB (cmp B))) |
| /// (and (setCC (cmp C)) (setCD (cmp D)))" |
| /// is transformed to |
| /// "not (and (not (and (setCC (cmp C)) (setCC (cmp D)))) |
| /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" |
| /// and implemented as: |
| /// cmp C |
| /// ccmp D, inv(CD), CC |
| /// ccmp A, CA, inv(CD) |
| /// ccmp B, CB, inv(CA) |
| /// check for CB flags |
| /// A counterexample is "or (and A B) (and C D)" which cannot be implemented |
| /// by conditional compare sequences. |
| /// @{ |
| |
| /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. |
| static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, |
| ISD::CondCode CC, SDValue CCOp, |
| AArch64CC::CondCode Predicate, |
| AArch64CC::CondCode OutCC, |
| const SDLoc &DL, SelectionDAG &DAG) { |
| unsigned Opcode = 0; |
| const bool FullFP16 = |
| static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); |
| |
| if (LHS.getValueType().isFloatingPoint()) { |
| assert(LHS.getValueType() != MVT::f128); |
| if (LHS.getValueType() == MVT::f16 && !FullFP16) { |
| LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS); |
| RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS); |
| } |
| Opcode = AArch64ISD::FCCMP; |
| } else if (RHS.getOpcode() == ISD::SUB) { |
| SDValue SubOp0 = RHS.getOperand(0); |
| if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| // See emitComparison() on why we can only do this for SETEQ and SETNE. |
| Opcode = AArch64ISD::CCMN; |
| RHS = RHS.getOperand(1); |
| } |
| } |
| if (Opcode == 0) |
| Opcode = AArch64ISD::CCMP; |
| |
| SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC); |
| AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); |
| unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); |
| SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); |
| return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); |
| } |
| |
| /// Returns true if @p Val is a tree of AND/OR/SETCC operations. |
| /// CanPushNegate is set to true if we can push a negate operation through |
| /// the tree in a was that we are left with AND operations and negate operations |
| /// at the leafs only. i.e. "not (or (or x y) z)" can be changed to |
| /// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be |
| /// brought into such a form. |
| static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanNegate, |
| unsigned Depth = 0) { |
| if (!Val.hasOneUse()) |
| return false; |
| unsigned Opcode = Val->getOpcode(); |
| if (Opcode == ISD::SETCC) { |
| if (Val->getOperand(0).getValueType() == MVT::f128) |
| return false; |
| CanNegate = true; |
| return true; |
| } |
| // Protect against exponential runtime and stack overflow. |
| if (Depth > 6) |
| return false; |
| if (Opcode == ISD::AND || Opcode == ISD::OR) { |
| SDValue O0 = Val->getOperand(0); |
| SDValue O1 = Val->getOperand(1); |
| bool CanNegateL; |
| if (!isConjunctionDisjunctionTree(O0, CanNegateL, Depth+1)) |
| return false; |
| bool CanNegateR; |
| if (!isConjunctionDisjunctionTree(O1, CanNegateR, Depth+1)) |
| return false; |
| |
| if (Opcode == ISD::OR) { |
| // For an OR expression we need to be able to negate at least one side or |
| // we cannot do the transformation at all. |
| if (!CanNegateL && !CanNegateR) |
| return false; |
| // We can however change a (not (or x y)) to (and (not x) (not y)) if we |
| // can negate the x and y subtrees. |
| CanNegate = CanNegateL && CanNegateR; |
| } else { |
| // If the operands are OR expressions then we finally need to negate their |
| // outputs, we can only do that for the operand with emitted last by |
| // negating OutCC, not for both operands. |
| bool NeedsNegOutL = O0->getOpcode() == ISD::OR; |
| bool NeedsNegOutR = O1->getOpcode() == ISD::OR; |
| if (NeedsNegOutL && NeedsNegOutR) |
| return false; |
| // We cannot negate an AND operation (it would become an OR), |
| CanNegate = false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain |
| /// of CCMP/CFCMP ops. See @ref AArch64CCMP. |
| /// Tries to transform the given i1 producing node @p Val to a series compare |
| /// and conditional compare operations. @returns an NZCV flags producing node |
| /// and sets @p OutCC to the flags that should be tested or returns SDValue() if |
| /// transformation was not possible. |
| /// On recursive invocations @p PushNegate may be set to true to have negation |
| /// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate |
| /// for the comparisons in the current subtree; @p Depth limits the search |
| /// depth to avoid stack overflow. |
| static SDValue emitConjunctionDisjunctionTreeRec(SelectionDAG &DAG, SDValue Val, |
| AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp, |
| AArch64CC::CondCode Predicate) { |
| // We're at a tree leaf, produce a conditional comparison operation. |
| unsigned Opcode = Val->getOpcode(); |
| if (Opcode == ISD::SETCC) { |
| SDValue LHS = Val->getOperand(0); |
| SDValue RHS = Val->getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get(); |
| bool isInteger = LHS.getValueType().isInteger(); |
| if (Negate) |
| CC = getSetCCInverse(CC, isInteger); |
| SDLoc DL(Val); |
| // Determine OutCC and handle FP special case. |
| if (isInteger) { |
| OutCC = changeIntCCToAArch64CC(CC); |
| } else { |
| assert(LHS.getValueType().isFloatingPoint()); |
| AArch64CC::CondCode ExtraCC; |
| changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC); |
| // Some floating point conditions can't be tested with a single condition |
| // code. Construct an additional comparison in this case. |
| if (ExtraCC != AArch64CC::AL) { |
| SDValue ExtraCmp; |
| if (!CCOp.getNode()) |
| ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); |
| else |
| ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, |
| ExtraCC, DL, DAG); |
| CCOp = ExtraCmp; |
| Predicate = ExtraCC; |
| } |
| } |
| |
| // Produce a normal comparison if we are first in the chain |
| if (!CCOp) |
| return emitComparison(LHS, RHS, CC, DL, DAG); |
| // Otherwise produce a ccmp. |
| return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL, |
| DAG); |
| } |
| assert((Opcode == ISD::AND || (Opcode == ISD::OR && Val->hasOneUse())) && |
| "Valid conjunction/disjunction tree"); |
| |
| // Check if both sides can be transformed. |
| SDValue LHS = Val->getOperand(0); |
| SDValue RHS = Val->getOperand(1); |
| |
| // In case of an OR we need to negate our operands and the result. |
| // (A v B) <=> not(not(A) ^ not(B)) |
| bool NegateOpsAndResult = Opcode == ISD::OR; |
| // We can negate the results of all previous operations by inverting the |
| // predicate flags giving us a free negation for one side. The other side |
| // must be negatable by itself. |
| if (NegateOpsAndResult) { |
| // See which side we can negate. |
| bool CanNegateL; |
| bool isValidL = isConjunctionDisjunctionTree(LHS, CanNegateL); |
| assert(isValidL && "Valid conjunction/disjunction tree"); |
| (void)isValidL; |
| |
| #ifndef NDEBUG |
| bool CanNegateR; |
| bool isValidR = isConjunctionDisjunctionTree(RHS, CanNegateR); |
| assert(isValidR && "Valid conjunction/disjunction tree"); |
| assert((CanNegateL || CanNegateR) && "Valid conjunction/disjunction tree"); |
| #endif |
| |
| // Order the side which we cannot negate to RHS so we can emit it first. |
| if (!CanNegateL) |
| std::swap(LHS, RHS); |
| } else { |
| bool NeedsNegOutL = LHS->getOpcode() == ISD::OR; |
| assert((!NeedsNegOutL || RHS->getOpcode() != ISD::OR) && |
| "Valid conjunction/disjunction tree"); |
| // Order the side where we need to negate the output flags to RHS so it |
| // gets emitted first. |
| if (NeedsNegOutL) |
| std::swap(LHS, RHS); |
| } |
| |
| // Emit RHS. If we want to negate the tree we only need to push a negate |
| // through if we are already in a PushNegate case, otherwise we can negate |
| // the "flags to test" afterwards. |
| AArch64CC::CondCode RHSCC; |
| SDValue CmpR = emitConjunctionDisjunctionTreeRec(DAG, RHS, RHSCC, Negate, |
| CCOp, Predicate); |
| if (NegateOpsAndResult && !Negate) |
| RHSCC = AArch64CC::getInvertedCondCode(RHSCC); |
| // Emit LHS. We may need to negate it. |
| SDValue CmpL = emitConjunctionDisjunctionTreeRec(DAG, LHS, OutCC, |
| NegateOpsAndResult, CmpR, |
| RHSCC); |
| // If we transformed an OR to and AND then we have to negate the result |
| // (or absorb the Negate parameter). |
| if (NegateOpsAndResult && !Negate) |
| OutCC = AArch64CC::getInvertedCondCode(OutCC); |
| return CmpL; |
| } |
| |
| /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain |
| /// of CCMP/CFCMP ops. See @ref AArch64CCMP. |
| /// \see emitConjunctionDisjunctionTreeRec(). |
| static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val, |
| AArch64CC::CondCode &OutCC) { |
| bool CanNegate; |
| if (!isConjunctionDisjunctionTree(Val, CanNegate)) |
| return SDValue(); |
| |
| return emitConjunctionDisjunctionTreeRec(DAG, Val, OutCC, false, SDValue(), |
| AArch64CC::AL); |
| } |
| |
| /// @} |
| |
| static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| SDValue &AArch64cc, SelectionDAG &DAG, |
| const SDLoc &dl) { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { |
| EVT VT = RHS.getValueType(); |
| uint64_t C = RHSC->getZExtValue(); |
| if (!isLegalArithImmed(C)) { |
| // Constant does not fit, try adjusting it by one? |
| switch (CC) { |
| default: |
| break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| if ((VT == MVT::i32 && C != 0x80000000 && |
| isLegalArithImmed((uint32_t)(C - 1))) || |
| (VT == MVT::i64 && C != 0x80000000ULL && |
| isLegalArithImmed(C - 1ULL))) { |
| CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; |
| RHS = DAG.getConstant(C, dl, VT); |
| } |
| break; |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| if ((VT == MVT::i32 && C != 0 && |
| isLegalArithImmed((uint32_t)(C - 1))) || |
| (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { |
| CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; |
| RHS = DAG.getConstant(C, dl, VT); |
| } |
| break; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| if ((VT == MVT::i32 && C != INT32_MAX && |
| isLegalArithImmed((uint32_t)(C + 1))) || |
| (VT == MVT::i64 && C != INT64_MAX && |
| isLegalArithImmed(C + 1ULL))) { |
| CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; |
| RHS = DAG.getConstant(C, dl, VT); |
| } |
| break; |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| if ((VT == MVT::i32 && C != UINT32_MAX && |
| isLegalArithImmed((uint32_t)(C + 1))) || |
| (VT == MVT::i64 && C != UINT64_MAX && |
| isLegalArithImmed(C + 1ULL))) { |
| CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; |
| RHS = DAG.getConstant(C, dl, VT); |
| } |
| break; |
| } |
| } |
| } |
| SDValue Cmp; |
| AArch64CC::CondCode AArch64CC; |
| if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) { |
| const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS); |
| |
| // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. |
| // For the i8 operand, the largest immediate is 255, so this can be easily |
| // encoded in the compare instruction. For the i16 operand, however, the |
| // largest immediate cannot be encoded in the compare. |
| // Therefore, use a sign extending load and cmn to avoid materializing the |
| // -1 constant. For example, |
| // movz w1, #65535 |
| // ldrh w0, [x0, #0] |
| // cmp w0, w1 |
| // > |
| // ldrsh w0, [x0, #0] |
| // cmn w0, #1 |
| // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) |
| // if and only if (sext LHS) == (sext RHS). The checks are in place to |
| // ensure both the LHS and RHS are truly zero extended and to make sure the |
| // transformation is profitable. |
| if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) && |
| cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD && |
| cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 && |
| LHS.getNode()->hasNUsesOfValue(1, 0)) { |
| int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue(); |
| if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { |
| SDValue SExt = |
| DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, |
| DAG.getValueType(MVT::i16)); |
| Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, |
| RHS.getValueType()), |
| CC, dl, DAG); |
| AArch64CC = changeIntCCToAArch64CC(CC); |
| } |
| } |
| |
| if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) { |
| if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) { |
| if ((CC == ISD::SETNE) ^ RHSC->isNullValue()) |
| AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); |
| } |
| } |
| } |
| |
| if (!Cmp) { |
| Cmp = emitComparison(LHS, RHS, CC, dl, DAG); |
| AArch64CC = changeIntCCToAArch64CC(CC); |
| } |
| AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); |
| return Cmp; |
| } |
| |
| static std::pair<SDValue, SDValue> |
| getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { |
| assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && |
| "Unsupported value type"); |
| SDValue Value, Overflow; |
| SDLoc DL(Op); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| unsigned Opc = 0; |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Unknown overflow instruction!"); |
| case ISD::SADDO: |
| Opc = AArch64ISD::ADDS; |
| CC = AArch64CC::VS; |
| break; |
| case ISD::UADDO: |
| Opc = AArch64ISD::ADDS; |
| CC = AArch64CC::HS; |
| break; |
| case ISD::SSUBO: |
| Opc = AArch64ISD::SUBS; |
| CC = AArch64CC::VS; |
| break; |
| case ISD::USUBO: |
| Opc = AArch64ISD::SUBS; |
| CC = AArch64CC::LO; |
| break; |
| // Multiply needs a little bit extra work. |
| case ISD::SMULO: |
| case ISD::UMULO: { |
| CC = AArch64CC::NE; |
| bool IsSigned = Op.getOpcode() == ISD::SMULO; |
| if (Op.getValueType() == MVT::i32) { |
| unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| // For a 32 bit multiply with overflow check we want the instruction |
| // selector to generate a widening multiply (SMADDL/UMADDL). For that we |
| // need to generate the following pattern: |
| // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) |
| LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); |
| RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); |
| SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, |
| DAG.getConstant(0, DL, MVT::i64)); |
| // On AArch64 the upper 32 bits are always zero extended for a 32 bit |
| // operation. We need to clear out the upper 32 bits, because we used a |
| // widening multiply that wrote all 64 bits. In the end this should be a |
| // noop. |
| Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); |
| if (IsSigned) { |
| // The signed overflow check requires more than just a simple check for |
| // any bit set in the upper 32 bits of the result. These bits could be |
| // just the sign bits of a negative number. To perform the overflow |
| // check we have to arithmetic shift right the 32nd bit of the result by |
| // 31 bits. Then we compare the result to the upper 32 bits. |
| SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, |
| DAG.getConstant(32, DL, MVT::i64)); |
| UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); |
| SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, |
| DAG.getConstant(31, DL, MVT::i64)); |
| // It is important that LowerBits is last, otherwise the arithmetic |
| // shift will not be folded into the compare (SUBS). |
| SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); |
| Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) |
| .getValue(1); |
| } else { |
| // The overflow check for unsigned multiply is easy. We only need to |
| // check if any of the upper 32 bits are set. This can be done with a |
| // CMP (shifted register). For that we need to generate the following |
| // pattern: |
| // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) |
| SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, |
| DAG.getConstant(32, DL, MVT::i64)); |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); |
| Overflow = |
| DAG.getNode(AArch64ISD::SUBS, DL, VTs, |
| DAG.getConstant(0, DL, MVT::i64), |
| UpperBits).getValue(1); |
| } |
| break; |
| } |
| assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); |
| // For the 64 bit multiply |
| Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); |
| if (IsSigned) { |
| SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); |
| SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, |
| DAG.getConstant(63, DL, MVT::i64)); |
| // It is important that LowerBits is last, otherwise the arithmetic |
| // shift will not be folded into the compare (SUBS). |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); |
| Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) |
| .getValue(1); |
| } else { |
| SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); |
| SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); |
| Overflow = |
| DAG.getNode(AArch64ISD::SUBS, DL, VTs, |
| DAG.getConstant(0, DL, MVT::i64), |
| UpperBits).getValue(1); |
| } |
| break; |
| } |
| } // switch (...) |
| |
| if (Opc) { |
| SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); |
| |
| // Emit the AArch64 operation with overflow check. |
| Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); |
| Overflow = Value.getValue(1); |
| } |
| return std::make_pair(Value, Overflow); |
| } |
| |
| SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, |
| RTLIB::Libcall Call) const { |
| SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end()); |
| return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first; |
| } |
| |
| // Returns true if the given Op is the overflow flag result of an overflow |
| // intrinsic operation. |
| static bool isOverflowIntrOpRes(SDValue Op) { |
| unsigned Opc = Op.getOpcode(); |
| return (Op.getResNo() == 1 && |
| (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || |
| Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)); |
| } |
| |
| static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { |
| SDValue Sel = Op.getOperand(0); |
| SDValue Other = Op.getOperand(1); |
| SDLoc dl(Sel); |
| |
| // If the operand is an overflow checking operation, invert the condition |
| // code and kill the Not operation. I.e., transform: |
| // (xor (overflow_op_bool, 1)) |
| // --> |
| // (csel 1, 0, invert(cc), overflow_op_bool) |
| // ... which later gets transformed to just a cset instruction with an |
| // inverted condition code, rather than a cset + eor sequence. |
| if (isOneConstant(Other) && isOverflowIntrOpRes(Sel)) { |
| // Only lower legal XALUO ops. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0))) |
| return SDValue(); |
| |
| SDValue TVal = DAG.getConstant(1, dl, MVT::i32); |
| SDValue FVal = DAG.getConstant(0, dl, MVT::i32); |
| AArch64CC::CondCode CC; |
| SDValue Value, Overflow; |
| std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG); |
| SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); |
| return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal, |
| CCVal, Overflow); |
| } |
| // If neither operand is a SELECT_CC, give up. |
| if (Sel.getOpcode() != ISD::SELECT_CC) |
| std::swap(Sel, Other); |
| if (Sel.getOpcode() != ISD::SELECT_CC) |
| return Op; |
| |
| // The folding we want to perform is: |
| // (xor x, (select_cc a, b, cc, 0, -1) ) |
| // --> |
| // (csel x, (xor x, -1), cc ...) |
| // |
| // The latter will get matched to a CSINV instruction. |
| |
| ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); |
| SDValue LHS = Sel.getOperand(0); |
| SDValue RHS = Sel.getOperand(1); |
| SDValue TVal = Sel.getOperand(2); |
| SDValue FVal = Sel.getOperand(3); |
| |
| // FIXME: This could be generalized to non-integer comparisons. |
| if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) |
| return Op; |
| |
| ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); |
| ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); |
| |
| // The values aren't constants, this isn't the pattern we're looking for. |
| if (!CFVal || !CTVal) |
| return Op; |
| |
| // We can commute the SELECT_CC by inverting the condition. This |
| // might be needed to make this fit into a CSINV pattern. |
| if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { |
| std::swap(TVal, FVal); |
| std::swap(CTVal, CFVal); |
| CC = ISD::getSetCCInverse(CC, true); |
| } |
| |
| // If the constants line up, perform the transform! |
| if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { |
| SDValue CCVal; |
| SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); |
| |
| FVal = Other; |
| TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, |
| DAG.getConstant(-1ULL, dl, Other.getValueType())); |
| |
| return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, |
| CCVal, Cmp); |
| } |
| |
| return Op; |
| } |
| |
| static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| SDVTList VTs = DAG.getVTList(VT, MVT::i32); |
| |
| unsigned Opc; |
| bool ExtraOp = false; |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("Invalid code"); |
| case ISD::ADDC: |
| Opc = AArch64ISD::ADDS; |
| break; |
| case ISD::SUBC: |
| Opc = AArch64ISD::SUBS; |
| break; |
| case ISD::ADDE: |
| Opc = AArch64ISD::ADCS; |
| ExtraOp = true; |
| break; |
| case ISD::SUBE: |
| Opc = AArch64ISD::SBCS; |
| ExtraOp = true; |
| break; |
| } |
| |
| if (!ExtraOp) |
| return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); |
| return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), |
| Op.getOperand(2)); |
| } |
| |
| static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { |
| // Let legalize expand this if it isn't a legal type yet. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) |
| return SDValue(); |
| |
| SDLoc dl(Op); |
| AArch64CC::CondCode CC; |
| // The actual operation that sets the overflow or carry flag. |
| SDValue Value, Overflow; |
| std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); |
| |
| // We use 0 and 1 as false and true values. |
| SDValue TVal = DAG.getConstant(1, dl, MVT::i32); |
| SDValue FVal = DAG.getConstant(0, dl, MVT::i32); |
| |
| // We use an inverted condition, because the conditional select is inverted |
| // too. This will allow it to be selected to a single instruction: |
| // CSINC Wd, WZR, WZR, invert(cond). |
| SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); |
| Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, |
| CCVal, Overflow); |
| |
| SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); |
| return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); |
| } |
| |
| // Prefetch operands are: |
| // 1: Address to prefetch |
| // 2: bool isWrite |
| // 3: int locality (0 = no locality ... 3 = extreme locality) |
| // 4: bool isDataCache |
| static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); |
| unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); |
| |
| bool IsStream = !Locality; |
| // When the locality number is set |
| if (Locality) { |
| // The front-end should have filtered out the out-of-range values |
| assert(Locality <= 3 && "Prefetch locality out-of-range"); |
| // The locality degree is the opposite of the cache speed. |
| // Put the number the other way around. |
| // The encoding starts at 0 for level 1 |
| Locality = 3 - Locality; |
| } |
| |
| // built the mask value encoding the expected behavior. |
| unsigned PrfOp = (IsWrite << 4) | // Load/Store bit |
| (!IsData << 3) | // IsDataCache bit |
| (Locality << 1) | // Cache level bits |
| (unsigned)IsStream; // Stream bit |
| return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1)); |
| } |
| |
| SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); |
| |
| RTLIB::Libcall LC; |
| LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| return LowerF128Call(Op, DAG, LC); |
| } |
| |
| SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Op.getOperand(0).getValueType() != MVT::f128) { |
| // It's legal except when f128 is involved |
| return Op; |
| } |
| |
| RTLIB::Libcall LC; |
| LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| // FP_ROUND node has a second operand indicating whether it is known to be |
| // precise. That doesn't take part in the LibCall so we can't directly use |
| // LowerF128Call. |
| SDValue SrcVal = Op.getOperand(0); |
| return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, |
| SDLoc(Op)).first; |
| } |
| |
| static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { |
| // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. |
| // Any additional optimization in this function should be recorded |
| // in the cost tables. |
| EVT InVT = Op.getOperand(0).getValueType(); |
| EVT VT = Op.getValueType(); |
| unsigned NumElts = InVT.getVectorNumElements(); |
| |
| // f16 vectors are promoted to f32 before a conversion. |
| if (InVT.getVectorElementType() == MVT::f16) { |
| MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); |
| SDLoc dl(Op); |
| return DAG.getNode( |
| Op.getOpcode(), dl, Op.getValueType(), |
| DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); |
| } |
| |
| if (VT.getSizeInBits() < InVT.getSizeInBits()) { |
| SDLoc dl(Op); |
| SDValue Cv = |
| DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), |
| Op.getOperand(0)); |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); |
| } |
| |
| if (VT.getSizeInBits() > InVT.getSizeInBits()) { |
| SDLoc dl(Op); |
| MVT ExtVT = |
| MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), |
| VT.getVectorNumElements()); |
| SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); |
| return DAG.getNode(Op.getOpcode(), dl, VT, Ext); |
| } |
| |
| // Type changing conversions are illegal. |
| return Op; |
| } |
| |
| SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Op.getOperand(0).getValueType().isVector()) |
| return LowerVectorFP_TO_INT(Op, DAG); |
| |
| // f16 conversions are promoted to f32 when full fp16 is not supported. |
| if (Op.getOperand(0).getValueType() == MVT::f16 && |
| !Subtarget->hasFullFP16()) { |
| SDLoc dl(Op); |
| return DAG.getNode( |
| Op.getOpcode(), dl, Op.getValueType(), |
| DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0))); |
| } |
| |
| if (Op.getOperand(0).getValueType() != MVT::f128) { |
| // It's legal except when f128 is involved |
| return Op; |
| } |
| |
| RTLIB::Libcall LC; |
| if (Op.getOpcode() == ISD::FP_TO_SINT) |
| LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| else |
| LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end()); |
| return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first; |
| } |
| |
| static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. |
| // Any additional optimization in this function should be recorded |
| // in the cost tables. |
| EVT VT = Op.getValueType(); |
| SDLoc dl(Op); |
| SDValue In = Op.getOperand(0); |
| EVT InVT = In.getValueType(); |
| |
| if (VT.getSizeInBits() < InVT.getSizeInBits()) { |
| MVT CastVT = |
| MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), |
| InVT.getVectorNumElements()); |
| In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); |
| return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| if (VT.getSizeInBits() > InVT.getSizeInBits()) { |
| unsigned CastOpc = |
| Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| EVT CastVT = VT.changeVectorElementTypeToInteger(); |
| In = DAG.getNode(CastOpc, dl, CastVT, In); |
| return DAG.getNode(Op.getOpcode(), dl, VT, In); |
| } |
| |
| return Op; |
| } |
| |
| SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| if (Op.getValueType().isVector()) |
| return LowerVectorINT_TO_FP(Op, DAG); |
| |
| // f16 conversions are promoted to f32 when full fp16 is not supported. |
| if (Op.getValueType() == MVT::f16 && |
| !Subtarget->hasFullFP16()) { |
| SDLoc dl(Op); |
| return DAG.getNode( |
| ISD::FP_ROUND, dl, MVT::f16, |
| DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)), |
| DAG.getIntPtrConstant(0, dl)); |
| } |
| |
| // i128 conversions are libcalls. |
| if (Op.getOperand(0).getValueType() == MVT::i128) |
| return SDValue(); |
| |
| // Other conversions are legal, unless it's to the completely software-based |
| // fp128. |
| if (Op.getValueType() != MVT::f128) |
| return Op; |
| |
| RTLIB::Libcall LC; |
| if (Op.getOpcode() == ISD::SINT_TO_FP) |
| LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); |
| else |
| LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); |
| |
| return LowerF128Call(Op, DAG, LC); |
| } |
| |
| SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, |
| SelectionDAG &DAG) const { |
| // For iOS, we want to call an alternative entry point: __sincos_stret, |
| // which returns the values in two S / D registers. |
| SDLoc dl(Op); |
| SDValue Arg = Op.getOperand(0); |
| EVT ArgVT = Arg.getValueType(); |
| Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); |
| |
| ArgListTy Args; |
| ArgListEntry Entry; |
| |
| Entry.Node = Arg; |
| Entry.Ty = ArgTy; |
| Entry.IsSExt = false; |
| Entry.IsZExt = false; |
| Args.push_back(Entry); |
| |
| RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64 |
| : RTLIB::SINCOS_STRET_F32; |
| const char *LibcallName = getLibcallName(LC); |
| SDValue Callee = |
| DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); |
| |
| StructType *RetTy = StructType::get(ArgTy, ArgTy); |
| TargetLowering::CallLoweringInfo CLI(DAG); |
| CLI.setDebugLoc(dl) |
| .setChain(DAG.getEntryNode()) |
| .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args)); |
| |
| std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
| return CallResult.first; |
| } |
| |
| static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) { |
| if (Op.getValueType() != MVT::f16) |
| return SDValue(); |
| |
| assert(Op.getOperand(0).getValueType() == MVT::i16); |
| SDLoc DL(Op); |
| |
| Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); |
| Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); |
| return SDValue( |
| DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op, |
| DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), |
| 0); |
| } |
| |
| static EVT getExtensionTo64Bits(const EVT &OrigVT) { |
| if (OrigVT.getSizeInBits() >= 64) |
| return OrigVT; |
| |
| assert(OrigVT.isSimple() && "Expecting a simple value type"); |
| |
| MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; |
| switch (OrigSimpleTy) { |
| default: llvm_unreachable("Unexpected Vector Type"); |
| case MVT::v2i8: |
| case MVT::v2i16: |
| return MVT::v2i32; |
| case MVT::v4i8: |
| return MVT::v4i16; |
| } |
| } |
| |
| static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, |
| const EVT &OrigTy, |
| const EVT &ExtTy, |
| unsigned ExtOpcode) { |
| // The vector originally had a size of OrigTy. It was then extended to ExtTy. |
| // We expect the ExtTy to be 128-bits total. If the OrigTy is less than |
| // 64-bits we need to insert a new extension so that it will be 64-bits. |
| assert(ExtTy.is128BitVector() && "Unexpected extension size"); |
| if (OrigTy.getSizeInBits() >= 64) |
| return N; |
| |
| // Must extend size to at least 64 bits to be used as an operand for VMULL. |
| EVT NewVT = getExtensionTo64Bits(OrigTy); |
| |
| return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); |
| } |
| |
| static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, |
| bool isSigned) { |
| EVT VT = N->getValueType(0); |
| |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| for (const SDValue &Elt : N->op_values()) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { |
| unsigned EltSize = VT.getScalarSizeInBits(); |
| unsigned HalfSize = EltSize / 2; |
| if (isSigned) { |
| if (!isIntN(HalfSize, C->getSExtValue())) |
| return false; |
| } else { |
| if (!isUIntN(HalfSize, C->getZExtValue())) |
| return false; |
| } |
| continue; |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) { |
| if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) |
| return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG, |
| N->getOperand(0)->getValueType(0), |
| N->getValueType(0), |
| N->getOpcode()); |
| |
| assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); |
| EVT VT = N->getValueType(0); |
| SDLoc dl(N); |
| unsigned EltSize = VT.getScalarSizeInBits() / 2; |
| unsigned NumElts = VT.getVectorNumElements(); |
| MVT TruncVT = MVT::getIntegerVT(EltSize); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); |
| const APInt &CInt = C->getAPIntValue(); |
| // Element types smaller than 32 bits are not legal, so use i32 elements. |
| // The values are implicitly truncated so sext vs. zext doesn't matter. |
| Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); |
| } |
| return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); |
| } |
| |
| static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { |
| return N->getOpcode() == ISD::SIGN_EXTEND || |
| isExtendedBUILD_VECTOR(N, DAG, true); |
| } |
| |
| static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { |
| return N->getOpcode() == ISD::ZERO_EXTEND || |
| isExtendedBUILD_VECTOR(N, DAG, false); |
| } |
| |
| static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { |
| unsigned Opcode = N->getOpcode(); |
| if (Opcode == ISD::ADD || Opcode == ISD::SUB) { |
| SDNode *N0 = N->getOperand(0).getNode(); |
| SDNode *N1 = N->getOperand(1).getNode(); |
| return N0->hasOneUse() && N1->hasOneUse() && |
| isSignExtended(N0, DAG) && isSignExtended(N1, DAG); |
| } |
| return false; |
| } |
| |
| static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { |
| unsigned Opcode = N->getOpcode(); |
| if (Opcode == ISD::ADD || Opcode == ISD::SUB) { |
| SDNode *N0 = N->getOperand(0).getNode(); |
| SDNode *N1 = N->getOperand(1).getNode(); |
| return N0->hasOneUse() && N1->hasOneUse() && |
| isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); |
| } |
| return false; |
| } |
| |
| SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op, |
| SelectionDAG &DAG) const { |
| // The rounding mode is in bits 23:22 of the FPSCR. |
| // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 |
| // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) |
| // so that the shift + and get folded into a bitfield extract. |
| SDLoc dl(Op); |
| |
| SDValue FPCR_64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i64, |
| DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, |
| MVT::i64)); |
| SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64); |
| SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32, |
| DAG.getConstant(1U << 22, dl, MVT::i32)); |
| SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, |
| DAG.getConstant(22, dl, MVT::i32)); |
| return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, |
| DAG.getConstant(3, dl, MVT::i32)); |
| } |
| |
| static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { |
| // Multiplications are only custom-lowered for 128-bit vectors so that |
| // VMULL can be detected. Otherwise v2i64 multiplications are not legal. |
| EVT VT = Op.getValueType(); |
| assert(VT.is128BitVector() && VT.isInteger() && |
| "unexpected type for custom-lowering ISD::MUL"); |
| SDNode *N0 = Op.getOperand(0).getNode(); |
| SDNode *N1 = Op.getOperand(1).getNode(); |
| unsigned NewOpc = 0; |
| bool isMLA = false; |
| bool isN0SExt = isSignExtended(N0, DAG); |
| bool isN1SExt = isSignExtended(N1, DAG); |
| if (isN0SExt && isN1SExt) |
| NewOpc = AArch64ISD::SMULL; |
| else { |
| bool isN0ZExt = isZeroExtended(N0, DAG); |
| bool isN1ZExt = isZeroExtended(N1, DAG); |
| if (isN0ZExt && isN1ZExt) |
| NewOpc = AArch64ISD::UMULL; |
| else if (isN1SExt || isN1ZExt) { |
| // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these |
| // into (s/zext A * s/zext C) + (s/zext B * s/zext C) |
| if (isN1SExt && isAddSubSExt(N0, DAG)) { |
| NewOpc = AArch64ISD::SMULL; |
| isMLA = true; |
| } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { |
| NewOpc = AArch64ISD::UMULL; |
| isMLA = true; |
| } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { |
| std::swap(N0, N1); |
| NewOpc = AArch64ISD::UMULL; |
| isMLA = true; |
| } |
| } |
| |
| if (!NewOpc) { |
| if (VT == MVT::v2i64) |
| // Fall through to expand this. It is not legal. |
| return SDValue(); |
| else |
| // Other vector multiplications are legal. |
| return Op; |
| } |
| } |
| |
| // Legalize to a S/UMULL instruction |
| SDLoc DL(Op); |
| SDValue Op0; |
| SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); |
| if (!isMLA) { |
| Op0 = skipExtensionForVectorMULL(N0, DAG); |
| assert(Op0.getValueType().is64BitVector() && |
| Op1.getValueType().is64BitVector() && |
| "unexpected types for extended operands to VMULL"); |
| return DAG.getNode(NewOpc, DL, VT, Op0, Op1); |
| } |
| // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during |
| // isel lowering to take advantage of no-stall back to back s/umul + s/umla. |
| // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 |
| SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG); |
| SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG); |
| EVT Op1VT = Op1.getValueType(); |
| return DAG.getNode(N0->getOpcode(), DL, VT, |
| DAG.getNode(NewOpc, DL, VT, |
| DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), |
| DAG.getNode(NewOpc, DL, VT, |
| DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); |
| } |
| |
| // Lower vector multiply high (ISD::MULHS and ISD::MULHU). |
| static SDValue LowerMULH(SDValue Op, SelectionDAG &DAG) { |
| // Multiplications are only custom-lowered for 128-bit vectors so that |
| // {S,U}MULL{2} can be detected. Otherwise v2i64 multiplications are not |
| // legal. |
| EVT VT = Op.getValueType(); |
| assert(VT.is128BitVector() && VT.isInteger() && |
| "unexpected type for custom-lowering ISD::MULH{U,S}"); |
| |
| SDValue V0 = Op.getOperand(0); |
| SDValue V1 = Op.getOperand(1); |
| |
| SDLoc DL(Op); |
| |
| EVT ExtractVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); |
| |
| // We turn (V0 mulhs/mulhu V1) to: |
| // |
| // (uzp2 (smull (extract_subvector (ExtractVT V128:V0, (i64 0)), |
| // (extract_subvector (ExtractVT V128:V1, (i64 0))))), |
| // (smull (extract_subvector (ExtractVT V128:V0, (i64 VMull2Idx)), |
| // (extract_subvector (ExtractVT V128:V2, (i64 VMull2Idx)))))) |
| // |
| // Where ExtractVT is a subvector with half number of elements, and |
| // VMullIdx2 is the index of the middle element (the high part). |
| // |
| // The vector hight part extract and multiply will be matched against |
| // {S,U}MULL{v16i8_v8i16,v8i16_v4i32,v4i32_v2i64} which in turn will |
| // issue a {s}mull2 instruction. |
| // |
| // This basically multiply the lower subvector with '{s,u}mull', the high |
| // subvector with '{s,u}mull2', and shuffle both results high part in |
| // resulting vector. |
| unsigned Mull2VectorIdx = VT.getVectorNumElements () / 2; |
| SDValue VMullIdx = DAG.getConstant(0, DL, MVT::i64); |
| SDValue VMull2Idx = DAG.getConstant(Mull2VectorIdx, DL, MVT::i64); |
| |
| SDValue VMullV0 = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V0, VMullIdx); |
| SDValue VMullV1 = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V1, VMullIdx); |
| |
| SDValue VMull2V0 = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V0, VMull2Idx); |
| SDValue VMull2V1 = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT, V1, VMull2Idx); |
| |
| unsigned MullOpc = Op.getOpcode() == ISD::MULHS ? AArch64ISD::SMULL |
| : AArch64ISD::UMULL; |
| |
| EVT MullVT = ExtractVT.widenIntegerVectorElementType(*DAG.getContext()); |
| SDValue Mull = DAG.getNode(MullOpc, DL, MullVT, VMullV0, VMullV1); |
| SDValue Mull2 = DAG.getNode(MullOpc, DL, MullVT, VMull2V0, VMull2V1); |
| |
| Mull = DAG.getNode(ISD::BITCAST, DL, VT, Mull); |
| Mull2 = DAG.getNode(ISD::BITCAST, DL, VT, Mull2); |
| |
| return DAG.getNode(AArch64ISD::UZP2, DL, VT, Mull, Mull2); |
| } |
| |
| SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, |
| SelectionDAG &DAG) const { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| SDLoc dl(Op); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| case Intrinsic::thread_pointer: { |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); |
| } |
| case Intrinsic::aarch64_neon_abs: |
| return DAG.getNode(ISD::ABS, dl, Op.getValueType(), |
| Op.getOperand(1)); |
| case Intrinsic::aarch64_neon_smax: |
| return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::aarch64_neon_umax: |
| return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::aarch64_neon_smin: |
| return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| case Intrinsic::aarch64_neon_umin: |
| return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| } |
| |
| // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16. |
| static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST, |
| EVT VT, EVT MemVT, |
| SelectionDAG &DAG) { |
| assert(VT.isVector() && "VT should be a vector type"); |
| assert(MemVT == MVT::v4i8 && VT == MVT::v4i16); |
| |
| SDValue Value = ST->getValue(); |
| |
| // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract |
| // the word lane which represent the v4i8 subvector. It optimizes the store |
| // to: |
| // |
| // xtn v0.8b, v0.8h |
| // str s0, [x0] |
| |
| SDValue Undef = DAG.getUNDEF(MVT::i16); |
| SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL, |
| {Undef, Undef, Undef, Undef}); |
| |
| SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, |
| Value, UndefVec); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt); |
| |
| Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc); |
| SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, |
| Trunc, DAG.getConstant(0, DL, MVT::i64)); |
| |
| return DAG.getStore(ST->getChain(), DL, ExtractTrunc, |
| ST->getBasePtr(), ST->getMemOperand()); |
| } |
| |
| // Custom lowering for any store, vector or scalar and/or default or with |
| // a truncate operations. Currently only custom lower truncate operation |
| // from vector v4i16 to v4i8. |
| SDValue AArch64TargetLowering::LowerSTORE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc Dl(Op); |
| StoreSDNode *StoreNode = cast<StoreSDNode>(Op); |
| assert (StoreNode && "Can only custom lower store nodes"); |
| |
| SDValue Value = StoreNode->getValue(); |
| |
| EVT VT = Value.getValueType(); |
| EVT MemVT = StoreNode->getMemoryVT(); |
| |
| assert (VT.isVector() && "Can only custom lower vector store types"); |
| |
| unsigned AS = StoreNode->getAddressSpace(); |
| unsigned Align = StoreNode->getAlignment(); |
| if (Align < MemVT.getStoreSize() && |
| !allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) { |
| return scalarizeVectorStore(StoreNode, DAG); |
| } |
| |
| if (StoreNode->isTruncatingStore()) { |
| return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue AArch64TargetLowering::LowerOperation(SDValue Op, |
| SelectionDAG &DAG) const { |
| LLVM_DEBUG(dbgs() << "Custom lowering: "); |
| LLVM_DEBUG(Op.dump()); |
| |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("unimplemented operand"); |
| return SDValue(); |
| case ISD::BITCAST: |
| return LowerBITCAST(Op, DAG); |
| case ISD::GlobalAddress: |
| return LowerGlobalAddress(Op, DAG); |
| case ISD::GlobalTLSAddress: |
| return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::SETCC: |
| return LowerSETCC(Op, DAG); |
| case ISD::BR_CC: |
| return LowerBR_CC(Op, DAG); |
| case ISD::SELECT: |
| return LowerSELECT(Op, DAG); |
| case ISD::SELECT_CC: |
| return LowerSELECT_CC(Op, DAG); |
| case ISD::JumpTable: |
| return LowerJumpTable(Op, DAG); |
| case ISD::ConstantPool: |
| return LowerConstantPool(Op, DAG); |
| case ISD::BlockAddress: |
| return LowerBlockAddress(Op, DAG); |
| case ISD::VASTART: |
| return LowerVASTART(Op, DAG); |
| case ISD::VACOPY: |
| return LowerVACOPY(Op, DAG); |
| case ISD::VAARG: |
| return LowerVAARG(Op, DAG); |
| case ISD::ADDC: |
| case ISD::ADDE: |
| case ISD::SUBC: |
| case ISD::SUBE: |
| return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); |
| case ISD::SADDO: |
| case ISD::UADDO: |
| case ISD::SSUBO: |
| case ISD::USUBO: |
| case ISD::SMULO: |
| case ISD::UMULO: |
| return LowerXALUO(Op, DAG); |
| case ISD::FADD: |
| return LowerF128Call(Op, DAG, RTLIB::ADD_F128); |
| case ISD::FSUB: |
| return LowerF128Call(Op, DAG, RTLIB::SUB_F128); |
| case ISD::FMUL: |
| return LowerF128Call(Op, DAG, RTLIB::MUL_F128); |
| case ISD::FDIV: |
| return LowerF128Call(Op, DAG, RTLIB::DIV_F128); |
| case ISD::FP_ROUND: |
| return LowerFP_ROUND(Op, DAG); |
| case ISD::FP_EXTEND: |
| return LowerFP_EXTEND(Op, DAG); |
| case ISD::FRAMEADDR: |
| return LowerFRAMEADDR(Op, DAG); |
| case ISD::RETURNADDR: |
| return LowerRETURNADDR(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: |
| return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: |
| return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::BUILD_VECTOR: |
| return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: |
| return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: |
| return LowerEXTRACT_SUBVECTOR(Op, DAG); |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::SHL: |
| return LowerVectorSRA_SRL_SHL(Op, DAG); |
| case ISD::SHL_PARTS: |
| return LowerShiftLeftParts(Op, DAG); |
| case ISD::SRL_PARTS: |
| case ISD::SRA_PARTS: |
| return LowerShiftRightParts(Op, DAG); |
| case ISD::CTPOP: |
| return LowerCTPOP(Op, DAG); |
| case ISD::FCOPYSIGN: |
| return LowerFCOPYSIGN(Op, DAG); |
| case ISD::AND: |
| return LowerVectorAND(Op, DAG); |
| case ISD::OR: |
| return LowerVectorOR(Op, DAG); |
| case ISD::XOR: |
| return LowerXOR(Op, DAG); |
| case ISD::PREFETCH: |
| return LowerPREFETCH(Op, DAG); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| return LowerINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return LowerFP_TO_INT(Op, DAG); |
| case ISD::FSINCOS: |
| return LowerFSINCOS(Op, DAG); |
| case ISD::FLT_ROUNDS_: |
| return LowerFLT_ROUNDS_(Op, DAG); |
| case ISD::MUL: |
| return LowerMUL(Op, DAG); |
| case ISD::MULHS: |
| case ISD::MULHU: |
| return LowerMULH(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: |
| return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::STORE: |
| return LowerSTORE(Op, DAG); |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_SMIN: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_UMIN: |
| case ISD::VECREDUCE_FMAX: |
| case ISD::VECREDUCE_FMIN: |
| return LowerVECREDUCE(Op, DAG); |
| case ISD::ATOMIC_LOAD_SUB: |
| return LowerATOMIC_LOAD_SUB(Op, DAG); |
| case ISD::ATOMIC_LOAD_AND: |
| return LowerATOMIC_LOAD_AND(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: |
| return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64GenCallingConv.inc" |
| |
| /// Selects the correct CCAssignFn for a given CallingConvention value. |
| CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
| bool IsVarArg) const { |
| switch (CC) { |
| default: |
| report_fatal_error("Unsupported calling convention."); |
| case CallingConv::WebKit_JS: |
| return CC_AArch64_WebKit_JS; |
| case CallingConv::GHC: |
| return CC_AArch64_GHC; |
| case CallingConv::C: |
| case CallingConv::Fast: |
| case CallingConv::PreserveMost: |
| case CallingConv::CXX_FAST_TLS: |
| case CallingConv::Swift: |
| if (Subtarget->isTargetWindows() && IsVarArg) |
| return CC_AArch64_Win64_VarArg; |
| if (!Subtarget->isTargetDarwin()) |
| return CC_AArch64_AAPCS; |
| return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS; |
| case CallingConv::Win64: |
| return IsVarArg ? CC_AArch64_Win64_VarArg : CC_AArch64_AAPCS; |
| } |
| } |
| |
| CCAssignFn * |
| AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { |
| return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS |
| : RetCC_AArch64_AAPCS; |
| } |
| |
| SDValue AArch64TargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| // At this point, Ins[].VT may already be promoted to i32. To correctly |
| // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and |
| // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. |
| // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here |
| // we use a special version of AnalyzeFormalArguments to pass in ValVT and |
| // LocVT. |
| unsigned NumArgs = Ins.size(); |
| Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin(); |
| unsigned CurArgIdx = 0; |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT ValVT = Ins[i].VT; |
| if (Ins[i].isOrigArg()) { |
| std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); |
| CurArgIdx = Ins[i].getOrigArgIndex(); |
| |
| // Get type of the original argument. |
| EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), |
| /*AllowUnknown*/ true); |
| MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; |
| // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. |
| if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) |
| ValVT = MVT::i8; |
| else if (ActualMVT == MVT::i16) |
| ValVT = MVT::i16; |
| } |
| CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); |
| bool Res = |
| AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); |
| assert(!Res && "Call operand has unhandled type"); |
| (void)Res; |
| } |
| assert(ArgLocs.size() == Ins.size()); |
| SmallVector<SDValue, 16> ArgValues; |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| |
| if (Ins[i].Flags.isByVal()) { |
| // Byval is used for HFAs in the PCS, but the system should work in a |
| // non-compliant manner for larger structs. |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| int Size = Ins[i].Flags.getByValSize(); |
| unsigned NumRegs = (Size + 7) / 8; |
| |
| // FIXME: This works on big-endian for composite byvals, which are the common |
| // case. It should also work for fundamental types too. |
| unsigned FrameIdx = |
| MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); |
| SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); |
| InVals.push_back(FrameIdxN); |
| |
| continue; |
| } |
| |
| if (VA.isRegLoc()) { |
| // Arguments stored in registers. |
| EVT RegVT = VA.getLocVT(); |
| |
| SDValue ArgValue; |
| const TargetRegisterClass *RC; |
| |
| if (RegVT == MVT::i32) |
| RC = &AArch64::GPR32RegClass; |
| else if (RegVT == MVT::i64) |
| RC = &AArch64::GPR64RegClass; |
| else if (RegVT == MVT::f16) |
| RC = &AArch64::FPR16RegClass; |
| else if (RegVT == MVT::f32) |
| RC = &AArch64::FPR32RegClass; |
| else if (RegVT == MVT::f64 || RegVT.is64BitVector()) |
| RC = &AArch64::FPR64RegClass; |
| else if (RegVT == MVT::f128 || RegVT.is128BitVector()) |
| RC = &AArch64::FPR128RegClass; |
| else |
| llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); |
| |
| // Transform the arguments in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); |
| |
| // If this is an 8, 16 or 32-bit value, it is really passed promoted |
| // to 64 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::AExt: |
| case CCValAssign::SExt: |
| case CCValAssign::ZExt: |
| // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt |
| // nodes after our lowering. |
| assert(RegVT == Ins[i].VT && "incorrect register location selected"); |
| break; |
| } |
| |
| InVals.push_back(ArgValue); |
| |
| } else { // VA.isRegLoc() |
| assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); |
| unsigned ArgOffset = VA.getLocMemOffset(); |
| unsigned ArgSize = VA.getValVT().getSizeInBits() / 8; |
| |
| uint32_t BEAlign = 0; |
| if (!Subtarget->isLittleEndian() && ArgSize < 8 && |
| !Ins[i].Flags.isInConsecutiveRegs()) |
| BEAlign = 8 - ArgSize; |
| |
| int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); |
| SDValue ArgValue; |
| |
| // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) |
| ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; |
| MVT MemVT = VA.getValVT(); |
| |
| switch (VA.getLocInfo()) { |
| default: |
| break; |
| case CCValAssign::BCvt: |
| MemVT = VA.getLocVT(); |
| break; |
| case CCValAssign::SExt: |
| ExtType = ISD::SEXTLOAD; |
| break; |
| case CCValAssign::ZExt: |
| ExtType = ISD::ZEXTLOAD; |
| break; |
| case CCValAssign::AExt: |
| ExtType = ISD::EXTLOAD; |
| break; |
| } |
| |
| ArgValue = DAG.getExtLoad( |
| ExtType, DL, VA.getLocVT(), Chain, FIN, |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), |
| MemVT); |
| |
| InVals.push_back(ArgValue); |
| } |
| } |
| |
| // varargs |
| AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| if (isVarArg) { |
| if (!Subtarget->isTargetDarwin() || IsWin64) { |
| // The AAPCS variadic function ABI is identical to the non-variadic |
| // one. As a result there may be more arguments in registers and we should |
| // save them for future reference. |
| // Win64 variadic functions also pass arguments in registers, but all float |
| // arguments are passed in integer registers. |
| saveVarArgRegisters(CCInfo, DAG, DL, Chain); |
| } |
| |
| // This will point to the next argument passed via stack. |
| unsigned StackOffset = CCInfo.getNextStackOffset(); |
| // We currently pass all varargs at 8-byte alignment. |
| StackOffset = ((StackOffset + 7) & ~7); |
| FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); |
| } |
| |
| unsigned StackArgSize = CCInfo.getNextStackOffset(); |
| bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { |
| // This is a non-standard ABI so by fiat I say we're allowed to make full |
| // use of the stack area to be popped, which must be aligned to 16 bytes in |
| // any case: |
| StackArgSize = alignTo(StackArgSize, 16); |
| |
| // If we're expected to restore the stack (e.g. fastcc) then we'll be adding |
| // a multiple of 16. |
| FuncInfo->setArgumentStackToRestore(StackArgSize); |
| |
| // This realignment carries over to the available bytes below. Our own |
| // callers will guarantee the space is free by giving an aligned value to |
| // CALLSEQ_START. |
| } |
| // Even if we're not expected to free up the space, it's useful to know how |
| // much is there while considering tail calls (because we can reuse it). |
| FuncInfo->setBytesInStackArgArea(StackArgSize); |
| |
| return Chain; |
| } |
| |
| void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, |
| SelectionDAG &DAG, |
| const SDLoc &DL, |
| SDValue &Chain) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); |
| |
| SmallVector<SDValue, 8> MemOps; |
| |
| static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, |
| AArch64::X3, AArch64::X4, AArch64::X5, |
| AArch64::X6, AArch64::X7 }; |
| static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); |
| unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); |
| |
| unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); |
| int GPRIdx = 0; |
| if (GPRSaveSize != 0) { |
| if (IsWin64) { |
| GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false); |
| if (GPRSaveSize & 15) |
| // The extra size here, if triggered, will always be 8. |
| MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false); |
| } else |
| GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false); |
| |
| SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT); |
| |
| for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { |
| unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); |
| SDValue Store = DAG.getStore( |
| Val.getValue(1), DL, Val, FIN, |
| IsWin64 |
| ? MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), |
| GPRIdx, |
| (i - FirstVariadicGPR) * 8) |
| : MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8)); |
| MemOps.push_back(Store); |
| FIN = |
| DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); |
| } |
| } |
| FuncInfo->setVarArgsGPRIndex(GPRIdx); |
| FuncInfo->setVarArgsGPRSize(GPRSaveSize); |
| |
| if (Subtarget->hasFPARMv8() && !IsWin64) { |
| static const MCPhysReg FPRArgRegs[] = { |
| AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, |
| AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; |
| static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); |
| unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); |
| |
| unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); |
| int FPRIdx = 0; |
| if (FPRSaveSize != 0) { |
| FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false); |
| |
| SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); |
| |
| for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { |
| unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); |
| |
| SDValue Store = DAG.getStore( |
| Val.getValue(1), DL, Val, FIN, |
| MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16)); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, |
| DAG.getConstant(16, DL, PtrVT)); |
| } |
| } |
| FuncInfo->setVarArgsFPRIndex(FPRIdx); |
| FuncInfo->setVarArgsFPRSize(FPRSaveSize); |
| } |
| |
| if (!MemOps.empty()) { |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); |
| } |
| } |
| |
| /// LowerCallResult - Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| SDValue AArch64TargetLowering::LowerCallResult( |
| SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, |
| SDValue ThisVal) const { |
| CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS |
| ? RetCC_AArch64_WebKit_JS |
| : RetCC_AArch64_AAPCS; |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, RetCC); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign VA = RVLocs[i]; |
| |
| // Pass 'this' value directly from the argument to return value, to avoid |
| // reg unit interference |
| if (i == 0 && isThisReturn) { |
| assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && |
| "unexpected return calling convention register assignment"); |
| InVals.push_back(ThisVal); |
| continue; |
| } |
| |
| SDValue Val = |
| DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); |
| break; |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| /// Return true if the calling convention is one that we can guarantee TCO for. |
| static bool canGuaranteeTCO(CallingConv::ID CC) { |
| return CC == CallingConv::Fast; |
| } |
| |
| /// Return true if we might ever do TCO for calls with this calling convention. |
| static bool mayTailCallThisCC(CallingConv::ID CC) { |
| switch (CC) { |
| case CallingConv::C: |
| case CallingConv::PreserveMost: |
| case CallingConv::Swift: |
| return true; |
| default: |
| return canGuaranteeTCO(CC); |
| } |
| } |
| |
| bool AArch64TargetLowering::isEligibleForTailCallOptimization( |
| SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { |
| if (!mayTailCallThisCC(CalleeCC)) |
| return false; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const Function &CallerF = MF.getFunction(); |
| CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| // Byval parameters hand the function a pointer directly into the stack area |
| // we want to reuse during a tail call. Working around this *is* possible (see |
| // X86) but less efficient and uglier in LowerCall. |
| for (Function::const_arg_iterator i = CallerF.arg_begin(), |
| e = CallerF.arg_end(); |
| i != e; ++i) |
| if (i->hasByValAttr()) |
| return false; |
| |
| if (getTargetMachine().Options.GuaranteedTailCallOpt) |
| return canGuaranteeTCO(CalleeCC) && CCMatch; |
| |
| // Externally-defined functions with weak linkage should not be |
| // tail-called on AArch64 when the OS does not support dynamic |
| // pre-emption of symbols, as the AAELF spec requires normal calls |
| // to undefined weak functions to be replaced with a NOP or jump to the |
| // next instruction. The behaviour of branch instructions in this |
| // situation (as used for tail calls) is implementation-defined, so we |
| // cannot rely on the linker replacing the tail call with a return. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| const Triple &TT = getTargetMachine().getTargetTriple(); |
| if (GV->hasExternalWeakLinkage() && |
| (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) |
| return false; |
| } |
| |
| // Now we search for cases where we can use a tail call without changing the |
| // ABI. Sibcall is used in some places (particularly gcc) to refer to this |
| // concept. |
| |
| // I want anyone implementing a new calling convention to think long and hard |
| // about this assert. |
| assert((!isVarArg || CalleeCC == CallingConv::C) && |
| "Unexpected variadic calling convention"); |
| |
| LLVMContext &C = *DAG.getContext(); |
| if (isVarArg && !Outs.empty()) { |
| // At least two cases here: if caller is fastcc then we can't have any |
| // memory arguments (we'd be expected to clean up the stack afterwards). If |
| // caller is C then we could potentially use its argument area. |
| |
| // FIXME: for now we take the most conservative of these in both cases: |
| // disallow all variadic memory operands. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); |
| for (const CCValAssign &ArgLoc : ArgLocs) |
| if (!ArgLoc.isRegLoc()) |
| return false; |
| } |
| |
| // Check that the call results are passed in the same way. |
| if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, |
| CCAssignFnForCall(CalleeCC, isVarArg), |
| CCAssignFnForCall(CallerCC, isVarArg))) |
| return false; |
| // The callee has to preserve all registers the caller needs to preserve. |
| const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| if (!CCMatch) { |
| const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) |
| return false; |
| } |
| |
| // Nothing more to check if the callee is taking no arguments |
| if (Outs.empty()) |
| return true; |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C); |
| |
| CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); |
| |
| const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| |
| // If the stack arguments for this call do not fit into our own save area then |
| // the call cannot be made tail. |
| if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) |
| return false; |
| |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) |
| return false; |
| |
| return true; |
| } |
| |
| SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, |
| SelectionDAG &DAG, |
| MachineFrameInfo &MFI, |
| int ClobberedFI) const { |
| SmallVector<SDValue, 8> ArgChains; |
| int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); |
| int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; |
| |
| // Include the original chain at the beginning of the list. When this is |
| // used by target LowerCall hooks, this helps legalize find the |
| // CALLSEQ_BEGIN node. |
| ArgChains.push_back(Chain); |
| |
| // Add a chain value for each stack argument corresponding |
| for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), |
| UE = DAG.getEntryNode().getNode()->use_end(); |
| U != UE; ++U) |
| if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) |
| if (FI->getIndex() < 0) { |
| int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); |
| int64_t InLastByte = InFirstByte; |
| InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; |
| |
| if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || |
| (FirstByte <= InFirstByte && InFirstByte <= LastByte)) |
| ArgChains.push_back(SDValue(L, 1)); |
| } |
| |
| // Build a tokenfactor for all the chains. |
| return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); |
| } |
| |
| bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, |
| bool TailCallOpt) const { |
| return CallCC == CallingConv::Fast && TailCallOpt; |
| } |
| |
| /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, |
| /// and add input and output parameter nodes. |
| SDValue |
| AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| SDLoc &DL = CLI.DL; |
| SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &IsTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool IsVarArg = CLI.IsVarArg; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool IsThisReturn = false; |
| |
| AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; |
| bool IsSibCall = false; |
| |
| if (IsTailCall) { |
| // Check if it's really possible to do a tail call. |
| IsTailCall = isEligibleForTailCallOptimization( |
| Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG); |
| if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) |
| report_fatal_error("failed to perform tail call elimination on a call " |
| "site marked musttail"); |
| |
| // A sibling call is one where we're under the usual C ABI and not planning |
| // to change that but can still do a tail call: |
| if (!TailCallOpt && IsTailCall) |
| IsSibCall = true; |
| |
| if (IsTailCall) |
| ++NumTailCalls; |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| |
| if (IsVarArg) { |
| // Handle fixed and variable vector arguments differently. |
| // Variable vector arguments always go into memory. |
| unsigned NumArgs = Outs.size(); |
| |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT ArgVT = Outs[i].VT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, |
| /*IsVarArg=*/ !Outs[i].IsFixed); |
| bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); |
| assert(!Res && "Call operand has unhandled type"); |
| (void)Res; |
| } |
| } else { |
| // At this point, Outs[].VT may already be promoted to i32. To correctly |
| // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and |
| // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. |
| // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here |
| // we use a special version of AnalyzeCallOperands to pass in ValVT and |
| // LocVT. |
| unsigned NumArgs = Outs.size(); |
| for (unsigned i = 0; i != NumArgs; ++i) { |
| MVT ValVT = Outs[i].VT; |
| // Get type of the original argument. |
| EVT ActualVT = getValueType(DAG.getDataLayout(), |
| CLI.getArgs()[Outs[i].OrigArgIndex].Ty, |
| /*AllowUnknown*/ true); |
| MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; |
| ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
| // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. |
| if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) |
| ValVT = MVT::i8; |
| else if (ActualMVT == MVT::i16) |
| ValVT = MVT::i16; |
| |
| CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); |
| bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); |
| assert(!Res && "Call operand has unhandled type"); |
| (void)Res; |
| } |
| } |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| if (IsSibCall) { |
| // Since we're not changing the ABI to make this a tail call, the memory |
| // operands are already available in the caller's incoming argument space. |
| NumBytes = 0; |
| } |
| |
| // FPDiff is the byte offset of the call's argument area from the callee's. |
| // Stores to callee stack arguments will be placed in FixedStackSlots offset |
| // by this amount for a tail call. In a sibling call it must be 0 because the |
| // caller will deallocate the entire stack and the callee still expects its |
| // arguments to begin at SP+0. Completely unused for non-tail calls. |
| int FPDiff = 0; |
| |
| if (IsTailCall && !IsSibCall) { |
| unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); |
| |
| // Since callee will pop argument stack as a tail call, we must keep the |
| // popped size 16-byte aligned. |
| NumBytes = alignTo(NumBytes, 16); |
| |
| // FPDiff will be negative if this tail call requires more space than we |
| // would automatically have in our incoming argument space. Positive if we |
| // can actually shrink the stack. |
| FPDiff = NumReusableBytes - NumBytes; |
| |
| // The stack pointer must be 16-byte aligned at all times it's used for a |
| // memory operation, which in practice means at *all* times and in |
| // particular across call boundaries. Therefore our own arguments started at |
| // a 16-byte aligned SP and the delta applied for the tail call should |
| // satisfy the same constraint. |
| assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); |
| } |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| if (!IsSibCall) |
| Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); |
| |
| SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, |
| getPointerTy(DAG.getDataLayout())); |
| |
| SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[realArgIdx]; |
| ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| if (Outs[realArgIdx].ArgVT == MVT::i1) { |
| // AAPCS requires i1 to be zero-extended to 8-bits by the caller. |
| Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); |
| } |
| Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::FPExt: |
| Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.isRegLoc()) { |
| if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && |
| Outs[0].VT == MVT::i64) { |
| assert(VA.getLocVT() == MVT::i64 && |
| "unexpected calling convention register assignment"); |
| assert(!Ins.empty() && Ins[0].VT == MVT::i64 && |
| "unexpected use of 'returned'"); |
| IsThisReturn = true; |
| } |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| SDValue DstAddr; |
| MachinePointerInfo DstInfo; |
| |
| // FIXME: This works on big-endian for composite byvals, which are the |
| // common case. It should also work for fundamental types too. |
| uint32_t BEAlign = 0; |
| unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 |
| : VA.getValVT().getSizeInBits(); |
| OpSize = (OpSize + 7) / 8; |
| if (!Subtarget->isLittleEndian() && !Flags.isByVal() && |
| !Flags.isInConsecutiveRegs()) { |
| if (OpSize < 8) |
| BEAlign = 8 - OpSize; |
| } |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| int32_t Offset = LocMemOffset + BEAlign; |
| SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); |
| PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); |
| |
| if (IsTailCall) { |
| Offset = Offset + FPDiff; |
| int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); |
| |
| DstAddr = DAG.getFrameIndex(FI, PtrVT); |
| DstInfo = |
| MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); |
| |
| // Make sure any stack arguments overlapping with where we're storing |
| // are loaded before this eventual operation. Otherwise they'll be |
| // clobbered. |
| Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); |
| } else { |
| SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); |
| |
| DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); |
| DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(), |
| LocMemOffset); |
| } |
| |
| if (Outs[i].Flags.isByVal()) { |
| SDValue SizeNode = |
| DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); |
| SDValue Cpy = DAG.getMemcpy( |
| Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), |
| /*isVol = */ false, /*AlwaysInline = */ false, |
| /*isTailCall = */ false, |
| DstInfo, MachinePointerInfo()); |
| |
| MemOpChains.push_back(Cpy); |
| } else { |
| // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already |
| // promoted to a legal register type i32, we should truncate Arg back to |
| // i1/i8/i16. |
| if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || |
| VA.getValVT() == MVT::i16) |
| Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); |
| |
| SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); |
| MemOpChains.push_back(Store); |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| for (auto &RegToPass : RegsToPass) { |
| Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, |
| RegToPass.second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| auto GV = G->getGlobal(); |
| if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) == |
| AArch64II::MO_GOT) { |
| Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT); |
| Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); |
| } else if (Subtarget->isTargetCOFF() && GV->hasDLLImportStorageClass()) { |
| assert(Subtarget->isTargetWindows() && |
| "Windows is the only supported COFF target"); |
| Callee = getGOT(G, DAG, AArch64II::MO_DLLIMPORT); |
| } else { |
| const GlobalValue *GV = G->getGlobal(); |
| Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); |
| } |
| } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| if (getTargetMachine().getCodeModel() == CodeModel::Large && |
| Subtarget->isTargetMachO()) { |
| const char *Sym = S->getSymbol(); |
| Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); |
| Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); |
| } else { |
| const char *Sym = S->getSymbol(); |
| Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); |
| } |
| } |
| |
| // We don't usually want to end the call-sequence here because we would tidy |
| // the frame up *after* the call, however in the ABI-changing tail-call case |
| // we've carefully laid out the parameters so that when sp is reset they'll be |
| // in the correct location. |
| if (IsTailCall && !IsSibCall) { |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), |
| DAG.getIntPtrConstant(0, DL, true), InFlag, DL); |
| InFlag = Chain.getValue(1); |
| } |
| |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| if (IsTailCall) { |
| // Each tail call may have to adjust the stack by a different amount, so |
| // this information must travel along with the operation for eventual |
| // consumption by emitEpilogue. |
| Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); |
| } |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (auto &RegToPass : RegsToPass) |
| Ops.push_back(DAG.getRegister(RegToPass.first, |
| RegToPass.second.getValueType())); |
| |
| // Add a register mask operand representing the call-preserved registers. |
| const uint32_t *Mask; |
| const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| if (IsThisReturn) { |
| // For 'this' returns, use the X0-preserving mask if applicable |
| Mask = TRI->getThisReturnPreservedMask(MF, CallConv); |
| if (!Mask) { |
| IsThisReturn = false; |
| Mask = TRI->getCallPreservedMask(MF, CallConv); |
| } |
| } else |
| Mask = TRI->getCallPreservedMask(MF, CallConv); |
| |
| assert(Mask && "Missing call preserved mask for calling convention"); |
| Ops.push_back(DAG.getRegisterMask(Mask)); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| // If we're doing a tall call, use a TC_RETURN here rather than an |
| // actual call instruction. |
| if (IsTailCall) { |
| MF.getFrameInfo().setHasTailCall(); |
| return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); |
| } |
| |
| // Returns a chain and a flag for retval copy to use. |
| Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| uint64_t CalleePopBytes = |
| DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0; |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true), |
| DAG.getIntPtrConstant(CalleePopBytes, DL, true), |
| InFlag, DL); |
| if (!Ins.empty()) |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, |
| InVals, IsThisReturn, |
| IsThisReturn ? OutVals[0] : SDValue()); |
| } |
| |
| bool AArch64TargetLowering::CanLowerReturn( |
| CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { |
| CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS |
| ? RetCC_AArch64_WebKit_JS |
| : RetCC_AArch64_AAPCS; |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| return CCInfo.CheckReturn(Outs, RetCC); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS |
| ? RetCC_AArch64_WebKit_JS |
| : RetCC_AArch64_AAPCS; |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeReturn(Outs, RetCC); |
| |
| // Copy the result values into the output registers. |
| SDValue Flag; |
| SmallVector<SDValue, 4> RetOps(1, Chain); |
| for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); |
| ++i, ++realRVLocIdx) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| SDValue Arg = OutVals[realRVLocIdx]; |
| |
| switch (VA.getLocInfo()) { |
| default: |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| if (Outs[i].ArgVT == MVT::i1) { |
| // AAPCS requires i1 to be zero-extended to i8 by the producer of the |
| // value. This is strictly redundant on Darwin (which uses "zeroext |
| // i1"), but will be optimised out before ISel. |
| Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); |
| } |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); |
| Flag = Chain.getValue(1); |
| RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); |
| } |
| const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const MCPhysReg *I = |
| TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); |
| if (I) { |
| for (; *I; ++I) { |
| if (AArch64::GPR64RegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::i64)); |
| else if (AArch64::FPR64RegClass.contains(*I)) |
| RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| } |
| } |
| |
| RetOps[0] = Chain; // Update chain. |
| |
| // Add the flag if we have it. |
| if (Flag.getNode()) |
| RetOps.push_back(Flag); |
| |
| return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, |
| N->getOffset(), Flag); |
| } |
| |
| SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); |
| } |
| |
| SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), |
| N->getOffset(), Flag); |
| } |
| |
| SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty, |
| SelectionDAG &DAG, |
| unsigned Flag) const { |
| return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); |
| } |
| |
| // (loadGOT sym) |
| template <class NodeTy> |
| SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG, |
| unsigned Flags) const { |
| LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n"); |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags); |
| // FIXME: Once remat is capable of dealing with instructions with register |
| // operands, expand this into two nodes instead of using a wrapper node. |
| return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr); |
| } |
| |
| // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym)) |
| template <class NodeTy> |
| SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG, |
| unsigned Flags) const { |
| LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n"); |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| const unsigned char MO_NC = AArch64II::MO_NC; |
| return DAG.getNode( |
| AArch64ISD::WrapperLarge, DL, Ty, |
| getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags), |
| getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags), |
| getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags), |
| getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags)); |
| } |
| |
| // (addlow (adrp %hi(sym)) %lo(sym)) |
| template <class NodeTy> |
| SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, |
| unsigned Flags) const { |
| LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n"); |
| SDLoc DL(N); |
| EVT Ty = getPointerTy(DAG.getDataLayout()); |
| SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags); |
| SDValue Lo = getTargetNode(N, Ty, DAG, |
| AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags); |
| SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi); |
| return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo); |
| } |
| |
| SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = GN->getGlobal(); |
| const AArch64II::TOF TargetFlags = |
| (GV->hasDLLImportStorageClass() ? AArch64II::MO_DLLIMPORT |
| : AArch64II::MO_NO_FLAG); |
| unsigned char OpFlags = |
| Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); |
| |
| if (OpFlags != AArch64II::MO_NO_FLAG) |
| assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && |
| "unexpected offset in global node"); |
| |
| // This also catches the large code model case for Darwin. |
| if ((OpFlags & AArch64II::MO_GOT) != 0) { |
| return getGOT(GN, DAG, TargetFlags); |
| } |
| |
| SDValue Result; |
| if (getTargetMachine().getCodeModel() == CodeModel::Large) { |
| Result = getAddrLarge(GN, DAG, TargetFlags); |
| } else { |
| Result = getAddr(GN, DAG, TargetFlags); |
| } |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDLoc DL(GN); |
| if (GV->hasDLLImportStorageClass()) |
| Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction())); |
| return Result; |
| } |
| |
| /// Convert a TLS address reference into the correct sequence of loads |
| /// and calls to compute the variable's address (for Darwin, currently) and |
| /// return an SDValue containing the final node. |
| |
| /// Darwin only has one TLS scheme which must be capable of dealing with the |
| /// fully general situation, in the worst case. This means: |
| /// + "extern __thread" declaration. |
| /// + Defined in a possibly unknown dynamic library. |
| /// |
| /// The general system is that each __thread variable has a [3 x i64] descriptor |
| /// which contains information used by the runtime to calculate the address. The |
| /// only part of this the compiler needs to know about is the first xword, which |
| /// contains a function pointer that must be called with the address of the |
| /// entire descriptor in "x0". |
| /// |
| /// Since this descriptor may be in a different unit, in general even the |
| /// descriptor must be accessed via an indirect load. The "ideal" code sequence |
| /// is: |
| /// adrp x0, _var@TLVPPAGE |
| /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor |
| /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, |
| /// ; the function pointer |
| /// blr x1 ; Uses descriptor address in x0 |
| /// ; Address of _var is now in x0. |
| /// |
| /// If the address of _var's descriptor *is* known to the linker, then it can |
| /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for |
| /// a slight efficiency gain. |
| SDValue |
| AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetDarwin() && |
| "This function expects a Darwin target"); |
| |
| SDLoc DL(Op); |
| MVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| |
| SDValue TLVPAddr = |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); |
| SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); |
| |
| // The first entry in the descriptor is a function pointer that we must call |
| // to obtain the address of the variable. |
| SDValue Chain = DAG.getEntryNode(); |
| SDValue FuncTLVGet = DAG.getLoad( |
| MVT::i64, DL, Chain, DescAddr, |
| MachinePointerInfo::getGOT(DAG.getMachineFunction()), |
| /* Alignment = */ 8, |
| MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant | |
| MachineMemOperand::MODereferenceable); |
| Chain = FuncTLVGet.getValue(1); |
| |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setAdjustsStack(true); |
| |
| // TLS calls preserve all registers except those that absolutely must be |
| // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be |
| // silly). |
| const uint32_t *Mask = |
| Subtarget->getRegisterInfo()->getTLSCallPreservedMask(); |
| |
| // Finally, we can make the call. This is just a degenerate version of a |
| // normal AArch64 call node: x0 takes the address of the descriptor, and |
| // returns the address of the variable in this thread. |
| Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); |
| Chain = |
| DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), |
| Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), |
| DAG.getRegisterMask(Mask), Chain.getValue(1)); |
| return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); |
| } |
| |
| /// When accessing thread-local variables under either the general-dynamic or |
| /// local-dynamic system, we make a "TLS-descriptor" call. The variable will |
| /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry |
| /// is a function pointer to carry out the resolution. |
| /// |
| /// The sequence is: |
| /// adrp x0, :tlsdesc:var |
| /// ldr x1, [x0, #:tlsdesc_lo12:var] |
| /// add x0, x0, #:tlsdesc_lo12:var |
| /// .tlsdesccall var |
| /// blr x1 |
| /// (TPIDR_EL0 offset now in x0) |
| /// |
| /// The above sequence must be produced unscheduled, to enable the linker to |
| /// optimize/relax this sequence. |
| /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the |
| /// above sequence, and expanded really late in the compilation flow, to ensure |
| /// the sequence is produced as per above. |
| SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, |
| const SDLoc &DL, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| SDValue Chain = DAG.getEntryNode(); |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| |
| Chain = |
| DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr}); |
| SDValue Glue = Chain.getValue(1); |
| |
| return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetELF() && "This function expects an ELF target"); |
| assert(Subtarget->useSmallAddressing() && |
| "ELF TLS only supported in small memory model"); |
| // Different choices can be made for the maximum size of the TLS area for a |
| // module. For the small address model, the default TLS size is 16MiB and the |
| // maximum TLS size is 4GiB. |
| // FIXME: add -mtls-size command line option and make it control the 16MiB |
| // vs. 4GiB code sequence generation. |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| |
| TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); |
| |
| if (!EnableAArch64ELFLocalDynamicTLSGeneration) { |
| if (Model == TLSModel::LocalDynamic) |
| Model = TLSModel::GeneralDynamic; |
| } |
| |
| SDValue TPOff; |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDLoc DL(Op); |
| const GlobalValue *GV = GA->getGlobal(); |
| |
| SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); |
| |
| if (Model == TLSModel::LocalExec) { |
| SDValue HiVar = DAG.getTargetGlobalAddress( |
| GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); |
| SDValue LoVar = DAG.getTargetGlobalAddress( |
| GV, DL, PtrVT, 0, |
| AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| |
| SDValue TPWithOff_lo = |
| SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, |
| HiVar, |
| DAG.getTargetConstant(0, DL, MVT::i32)), |
| 0); |
| SDValue TPWithOff = |
| SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo, |
| LoVar, |
| DAG.getTargetConstant(0, DL, MVT::i32)), |
| 0); |
| return TPWithOff; |
| } else if (Model == TLSModel::InitialExec) { |
| TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); |
| TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); |
| } else if (Model == TLSModel::LocalDynamic) { |
| // Local-dynamic accesses proceed in two phases. A general-dynamic TLS |
| // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate |
| // the beginning of the module's TLS region, followed by a DTPREL offset |
| // calculation. |
| |
| // These accesses will need deduplicating if there's more than one. |
| AArch64FunctionInfo *MFI = |
| DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); |
| MFI->incNumLocalDynamicTLSAccesses(); |
| |
| // The call needs a relocation too for linker relaxation. It doesn't make |
| // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of |
| // the address. |
| SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, |
| AArch64II::MO_TLS); |
| |
| // Now we can calculate the offset from TPIDR_EL0 to this module's |
| // thread-local area. |
| TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); |
| |
| // Now use :dtprel_whatever: operations to calculate this variable's offset |
| // in its thread-storage area. |
| SDValue HiVar = DAG.getTargetGlobalAddress( |
| GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); |
| SDValue LoVar = DAG.getTargetGlobalAddress( |
| GV, DL, MVT::i64, 0, |
| AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| |
| TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, |
| DAG.getTargetConstant(0, DL, MVT::i32)), |
| 0); |
| TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, |
| DAG.getTargetConstant(0, DL, MVT::i32)), |
| 0); |
| } else if (Model == TLSModel::GeneralDynamic) { |
| // The call needs a relocation too for linker relaxation. It doesn't make |
| // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of |
| // the address. |
| SDValue SymAddr = |
| DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); |
| |
| // Finally we can make a call to calculate the offset from tpidr_el0. |
| TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); |
| } else |
| llvm_unreachable("Unsupported ELF TLS access model"); |
| |
| return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering"); |
| |
| SDValue Chain = DAG.getEntryNode(); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDLoc DL(Op); |
| |
| SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64); |
| |
| // Load the ThreadLocalStoragePointer from the TEB |
| // A pointer to the TLS array is located at offset 0x58 from the TEB. |
| SDValue TLSArray = |
| DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL)); |
| TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); |
| Chain = TLSArray.getValue(1); |
| |
| // Load the TLS index from the C runtime; |
| // This does the same as getAddr(), but without having a GlobalAddressSDNode. |
| // This also does the same as LOADgot, but using a generic i32 load, |
| // while LOADgot only loads i64. |
| SDValue TLSIndexHi = |
| DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE); |
| SDValue TLSIndexLo = DAG.getTargetExternalSymbol( |
| "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi); |
| SDValue TLSIndex = |
| DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo); |
| TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo()); |
| Chain = TLSIndex.getValue(1); |
| |
| // The pointer to the thread's TLS data area is at the TLS Index scaled by 8 |
| // offset into the TLSArray. |
| TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex); |
| SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, |
| DAG.getConstant(3, DL, PtrVT)); |
| SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, |
| DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), |
| MachinePointerInfo()); |
| Chain = TLS.getValue(1); |
| |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = GA->getGlobal(); |
| SDValue TGAHi = DAG.getTargetGlobalAddress( |
| GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); |
| SDValue TGALo = DAG.getTargetGlobalAddress( |
| GV, DL, PtrVT, 0, |
| AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| |
| // Add the offset from the start of the .tls section (section base). |
| SDValue Addr = |
| SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi, |
| DAG.getTargetConstant(0, DL, MVT::i32)), |
| 0); |
| Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo); |
| return Addr; |
| } |
| |
| SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| if (DAG.getTarget().useEmulatedTLS()) |
| return LowerToTLSEmulatedModel(GA, DAG); |
| |
| if (Subtarget->isTargetDarwin()) |
| return LowerDarwinGlobalTLSAddress(Op, DAG); |
| if (Subtarget->isTargetELF()) |
| return LowerELFGlobalTLSAddress(Op, DAG); |
| if (Subtarget->isTargetWindows()) |
| return LowerWindowsGlobalTLSAddress(Op, DAG); |
| |
| llvm_unreachable("Unexpected platform trying to use TLS"); |
| } |
| |
| SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| SDLoc dl(Op); |
| |
| // Handle f128 first, since lowering it will result in comparing the return |
| // value of a libcall against zero, which is just what the rest of LowerBR_CC |
| // is expecting to deal with. |
| if (LHS.getValueType() == MVT::f128) { |
| softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| |
| // If softenSetCCOperands returned a scalar, we need to compare the result |
| // against zero to select between true and false values. |
| if (!RHS.getNode()) { |
| RHS = DAG.getConstant(0, dl, LHS.getValueType()); |
| CC = ISD::SETNE; |
| } |
| } |
| |
| // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch |
| // instruction. |
| if (isOverflowIntrOpRes(LHS) && isOneConstant(RHS) && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| // Only lower legal XALUO ops. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) |
| return SDValue(); |
| |
| // The actual operation with overflow check. |
| AArch64CC::CondCode OFCC; |
| SDValue Value, Overflow; |
| std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); |
| |
| if (CC == ISD::SETNE) |
| OFCC = getInvertedCondCode(OFCC); |
| SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); |
| |
| return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, |
| Overflow); |
| } |
| |
| if (LHS.getValueType().isInteger()) { |
| assert((LHS.getValueType() == RHS.getValueType()) && |
| (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); |
| |
| // If the RHS of the comparison is zero, we can potentially fold this |
| // to a specialized branch. |
| const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); |
| if (RHSC && RHSC->getZExtValue() == 0) { |
| if (CC == ISD::SETEQ) { |
| // See if we can use a TBZ to fold in an AND as well. |
| // TBZ has a smaller branch displacement than CBZ. If the offset is |
| // out of bounds, a late MI-layer pass rewrites branches. |
| // 403.gcc is an example that hits this case. |
| if (LHS.getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(LHS.getOperand(1)) && |
| isPowerOf2_64(LHS.getConstantOperandVal(1))) { |
| SDValue Test = LHS.getOperand(0); |
| uint64_t Mask = LHS.getConstantOperandVal(1); |
| return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, |
| DAG.getConstant(Log2_64(Mask), dl, MVT::i64), |
| Dest); |
| } |
| |
| return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); |
| } else if (CC == ISD::SETNE) { |
| // See if we can use a TBZ to fold in an AND as well. |
| // TBZ has a smaller branch displacement than CBZ. If the offset is |
| // out of bounds, a late MI-layer pass rewrites branches. |
| // 403.gcc is an example that hits this case. |
| if (LHS.getOpcode() == ISD::AND && |
| isa<ConstantSDNode>(LHS.getOperand(1)) && |
| isPowerOf2_64(LHS.getConstantOperandVal(1))) { |
| SDValue Test = LHS.getOperand(0); |
| uint64_t Mask = LHS.getConstantOperandVal(1); |
| return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, |
| DAG.getConstant(Log2_64(Mask), dl, MVT::i64), |
| Dest); |
| } |
| |
| return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); |
| } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { |
| // Don't combine AND since emitComparison converts the AND to an ANDS |
| // (a.k.a. TST) and the test in the test bit and branch instruction |
| // becomes redundant. This would also increase register pressure. |
| uint64_t Mask = LHS.getValueSizeInBits() - 1; |
| return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, |
| DAG.getConstant(Mask, dl, MVT::i64), Dest); |
| } |
| } |
| if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && |
| LHS.getOpcode() != ISD::AND) { |
| // Don't combine AND since emitComparison converts the AND to an ANDS |
| // (a.k.a. TST) and the test in the test bit and branch instruction |
| // becomes redundant. This would also increase register pressure. |
| uint64_t Mask = LHS.getValueSizeInBits() - 1; |
| return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, |
| DAG.getConstant(Mask, dl, MVT::i64), Dest); |
| } |
| |
| SDValue CCVal; |
| SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); |
| return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, |
| Cmp); |
| } |
| |
| assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || |
| LHS.getValueType() == MVT::f64); |
| |
| // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally |
| // clean. Some of them require two branches to implement. |
| SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); |
| AArch64CC::CondCode CC1, CC2; |
| changeFPCCToAArch64CC(CC, CC1, CC2); |
| SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); |
| SDValue BR1 = |
| DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); |
| if (CC2 != AArch64CC::AL) { |
| SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); |
| return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, |
| Cmp); |
| } |
| |
| return BR1; |
| } |
| |
| SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| |
| SDValue In1 = Op.getOperand(0); |
| SDValue In2 = Op.getOperand(1); |
| EVT SrcVT = In2.getValueType(); |
| |
| if (SrcVT.bitsLT(VT)) |
| In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); |
| else if (SrcVT.bitsGT(VT)) |
| In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL)); |
| |
| EVT VecVT; |
| uint64_t EltMask; |
| SDValue VecVal1, VecVal2; |
| |
| auto setVecVal = [&] (int Idx) { |
| if (!VT.isVector()) { |
| VecVal1 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, |
| DAG.getUNDEF(VecVT), In1); |
| VecVal2 = DAG.getTargetInsertSubreg(Idx, DL, VecVT, |
| DAG.getUNDEF(VecVT), In2); |
| } else { |
| VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); |
| VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); |
| } |
| }; |
| |
| if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { |
| VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32); |
| EltMask = 0x80000000ULL; |
| setVecVal(AArch64::ssub); |
| } else if (VT == MVT::f64 || VT == MVT::v2f64) { |
| VecVT = MVT::v2i64; |
| |
| // We want to materialize a mask with the high bit set, but the AdvSIMD |
| // immediate moves cannot materialize that in a single instruction for |
| // 64-bit elements. Instead, materialize zero and then negate it. |
| EltMask = 0; |
| |
| setVecVal(AArch64::dsub); |
| } else if (VT == MVT::f16 || VT == MVT::v4f16 || VT == MVT::v8f16) { |
| VecVT = (VT == MVT::v4f16 ? MVT::v4i16 : MVT::v8i16); |
| EltMask = 0x8000ULL; |
| setVecVal(AArch64::hsub); |
| } else { |
| llvm_unreachable("Invalid type for copysign!"); |
| } |
| |
| SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT); |
| |
| // If we couldn't materialize the mask above, then the mask vector will be |
| // the zero vector, and we need to negate it here. |
| if (VT == MVT::f64 || VT == MVT::v2f64) { |
| BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); |
| BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); |
| BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); |
| } |
| |
| SDValue Sel = |
| DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); |
| |
| if (VT == MVT::f16) |
| return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, Sel); |
| if (VT == MVT::f32) |
| return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); |
| else if (VT == MVT::f64) |
| return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); |
| else |
| return DAG.getNode(ISD::BITCAST, DL, VT, Sel); |
| } |
| |
| SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { |
| if (DAG.getMachineFunction().getFunction().hasFnAttribute( |
| Attribute::NoImplicitFloat)) |
| return SDValue(); |
| |
| if (!Subtarget->hasNEON()) |
| return SDValue(); |
| |
| // While there is no integer popcount instruction, it can |
| // be more efficiently lowered to the following sequence that uses |
| // AdvSIMD registers/instructions as long as the copies to/from |
| // the AdvSIMD registers are cheap. |
| // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd |
| // CNT V0.8B, V0.8B // 8xbyte pop-counts |
| // ADDV B0, V0.8B // sum 8xbyte pop-counts |
| // UMOV X0, V0.B[0] // copy byte result back to integer reg |
| SDValue Val = Op.getOperand(0); |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::i32) |
| Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); |
| Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); |
| |
| SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); |
| SDValue UaddLV = DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, |
| DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); |
| |
| if (VT == MVT::i64) |
| UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); |
| return UaddLV; |
| } |
| |
| SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { |
| |
| if (Op.getValueType().isVector()) |
| return LowerVSETCC(Op, DAG); |
| |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| SDLoc dl(Op); |
| |
| // We chose ZeroOrOneBooleanContents, so use zero and one. |
| EVT VT = Op.getValueType(); |
| SDValue TVal = DAG.getConstant(1, dl, VT); |
| SDValue FVal = DAG.getConstant(0, dl, VT); |
| |
| // Handle f128 first, since one possible outcome is a normal integer |
| // comparison which gets picked up by the next if statement. |
| if (LHS.getValueType() == MVT::f128) { |
| softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| |
| // If softenSetCCOperands returned a scalar, use it. |
| if (!RHS.getNode()) { |
| assert(LHS.getValueType() == Op.getValueType() && |
| "Unexpected setcc expansion!"); |
| return LHS; |
| } |
| } |
| |
| if (LHS.getValueType().isInteger()) { |
| SDValue CCVal; |
| SDValue Cmp = |
| getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl); |
| |
| // Note that we inverted the condition above, so we reverse the order of |
| // the true and false operands here. This will allow the setcc to be |
| // matched to a single CSINC instruction. |
| return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); |
| } |
| |
| // Now we know we're dealing with FP values. |
| assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || |
| LHS.getValueType() == MVT::f64); |
| |
| // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead |
| // and do the comparison. |
| SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); |
| |
| AArch64CC::CondCode CC1, CC2; |
| changeFPCCToAArch64CC(CC, CC1, CC2); |
| if (CC2 == AArch64CC::AL) { |
| changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2); |
| SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); |
| |
| // Note that we inverted the condition above, so we reverse the order of |
| // the true and false operands here. This will allow the setcc to be |
| // matched to a single CSINC instruction. |
| return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); |
| } else { |
| // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't |
| // totally clean. Some of them require two CSELs to implement. As is in |
| // this case, we emit the first CSEL and then emit a second using the output |
| // of the first as the RHS. We're effectively OR'ing the two CC's together. |
| |
| // FIXME: It would be nice if we could match the two CSELs to two CSINCs. |
| SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); |
| SDValue CS1 = |
| DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); |
| |
| SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); |
| return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); |
| } |
| } |
| |
| SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, |
| SDValue RHS, SDValue TVal, |
| SDValue FVal, const SDLoc &dl, |
| SelectionDAG &DAG) const { |
| // Handle f128 first, because it will result in a comparison of some RTLIB |
| // call result against zero. |
| if (LHS.getValueType() == MVT::f128) { |
| softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); |
| |
| // If softenSetCCOperands returned a scalar, we need to compare the result |
| // against zero to select between true and false values. |
| if (!RHS.getNode()) { |
| RHS = DAG.getConstant(0, dl, LHS.getValueType()); |
| CC = ISD::SETNE; |
| } |
| } |
| |
| // Also handle f16, for which we need to do a f32 comparison. |
| if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { |
| LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); |
| RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); |
| } |
| |
| // Next, handle integers. |
| if (LHS.getValueType().isInteger()) { |
| assert((LHS.getValueType() == RHS.getValueType()) && |
| (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); |
| |
| unsigned Opcode = AArch64ISD::CSEL; |
| |
| // If both the TVal and the FVal are constants, see if we can swap them in |
| // order to for a CSINV or CSINC out of them. |
| ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); |
| ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); |
| |
| if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { |
| std::swap(TVal, FVal); |
| std::swap(CTVal, CFVal); |
| CC = ISD::getSetCCInverse(CC, true); |
| } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { |
| std::swap(TVal, FVal); |
| std::swap(CTVal, CFVal); |
| CC = ISD::getSetCCInverse(CC, true); |
| } else if (TVal.getOpcode() == ISD::XOR) { |
| // If TVal is a NOT we want to swap TVal and FVal so that we can match |
| // with a CSINV rather than a CSEL. |
| if (isAllOnesConstant(TVal.getOperand(1))) { |
| std::swap(TVal, FVal); |
| std::swap(CTVal, CFVal); |
| CC = ISD::getSetCCInverse(CC, true); |
| } |
| } else if (TVal.getOpcode() == ISD::SUB) { |
| // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so |
| // that we can match with a CSNEG rather than a CSEL. |
| if (isNullConstant(TVal.getOperand(0))) { |
| std::swap(TVal, FVal); |
| std::swap(CTVal, CFVal); |
| CC = ISD::getSetCCInverse(CC, true); |
| } |
| } else if (CTVal && CFVal) { |
| const int64_t TrueVal = CTVal->getSExtValue(); |
| const int64_t FalseVal = CFVal->getSExtValue(); |
| bool Swap = false; |
| |
| // If both TVal and FVal are constants, see if FVal is the |
| // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC |
| // instead of a CSEL in that case. |
| if (TrueVal == ~FalseVal) { |
| Opcode = AArch64ISD::CSINV; |
| } else if (TrueVal == -FalseVal) { |
| Opcode = AArch64ISD::CSNEG; |
| } else if (TVal.getValueType() == MVT::i32) { |
| // If our operands are only 32-bit wide, make sure we use 32-bit |
| // arithmetic for the check whether we can use CSINC. This ensures that |
| // the addition in the check will wrap around properly in case there is |
| // an overflow (which would not be the case if we do the check with |
| // 64-bit arithmetic). |
| const uint32_t TrueVal32 = CTVal->getZExtValue(); |
| const uint32_t FalseVal32 = CFVal->getZExtValue(); |
| |
| if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { |
| Opcode = AArch64ISD::CSINC; |
| |
| if (TrueVal32 > FalseVal32) { |
| Swap = true; |
| } |
| } |
| // 64-bit check whether we can use CSINC. |
| } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { |
| Opcode = AArch64ISD::CSINC; |
| |
| if (TrueVal > FalseVal) { |
| Swap = true; |
| } |
| } |
| |
| // Swap TVal and FVal if necessary. |
| if (Swap) { |
| std::swap(TVal, FVal); |
| std::swap(CTVal, CFVal); |
| CC = ISD::getSetCCInverse(CC, true); |
| } |
| |
| if (Opcode != AArch64ISD::CSEL) { |
| // Drop FVal since we can get its value by simply inverting/negating |
| // TVal. |
| FVal = TVal; |
| } |
| } |
| |
| // Avoid materializing a constant when possible by reusing a known value in |
| // a register. However, don't perform this optimization if the known value |
| // is one, zero or negative one in the case of a CSEL. We can always |
| // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the |
| // FVal, respectively. |
| ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS); |
| if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() && |
| !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) { |
| AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); |
| // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to |
| // "a != C ? x : a" to avoid materializing C. |
| if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ) |
| TVal = LHS; |
| else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE) |
| FVal = LHS; |
| } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) { |
| assert (CTVal && CFVal && "Expected constant operands for CSNEG."); |
| // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to |
| // avoid materializing C. |
| AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); |
| if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) { |
| Opcode = AArch64ISD::CSINV; |
| TVal = LHS; |
| FVal = DAG.getConstant(0, dl, FVal.getValueType()); |
| } |
| } |
| |
| SDValue CCVal; |
| SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); |
| EVT VT = TVal.getValueType(); |
| return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); |
| } |
| |
| // Now we know we're dealing with FP values. |
| assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || |
| LHS.getValueType() == MVT::f64); |
| assert(LHS.getValueType() == RHS.getValueType()); |
| EVT VT = TVal.getValueType(); |
| SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); |
| |
| // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally |
| // clean. Some of them require two CSELs to implement. |
| AArch64CC::CondCode CC1, CC2; |
| changeFPCCToAArch64CC(CC, CC1, CC2); |
| |
| if (DAG.getTarget().Options.UnsafeFPMath) { |
| // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and |
| // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0. |
| ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS); |
| if (RHSVal && RHSVal->isZero()) { |
| ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal); |
| ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal); |
| |
| if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) && |
| CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType()) |
| TVal = LHS; |
| else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) && |
| CFVal && CFVal->isZero() && |
| FVal.getValueType() == LHS.getValueType()) |
| FVal = LHS; |
| } |
| } |
| |
| // Emit first, and possibly only, CSEL. |
| SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); |
| SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); |
| |
| // If we need a second CSEL, emit it, using the output of the first as the |
| // RHS. We're effectively OR'ing the two CC's together. |
| if (CC2 != AArch64CC::AL) { |
| SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); |
| return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); |
| } |
| |
| // Otherwise, return the output of the first CSEL. |
| return CS1; |
| } |
| |
| SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, |
| SelectionDAG &DAG) const { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue TVal = Op.getOperand(2); |
| SDValue FVal = Op.getOperand(3); |
| SDLoc DL(Op); |
| return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); |
| } |
| |
| SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue CCVal = Op->getOperand(0); |
| SDValue TVal = Op->getOperand(1); |
| SDValue FVal = Op->getOperand(2); |
| SDLoc DL(Op); |
| |
| // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select |
| // instruction. |
| if (isOverflowIntrOpRes(CCVal)) { |
| // Only lower legal XALUO ops. |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) |
| return SDValue(); |
| |
| AArch64CC::CondCode OFCC; |
| SDValue Value, Overflow; |
| std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); |
| SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); |
| |
| return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, |
| CCVal, Overflow); |
| } |
| |
| // Lower it the same way as we would lower a SELECT_CC node. |
| ISD::CondCode CC; |
| SDValue LHS, RHS; |
| if (CCVal.getOpcode() == ISD::SETCC) { |
| LHS = CCVal.getOperand(0); |
| RHS = CCVal.getOperand(1); |
| CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get(); |
| } else { |
| LHS = CCVal; |
| RHS = DAG.getConstant(0, DL, CCVal.getValueType()); |
| CC = ISD::SETNE; |
| } |
| return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); |
| } |
| |
| SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Jump table entries as PC relative offsets. No additional tweaking |
| // is necessary here. Just get the address of the jump table. |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| |
| if (getTargetMachine().getCodeModel() == CodeModel::Large && |
| !Subtarget->isTargetMachO()) { |
| return getAddrLarge(JT, DAG); |
| } |
| return getAddr(JT, DAG); |
| } |
| |
| SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, |
| SelectionDAG &DAG) const { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| |
| if (getTargetMachine().getCodeModel() == CodeModel::Large) { |
| // Use the GOT for the large code model on iOS. |
| if (Subtarget->isTargetMachO()) { |
| return getGOT(CP, DAG); |
| } |
| return getAddrLarge(CP, DAG); |
| } else { |
| return getAddr(CP, DAG); |
| } |
| } |
| |
| SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op); |
| if (getTargetMachine().getCodeModel() == CodeModel::Large && |
| !Subtarget->isTargetMachO()) { |
| return getAddrLarge(BA, DAG); |
| } else { |
| return getAddr(BA, DAG); |
| } |
| } |
| |
| SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, |
| SelectionDAG &DAG) const { |
| AArch64FunctionInfo *FuncInfo = |
| DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); |
| |
| SDLoc DL(Op); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), |
| getPointerTy(DAG.getDataLayout())); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op, |
| SelectionDAG &DAG) const { |
| AArch64FunctionInfo *FuncInfo = |
| DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); |
| |
| SDLoc DL(Op); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0 |
| ? FuncInfo->getVarArgsGPRIndex() |
| : FuncInfo->getVarArgsStackIndex(), |
| getPointerTy(DAG.getDataLayout())); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), |
| MachinePointerInfo(SV)); |
| } |
| |
| SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, |
| SelectionDAG &DAG) const { |
| // The layout of the va_list struct is specified in the AArch64 Procedure Call |
| // Standard, section B.3. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDLoc DL(Op); |
| |
| SDValue Chain = Op.getOperand(0); |
| SDValue VAList = Op.getOperand(1); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| SmallVector<SDValue, 4> MemOps; |
| |
| // void *__stack at offset 0 |
| SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); |
| MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, |
| MachinePointerInfo(SV), /* Alignment = */ 8)); |
| |
| // void *__gr_top at offset 8 |
| int GPRSize = FuncInfo->getVarArgsGPRSize(); |
| if (GPRSize > 0) { |
| SDValue GRTop, GRTopAddr; |
| |
| GRTopAddr = |
| DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT)); |
| |
| GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); |
| GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, |
| DAG.getConstant(GPRSize, DL, PtrVT)); |
| |
| MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, |
| MachinePointerInfo(SV, 8), |
| /* Alignment = */ 8)); |
| } |
| |
| // void *__vr_top at offset 16 |
| int FPRSize = FuncInfo->getVarArgsFPRSize(); |
| if (FPRSize > 0) { |
| SDValue VRTop, VRTopAddr; |
| VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, |
| DAG.getConstant(16, DL, PtrVT)); |
| |
| VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); |
| VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, |
| DAG.getConstant(FPRSize, DL, PtrVT)); |
| |
| MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, |
| MachinePointerInfo(SV, 16), |
| /* Alignment = */ 8)); |
| } |
| |
| // int __gr_offs at offset 24 |
| SDValue GROffsAddr = |
| DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT)); |
| MemOps.push_back(DAG.getStore( |
| Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr, |
| MachinePointerInfo(SV, 24), /* Alignment = */ 4)); |
| |
| // int __vr_offs at offset 28 |
| SDValue VROffsAddr = |
| DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT)); |
| MemOps.push_back(DAG.getStore( |
| Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr, |
| MachinePointerInfo(SV, 28), /* Alignment = */ 4)); |
| |
| return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); |
| } |
| |
| SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv())) |
| return LowerWin64_VASTART(Op, DAG); |
| else if (Subtarget->isTargetDarwin()) |
| return LowerDarwin_VASTART(Op, DAG); |
| else |
| return LowerAAPCS_VASTART(Op, DAG); |
| } |
| |
| SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, |
| SelectionDAG &DAG) const { |
| // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single |
| // pointer. |
| SDLoc DL(Op); |
| unsigned VaListSize = |
| Subtarget->isTargetDarwin() || Subtarget->isTargetWindows() ? 8 : 32; |
| const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); |
| const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); |
| |
| return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), |
| Op.getOperand(2), |
| DAG.getConstant(VaListSize, DL, MVT::i32), |
| 8, false, false, false, MachinePointerInfo(DestSV), |
| MachinePointerInfo(SrcSV)); |
| } |
| |
| SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetDarwin() && |
| "automatic va_arg instruction only works on Darwin"); |
| |
| const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Addr = Op.getOperand(1); |
| unsigned Align = Op.getConstantOperandVal(3); |
| auto PtrVT = getPointerTy(DAG.getDataLayout()); |
| |
| SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V)); |
| Chain = VAList.getValue(1); |
| |
| if (Align > 8) { |
| assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); |
| VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, |
| DAG.getConstant(Align - 1, DL, PtrVT)); |
| VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, |
| DAG.getConstant(-(int64_t)Align, DL, PtrVT)); |
| } |
| |
| Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); |
| uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); |
| |
| // Scalar integer and FP values smaller than 64 bits are implicitly extended |
| // up to 64 bits. At the very least, we have to increase the striding of the |
| // vaargs list to match this, and for FP values we need to introduce |
| // FP_ROUND nodes as well. |
| if (VT.isInteger() && !VT.isVector()) |
| ArgSize = 8; |
| bool NeedFPTrunc = false; |
| if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { |
| ArgSize = 8; |
| NeedFPTrunc = true; |
| } |
| |
| // Increment the pointer, VAList, to the next vaarg |
| SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, |
| DAG.getConstant(ArgSize, DL, PtrVT)); |
| // Store the incremented VAList to the legalized pointer |
| SDValue APStore = |
| DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V)); |
| |
| // Load the actual argument out of the pointer VAList |
| if (NeedFPTrunc) { |
| // Load the value as an f64. |
| SDValue WideFP = |
| DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo()); |
| // Round the value down to an f32. |
| SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), |
| DAG.getIntPtrConstant(1, DL)); |
| SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; |
| // Merge the rounded value with the chain output of the load. |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo()); |
| } |
| |
| SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI.setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| SDValue FrameAddr = |
| DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, |
| MachinePointerInfo()); |
| return FrameAddr; |
| } |
| |
| // FIXME? Maybe this could be a TableGen attribute on some registers and |
| // this table could be generated automatically from RegInfo. |
| unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT, |
| SelectionDAG &DAG) const { |
| unsigned Reg = StringSwitch<unsigned>(RegName) |
| .Case("sp", AArch64::SP) |
| .Case("x18", AArch64::X18) |
| .Case("w18", AArch64::W18) |
| .Case("x20", AArch64::X20) |
| .Case("w20", AArch64::W20) |
| .Default(0); |
| if (((Reg == AArch64::X18 || Reg == AArch64::W18) && |
| !Subtarget->isX18Reserved()) || |
| ((Reg == AArch64::X20 || Reg == AArch64::W20) && |
| !Subtarget->isX20Reserved())) |
| Reg = 0; |
| if (Reg) |
| return Reg; |
| report_fatal_error(Twine("Invalid register name \"" |
| + StringRef(RegName) + "\".")); |
| } |
| |
| SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| MFI.setReturnAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); |
| return DAG.getLoad(VT, DL, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), |
| MachinePointerInfo()); |
| } |
| |
| // Return LR, which contains the return address. Mark it an implicit live-in. |
| unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); |
| } |
| |
| /// LowerShiftRightParts - Lower SRA_PARTS, which returns two |
| /// i64 values and take a 2 x i64 value to shift plus a shift amount. |
| SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| |
| assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, |
| DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); |
| SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); |
| |
| // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which |
| // is "undef". We wanted 0, so CSEL it directly. |
| SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), |
| ISD::SETEQ, dl, DAG); |
| SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); |
| HiBitsForLo = |
| DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), |
| HiBitsForLo, CCVal, Cmp); |
| |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i64)); |
| |
| SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); |
| SDValue LoForNormalShift = |
| DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo); |
| |
| Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, |
| dl, DAG); |
| CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); |
| SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); |
| SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, |
| LoForNormalShift, CCVal, Cmp); |
| |
| // AArch64 shifts larger than the register width are wrapped rather than |
| // clamped, so we can't just emit "hi >> x". |
| SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue HiForBigShift = |
| Opc == ISD::SRA |
| ? DAG.getNode(Opc, dl, VT, ShOpHi, |
| DAG.getConstant(VTBits - 1, dl, MVT::i64)) |
| : DAG.getConstant(0, dl, VT); |
| SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, |
| HiForNormalShift, CCVal, Cmp); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two |
| /// i64 values and take a 2 x i64 value to shift plus a shift amount. |
| SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| SDLoc dl(Op); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| |
| assert(Op.getOpcode() == ISD::SHL_PARTS); |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, |
| DAG.getConstant(VTBits, dl, MVT::i64), ShAmt); |
| SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| |
| // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which |
| // is "undef". We wanted 0, so CSEL it directly. |
| SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64), |
| ISD::SETEQ, dl, DAG); |
| SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32); |
| LoBitsForHi = |
| DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64), |
| LoBitsForHi, CCVal, Cmp); |
| |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, |
| DAG.getConstant(VTBits, dl, MVT::i64)); |
| SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| SDValue HiForNormalShift = |
| DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi); |
| |
| SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| |
| Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE, |
| dl, DAG); |
| CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32); |
| SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift, |
| HiForNormalShift, CCVal, Cmp); |
| |
| // AArch64 shifts of larger than register sizes are wrapped rather than |
| // clamped, so we can't just emit "lo << a" if a is too big. |
| SDValue LoForBigShift = DAG.getConstant(0, dl, VT); |
| SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift, |
| LoForNormalShift, CCVal, Cmp); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| bool AArch64TargetLowering::isOffsetFoldingLegal( |
| const GlobalAddressSDNode *GA) const { |
| // Offsets are folded in the DAG combine rather than here so that we can |
| // intelligently choose an offset based on the uses. |
| return false; |
| } |
| |
| bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases. |
| // FIXME: We should be able to handle f128 as well with a clever lowering. |
| if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32 || |
| (VT == MVT::f16 && Subtarget->hasFullFP16()))) { |
| LLVM_DEBUG( |
| dbgs() << "Legal fp imm: materialize 0 using the zero register\n"); |
| return true; |
| } |
| |
| StringRef FPType; |
| bool IsLegal = false; |
| SmallString<128> ImmStrVal; |
| Imm.toString(ImmStrVal); |
| |
| if (VT == MVT::f64) { |
| FPType = "f64"; |
| IsLegal = AArch64_AM::getFP64Imm(Imm) != -1; |
| } else if (VT == MVT::f32) { |
| FPType = "f32"; |
| IsLegal = AArch64_AM::getFP32Imm(Imm) != -1; |
| } else if (VT == MVT::f16 && Subtarget->hasFullFP16()) { |
| FPType = "f16"; |
| IsLegal = AArch64_AM::getFP16Imm(Imm) != -1; |
| } |
| |
| if (IsLegal) { |
| LLVM_DEBUG(dbgs() << "Legal " << FPType << " imm value: " << ImmStrVal |
| << "\n"); |
| return true; |
| } |
| |
| if (!FPType.empty()) |
| LLVM_DEBUG(dbgs() << "Illegal " << FPType << " imm value: " << ImmStrVal |
| << "\n"); |
| else |
| LLVM_DEBUG(dbgs() << "Illegal fp imm " << ImmStrVal |
| << ": unsupported fp type\n"); |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64 Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode, |
| SDValue Operand, SelectionDAG &DAG, |
| int &ExtraSteps) { |
| EVT VT = Operand.getValueType(); |
| if (ST->hasNEON() && |
| (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 || |
| VT == MVT::f32 || VT == MVT::v1f32 || |
| VT == MVT::v2f32 || VT == MVT::v4f32)) { |
| if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) |
| // For the reciprocal estimates, convergence is quadratic, so the number |
| // of digits is doubled after each iteration. In ARMv8, the accuracy of |
| // the initial estimate is 2^-8. Thus the number of extra steps to refine |
| // the result for float (23 mantissa bits) is 2 and for double (52 |
| // mantissa bits) is 3. |
| ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2; |
| |
| return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand, |
| SelectionDAG &DAG, int Enabled, |
| int &ExtraSteps, |
| bool &UseOneConst, |
| bool Reciprocal) const { |
| if (Enabled == ReciprocalEstimate::Enabled || |
| (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt())) |
| if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand, |
| DAG, ExtraSteps)) { |
| SDLoc DL(Operand); |
| EVT VT = Operand.getValueType(); |
| |
| SDNodeFlags Flags; |
| Flags.setAllowReassociation(true); |
| |
| // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2) |
| // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) |
| for (int i = ExtraSteps; i > 0; --i) { |
| SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate, |
| Flags); |
| Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags); |
| Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); |
| } |
| if (!Reciprocal) { |
| EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), |
| VT); |
| SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); |
| SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ); |
| |
| Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags); |
| // Correct the result if the operand is 0.0. |
| Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, |
| VT, Eq, Operand, Estimate); |
| } |
| |
| ExtraSteps = 0; |
| return Estimate; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand, |
| SelectionDAG &DAG, int Enabled, |
| int &ExtraSteps) const { |
| if (Enabled == ReciprocalEstimate::Enabled) |
| if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand, |
| DAG, ExtraSteps)) { |
| SDLoc DL(Operand); |
| EVT VT = Operand.getValueType(); |
| |
| SDNodeFlags Flags; |
| Flags.setAllowReassociation(true); |
| |
| // Newton reciprocal iteration: E * (2 - X * E) |
| // AArch64 reciprocal iteration instruction: (2 - M * N) |
| for (int i = ExtraSteps; i > 0; --i) { |
| SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand, |
| Estimate, Flags); |
| Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); |
| } |
| |
| ExtraSteps = 0; |
| return Estimate; |
| } |
| |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64 Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| // Table of Constraints |
| // TODO: This is the current set of constraints supported by ARM for the |
| // compiler, not all of them may make sense. |
| // |
| // r - A general register |
| // w - An FP/SIMD register of some size in the range v0-v31 |
| // x - An FP/SIMD register of some size in the range v0-v15 |
| // I - Constant that can be used with an ADD instruction |
| // J - Constant that can be used with a SUB instruction |
| // K - Constant that can be used with a 32-bit logical instruction |
| // L - Constant that can be used with a 64-bit logical instruction |
| // M - Constant that can be used as a 32-bit MOV immediate |
| // N - Constant that can be used as a 64-bit MOV immediate |
| // Q - A memory reference with base register and no offset |
| // S - A symbolic address |
| // Y - Floating point constant zero |
| // Z - Integer constant zero |
| // |
| // Note that general register operands will be output using their 64-bit x |
| // register name, whatever the size of the variable, unless the asm operand |
| // is prefixed by the %w modifier. Floating-point and SIMD register operands |
| // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or |
| // %q modifier. |
| const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const { |
| // At this point, we have to lower this constraint to something else, so we |
| // lower it to an "r" or "w". However, by doing this we will force the result |
| // to be in register, while the X constraint is much more permissive. |
| // |
| // Although we are correct (we are free to emit anything, without |
| // constraints), we might break use cases that would expect us to be more |
| // efficient and emit something else. |
| if (!Subtarget->hasFPARMv8()) |
| return "r"; |
| |
| if (ConstraintVT.isFloatingPoint()) |
| return "w"; |
| |
| if (ConstraintVT.isVector() && |
| (ConstraintVT.getSizeInBits() == 64 || |
| ConstraintVT.getSizeInBits() == 128)) |
| return "w"; |
| |
| return "r"; |
| } |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| AArch64TargetLowering::ConstraintType |
| AArch64TargetLowering::getConstraintType(StringRef Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: |
| break; |
| case 'z': |
| return C_Other; |
| case 'x': |
| case 'w': |
| return C_RegisterClass; |
| // An address with a single base register. Due to the way we |
| // currently handle addresses it is the same as 'r'. |
| case 'Q': |
| return C_Memory; |
| case 'S': // A symbolic address |
| return C_Other; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| /// Examine constraint type and operand type and determine a weight value. |
| /// This object must already have been set up with the operand type |
| /// and the current alternative constraint selected. |
| TargetLowering::ConstraintWeight |
| AArch64TargetLowering::getSingleConstraintMatchWeight( |
| AsmOperandInfo &info, const char *constraint) const { |
| ConstraintWeight weight = CW_Invalid; |
| Value *CallOperandVal = info.CallOperandVal; |
| // If we don't have a value, we can't do a match, |
| // but allow it at the lowest weight. |
| if (!CallOperandVal) |
| return CW_Default; |
| Type *type = CallOperandVal->getType(); |
| // Look at the constraint type. |
| switch (*constraint) { |
| default: |
| weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); |
| break; |
| case 'x': |
| case 'w': |
| if (type->isFloatingPointTy() || type->isVectorTy()) |
| weight = CW_Register; |
| break; |
| case 'z': |
| weight = CW_Constant; |
| break; |
| } |
| return weight; |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass *> |
| AArch64TargetLowering::getRegForInlineAsmConstraint( |
| const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': |
| if (VT.getSizeInBits() == 64) |
| return std::make_pair(0U, &AArch64::GPR64commonRegClass); |
| return std::make_pair(0U, &AArch64::GPR32commonRegClass); |
| case 'w': |
| if (VT.getSizeInBits() == 16) |
| return std::make_pair(0U, &AArch64::FPR16RegClass); |
| if (VT.getSizeInBits() == 32) |
| return std::make_pair(0U, &AArch64::FPR32RegClass); |
| if (VT.getSizeInBits() == 64) |
| return std::make_pair(0U, &AArch64::FPR64RegClass); |
| if (VT.getSizeInBits() == 128) |
| return std::make_pair(0U, &AArch64::FPR128RegClass); |
| break; |
| // The instructions that this constraint is designed for can |
| // only take 128-bit registers so just use that regclass. |
| case 'x': |
| if (VT.getSizeInBits() == 128) |
| return std::make_pair(0U, &AArch64::FPR128_loRegClass); |
| break; |
| } |
| } |
| if (StringRef("{cc}").equals_lower(Constraint)) |
| return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); |
| |
| // Use the default implementation in TargetLowering to convert the register |
| // constraint into a member of a register class. |
| std::pair<unsigned, const TargetRegisterClass *> Res; |
| Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| |
| // Not found as a standard register? |
| if (!Res.second) { |
| unsigned Size = Constraint.size(); |
| if ((Size == 4 || Size == 5) && Constraint[0] == '{' && |
| tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { |
| int RegNo; |
| bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); |
| if (!Failed && RegNo >= 0 && RegNo <= 31) { |
| // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size. |
| // By default we'll emit v0-v31 for this unless there's a modifier where |
| // we'll emit the correct register as well. |
| if (VT != MVT::Other && VT.getSizeInBits() == 64) { |
| Res.first = AArch64::FPR64RegClass.getRegister(RegNo); |
| Res.second = &AArch64::FPR64RegClass; |
| } else { |
| Res.first = AArch64::FPR128RegClass.getRegister(RegNo); |
| Res.second = &AArch64::FPR128RegClass; |
| } |
| } |
| } |
| } |
| |
| return Res; |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void AArch64TargetLowering::LowerAsmOperandForConstraint( |
| SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result; |
| |
| // Currently only support length 1 constraints. |
| if (Constraint.length() != 1) |
| return; |
| |
| char ConstraintLetter = Constraint[0]; |
| switch (ConstraintLetter) { |
| default: |
| break; |
| |
| // This set of constraints deal with valid constants for various instructions. |
| // Validate and return a target constant for them if we can. |
| case 'z': { |
| // 'z' maps to xzr or wzr so it needs an input of 0. |
| if (!isNullConstant(Op)) |
| return; |
| |
| if (Op.getValueType() == MVT::i64) |
| Result = DAG.getRegister(AArch64::XZR, MVT::i64); |
| else |
| Result = DAG.getRegister(AArch64::WZR, MVT::i32); |
| break; |
| } |
| case 'S': { |
| // An absolute symbolic address or label reference. |
| if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { |
| Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), |
| GA->getValueType(0)); |
| } else if (const BlockAddressSDNode *BA = |
| dyn_cast<BlockAddressSDNode>(Op)) { |
| Result = |
| DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0)); |
| } else if (const ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(Op)) { |
| Result = |
| DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0)); |
| } else |
| return; |
| break; |
| } |
| |
| case 'I': |
| case 'J': |
| case 'K': |
| case 'L': |
| case 'M': |
| case 'N': |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) |
| return; |
| |
| // Grab the value and do some validation. |
| uint64_t CVal = C->getZExtValue(); |
| switch (ConstraintLetter) { |
| // The I constraint applies only to simple ADD or SUB immediate operands: |
| // i.e. 0 to 4095 with optional shift by 12 |
| // The J constraint applies only to ADD or SUB immediates that would be |
| // valid when negated, i.e. if [an add pattern] were to be output as a SUB |
| // instruction [or vice versa], in other words -1 to -4095 with optional |
| // left shift by 12. |
| case 'I': |
| if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) |
| break; |
| return; |
| case 'J': { |
| uint64_t NVal = -C->getSExtValue(); |
| if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { |
| CVal = C->getSExtValue(); |
| break; |
| } |
| return; |
| } |
| // The K and L constraints apply *only* to logical immediates, including |
| // what used to be the MOVI alias for ORR (though the MOVI alias has now |
| // been removed and MOV should be used). So these constraints have to |
| // distinguish between bit patterns that are valid 32-bit or 64-bit |
| // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but |
| // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice |
| // versa. |
| case 'K': |
| if (AArch64_AM::isLogicalImmediate(CVal, 32)) |
| break; |
| return; |
| case 'L': |
| if (AArch64_AM::isLogicalImmediate(CVal, 64)) |
| break; |
| return; |
| // The M and N constraints are a superset of K and L respectively, for use |
| // with the MOV (immediate) alias. As well as the logical immediates they |
| // also match 32 or 64-bit immediates that can be loaded either using a |
| // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca |
| // (M) or 64-bit 0x1234000000000000 (N) etc. |
| // As a note some of this code is liberally stolen from the asm parser. |
| case 'M': { |
| if (!isUInt<32>(CVal)) |
| return; |
| if (AArch64_AM::isLogicalImmediate(CVal, 32)) |
| break; |
| if ((CVal & 0xFFFF) == CVal) |
| break; |
| if ((CVal & 0xFFFF0000ULL) == CVal) |
| break; |
| uint64_t NCVal = ~(uint32_t)CVal; |
| if ((NCVal & 0xFFFFULL) == NCVal) |
| break; |
| if ((NCVal & 0xFFFF0000ULL) == NCVal) |
| break; |
| return; |
| } |
| case 'N': { |
| if (AArch64_AM::isLogicalImmediate(CVal, 64)) |
| break; |
| if ((CVal & 0xFFFFULL) == CVal) |
| break; |
| if ((CVal & 0xFFFF0000ULL) == CVal) |
| break; |
| if ((CVal & 0xFFFF00000000ULL) == CVal) |
| break; |
| if ((CVal & 0xFFFF000000000000ULL) == CVal) |
| break; |
| uint64_t NCVal = ~CVal; |
| if ((NCVal & 0xFFFFULL) == NCVal) |
| break; |
| if ((NCVal & 0xFFFF0000ULL) == NCVal) |
| break; |
| if ((NCVal & 0xFFFF00000000ULL) == NCVal) |
| break; |
| if ((NCVal & 0xFFFF000000000000ULL) == NCVal) |
| break; |
| return; |
| } |
| default: |
| return; |
| } |
| |
| // All assembler immediates are 64-bit integers. |
| Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); |
| break; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64 Advanced SIMD Support |
| //===----------------------------------------------------------------------===// |
| |
| /// WidenVector - Given a value in the V64 register class, produce the |
| /// equivalent value in the V128 register class. |
| static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { |
| EVT VT = V64Reg.getValueType(); |
| unsigned NarrowSize = VT.getVectorNumElements(); |
| MVT EltTy = VT.getVectorElementType().getSimpleVT(); |
| MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); |
| SDLoc DL(V64Reg); |
| |
| return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), |
| V64Reg, DAG.getConstant(0, DL, MVT::i32)); |
| } |
| |
| /// getExtFactor - Determine the adjustment factor for the position when |
| /// generating an "extract from vector registers" instruction. |
| static unsigned getExtFactor(SDValue &V) { |
| EVT EltType = V.getValueType().getVectorElementType(); |
| return EltType.getSizeInBits() / 8; |
| } |
| |
| /// NarrowVector - Given a value in the V128 register class, produce the |
| /// equivalent value in the V64 register class. |
| static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { |
| EVT VT = V128Reg.getValueType(); |
| unsigned WideSize = VT.getVectorNumElements(); |
| MVT EltTy = VT.getVectorElementType().getSimpleVT(); |
| MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); |
| SDLoc DL(V128Reg); |
| |
| return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); |
| } |
| |
| // Gather data to see if the operation can be modelled as a |
| // shuffle in combination with VEXTs. |
| SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); |
| LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n"); |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| struct ShuffleSourceInfo { |
| SDValue Vec; |
| unsigned MinElt; |
| unsigned MaxElt; |
| |
| // We may insert some combination of BITCASTs and VEXT nodes to force Vec to |
| // be compatible with the shuffle we intend to construct. As a result |
| // ShuffleVec will be some sliding window into the original Vec. |
| SDValue ShuffleVec; |
| |
| // Code should guarantee that element i in Vec starts at element "WindowBase |
| // + i * WindowScale in ShuffleVec". |
| int WindowBase; |
| int WindowScale; |
| |
| ShuffleSourceInfo(SDValue Vec) |
| : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0), |
| ShuffleVec(Vec), WindowBase(0), WindowScale(1) {} |
| |
| bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } |
| }; |
| |
| // First gather all vectors used as an immediate source for this BUILD_VECTOR |
| // node. |
| SmallVector<ShuffleSourceInfo, 2> Sources; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.isUndef()) |
| continue; |
| else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| !isa<ConstantSDNode>(V.getOperand(1))) { |
| LLVM_DEBUG( |
| dbgs() << "Reshuffle failed: " |
| "a shuffle can only come from building a vector from " |
| "various elements of other vectors, provided their " |
| "indices are constant\n"); |
| return SDValue(); |
| } |
| |
| // Add this element source to the list if it's not already there. |
| SDValue SourceVec = V.getOperand(0); |
| auto Source = find(Sources, SourceVec); |
| if (Source == Sources.end()) |
| Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); |
| |
| // Update the minimum and maximum lane number seen. |
| unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); |
| Source->MinElt = std::min(Source->MinElt, EltNo); |
| Source->MaxElt = std::max(Source->MaxElt, EltNo); |
| } |
| |
| if (Sources.size() > 2) { |
| LLVM_DEBUG( |
| dbgs() << "Reshuffle failed: currently only do something sane when at " |
| "most two source vectors are involved\n"); |
| return SDValue(); |
| } |
| |
| // Find out the smallest element size among result and two sources, and use |
| // it as element size to build the shuffle_vector. |
| EVT SmallestEltTy = VT.getVectorElementType(); |
| for (auto &Source : Sources) { |
| EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); |
| if (SrcEltTy.bitsLT(SmallestEltTy)) { |
| SmallestEltTy = SrcEltTy; |
| } |
| } |
| unsigned ResMultiplier = |
| VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits(); |
| NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); |
| EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); |
| |
| // If the source vector is too wide or too narrow, we may nevertheless be able |
| // to construct a compatible shuffle either by concatenating it with UNDEF or |
| // extracting a suitable range of elements. |
| for (auto &Src : Sources) { |
| EVT SrcVT = Src.ShuffleVec.getValueType(); |
| |
| if (SrcVT.getSizeInBits() == VT.getSizeInBits()) |
| continue; |
| |
| // This stage of the search produces a source with the same element type as |
| // the original, but with a total width matching the BUILD_VECTOR output. |
| EVT EltVT = SrcVT.getVectorElementType(); |
| unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); |
| EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); |
| |
| if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { |
| assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits()); |
| // We can pad out the smaller vector for free, so if it's part of a |
| // shuffle... |
| Src.ShuffleVec = |
| DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, |
| DAG.getUNDEF(Src.ShuffleVec.getValueType())); |
| continue; |
| } |
| |
| assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits()); |
| |
| if (Src.MaxElt - Src.MinElt >= NumSrcElts) { |
| LLVM_DEBUG( |
| dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n"); |
| return SDValue(); |
| } |
| |
| if (Src.MinElt >= NumSrcElts) { |
| // The extraction can just take the second half |
| Src.ShuffleVec = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, |
| DAG.getConstant(NumSrcElts, dl, MVT::i64)); |
| Src.WindowBase = -NumSrcElts; |
| } else if (Src.MaxElt < NumSrcElts) { |
| // The extraction can just take the first half |
| Src.ShuffleVec = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, |
| DAG.getConstant(0, dl, MVT::i64)); |
| } else { |
| // An actual VEXT is needed |
| SDValue VEXTSrc1 = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, |
| DAG.getConstant(0, dl, MVT::i64)); |
| SDValue VEXTSrc2 = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, |
| DAG.getConstant(NumSrcElts, dl, MVT::i64)); |
| unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); |
| |
| Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, |
| VEXTSrc2, |
| DAG.getConstant(Imm, dl, MVT::i32)); |
| Src.WindowBase = -Src.MinElt; |
| } |
| } |
| |
| // Another possible incompatibility occurs from the vector element types. We |
| // can fix this by bitcasting the source vectors to the same type we intend |
| // for the shuffle. |
| for (auto &Src : Sources) { |
| EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); |
| if (SrcEltTy == SmallestEltTy) |
| continue; |
| assert(ShuffleVT.getVectorElementType() == SmallestEltTy); |
| Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); |
| Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); |
| Src.WindowBase *= Src.WindowScale; |
| } |
| |
| // Final sanity check before we try to actually produce a shuffle. |
| LLVM_DEBUG(for (auto Src |
| : Sources) |
| assert(Src.ShuffleVec.getValueType() == ShuffleVT);); |
| |
| // The stars all align, our next step is to produce the mask for the shuffle. |
| SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); |
| int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); |
| for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { |
| SDValue Entry = Op.getOperand(i); |
| if (Entry.isUndef()) |
| continue; |
| |
| auto Src = find(Sources, Entry.getOperand(0)); |
| int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); |
| |
| // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit |
| // trunc. So only std::min(SrcBits, DestBits) actually get defined in this |
| // segment. |
| EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); |
| int BitsDefined = |
| std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits()); |
| int LanesDefined = BitsDefined / BitsPerShuffleLane; |
| |
| // This source is expected to fill ResMultiplier lanes of the final shuffle, |
| // starting at the appropriate offset. |
| int *LaneMask = &Mask[i * ResMultiplier]; |
| |
| int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; |
| ExtractBase += NumElts * (Src - Sources.begin()); |
| for (int j = 0; j < LanesDefined; ++j) |
| LaneMask[j] = ExtractBase + j; |
| } |
| |
| // Final check before we try to produce nonsense... |
| if (!isShuffleMaskLegal(Mask, ShuffleVT)) { |
| LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n"); |
| return SDValue(); |
| } |
| |
| SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; |
| for (unsigned i = 0; i < Sources.size(); ++i) |
| ShuffleOps[i] = Sources[i].ShuffleVec; |
| |
| SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], |
| ShuffleOps[1], Mask); |
| SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); |
| |
| LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump(); |
| dbgs() << "Reshuffle, creating node: "; V.dump();); |
| |
| return V; |
| } |
| |
| // check if an EXT instruction can handle the shuffle mask when the |
| // vector sources of the shuffle are the same. |
| static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // Assume that the first shuffle index is not UNDEF. Fail if it is. |
| if (M[0] < 0) |
| return false; |
| |
| Imm = M[0]; |
| |
| // If this is a VEXT shuffle, the immediate value is the index of the first |
| // element. The other shuffle indices must be the successive elements after |
| // the first one. |
| unsigned ExpectedElt = Imm; |
| for (unsigned i = 1; i < NumElts; ++i) { |
| // Increment the expected index. If it wraps around, just follow it |
| // back to index zero and keep going. |
| ++ExpectedElt; |
| if (ExpectedElt == NumElts) |
| ExpectedElt = 0; |
| |
| if (M[i] < 0) |
| continue; // ignore UNDEF indices |
| if (ExpectedElt != static_cast<unsigned>(M[i])) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // check if an EXT instruction can handle the shuffle mask when the |
| // vector sources of the shuffle are different. |
| static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, |
| unsigned &Imm) { |
| // Look for the first non-undef element. |
| const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); |
| |
| // Benefit form APInt to handle overflow when calculating expected element. |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); |
| APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); |
| // The following shuffle indices must be the successive elements after the |
| // first real element. |
| const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), |
| [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); |
| if (FirstWrongElt != M.end()) |
| return false; |
| |
| // The index of an EXT is the first element if it is not UNDEF. |
| // Watch out for the beginning UNDEFs. The EXT index should be the expected |
| // value of the first element. E.g. |
| // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. |
| // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. |
| // ExpectedElt is the last mask index plus 1. |
| Imm = ExpectedElt.getZExtValue(); |
| |
| // There are two difference cases requiring to reverse input vectors. |
| // For example, for vector <4 x i32> we have the following cases, |
| // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) |
| // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) |
| // For both cases, we finally use mask <5, 6, 7, 0>, which requires |
| // to reverse two input vectors. |
| if (Imm < NumElts) |
| ReverseEXT = true; |
| else |
| Imm -= NumElts; |
| |
| return true; |
| } |
| |
| /// isREVMask - Check if a vector shuffle corresponds to a REV |
| /// instruction with the specified blocksize. (The order of the elements |
| /// within each block of the vector is reversed.) |
| static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { |
| assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && |
| "Only possible block sizes for REV are: 16, 32, 64"); |
| |
| unsigned EltSz = VT.getScalarSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned BlockElts = M[0] + 1; |
| // If the first shuffle index is UNDEF, be optimistic. |
| if (M[0] < 0) |
| BlockElts = BlockSize / EltSz; |
| |
| if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) |
| return false; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if (M[i] < 0) |
| continue; // ignore UNDEF indices |
| if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| unsigned Idx = WhichResult * NumElts / 2; |
| for (unsigned i = 0; i != NumElts; i += 2) { |
| if ((M[i] >= 0 && (unsigned)M[i] != Idx) || |
| (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) |
| return false; |
| Idx += 1; |
| } |
| |
| return true; |
| } |
| |
| static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if (M[i] < 0) |
| continue; // ignore UNDEF indices |
| if ((unsigned)M[i] != 2 * i + WhichResult) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i < NumElts; i += 2) { |
| if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || |
| (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. |
| static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| unsigned Idx = WhichResult * NumElts / 2; |
| for (unsigned i = 0; i != NumElts; i += 2) { |
| if ((M[i] >= 0 && (unsigned)M[i] != Idx) || |
| (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) |
| return false; |
| Idx += 1; |
| } |
| |
| return true; |
| } |
| |
| /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, |
| static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned Half = VT.getVectorNumElements() / 2; |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned j = 0; j != 2; ++j) { |
| unsigned Idx = WhichResult; |
| for (unsigned i = 0; i != Half; ++i) { |
| int MIdx = M[i + j * Half]; |
| if (MIdx >= 0 && (unsigned)MIdx != Idx) |
| return false; |
| Idx += 2; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. |
| static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i < NumElts; i += 2) { |
| if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || |
| (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool isINSMask(ArrayRef<int> M, int NumInputElements, |
| bool &DstIsLeft, int &Anomaly) { |
| if (M.size() != static_cast<size_t>(NumInputElements)) |
| return false; |
| |
| int NumLHSMatch = 0, NumRHSMatch = 0; |
| int LastLHSMismatch = -1, LastRHSMismatch = -1; |
| |
| for (int i = 0; i < NumInputElements; ++i) { |
| if (M[i] == -1) { |
| ++NumLHSMatch; |
| ++NumRHSMatch; |
| continue; |
| } |
| |
| if (M[i] == i) |
| ++NumLHSMatch; |
| else |
| LastLHSMismatch = i; |
| |
| if (M[i] == i + NumInputElements) |
| ++NumRHSMatch; |
| else |
| LastRHSMismatch = i; |
| } |
| |
| if (NumLHSMatch == NumInputElements - 1) { |
| DstIsLeft = true; |
| Anomaly = LastLHSMismatch; |
| return true; |
| } else if (NumRHSMatch == NumInputElements - 1) { |
| DstIsLeft = false; |
| Anomaly = LastRHSMismatch; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { |
| if (VT.getSizeInBits() != 128) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| for (int I = 0, E = NumElts / 2; I != E; I++) { |
| if (Mask[I] != I) |
| return false; |
| } |
| |
| int Offset = NumElts / 2; |
| for (int I = NumElts / 2, E = NumElts; I != E; I++) { |
| if (Mask[I] != I + SplitLHS * Offset) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue V0 = Op.getOperand(0); |
| SDValue V1 = Op.getOperand(1); |
| ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); |
| |
| if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || |
| VT.getVectorElementType() != V1.getValueType().getVectorElementType()) |
| return SDValue(); |
| |
| bool SplitV0 = V0.getValueSizeInBits() == 128; |
| |
| if (!isConcatMask(Mask, VT, SplitV0)) |
| return SDValue(); |
| |
| EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), |
| VT.getVectorNumElements() / 2); |
| if (SplitV0) { |
| V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, |
| DAG.getConstant(0, DL, MVT::i64)); |
| } |
| if (V1.getValueSizeInBits() == 128) { |
| V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, |
| DAG.getConstant(0, DL, MVT::i64)); |
| } |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); |
| } |
| |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit |
| /// the specified operations to build the shuffle. |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, |
| SDValue RHS, SelectionDAG &DAG, |
| const SDLoc &dl) { |
| unsigned OpNum = (PFEntry >> 26) & 0x0F; |
| unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); |
| unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); |
| |
| enum { |
| OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| OP_VREV, |
| OP_VDUP0, |
| OP_VDUP1, |
| OP_VDUP2, |
| OP_VDUP3, |
| OP_VEXT1, |
| OP_VEXT2, |
| OP_VEXT3, |
| OP_VUZPL, // VUZP, left result |
| OP_VUZPR, // VUZP, right result |
| OP_VZIPL, // VZIP, left result |
| OP_VZIPR, // VZIP, right result |
| OP_VTRNL, // VTRN, left result |
| OP_VTRNR // VTRN, right result |
| }; |
| |
| if (OpNum == OP_COPY) { |
| if (LHSID == (1 * 9 + 2) * 9 + 3) |
| return LHS; |
| assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); |
| return RHS; |
| } |
| |
| SDValue OpLHS, OpRHS; |
| OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); |
| OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); |
| EVT VT = OpLHS.getValueType(); |
| |
| switch (OpNum) { |
| default: |
| llvm_unreachable("Unknown shuffle opcode!"); |
| case OP_VREV: |
| // VREV divides the vector in half and swaps within the half. |
| if (VT.getVectorElementType() == MVT::i32 || |
| VT.getVectorElementType() == MVT::f32) |
| return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); |
| // vrev <4 x i16> -> REV32 |
| if (VT.getVectorElementType() == MVT::i16 || |
| VT.getVectorElementType() == MVT::f16) |
| return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); |
| // vrev <4 x i8> -> REV16 |
| assert(VT.getVectorElementType() == MVT::i8); |
| return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); |
| case OP_VDUP0: |
| case OP_VDUP1: |
| case OP_VDUP2: |
| case OP_VDUP3: { |
| EVT EltTy = VT.getVectorElementType(); |
| unsigned Opcode; |
| if (EltTy == MVT::i8) |
| Opcode = AArch64ISD::DUPLANE8; |
| else if (EltTy == MVT::i16 || EltTy == MVT::f16) |
| Opcode = AArch64ISD::DUPLANE16; |
| else if (EltTy == MVT::i32 || EltTy == MVT::f32) |
| Opcode = AArch64ISD::DUPLANE32; |
| else if (EltTy == MVT::i64 || EltTy == MVT::f64) |
| Opcode = AArch64ISD::DUPLANE64; |
| else |
| llvm_unreachable("Invalid vector element type?"); |
| |
| if (VT.getSizeInBits() == 64) |
| OpLHS = WidenVector(OpLHS, DAG); |
| SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); |
| return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); |
| } |
| case OP_VEXT1: |
| case OP_VEXT2: |
| case OP_VEXT3: { |
| unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); |
| return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, |
| DAG.getConstant(Imm, dl, MVT::i32)); |
| } |
| case OP_VUZPL: |
| return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, |
| OpRHS); |
| case OP_VUZPR: |
| return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, |
| OpRHS); |
| case OP_VZIPL: |
| return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, |
| OpRHS); |
| case OP_VZIPR: |
| return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, |
| OpRHS); |
| case OP_VTRNL: |
| return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, |
| OpRHS); |
| case OP_VTRNR: |
| return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, |
| OpRHS); |
| } |
| } |
| |
| static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, |
| SelectionDAG &DAG) { |
| // Check to see if we can use the TBL instruction. |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| SDLoc DL(Op); |
| |
| EVT EltVT = Op.getValueType().getVectorElementType(); |
| unsigned BytesPerElt = EltVT.getSizeInBits() / 8; |
| |
| SmallVector<SDValue, 8> TBLMask; |
| for (int Val : ShuffleMask) { |
| for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { |
| unsigned Offset = Byte + Val * BytesPerElt; |
| TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); |
| } |
| } |
| |
| MVT IndexVT = MVT::v8i8; |
| unsigned IndexLen = 8; |
| if (Op.getValueSizeInBits() == 128) { |
| IndexVT = MVT::v16i8; |
| IndexLen = 16; |
| } |
| |
| SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); |
| SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); |
| |
| SDValue Shuffle; |
| if (V2.getNode()->isUndef()) { |
| if (IndexLen == 8) |
| V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); |
| Shuffle = DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, |
| DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, |
| DAG.getBuildVector(IndexVT, DL, |
| makeArrayRef(TBLMask.data(), IndexLen))); |
| } else { |
| if (IndexLen == 8) { |
| V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); |
| Shuffle = DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, |
| DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, |
| DAG.getBuildVector(IndexVT, DL, |
| makeArrayRef(TBLMask.data(), IndexLen))); |
| } else { |
| // FIXME: We cannot, for the moment, emit a TBL2 instruction because we |
| // cannot currently represent the register constraints on the input |
| // table registers. |
| // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, |
| // DAG.getBuildVector(IndexVT, DL, &TBLMask[0], |
| // IndexLen)); |
| Shuffle = DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, |
| DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst, |
| V2Cst, DAG.getBuildVector(IndexVT, DL, |
| makeArrayRef(TBLMask.data(), IndexLen))); |
| } |
| } |
| return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); |
| } |
| |
| static unsigned getDUPLANEOp(EVT EltType) { |
| if (EltType == MVT::i8) |
| return AArch64ISD::DUPLANE8; |
| if (EltType == MVT::i16 || EltType == MVT::f16) |
| return AArch64ISD::DUPLANE16; |
| if (EltType == MVT::i32 || EltType == MVT::f32) |
| return AArch64ISD::DUPLANE32; |
| if (EltType == MVT::i64 || EltType == MVT::f64) |
| return AArch64ISD::DUPLANE64; |
| |
| llvm_unreachable("Invalid vector element type?"); |
| } |
| |
| SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| |
| // Convert shuffles that are directly supported on NEON to target-specific |
| // DAG nodes, instead of keeping them as shuffles and matching them again |
| // during code selection. This is more efficient and avoids the possibility |
| // of inconsistencies between legalization and selection. |
| ArrayRef<int> ShuffleMask = SVN->getMask(); |
| |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| |
| if (SVN->isSplat()) { |
| int Lane = SVN->getSplatIndex(); |
| // If this is undef splat, generate it via "just" vdup, if possible. |
| if (Lane == -1) |
| Lane = 0; |
| |
| if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) |
| return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), |
| V1.getOperand(0)); |
| // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- |
| // constant. If so, we can just reference the lane's definition directly. |
| if (V1.getOpcode() == ISD::BUILD_VECTOR && |
| !isa<ConstantSDNode>(V1.getOperand(Lane))) |
| return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); |
| |
| // Otherwise, duplicate from the lane of the input vector. |
| unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); |
| |
| // SelectionDAGBuilder may have "helpfully" already extracted or conatenated |
| // to make a vector of the same size as this SHUFFLE. We can ignore the |
| // extract entirely, and canonicalise the concat using WidenVector. |
| if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { |
| Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue(); |
| V1 = V1.getOperand(0); |
| } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { |
| unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; |
| Lane -= Idx * VT.getVectorNumElements() / 2; |
| V1 = WidenVector(V1.getOperand(Idx), DAG); |
| } else if (VT.getSizeInBits() == 64) |
| V1 = WidenVector(V1, DAG); |
| |
| return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64)); |
| } |
| |
| if (isREVMask(ShuffleMask, VT, 64)) |
| return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); |
| if (isREVMask(ShuffleMask, VT, 32)) |
| return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); |
| if (isREVMask(ShuffleMask, VT, 16)) |
| return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); |
| |
| bool ReverseEXT = false; |
| unsigned Imm; |
| if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { |
| if (ReverseEXT) |
| std::swap(V1, V2); |
| Imm *= getExtFactor(V1); |
| return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, |
| DAG.getConstant(Imm, dl, MVT::i32)); |
| } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) { |
| Imm *= getExtFactor(V1); |
| return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, |
| DAG.getConstant(Imm, dl, MVT::i32)); |
| } |
| |
| unsigned WhichResult; |
| if (isZIPMask(ShuffleMask, VT, WhichResult)) { |
| unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; |
| return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); |
| } |
| if (isUZPMask(ShuffleMask, VT, WhichResult)) { |
| unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; |
| return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); |
| } |
| if (isTRNMask(ShuffleMask, VT, WhichResult)) { |
| unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; |
| return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); |
| } |
| |
| if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { |
| unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; |
| return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); |
| } |
| if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { |
| unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; |
| return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); |
| } |
| if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { |
| unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; |
| return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); |
| } |
| |
| if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG)) |
| return Concat; |
| |
| bool DstIsLeft; |
| int Anomaly; |
| int NumInputElements = V1.getValueType().getVectorNumElements(); |
| if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { |
| SDValue DstVec = DstIsLeft ? V1 : V2; |
| SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); |
| |
| SDValue SrcVec = V1; |
| int SrcLane = ShuffleMask[Anomaly]; |
| if (SrcLane >= NumInputElements) { |
| SrcVec = V2; |
| SrcLane -= VT.getVectorNumElements(); |
| } |
| SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); |
| |
| EVT ScalarVT = VT.getVectorElementType(); |
| |
| if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger()) |
| ScalarVT = MVT::i32; |
| |
| return DAG.getNode( |
| ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), |
| DstLaneV); |
| } |
| |
| // If the shuffle is not directly supported and it has 4 elements, use |
| // the PerfectShuffle-generated table to synthesize it from other shuffles. |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (NumElts == 4) { |
| unsigned PFIndexes[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (ShuffleMask[i] < 0) |
| PFIndexes[i] = 8; |
| else |
| PFIndexes[i] = ShuffleMask[i]; |
| } |
| |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + |
| PFIndexes[2] * 9 + PFIndexes[3]; |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| if (Cost <= 4) |
| return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); |
| } |
| |
| return GenerateTBL(Op, ShuffleMask, DAG); |
| } |
| |
| static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, |
| APInt &UndefBits) { |
| EVT VT = BVN->getValueType(0); |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; |
| |
| for (unsigned i = 0; i < NumSplats; ++i) { |
| CnstBits <<= SplatBitSize; |
| UndefBits <<= SplatBitSize; |
| CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); |
| UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Try 64-bit splatted SIMD immediate. |
| static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG, |
| const APInt &Bits) { |
| if (Bits.getHiBits(64) == Bits.getLoBits(64)) { |
| uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); |
| EVT VT = Op.getValueType(); |
| MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64; |
| |
| if (AArch64_AM::isAdvSIMDModImmType10(Value)) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType10(Value); |
| |
| SDLoc dl(Op); |
| SDValue Mov = DAG.getNode(NewOp, dl, MovTy, |
| DAG.getConstant(Value, dl, MVT::i32)); |
| return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Try 32-bit splatted SIMD immediate. |
| static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG, |
| const APInt &Bits, |
| const SDValue *LHS = nullptr) { |
| if (Bits.getHiBits(64) == Bits.getLoBits(64)) { |
| uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); |
| EVT VT = Op.getValueType(); |
| MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| bool isAdvSIMDModImm = false; |
| uint64_t Shift; |
| |
| if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType1(Value); |
| Shift = 0; |
| } |
| else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType2(Value); |
| Shift = 8; |
| } |
| else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType3(Value); |
| Shift = 16; |
| } |
| else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType4(Value); |
| Shift = 24; |
| } |
| |
| if (isAdvSIMDModImm) { |
| SDLoc dl(Op); |
| SDValue Mov; |
| |
| if (LHS) |
| Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, |
| DAG.getConstant(Value, dl, MVT::i32), |
| DAG.getConstant(Shift, dl, MVT::i32)); |
| else |
| Mov = DAG.getNode(NewOp, dl, MovTy, |
| DAG.getConstant(Value, dl, MVT::i32), |
| DAG.getConstant(Shift, dl, MVT::i32)); |
| |
| return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Try 16-bit splatted SIMD immediate. |
| static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG, |
| const APInt &Bits, |
| const SDValue *LHS = nullptr) { |
| if (Bits.getHiBits(64) == Bits.getLoBits(64)) { |
| uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); |
| EVT VT = Op.getValueType(); |
| MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; |
| bool isAdvSIMDModImm = false; |
| uint64_t Shift; |
| |
| if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType5(Value); |
| Shift = 0; |
| } |
| else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType6(Value); |
| Shift = 8; |
| } |
| |
| if (isAdvSIMDModImm) { |
| SDLoc dl(Op); |
| SDValue Mov; |
| |
| if (LHS) |
| Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, |
| DAG.getConstant(Value, dl, MVT::i32), |
| DAG.getConstant(Shift, dl, MVT::i32)); |
| else |
| Mov = DAG.getNode(NewOp, dl, MovTy, |
| DAG.getConstant(Value, dl, MVT::i32), |
| DAG.getConstant(Shift, dl, MVT::i32)); |
| |
| return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Try 32-bit splatted SIMD immediate with shifted ones. |
| static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op, |
| SelectionDAG &DAG, const APInt &Bits) { |
| if (Bits.getHiBits(64) == Bits.getLoBits(64)) { |
| uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); |
| EVT VT = Op.getValueType(); |
| MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; |
| bool isAdvSIMDModImm = false; |
| uint64_t Shift; |
| |
| if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType7(Value); |
| Shift = 264; |
| } |
| else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType8(Value); |
| Shift = 272; |
| } |
| |
| if (isAdvSIMDModImm) { |
| SDLoc dl(Op); |
| SDValue Mov = DAG.getNode(NewOp, dl, MovTy, |
| DAG.getConstant(Value, dl, MVT::i32), |
| DAG.getConstant(Shift, dl, MVT::i32)); |
| return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Try 8-bit splatted SIMD immediate. |
| static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG, |
| const APInt &Bits) { |
| if (Bits.getHiBits(64) == Bits.getLoBits(64)) { |
| uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); |
| EVT VT = Op.getValueType(); |
| MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; |
| |
| if (AArch64_AM::isAdvSIMDModImmType9(Value)) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType9(Value); |
| |
| SDLoc dl(Op); |
| SDValue Mov = DAG.getNode(NewOp, dl, MovTy, |
| DAG.getConstant(Value, dl, MVT::i32)); |
| return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // Try FP splatted SIMD immediate. |
| static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG, |
| const APInt &Bits) { |
| if (Bits.getHiBits(64) == Bits.getLoBits(64)) { |
| uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); |
| EVT VT = Op.getValueType(); |
| bool isWide = (VT.getSizeInBits() == 128); |
| MVT MovTy; |
| bool isAdvSIMDModImm = false; |
| |
| if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType11(Value); |
| MovTy = isWide ? MVT::v4f32 : MVT::v2f32; |
| } |
| else if (isWide && |
| (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) { |
| Value = AArch64_AM::encodeAdvSIMDModImmType12(Value); |
| MovTy = MVT::v2f64; |
| } |
| |
| if (isAdvSIMDModImm) { |
| SDLoc dl(Op); |
| SDValue Mov = DAG.getNode(NewOp, dl, MovTy, |
| DAG.getConstant(Value, dl, MVT::i32)); |
| return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| BuildVectorSDNode *BVN = |
| dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); |
| if (!BVN) { |
| // AND commutes, so try swapping the operands. |
| LHS = Op.getOperand(1); |
| BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); |
| } |
| if (!BVN) |
| return Op; |
| |
| APInt DefBits(VT.getSizeInBits(), 0); |
| APInt UndefBits(VT.getSizeInBits(), 0); |
| if (resolveBuildVector(BVN, DefBits, UndefBits)) { |
| SDValue NewOp; |
| |
| // We only have BIC vector immediate instruction, which is and-not. |
| DefBits = ~DefBits; |
| if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG, |
| DefBits, &LHS)) || |
| (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG, |
| DefBits, &LHS))) |
| return NewOp; |
| |
| UndefBits = ~UndefBits; |
| if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, Op, DAG, |
| UndefBits, &LHS)) || |
| (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, Op, DAG, |
| UndefBits, &LHS))) |
| return NewOp; |
| } |
| |
| // We can always fall back to a non-immediate AND. |
| return Op; |
| } |
| |
| // Specialized code to quickly find if PotentialBVec is a BuildVector that |
| // consists of only the same constant int value, returned in reference arg |
| // ConstVal |
| static bool isAllConstantBuildVector(const SDValue &PotentialBVec, |
| uint64_t &ConstVal) { |
| BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); |
| if (!Bvec) |
| return false; |
| ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); |
| if (!FirstElt) |
| return false; |
| EVT VT = Bvec->getValueType(0); |
| unsigned NumElts = VT.getVectorNumElements(); |
| for (unsigned i = 1; i < NumElts; ++i) |
| if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) |
| return false; |
| ConstVal = FirstElt->getZExtValue(); |
| return true; |
| } |
| |
| static unsigned getIntrinsicID(const SDNode *N) { |
| unsigned Opcode = N->getOpcode(); |
| switch (Opcode) { |
| default: |
| return Intrinsic::not_intrinsic; |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| if (IID < Intrinsic::num_intrinsics) |
| return IID; |
| return Intrinsic::not_intrinsic; |
| } |
| } |
| } |
| |
| // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), |
| // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a |
| // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. |
| // Also, logical shift right -> sri, with the same structure. |
| static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| |
| // Is the first op an AND? |
| const SDValue And = N->getOperand(0); |
| if (And.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| // Is the second op an shl or lshr? |
| SDValue Shift = N->getOperand(1); |
| // This will have been turned into: AArch64ISD::VSHL vector, #shift |
| // or AArch64ISD::VLSHR vector, #shift |
| unsigned ShiftOpc = Shift.getOpcode(); |
| if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR)) |
| return SDValue(); |
| bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR; |
| |
| // Is the shift amount constant? |
| ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); |
| if (!C2node) |
| return SDValue(); |
| |
| // Is the and mask vector all constant? |
| uint64_t C1; |
| if (!isAllConstantBuildVector(And.getOperand(1), C1)) |
| return SDValue(); |
| |
| // Is C1 == ~C2, taking into account how much one can shift elements of a |
| // particular size? |
| uint64_t C2 = C2node->getZExtValue(); |
| unsigned ElemSizeInBits = VT.getScalarSizeInBits(); |
| if (C2 > ElemSizeInBits) |
| return SDValue(); |
| unsigned ElemMask = (1 << ElemSizeInBits) - 1; |
| if ((C1 & ElemMask) != (~C2 & ElemMask)) |
| return SDValue(); |
| |
| SDValue X = And.getOperand(0); |
| SDValue Y = Shift.getOperand(0); |
| |
| unsigned Intrin = |
| IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli; |
| SDValue ResultSLI = |
| DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrin, DL, MVT::i32), X, Y, |
| Shift.getOperand(1)); |
| |
| LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n"); |
| LLVM_DEBUG(N->dump(&DAG)); |
| LLVM_DEBUG(dbgs() << "into: \n"); |
| LLVM_DEBUG(ResultSLI->dump(&DAG)); |
| |
| ++NumShiftInserts; |
| return ResultSLI; |
| } |
| |
| SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) |
| if (EnableAArch64SlrGeneration) { |
| if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG)) |
| return Res; |
| } |
| |
| EVT VT = Op.getValueType(); |
| |
| SDValue LHS = Op.getOperand(0); |
| BuildVectorSDNode *BVN = |
| dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); |
| if (!BVN) { |
| // OR commutes, so try swapping the operands. |
| LHS = Op.getOperand(1); |
| BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); |
| } |
| if (!BVN) |
| return Op; |
| |
| APInt DefBits(VT.getSizeInBits(), 0); |
| APInt UndefBits(VT.getSizeInBits(), 0); |
| if (resolveBuildVector(BVN, DefBits, UndefBits)) { |
| SDValue NewOp; |
| |
| if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, |
| DefBits, &LHS)) || |
| (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, |
| DefBits, &LHS))) |
| return NewOp; |
| |
| if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, |
| UndefBits, &LHS)) || |
| (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, |
| UndefBits, &LHS))) |
| return NewOp; |
| } |
| |
| // We can always fall back to a non-immediate OR. |
| return Op; |
| } |
| |
| // Normalize the operands of BUILD_VECTOR. The value of constant operands will |
| // be truncated to fit element width. |
| static SDValue NormalizeBuildVector(SDValue Op, |
| SelectionDAG &DAG) { |
| assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); |
| SDLoc dl(Op); |
| EVT VT = Op.getValueType(); |
| EVT EltTy= VT.getVectorElementType(); |
| |
| if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) |
| return Op; |
| |
| SmallVector<SDValue, 16> Ops; |
| for (SDValue Lane : Op->ops()) { |
| if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) { |
| APInt LowBits(EltTy.getSizeInBits(), |
| CstLane->getZExtValue()); |
| Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); |
| } |
| Ops.push_back(Lane); |
| } |
| return DAG.getBuildVector(VT, dl, Ops); |
| } |
| |
| static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| |
| APInt DefBits(VT.getSizeInBits(), 0); |
| APInt UndefBits(VT.getSizeInBits(), 0); |
| BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); |
| if (resolveBuildVector(BVN, DefBits, UndefBits)) { |
| SDValue NewOp; |
| if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) |
| return NewOp; |
| |
| DefBits = ~DefBits; |
| if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) |
| return NewOp; |
| |
| DefBits = UndefBits; |
| if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) |
| return NewOp; |
| |
| DefBits = ~UndefBits; |
| if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || |
| (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) |
| return NewOp; |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| // Try to build a simple constant vector. |
| Op = NormalizeBuildVector(Op, DAG); |
| if (VT.isInteger()) { |
| // Certain vector constants, used to express things like logical NOT and |
| // arithmetic NEG, are passed through unmodified. This allows special |
| // patterns for these operations to match, which will lower these constants |
| // to whatever is proven necessary. |
| BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); |
| if (BVN->isConstant()) |
| if (ConstantSDNode *Const = BVN->getConstantSplatNode()) { |
| unsigned BitSize = VT.getVectorElementType().getSizeInBits(); |
| APInt Val(BitSize, |
| Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue()); |
| if (Val.isNullValue() || Val.isAllOnesValue()) |
| return Op; |
| } |
| } |
| |
| if (SDValue V = ConstantBuildVector(Op, DAG)) |
| return V; |
| |
| // Scan through the operands to find some interesting properties we can |
| // exploit: |
| // 1) If only one value is used, we can use a DUP, or |
| // 2) if only the low element is not undef, we can just insert that, or |
| // 3) if only one constant value is used (w/ some non-constant lanes), |
| // we can splat the constant value into the whole vector then fill |
| // in the non-constant lanes. |
| // 4) FIXME: If different constant values are used, but we can intelligently |
| // select the values we'll be overwriting for the non-constant |
| // lanes such that we can directly materialize the vector |
| // some other way (MOVI, e.g.), we can be sneaky. |
| // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP. |
| SDLoc dl(Op); |
| unsigned NumElts = VT.getVectorNumElements(); |
| bool isOnlyLowElement = true; |
| bool usesOnlyOneValue = true; |
| bool usesOnlyOneConstantValue = true; |
| bool isConstant = true; |
| bool AllLanesExtractElt = true; |
| unsigned NumConstantLanes = 0; |
| SDValue Value; |
| SDValue ConstantValue; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) |
| AllLanesExtractElt = false; |
| if (V.isUndef()) |
| continue; |
| if (i > 0) |
| isOnlyLowElement = false; |
| if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) |
| isConstant = false; |
| |
| if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { |
| ++NumConstantLanes; |
| if (!ConstantValue.getNode()) |
| ConstantValue = V; |
| else if (ConstantValue != V) |
| usesOnlyOneConstantValue = false; |
| } |
| |
| if (!Value.getNode()) |
| Value = V; |
| else if (V != Value) |
| usesOnlyOneValue = false; |
| } |
| |
| if (!Value.getNode()) { |
| LLVM_DEBUG( |
| dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n"); |
| return DAG.getUNDEF(VT); |
| } |
| |
| if (isOnlyLowElement) { |
| LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 " |
| "SCALAR_TO_VECTOR node\n"); |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); |
| } |
| |
| if (AllLanesExtractElt) { |
| SDNode *Vector = nullptr; |
| bool Even = false; |
| bool Odd = false; |
| // Check whether the extract elements match the Even pattern <0,2,4,...> or |
| // the Odd pattern <1,3,5,...>. |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| const SDNode *N = V.getNode(); |
| if (!isa<ConstantSDNode>(N->getOperand(1))) |
| break; |
| SDValue N0 = N->getOperand(0); |
| |
| // All elements are extracted from the same vector. |
| if (!Vector) { |
| Vector = N0.getNode(); |
| // Check that the type of EXTRACT_VECTOR_ELT matches the type of |
| // BUILD_VECTOR. |
| if (VT.getVectorElementType() != |
| N0.getValueType().getVectorElementType()) |
| break; |
| } else if (Vector != N0.getNode()) { |
| Odd = false; |
| Even = false; |
| break; |
| } |
| |
| // Extracted values are either at Even indices <0,2,4,...> or at Odd |
| // indices <1,3,5,...>. |
| uint64_t Val = N->getConstantOperandVal(1); |
| if (Val == 2 * i) { |
| Even = true; |
| continue; |
| } |
| if (Val - 1 == 2 * i) { |
| Odd = true; |
| continue; |
| } |
| |
| // Something does not match: abort. |
| Odd = false; |
| Even = false; |
| break; |
| } |
| if (Even || Odd) { |
| SDValue LHS = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), |
| DAG.getConstant(0, dl, MVT::i64)); |
| SDValue RHS = |
| DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), |
| DAG.getConstant(NumElts, dl, MVT::i64)); |
| |
| if (Even && !Odd) |
| return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS, |
| RHS); |
| if (Odd && !Even) |
| return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS, |
| RHS); |
| } |
| } |
| |
| // Use DUP for non-constant splats. For f32 constant splats, reduce to |
| // i32 and try again. |
| if (usesOnlyOneValue) { |
| if (!isConstant) { |
| if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || |
| Value.getValueType() != VT) { |
| LLVM_DEBUG( |
| dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n"); |
| return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); |
| } |
| |
| // This is actually a DUPLANExx operation, which keeps everything vectory. |
| |
| SDValue Lane = Value.getOperand(1); |
| Value = Value.getOperand(0); |
| if (Value.getValueSizeInBits() == 64) { |
| LLVM_DEBUG( |
| dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " |
| "widening it\n"); |
| Value = WidenVector(Value, DAG); |
| } |
| |
| unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); |
| return DAG.getNode(Opcode, dl, VT, Value, Lane); |
| } |
| |
| if (VT.getVectorElementType().isFloatingPoint()) { |
| SmallVector<SDValue, 8> Ops; |
| EVT EltTy = VT.getVectorElementType(); |
| assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) && |
| "Unsupported floating-point vector type"); |
| LLVM_DEBUG( |
| dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " |
| "BITCASTS, and try again\n"); |
| MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); |
| for (unsigned i = 0; i < NumElts; ++i) |
| Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); |
| SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); |
| LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: "; |
| Val.dump();); |
| Val = LowerBUILD_VECTOR(Val, DAG); |
| if (Val.getNode()) |
| return DAG.getNode(ISD::BITCAST, dl, VT, Val); |
| } |
| } |
| |
| // If there was only one constant value used and for more than one lane, |
| // start by splatting that value, then replace the non-constant lanes. This |
| // is better than the default, which will perform a separate initialization |
| // for each lane. |
| if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { |
| // Firstly, try to materialize the splat constant. |
| SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue), |
| Val = ConstantBuildVector(Vec, DAG); |
| if (!Val) { |
| // Otherwise, materialize the constant and splat it. |
| Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); |
| DAG.ReplaceAllUsesWith(Vec.getNode(), &Val); |
| } |
| |
| // Now insert the non-constant lanes. |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); |
| if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) |
| // Note that type legalization likely mucked about with the VT of the |
| // source operand, so we may have to convert it here before inserting. |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); |
| } |
| return Val; |
| } |
| |
| // This will generate a load from the constant pool. |
| if (isConstant) { |
| LLVM_DEBUG( |
| dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " |
| "expansion\n"); |
| return SDValue(); |
| } |
| |
| // Empirical tests suggest this is rarely worth it for vectors of length <= 2. |
| if (NumElts >= 4) { |
| if (SDValue shuffle = ReconstructShuffle(Op, DAG)) |
| return shuffle; |
| } |
| |
| // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we |
| // know the default expansion would otherwise fall back on something even |
| // worse. For a vector with one or two non-undef values, that's |
| // scalar_to_vector for the elements followed by a shuffle (provided the |
| // shuffle is valid for the target) and materialization element by element |
| // on the stack followed by a load for everything else. |
| if (!isConstant && !usesOnlyOneValue) { |
| LLVM_DEBUG( |
| dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " |
| "of INSERT_VECTOR_ELT\n"); |
| |
| SDValue Vec = DAG.getUNDEF(VT); |
| SDValue Op0 = Op.getOperand(0); |
| unsigned i = 0; |
| |
| // Use SCALAR_TO_VECTOR for lane zero to |
| // a) Avoid a RMW dependency on the full vector register, and |
| // b) Allow the register coalescer to fold away the copy if the |
| // value is already in an S or D register, and we're forced to emit an |
| // INSERT_SUBREG that we can't fold anywhere. |
| // |
| // We also allow types like i8 and i16 which are illegal scalar but legal |
| // vector element types. After type-legalization the inserted value is |
| // extended (i32) and it is safe to cast them to the vector type by ignoring |
| // the upper bits of the lowest lane (e.g. v8i8, v4i16). |
| if (!Op0.isUndef()) { |
| LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n"); |
| Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0); |
| ++i; |
| } |
| LLVM_DEBUG(if (i < NumElts) dbgs() |
| << "Creating nodes for the other vector elements:\n";); |
| for (; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.isUndef()) |
| continue; |
| SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); |
| } |
| return Vec; |
| } |
| |
| LLVM_DEBUG( |
| dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " |
| "better alternative\n"); |
| return SDValue(); |
| } |
| |
| SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); |
| |
| // Check for non-constant or out of range lane. |
| EVT VT = Op.getOperand(0).getValueType(); |
| ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) |
| return SDValue(); |
| |
| |
| // Insertion/extraction are legal for V128 types. |
| if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || |
| VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || |
| VT == MVT::v8f16) |
| return Op; |
| |
| if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && |
| VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) |
| return SDValue(); |
| |
| // For V64 types, we perform insertion by expanding the value |
| // to a V128 type and perform the insertion on that. |
| SDLoc DL(Op); |
| SDValue WideVec = WidenVector(Op.getOperand(0), DAG); |
| EVT WideTy = WideVec.getValueType(); |
| |
| SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, |
| Op.getOperand(1), Op.getOperand(2)); |
| // Re-narrow the resultant vector. |
| return NarrowVector(Node, DAG); |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); |
| |
| // Check for non-constant or out of range lane. |
| EVT VT = Op.getOperand(0).getValueType(); |
| ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) |
| return SDValue(); |
| |
| |
| // Insertion/extraction are legal for V128 types. |
| if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || |
| VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || |
| VT == MVT::v8f16) |
| return Op; |
| |
| if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && |
| VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) |
| return SDValue(); |
| |
| // For V64 types, we perform extraction by expanding the value |
| // to a V128 type and perform the extraction on that. |
| SDLoc DL(Op); |
| SDValue WideVec = WidenVector(Op.getOperand(0), DAG); |
| EVT WideTy = WideVec.getValueType(); |
| |
| EVT ExtrTy = WideTy.getVectorElementType(); |
| if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) |
| ExtrTy = MVT::i32; |
| |
| // For extractions, we just return the result directly. |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, |
| Op.getOperand(1)); |
| } |
| |
| SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getOperand(0).getValueType(); |
| SDLoc dl(Op); |
| // Just in case... |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| if (!Cst) |
| return SDValue(); |
| unsigned Val = Cst->getZExtValue(); |
| |
| unsigned Size = Op.getValueSizeInBits(); |
| |
| // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. |
| if (Val == 0) |
| return Op; |
| |
| // If this is extracting the upper 64-bits of a 128-bit vector, we match |
| // that directly. |
| if (Size == 64 && Val * VT.getScalarSizeInBits() == 64) |
| return Op; |
| |
| return SDValue(); |
| } |
| |
| bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { |
| if (VT.getVectorNumElements() == 4 && |
| (VT.is128BitVector() || VT.is64BitVector())) { |
| unsigned PFIndexes[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (M[i] < 0) |
| PFIndexes[i] = 8; |
| else |
| PFIndexes[i] = M[i]; |
| } |
| |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + |
| PFIndexes[2] * 9 + PFIndexes[3]; |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| if (Cost <= 4) |
| return true; |
| } |
| |
| bool DummyBool; |
| int DummyInt; |
| unsigned DummyUnsigned; |
| |
| return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || |
| isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || |
| isEXTMask(M, VT, DummyBool, DummyUnsigned) || |
| // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. |
| isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || |
| isZIPMask(M, VT, DummyUnsigned) || |
| isTRN_v_undef_Mask(M, VT, DummyUnsigned) || |
| isUZP_v_undef_Mask(M, VT, DummyUnsigned) || |
| isZIP_v_undef_Mask(M, VT, DummyUnsigned) || |
| isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || |
| isConcatMask(M, VT, VT.getSizeInBits() == 128)); |
| } |
| |
| /// getVShiftImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift operation, where all the elements of the |
| /// build_vector must have the same constant integer value. |
| static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { |
| // Ignore bit_converts. |
| while (Op.getOpcode() == ISD::BITCAST) |
| Op = Op.getOperand(0); |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, |
| HasAnyUndefs, ElementBits) || |
| SplatBitSize > ElementBits) |
| return false; |
| Cnt = SplatBits.getSExtValue(); |
| return true; |
| } |
| |
| /// isVShiftLImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift left operation. That value must be in the range: |
| /// 0 <= Value < ElementBits for a left shift; or |
| /// 0 <= Value <= ElementBits for a long left shift. |
| static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { |
| assert(VT.isVector() && "vector shift count is not a vector type"); |
| int64_t ElementBits = VT.getScalarSizeInBits(); |
| if (!getVShiftImm(Op, ElementBits, Cnt)) |
| return false; |
| return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); |
| } |
| |
| /// isVShiftRImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift right operation. The value must be in the range: |
| /// 1 <= Value <= ElementBits for a right shift; or |
| static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { |
| assert(VT.isVector() && "vector shift count is not a vector type"); |
| int64_t ElementBits = VT.getScalarSizeInBits(); |
| if (!getVShiftImm(Op, ElementBits, Cnt)) |
| return false; |
| return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); |
| } |
| |
| SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| int64_t Cnt; |
| |
| if (!Op.getOperand(1).getValueType().isVector()) |
| return Op; |
| unsigned EltSize = VT.getScalarSizeInBits(); |
| |
| switch (Op.getOpcode()) { |
| default: |
| llvm_unreachable("unexpected shift opcode"); |
| |
| case ISD::SHL: |
| if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) |
| return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), |
| DAG.getConstant(Cnt, DL, MVT::i32)); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, |
| MVT::i32), |
| Op.getOperand(0), Op.getOperand(1)); |
| case ISD::SRA: |
| case ISD::SRL: |
| // Right shift immediate |
| if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { |
| unsigned Opc = |
| (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; |
| return DAG.getNode(Opc, DL, VT, Op.getOperand(0), |
| DAG.getConstant(Cnt, DL, MVT::i32)); |
| } |
| |
| // Right shift register. Note, there is not a shift right register |
| // instruction, but the shift left register instruction takes a signed |
| // value, where negative numbers specify a right shift. |
| unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl |
| : Intrinsic::aarch64_neon_ushl; |
| // negate the shift amount |
| SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); |
| SDValue NegShiftLeft = |
| DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, |
| DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), |
| NegShift); |
| return NegShiftLeft; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, |
| AArch64CC::CondCode CC, bool NoNans, EVT VT, |
| const SDLoc &dl, SelectionDAG &DAG) { |
| EVT SrcVT = LHS.getValueType(); |
| assert(VT.getSizeInBits() == SrcVT.getSizeInBits() && |
| "function only supposed to emit natural comparisons"); |
| |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); |
| APInt CnstBits(VT.getSizeInBits(), 0); |
| APInt UndefBits(VT.getSizeInBits(), 0); |
| bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); |
| bool IsZero = IsCnst && (CnstBits == 0); |
| |
| if (SrcVT.getVectorElementType().isFloatingPoint()) { |
| switch (CC) { |
| default: |
| return SDValue(); |
| case AArch64CC::NE: { |
| SDValue Fcmeq; |
| if (IsZero) |
| Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); |
| else |
| Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); |
| return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); |
| } |
| case AArch64CC::EQ: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); |
| case AArch64CC::GE: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); |
| case AArch64CC::GT: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); |
| case AArch64CC::LS: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); |
| case AArch64CC::LT: |
| if (!NoNans) |
| return SDValue(); |
| // If we ignore NaNs then we can use to the MI implementation. |
| LLVM_FALLTHROUGH; |
| case AArch64CC::MI: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); |
| } |
| } |
| |
| switch (CC) { |
| default: |
| return SDValue(); |
| case AArch64CC::NE: { |
| SDValue Cmeq; |
| if (IsZero) |
| Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); |
| else |
| Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); |
| return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); |
| } |
| case AArch64CC::EQ: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); |
| case AArch64CC::GE: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); |
| case AArch64CC::GT: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); |
| case AArch64CC::LE: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); |
| case AArch64CC::LS: |
| return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); |
| case AArch64CC::LO: |
| return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); |
| case AArch64CC::LT: |
| if (IsZero) |
| return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); |
| return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); |
| case AArch64CC::HI: |
| return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); |
| case AArch64CC::HS: |
| return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); |
| } |
| } |
| |
| SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, |
| SelectionDAG &DAG) const { |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); |
| SDLoc dl(Op); |
| |
| if (LHS.getValueType().getVectorElementType().isInteger()) { |
| assert(LHS.getValueType() == RHS.getValueType()); |
| AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); |
| SDValue Cmp = |
| EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); |
| return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); |
| } |
| |
| const bool FullFP16 = |
| static_cast<const AArch64Subtarget &>(DAG.getSubtarget()).hasFullFP16(); |
| |
| // Make v4f16 (only) fcmp operations utilise vector instructions |
| // v8f16 support will be a litle more complicated |
| if (LHS.getValueType().getVectorElementType() == MVT::f16) { |
| if (!FullFP16 && LHS.getValueType().getVectorNumElements() == 4) { |
| LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS); |
| RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS); |
| SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC); |
| DAG.ReplaceAllUsesWith(Op, NewSetcc); |
| CmpVT = MVT::v4i32; |
| } else |
| return SDValue(); |
| } |
| |
| assert(LHS.getValueType().getVectorElementType() == MVT::f32 || |
| LHS.getValueType().getVectorElementType() == MVT::f64); |
| |
| // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally |
| // clean. Some of them require two branches to implement. |
| AArch64CC::CondCode CC1, CC2; |
| bool ShouldInvert; |
| changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); |
| |
| bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; |
| SDValue Cmp = |
| EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); |
| if (!Cmp.getNode()) |
| return SDValue(); |
| |
| if (CC2 != AArch64CC::AL) { |
| SDValue Cmp2 = |
| EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); |
| if (!Cmp2.getNode()) |
| return SDValue(); |
| |
| Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); |
| } |
| |
| Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); |
| |
| if (ShouldInvert) |
| return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); |
| |
| return Cmp; |
| } |
| |
| static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp, |
| SelectionDAG &DAG) { |
| SDValue VecOp = ScalarOp.getOperand(0); |
| auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx, |
| DAG.getConstant(0, DL, MVT::i64)); |
| } |
| |
| SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| switch (Op.getOpcode()) { |
| case ISD::VECREDUCE_ADD: |
| return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG); |
| case ISD::VECREDUCE_SMAX: |
| return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG); |
| case ISD::VECREDUCE_SMIN: |
| return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG); |
| case ISD::VECREDUCE_UMAX: |
| return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG); |
| case ISD::VECREDUCE_UMIN: |
| return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG); |
| case ISD::VECREDUCE_FMAX: { |
| assert(Op->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag"); |
| return DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), |
| DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32), |
| Op.getOperand(0)); |
| } |
| case ISD::VECREDUCE_FMIN: { |
| assert(Op->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag"); |
| return DAG.getNode( |
| ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), |
| DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32), |
| Op.getOperand(0)); |
| } |
| default: |
| llvm_unreachable("Unhandled reduction"); |
| } |
| } |
| |
| SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget()); |
| if (!Subtarget.hasLSE()) |
| return SDValue(); |
| |
| // LSE has an atomic load-add instruction, but not a load-sub. |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue RHS = Op.getOperand(2); |
| AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); |
| RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS); |
| return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(), |
| Op.getOperand(0), Op.getOperand(1), RHS, |
| AN->getMemOperand()); |
| } |
| |
| SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op, |
| SelectionDAG &DAG) const { |
| auto &Subtarget = static_cast<const AArch64Subtarget &>(DAG.getSubtarget()); |
| if (!Subtarget.hasLSE()) |
| return SDValue(); |
| |
| // LSE has an atomic load-clear instruction, but not a load-and. |
| SDLoc dl(Op); |
| MVT VT = Op.getSimpleValueType(); |
| SDValue RHS = Op.getOperand(2); |
| AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); |
| RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS); |
| return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(), |
| Op.getOperand(0), Op.getOperand(1), RHS, |
| AN->getMemOperand()); |
| } |
| |
| SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC( |
| SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const { |
| SDLoc dl(Op); |
| EVT PtrVT = getPointerTy(DAG.getDataLayout()); |
| SDValue Callee = DAG.getTargetExternalSymbol("__chkstk", PtrVT, 0); |
| |
| const uint32_t *Mask = |
| Subtarget->getRegisterInfo()->getWindowsStackProbePreservedMask(); |
| |
| Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size, |
| DAG.getConstant(4, dl, MVT::i64)); |
| Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue()); |
| Chain = |
| DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue), |
| Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64), |
| DAG.getRegisterMask(Mask), Chain.getValue(1)); |
| // To match the actual intent better, we should read the output from X15 here |
| // again (instead of potentially spilling it to the stack), but rereading Size |
| // from X15 here doesn't work at -O0, since it thinks that X15 is undefined |
| // here. |
| |
| Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size, |
| DAG.getConstant(4, dl, MVT::i64)); |
| return Chain; |
| } |
| |
| SDValue |
| AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetWindows() && |
| "Only Windows alloca probing supported"); |
| SDLoc dl(Op); |
| // Get the inputs. |
| SDNode *Node = Op.getNode(); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); |
| EVT VT = Node->getValueType(0); |
| |
| if (DAG.getMachineFunction().getFunction().hasFnAttribute( |
| "no-stack-arg-probe")) { |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); |
| Chain = SP.getValue(1); |
| SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); |
| if (Align) |
| SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), |
| DAG.getConstant(-(uint64_t)Align, dl, VT)); |
| Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); |
| SDValue Ops[2] = {SP, Chain}; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); |
| |
| Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG); |
| |
| SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); |
| Chain = SP.getValue(1); |
| SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); |
| if (Align) |
| SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), |
| DAG.getConstant(-(uint64_t)Align, dl, VT)); |
| Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), |
| DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); |
| |
| SDValue Ops[2] = {SP, Chain}; |
| return DAG.getMergeValues(Ops, dl); |
| } |
| |
| /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as |
| /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment |
| /// specified in the intrinsic calls. |
| bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, |
| const CallInst &I, |
| MachineFunction &MF, |
| unsigned Intrinsic) const { |
| auto &DL = I.getModule()->getDataLayout(); |
| switch (Intrinsic) { |
| case Intrinsic::aarch64_neon_ld2: |
| case Intrinsic::aarch64_neon_ld3: |
| case Intrinsic::aarch64_neon_ld4: |
| case Intrinsic::aarch64_neon_ld1x2: |
| case Intrinsic::aarch64_neon_ld1x3: |
| case Intrinsic::aarch64_neon_ld1x4: |
| case Intrinsic::aarch64_neon_ld2lane: |
| case Intrinsic::aarch64_neon_ld3lane: |
| case Intrinsic::aarch64_neon_ld4lane: |
| case Intrinsic::aarch64_neon_ld2r: |
| case Intrinsic::aarch64_neon_ld3r: |
| case Intrinsic::aarch64_neon_ld4r: { |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| // Conservatively set memVT to the entire set of vectors loaded. |
| uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; |
| Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); |
| Info.offset = 0; |
| Info.align = 0; |
| // volatile loads with NEON intrinsics not supported |
| Info.flags = MachineMemOperand::MOLoad; |
| return true; |
| } |
| case Intrinsic::aarch64_neon_st2: |
| case Intrinsic::aarch64_neon_st3: |
| case Intrinsic::aarch64_neon_st4: |
| case Intrinsic::aarch64_neon_st1x2: |
| case Intrinsic::aarch64_neon_st1x3: |
| case Intrinsic::aarch64_neon_st1x4: |
| case Intrinsic::aarch64_neon_st2lane: |
| case Intrinsic::aarch64_neon_st3lane: |
| case Intrinsic::aarch64_neon_st4lane: { |
| Info.opc = ISD::INTRINSIC_VOID; |
| // Conservatively set memVT to the entire set of vectors stored. |
| unsigned NumElts = 0; |
| for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { |
| Type *ArgTy = I.getArgOperand(ArgI)->getType(); |
| if (!ArgTy->isVectorTy()) |
| break; |
| NumElts += DL.getTypeSizeInBits(ArgTy) / 64; |
| } |
| Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); |
| Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); |
| Info.offset = 0; |
| Info.align = 0; |
| // volatile stores with NEON intrinsics not supported |
| Info.flags = MachineMemOperand::MOStore; |
| return true; |
| } |
| case Intrinsic::aarch64_ldaxr: |
| case Intrinsic::aarch64_ldxr: { |
| PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(PtrTy->getElementType()); |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; |
| return true; |
| } |
| case Intrinsic::aarch64_stlxr: |
| case Intrinsic::aarch64_stxr: { |
| PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::getVT(PtrTy->getElementType()); |
| Info.ptrVal = I.getArgOperand(1); |
| Info.offset = 0; |
| Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); |
| Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; |
| return true; |
| } |
| case Intrinsic::aarch64_ldaxp: |
| case Intrinsic::aarch64_ldxp: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i128; |
| Info.ptrVal = I.getArgOperand(0); |
| Info.offset = 0; |
| Info.align = 16; |
| Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; |
| return true; |
| case Intrinsic::aarch64_stlxp: |
| case Intrinsic::aarch64_stxp: |
| Info.opc = ISD::INTRINSIC_W_CHAIN; |
| Info.memVT = MVT::i128; |
| Info.ptrVal = I.getArgOperand(2); |
| Info.offset = 0; |
| Info.align = 16; |
| Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load, |
| ISD::LoadExtType ExtTy, |
| EVT NewVT) const { |
| // If we're reducing the load width in order to avoid having to use an extra |
| // instruction to do extension then it's probably a good idea. |
| if (ExtTy != ISD::NON_EXTLOAD) |
| return true; |
| // Don't reduce load width if it would prevent us from combining a shift into |
| // the offset. |
| MemSDNode *Mem = dyn_cast<MemSDNode>(Load); |
| assert(Mem); |
| const SDValue &Base = Mem->getBasePtr(); |
| if (Base.getOpcode() == ISD::ADD && |
| Base.getOperand(1).getOpcode() == ISD::SHL && |
| Base.getOperand(1).hasOneUse() && |
| Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) { |
| // The shift can be combined if it matches the size of the value being |
| // loaded (and so reducing the width would make it not match). |
| uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1); |
| uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8; |
| if (ShiftAmount == Log2_32(LoadBytes)) |
| return false; |
| } |
| // We have no reason to disallow reducing the load width, so allow it. |
| return true; |
| } |
| |
| // Truncations from 64-bit GPR to 32-bit GPR is free. |
| bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| return false; |
| unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
| return NumBits1 > NumBits2; |
| } |
| bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { |
| if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) |
| return false; |
| unsigned NumBits1 = VT1.getSizeInBits(); |
| unsigned NumBits2 = VT2.getSizeInBits(); |
| return NumBits1 > NumBits2; |
| } |
| |
| /// Check if it is profitable to hoist instruction in then/else to if. |
| /// Not profitable if I and it's user can form a FMA instruction |
| /// because we prefer FMSUB/FMADD. |
| bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { |
| if (I->getOpcode() != Instruction::FMul) |
| return true; |
| |
| if (!I->hasOneUse()) |
| return true; |
| |
| Instruction *User = I->user_back(); |
| |
| if (User && |
| !(User->getOpcode() == Instruction::FSub || |
| User->getOpcode() == Instruction::FAdd)) |
| return true; |
| |
| const TargetOptions &Options = getTargetMachine().Options; |
| const DataLayout &DL = I->getModule()->getDataLayout(); |
| EVT VT = getValueType(DL, User->getOperand(0)->getType()); |
| |
| return !(isFMAFasterThanFMulAndFAdd(VT) && |
| isOperationLegalOrCustom(ISD::FMA, VT) && |
| (Options.AllowFPOpFusion == FPOpFusion::Fast || |
| Options.UnsafeFPMath)); |
| } |
| |
| // All 32-bit GPR operations implicitly zero the high-half of the corresponding |
| // 64-bit GPR. |
| bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { |
| if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) |
| return false; |
| unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); |
| unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); |
| return NumBits1 == 32 && NumBits2 == 64; |
| } |
| bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { |
| if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) |
| return false; |
| unsigned NumBits1 = VT1.getSizeInBits(); |
| unsigned NumBits2 = VT2.getSizeInBits(); |
| return NumBits1 == 32 && NumBits2 == 64; |
| } |
| |
| bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| EVT VT1 = Val.getValueType(); |
| if (isZExtFree(VT1, VT2)) { |
| return true; |
| } |
| |
| if (Val.getOpcode() != ISD::LOAD) |
| return false; |
| |
| // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. |
| return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && |
| VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && |
| VT1.getSizeInBits() <= 32); |
| } |
| |
| bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { |
| if (isa<FPExtInst>(Ext)) |
| return false; |
| |
| // Vector types are not free. |
| if (Ext->getType()->isVectorTy()) |
| return false; |
| |
| for (const Use &U : Ext->uses()) { |
| // The extension is free if we can fold it with a left shift in an |
| // addressing mode or an arithmetic operation: add, sub, and cmp. |
| |
| // Is there a shift? |
| const Instruction *Instr = cast<Instruction>(U.getUser()); |
| |
| // Is this a constant shift? |
| switch (Instr->getOpcode()) { |
| case Instruction::Shl: |
| if (!isa<ConstantInt>(Instr->getOperand(1))) |
| return false; |
| break; |
| case Instruction::GetElementPtr: { |
| gep_type_iterator GTI = gep_type_begin(Instr); |
| auto &DL = Ext->getModule()->getDataLayout(); |
| std::advance(GTI, U.getOperandNo()-1); |
| Type *IdxTy = GTI.getIndexedType(); |
| // This extension will end up with a shift because of the scaling factor. |
| // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. |
| // Get the shift amount based on the scaling factor: |
| // log2(sizeof(IdxTy)) - log2(8). |
| uint64_t ShiftAmt = |
| countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3; |
| // Is the constant foldable in the shift of the addressing mode? |
| // I.e., shift amount is between 1 and 4 inclusive. |
| if (ShiftAmt == 0 || ShiftAmt > 4) |
| return false; |
| break; |
| } |
| case Instruction::Trunc: |
| // Check if this is a noop. |
| // trunc(sext ty1 to ty2) to ty1. |
| if (Instr->getType() == Ext->getOperand(0)->getType()) |
| continue; |
| LLVM_FALLTHROUGH; |
| default: |
| return false; |
| } |
| |
| // At this point we can use the bfm family, so this extension is free |
| // for that use. |
| } |
| return true; |
| } |
| |
| bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, |
| unsigned &RequiredAligment) const { |
| if (!LoadedType.isSimple() || |
| (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) |
| return false; |
| // Cyclone supports unaligned accesses. |
| RequiredAligment = 0; |
| unsigned NumBits = LoadedType.getSizeInBits(); |
| return NumBits == 32 || NumBits == 64; |
| } |
| |
| /// A helper function for determining the number of interleaved accesses we |
| /// will generate when lowering accesses of the given type. |
| unsigned |
| AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy, |
| const DataLayout &DL) const { |
| return (DL.getTypeSizeInBits(VecTy) + 127) / 128; |
| } |
| |
| MachineMemOperand::Flags |
| AArch64TargetLowering::getMMOFlags(const Instruction &I) const { |
| if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor && |
| I.getMetadata(FALKOR_STRIDED_ACCESS_MD) != nullptr) |
| return MOStridedAccess; |
| return MachineMemOperand::MONone; |
| } |
| |
| bool AArch64TargetLowering::isLegalInterleavedAccessType( |
| VectorType *VecTy, const DataLayout &DL) const { |
| |
| unsigned VecSize = DL.getTypeSizeInBits(VecTy); |
| unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); |
| |
| // Ensure the number of vector elements is greater than 1. |
| if (VecTy->getNumElements() < 2) |
| return false; |
| |
| // Ensure the element type is legal. |
| if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64) |
| return false; |
| |
| // Ensure the total vector size is 64 or a multiple of 128. Types larger than |
| // 128 will be split into multiple interleaved accesses. |
| return VecSize == 64 || VecSize % 128 == 0; |
| } |
| |
| /// Lower an interleaved load into a ldN intrinsic. |
| /// |
| /// E.g. Lower an interleaved load (Factor = 2): |
| /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr |
| /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements |
| /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements |
| /// |
| /// Into: |
| /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) |
| /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 |
| /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 |
| bool AArch64TargetLowering::lowerInterleavedLoad( |
| LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, |
| ArrayRef<unsigned> Indices, unsigned Factor) const { |
| assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
| "Invalid interleave factor"); |
| assert(!Shuffles.empty() && "Empty shufflevector input"); |
| assert(Shuffles.size() == Indices.size() && |
| "Unmatched number of shufflevectors and indices"); |
| |
| const DataLayout &DL = LI->getModule()->getDataLayout(); |
| |
| VectorType *VecTy = Shuffles[0]->getType(); |
| |
| // Skip if we do not have NEON and skip illegal vector types. We can |
| // "legalize" wide vector types into multiple interleaved accesses as long as |
| // the vector types are divisible by 128. |
| if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL)) |
| return false; |
| |
| unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL); |
| |
| // A pointer vector can not be the return type of the ldN intrinsics. Need to |
| // load integer vectors first and then convert to pointer vectors. |
| Type *EltTy = VecTy->getVectorElementType(); |
| if (EltTy->isPointerTy()) |
| VecTy = |
| VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements()); |
| |
| IRBuilder<> Builder(LI); |
| |
| // The base address of the load. |
| Value *BaseAddr = LI->getPointerOperand(); |
| |
| if (NumLoads > 1) { |
| // If we're going to generate more than one load, reset the sub-vector type |
| // to something legal. |
| VecTy = VectorType::get(VecTy->getVectorElementType(), |
| VecTy->getVectorNumElements() / NumLoads); |
| |
| // We will compute the pointer operand of each load from the original base |
| // address using GEPs. Cast the base address to a pointer to the scalar |
| // element type. |
| BaseAddr = Builder.CreateBitCast( |
| BaseAddr, VecTy->getVectorElementType()->getPointerTo( |
| LI->getPointerAddressSpace())); |
| } |
| |
| Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace()); |
| Type *Tys[2] = {VecTy, PtrTy}; |
| static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2, |
| Intrinsic::aarch64_neon_ld3, |
| Intrinsic::aarch64_neon_ld4}; |
| Function *LdNFunc = |
| Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); |
| |
| // Holds sub-vectors extracted from the load intrinsic return values. The |
| // sub-vectors are associated with the shufflevector instructions they will |
| // replace. |
| DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs; |
| |
| for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { |
| |
| // If we're generating more than one load, compute the base address of |
| // subsequent loads as an offset from the previous. |
| if (LoadCount > 0) |
| BaseAddr = Builder.CreateConstGEP1_32( |
| BaseAddr, VecTy->getVectorNumElements() * Factor); |
| |
| CallInst *LdN = Builder.CreateCall( |
| LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN"); |
| |
| // Extract and store the sub-vectors returned by the load intrinsic. |
| for (unsigned i = 0; i < Shuffles.size(); i++) { |
| ShuffleVectorInst *SVI = Shuffles[i]; |
| unsigned Index = Indices[i]; |
| |
| Value *SubVec = Builder.CreateExtractValue(LdN, Index); |
| |
| // Convert the integer vector to pointer vector if the element is pointer. |
| if (EltTy->isPointerTy()) |
| SubVec = Builder.CreateIntToPtr( |
| SubVec, VectorType::get(SVI->getType()->getVectorElementType(), |
| VecTy->getVectorNumElements())); |
| SubVecs[SVI].push_back(SubVec); |
| } |
| } |
| |
| // Replace uses of the shufflevector instructions with the sub-vectors |
| // returned by the load intrinsic. If a shufflevector instruction is |
| // associated with more than one sub-vector, those sub-vectors will be |
| // concatenated into a single wide vector. |
| for (ShuffleVectorInst *SVI : Shuffles) { |
| auto &SubVec = SubVecs[SVI]; |
| auto *WideVec = |
| SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; |
| SVI->replaceAllUsesWith(WideVec); |
| } |
| |
| return true; |
| } |
| |
| /// Lower an interleaved store into a stN intrinsic. |
| /// |
| /// E.g. Lower an interleaved store (Factor = 3): |
| /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, |
| /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> |
| /// store <12 x i32> %i.vec, <12 x i32>* %ptr |
| /// |
| /// Into: |
| /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> |
| /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> |
| /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> |
| /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) |
| /// |
| /// Note that the new shufflevectors will be removed and we'll only generate one |
| /// st3 instruction in CodeGen. |
| /// |
| /// Example for a more general valid mask (Factor 3). Lower: |
| /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, |
| /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> |
| /// store <12 x i32> %i.vec, <12 x i32>* %ptr |
| /// |
| /// Into: |
| /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> |
| /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> |
| /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> |
| /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) |
| bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, |
| ShuffleVectorInst *SVI, |
| unsigned Factor) const { |
| assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && |
| "Invalid interleave factor"); |
| |
| VectorType *VecTy = SVI->getType(); |
| assert(VecTy->getVectorNumElements() % Factor == 0 && |
| "Invalid interleaved store"); |
| |
| unsigned LaneLen = VecTy->getVectorNumElements() / Factor; |
| Type *EltTy = VecTy->getVectorElementType(); |
| VectorType *SubVecTy = VectorType::get(EltTy, LaneLen); |
| |
| const DataLayout &DL = SI->getModule()->getDataLayout(); |
| |
| // Skip if we do not have NEON and skip illegal vector types. We can |
| // "legalize" wide vector types into multiple interleaved accesses as long as |
| // the vector types are divisible by 128. |
| if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL)) |
| return false; |
| |
| unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL); |
| |
| Value *Op0 = SVI->getOperand(0); |
| Value *Op1 = SVI->getOperand(1); |
| IRBuilder<> Builder(SI); |
| |
| // StN intrinsics don't support pointer vectors as arguments. Convert pointer |
| // vectors to integer vectors. |
| if (EltTy->isPointerTy()) { |
| Type *IntTy = DL.getIntPtrType(EltTy); |
| unsigned NumOpElts = Op0->getType()->getVectorNumElements(); |
| |
| // Convert to the corresponding integer vector. |
| Type *IntVecTy = VectorType::get(IntTy, NumOpElts); |
| Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); |
| Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); |
| |
| SubVecTy = VectorType::get(IntTy, LaneLen); |
| } |
| |
| // The base address of the store. |
| Value *BaseAddr = SI->getPointerOperand(); |
| |
| if (NumStores > 1) { |
| // If we're going to generate more than one store, reset the lane length |
| // and sub-vector type to something legal. |
| LaneLen /= NumStores; |
| SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen); |
| |
| // We will compute the pointer operand of each store from the original base |
| // address using GEPs. Cast the base address to a pointer to the scalar |
| // element type. |
| BaseAddr = Builder.CreateBitCast( |
| BaseAddr, SubVecTy->getVectorElementType()->getPointerTo( |
| SI->getPointerAddressSpace())); |
| } |
| |
| auto Mask = SVI->getShuffleMask(); |
| |
| Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace()); |
| Type *Tys[2] = {SubVecTy, PtrTy}; |
| static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2, |
| Intrinsic::aarch64_neon_st3, |
| Intrinsic::aarch64_neon_st4}; |
| Function *StNFunc = |
| Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys); |
| |
| for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { |
| |
| SmallVector<Value *, 5> Ops; |
| |
| // Split the shufflevector operands into sub vectors for the new stN call. |
| for (unsigned i = 0; i < Factor; i++) { |
| unsigned IdxI = StoreCount * LaneLen * Factor + i; |
| if (Mask[IdxI] >= 0) { |
| Ops.push_back(Builder.CreateShuffleVector( |
| Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0))); |
| } else { |
| unsigned StartMask = 0; |
| for (unsigned j = 1; j < LaneLen; j++) { |
| unsigned IdxJ = StoreCount * LaneLen * Factor + j; |
| if (Mask[IdxJ * Factor + IdxI] >= 0) { |
| StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ; |
| break; |
| } |
| } |
| // Note: Filling undef gaps with random elements is ok, since |
| // those elements were being written anyway (with undefs). |
| // In the case of all undefs we're defaulting to using elems from 0 |
| // Note: StartMask cannot be negative, it's checked in |
| // isReInterleaveMask |
| Ops.push_back(Builder.CreateShuffleVector( |
| Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0))); |
| } |
| } |
| |
| // If we generating more than one store, we compute the base address of |
| // subsequent stores as an offset from the previous. |
| if (StoreCount > 0) |
| BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor); |
| |
| Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy)); |
| Builder.CreateCall(StNFunc, Ops); |
| } |
| return true; |
| } |
| |
| static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, |
| unsigned AlignCheck) { |
| return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && |
| (DstAlign == 0 || DstAlign % AlignCheck == 0)); |
| } |
| |
| EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, |
| unsigned SrcAlign, bool IsMemset, |
| bool ZeroMemset, |
| bool MemcpyStrSrc, |
| MachineFunction &MF) const { |
| // Don't use AdvSIMD to implement 16-byte memset. It would have taken one |
| // instruction to materialize the v2i64 zero and one store (with restrictive |
| // addressing mode). Just do two i64 store of zero-registers. |
| bool Fast; |
| const Function &F = MF.getFunction(); |
| if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 && |
| !F.hasFnAttribute(Attribute::NoImplicitFloat) && |
| (memOpAlign(SrcAlign, DstAlign, 16) || |
| (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast))) |
| return MVT::f128; |
| |
| if (Size >= 8 && |
| (memOpAlign(SrcAlign, DstAlign, 8) || |
| (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast))) |
| return MVT::i64; |
| |
| if (Size >= 4 && |
| (memOpAlign(SrcAlign, DstAlign, 4) || |
| (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast))) |
| return MVT::i32; |
| |
| return MVT::Other; |
| } |
| |
| // 12-bit optionally shifted immediates are legal for adds. |
| bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { |
| if (Immed == std::numeric_limits<int64_t>::min()) { |
| LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed |
| << ": avoid UB for INT64_MIN\n"); |
| return false; |
| } |
| // Same encoding for add/sub, just flip the sign. |
| Immed = std::abs(Immed); |
| bool IsLegal = ((Immed >> 12) == 0 || |
| ((Immed & 0xfff) == 0 && Immed >> 24 == 0)); |
| LLVM_DEBUG(dbgs() << "Is " << Immed |
| << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n"); |
| return IsLegal; |
| } |
| |
| // Integer comparisons are implemented with ADDS/SUBS, so the range of valid |
| // immediates is the same as for an add or a sub. |
| bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { |
| return isLegalAddImmediate(Immed); |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS, Instruction *I) const { |
| // AArch64 has five basic addressing modes: |
| // reg |
| // reg + 9-bit signed offset |
| // reg + SIZE_IN_BYTES * 12-bit unsigned offset |
| // reg1 + reg2 |
| // reg + SIZE_IN_BYTES * reg |
| |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) |
| return false; |
| |
| // No reg+reg+imm addressing. |
| if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) |
| return false; |
| |
| // check reg + imm case: |
| // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 |
| uint64_t NumBytes = 0; |
| if (Ty->isSized()) { |
| uint64_t NumBits = DL.getTypeSizeInBits(Ty); |
| NumBytes = NumBits / 8; |
| if (!isPowerOf2_64(NumBits)) |
| NumBytes = 0; |
| } |
| |
| if (!AM.Scale) { |
| int64_t Offset = AM.BaseOffs; |
| |
| // 9-bit signed offset |
| if (isInt<9>(Offset)) |
| return true; |
| |
| // 12-bit unsigned offset |
| unsigned shift = Log2_64(NumBytes); |
| if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && |
| // Must be a multiple of NumBytes (NumBytes is a power of 2) |
| (Offset >> shift) << shift == Offset) |
| return true; |
| return false; |
| } |
| |
| // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 |
| |
| return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes); |
| } |
| |
| bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const { |
| // Consider splitting large offset of struct or array. |
| return true; |
| } |
| |
| int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL, |
| const AddrMode &AM, Type *Ty, |
| unsigned AS) const { |
| // Scaling factors are not free at all. |
| // Operands | Rt Latency |
| // ------------------------------------------- |
| // Rt, [Xn, Xm] | 4 |
| // ------------------------------------------- |
| // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 |
| // Rt, [Xn, Wm, <extend> #imm] | |
| if (isLegalAddressingMode(DL, AM, Ty, AS)) |
| // Scale represents reg2 * scale, thus account for 1 if |
| // it is not equal to 0 or 1. |
| return AM.Scale != 0 && AM.Scale != 1; |
| return -1; |
| } |
| |
| bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { |
| VT = VT.getScalarType(); |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| case MVT::f32: |
| case MVT::f64: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| const MCPhysReg * |
| AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { |
| // LR is a callee-save register, but we must treat it as clobbered by any call |
| // site. Hence we include LR in the scratch registers, which are in turn added |
| // as implicit-defs for stackmaps and patchpoints. |
| static const MCPhysReg ScratchRegs[] = { |
| AArch64::X16, AArch64::X17, AArch64::LR, 0 |
| }; |
| return ScratchRegs; |
| } |
| |
| bool |
| AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const { |
| EVT VT = N->getValueType(0); |
| // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine |
| // it with shift to let it be lowered to UBFX. |
| if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && |
| isa<ConstantSDNode>(N->getOperand(1))) { |
| uint64_t TruncMask = N->getConstantOperandVal(1); |
| if (isMask_64(TruncMask) && |
| N->getOperand(0).getOpcode() == ISD::SRL && |
| isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) |
| return false; |
| } |
| return true; |
| } |
| |
| bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, |
| Type *Ty) const { |
| assert(Ty->isIntegerTy()); |
| |
| unsigned BitSize = Ty->getPrimitiveSizeInBits(); |
| if (BitSize == 0) |
| return false; |
| |
| int64_t Val = Imm.getSExtValue(); |
| if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) |
| return true; |
| |
| if ((int64_t)Val < 0) |
| Val = ~Val; |
| if (BitSize == 32) |
| Val &= (1LL << 32) - 1; |
| |
| unsigned LZ = countLeadingZeros((uint64_t)Val); |
| unsigned Shift = (63 - LZ) / 16; |
| // MOVZ is free so return true for one or fewer MOVK. |
| return Shift < 3; |
| } |
| |
| bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, |
| unsigned Index) const { |
| if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) |
| return false; |
| |
| return (Index == 0 || Index == ResVT.getVectorNumElements()); |
| } |
| |
| /// Turn vector tests of the signbit in the form of: |
| /// xor (sra X, elt_size(X)-1), -1 |
| /// into: |
| /// cmge X, X, #0 |
| static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, |
| const AArch64Subtarget *Subtarget) { |
| EVT VT = N->getValueType(0); |
| if (!Subtarget->hasNEON() || !VT.isVector()) |
| return SDValue(); |
| |
| // There must be a shift right algebraic before the xor, and the xor must be a |
| // 'not' operation. |
| SDValue Shift = N->getOperand(0); |
| SDValue Ones = N->getOperand(1); |
| if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() || |
| !ISD::isBuildVectorAllOnes(Ones.getNode())) |
| return SDValue(); |
| |
| // The shift should be smearing the sign bit across each vector element. |
| auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); |
| EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); |
| if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) |
| return SDValue(); |
| |
| return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0)); |
| } |
| |
| // Generate SUBS and CSEL for integer abs. |
| static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { |
| EVT VT = N->getValueType(0); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDLoc DL(N); |
| |
| // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) |
| // and change it to SUB and CSEL. |
| if (VT.isInteger() && N->getOpcode() == ISD::XOR && |
| N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && |
| N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) |
| if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) |
| if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { |
| SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| N0.getOperand(0)); |
| // Generate SUBS & CSEL. |
| SDValue Cmp = |
| DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), |
| N0.getOperand(0), DAG.getConstant(0, DL, VT)); |
| return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, |
| DAG.getConstant(AArch64CC::PL, DL, MVT::i32), |
| SDValue(Cmp.getNode(), 1)); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget)) |
| return Cmp; |
| |
| return performIntegerAbsCombine(N, DAG); |
| } |
| |
| SDValue |
| AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, |
| SelectionDAG &DAG, |
| SmallVectorImpl<SDNode *> &Created) const { |
| AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
| if (isIntDivCheap(N->getValueType(0), Attr)) |
| return SDValue(N,0); // Lower SDIV as SDIV |
| |
| // fold (sdiv X, pow2) |
| EVT VT = N->getValueType(0); |
| if ((VT != MVT::i32 && VT != MVT::i64) || |
| !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue N0 = N->getOperand(0); |
| unsigned Lg2 = Divisor.countTrailingZeros(); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); |
| |
| // Add (N0 < 0) ? Pow2 - 1 : 0; |
| SDValue CCVal; |
| SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); |
| SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); |
| SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); |
| |
| Created.push_back(Cmp.getNode()); |
| Created.push_back(Add.getNode()); |
| Created.push_back(CSel.getNode()); |
| |
| // Divide by pow2. |
| SDValue SRA = |
| DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64)); |
| |
| // If we're dividing by a positive value, we're done. Otherwise, we must |
| // negate the result. |
| if (Divisor.isNonNegative()) |
| return SRA; |
| |
| Created.push_back(SRA.getNode()); |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); |
| } |
| |
| static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| // The below optimizations require a constant RHS. |
| if (!isa<ConstantSDNode>(N->getOperand(1))) |
| return SDValue(); |
| |
| ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1)); |
| const APInt &ConstValue = C->getAPIntValue(); |
| |
| // Multiplication of a power of two plus/minus one can be done more |
| // cheaply as as shift+add/sub. For now, this is true unilaterally. If |
| // future CPUs have a cheaper MADD instruction, this may need to be |
| // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and |
| // 64-bit is 5 cycles, so this is always a win. |
| // More aggressively, some multiplications N0 * C can be lowered to |
| // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M, |
| // e.g. 6=3*2=(2+1)*2. |
| // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45 |
| // which equals to (1+2)*16-(1+2). |
| SDValue N0 = N->getOperand(0); |
| // TrailingZeroes is used to test if the mul can be lowered to |
| // shift+add+shift. |
| unsigned TrailingZeroes = ConstValue.countTrailingZeros(); |
| if (TrailingZeroes) { |
| // Conservatively do not lower to shift+add+shift if the mul might be |
| // folded into smul or umul. |
| if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) || |
| isZeroExtended(N0.getNode(), DAG))) |
| return SDValue(); |
| // Conservatively do not lower to shift+add+shift if the mul might be |
| // folded into madd or msub. |
| if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD || |
| N->use_begin()->getOpcode() == ISD::SUB)) |
| return SDValue(); |
| } |
| // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub |
| // and shift+add+shift. |
| APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes); |
| |
| unsigned ShiftAmt, AddSubOpc; |
| // Is the shifted value the LHS operand of the add/sub? |
| bool ShiftValUseIsN0 = true; |
| // Do we need to negate the result? |
| bool NegateResult = false; |
| |
| if (ConstValue.isNonNegative()) { |
| // (mul x, 2^N + 1) => (add (shl x, N), x) |
| // (mul x, 2^N - 1) => (sub (shl x, N), x) |
| // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M) |
| APInt SCVMinus1 = ShiftedConstValue - 1; |
| APInt CVPlus1 = ConstValue + 1; |
| if (SCVMinus1.isPowerOf2()) { |
| ShiftAmt = SCVMinus1.logBase2(); |
| AddSubOpc = ISD::ADD; |
| } else if (CVPlus1.isPowerOf2()) { |
| ShiftAmt = CVPlus1.logBase2(); |
| AddSubOpc = ISD::SUB; |
| } else |
| return SDValue(); |
| } else { |
| // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) |
| // (mul x, -(2^N + 1)) => - (add (shl x, N), x) |
| APInt CVNegPlus1 = -ConstValue + 1; |
| APInt CVNegMinus1 = -ConstValue - 1; |
| if (CVNegPlus1.isPowerOf2()) { |
| ShiftAmt = CVNegPlus1.logBase2(); |
| AddSubOpc = ISD::SUB; |
| ShiftValUseIsN0 = false; |
| } else if (CVNegMinus1.isPowerOf2()) { |
| ShiftAmt = CVNegMinus1.logBase2(); |
| AddSubOpc = ISD::ADD; |
| NegateResult = true; |
| } else |
| return SDValue(); |
| } |
| |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0, |
| DAG.getConstant(ShiftAmt, DL, MVT::i64)); |
| |
| SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0; |
| SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal; |
| SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1); |
| assert(!(NegateResult && TrailingZeroes) && |
| "NegateResult and TrailingZeroes cannot both be true for now."); |
| // Negate the result. |
| if (NegateResult) |
| return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); |
| // Shift the result. |
| if (TrailingZeroes) |
| return DAG.getNode(ISD::SHL, DL, VT, Res, |
| DAG.getConstant(TrailingZeroes, DL, MVT::i64)); |
| return Res; |
| } |
| |
| static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, |
| SelectionDAG &DAG) { |
| // Take advantage of vector comparisons producing 0 or -1 in each lane to |
| // optimize away operation when it's from a constant. |
| // |
| // The general transformation is: |
| // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> |
| // AND(VECTOR_CMP(x,y), constant2) |
| // constant2 = UNARYOP(constant) |
| |
| // Early exit if this isn't a vector operation, the operand of the |
| // unary operation isn't a bitwise AND, or if the sizes of the operations |
| // aren't the same. |
| EVT VT = N->getValueType(0); |
| if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || |
| N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || |
| VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) |
| return SDValue(); |
| |
| // Now check that the other operand of the AND is a constant. We could |
| // make the transformation for non-constant splats as well, but it's unclear |
| // that would be a benefit as it would not eliminate any operations, just |
| // perform one more step in scalar code before moving to the vector unit. |
| if (BuildVectorSDNode *BV = |
| dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { |
| // Bail out if the vector isn't a constant. |
| if (!BV->isConstant()) |
| return SDValue(); |
| |
| // Everything checks out. Build up the new and improved node. |
| SDLoc DL(N); |
| EVT IntVT = BV->getValueType(0); |
| // Create a new constant of the appropriate type for the transformed |
| // DAG. |
| SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); |
| // The AND node needs bitcasts to/from an integer vector type around it. |
| SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); |
| SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, |
| N->getOperand(0)->getOperand(0), MaskConst); |
| SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); |
| return Res; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, |
| const AArch64Subtarget *Subtarget) { |
| // First try to optimize away the conversion when it's conditionally from |
| // a constant. Vectors only. |
| if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) |
| return Res; |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::f32 && VT != MVT::f64) |
| return SDValue(); |
| |
| // Only optimize when the source and destination types have the same width. |
| if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) |
| return SDValue(); |
| |
| // If the result of an integer load is only used by an integer-to-float |
| // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. |
| // This eliminates an "integer-to-vector-move" UOP and improves throughput. |
| SDValue N0 = N->getOperand(0); |
| if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && |
| // Do not change the width of a volatile load. |
| !cast<LoadSDNode>(N0)->isVolatile()) { |
| LoadSDNode *LN0 = cast<LoadSDNode>(N0); |
| SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), |
| LN0->getPointerInfo(), LN0->getAlignment(), |
| LN0->getMemOperand()->getFlags()); |
| |
| // Make sure successors of the original load stay after it by updating them |
| // to use the new Chain. |
| DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); |
| |
| unsigned Opcode = |
| (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; |
| return DAG.getNode(Opcode, SDLoc(N), VT, Load); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// Fold a floating-point multiply by power of two into floating-point to |
| /// fixed-point conversion. |
| static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| if (!Subtarget->hasNEON()) |
| return SDValue(); |
| |
| SDValue Op = N->getOperand(0); |
| if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || |
| Op.getOpcode() != ISD::FMUL) |
| return SDValue(); |
| |
| SDValue ConstVec = Op->getOperand(1); |
| if (!isa<BuildVectorSDNode>(ConstVec)) |
| return SDValue(); |
| |
| MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); |
| uint32_t FloatBits = FloatTy.getSizeInBits(); |
| if (FloatBits != 32 && FloatBits != 64) |
| return SDValue(); |
| |
| MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); |
| uint32_t IntBits = IntTy.getSizeInBits(); |
| if (IntBits != 16 && IntBits != 32 && IntBits != 64) |
| return SDValue(); |
| |
| // Avoid conversions where iN is larger than the float (e.g., float -> i64). |
| if (IntBits > FloatBits) |
| return SDValue(); |
| |
| BitVector UndefElements; |
| BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); |
| int32_t Bits = IntBits == 64 ? 64 : 32; |
| int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); |
| if (C == -1 || C == 0 || C > Bits) |
| return SDValue(); |
| |
| MVT ResTy; |
| unsigned NumLanes = Op.getValueType().getVectorNumElements(); |
| switch (NumLanes) { |
| default: |
| return SDValue(); |
| case 2: |
| ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; |
| break; |
| case 4: |
| ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; |
| break; |
| } |
| |
| if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) && |
| "Illegal vector type after legalization"); |
| |
| SDLoc DL(N); |
| bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; |
| unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs |
| : Intrinsic::aarch64_neon_vcvtfp2fxu; |
| SDValue FixConv = |
| DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, |
| DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), |
| Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); |
| // We can handle smaller integers by generating an extra trunc. |
| if (IntBits < FloatBits) |
| FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); |
| |
| return FixConv; |
| } |
| |
| /// Fold a floating-point divide by power of two into fixed-point to |
| /// floating-point conversion. |
| static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| if (!Subtarget->hasNEON()) |
| return SDValue(); |
| |
| SDValue Op = N->getOperand(0); |
| unsigned Opc = Op->getOpcode(); |
| if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || |
| !Op.getOperand(0).getValueType().isSimple() || |
| (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) |
| return SDValue(); |
| |
| SDValue ConstVec = N->getOperand(1); |
| if (!isa<BuildVectorSDNode>(ConstVec)) |
| return SDValue(); |
| |
| MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); |
| int32_t IntBits = IntTy.getSizeInBits(); |
| if (IntBits != 16 && IntBits != 32 && IntBits != 64) |
| return SDValue(); |
| |
| MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); |
| int32_t FloatBits = FloatTy.getSizeInBits(); |
| if (FloatBits != 32 && FloatBits != 64) |
| return SDValue(); |
| |
| // Avoid conversions where iN is larger than the float (e.g., i64 -> float). |
| if (IntBits > FloatBits) |
| return SDValue(); |
| |
| BitVector UndefElements; |
| BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); |
| int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); |
| if (C == -1 || C == 0 || C > FloatBits) |
| return SDValue(); |
| |
| MVT ResTy; |
| unsigned NumLanes = Op.getValueType().getVectorNumElements(); |
| switch (NumLanes) { |
| default: |
| return SDValue(); |
| case 2: |
| ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; |
| break; |
| case 4: |
| ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; |
| break; |
| } |
| |
| if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDLoc DL(N); |
| SDValue ConvInput = Op.getOperand(0); |
| bool IsSigned = Opc == ISD::SINT_TO_FP; |
| if (IntBits < FloatBits) |
| ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, |
| ResTy, ConvInput); |
| |
| unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp |
| : Intrinsic::aarch64_neon_vcvtfxu2fp; |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), |
| DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, |
| DAG.getConstant(C, DL, MVT::i32)); |
| } |
| |
| /// An EXTR instruction is made up of two shifts, ORed together. This helper |
| /// searches for and classifies those shifts. |
| static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, |
| bool &FromHi) { |
| if (N.getOpcode() == ISD::SHL) |
| FromHi = false; |
| else if (N.getOpcode() == ISD::SRL) |
| FromHi = true; |
| else |
| return false; |
| |
| if (!isa<ConstantSDNode>(N.getOperand(1))) |
| return false; |
| |
| ShiftAmount = N->getConstantOperandVal(1); |
| Src = N->getOperand(0); |
| return true; |
| } |
| |
| /// EXTR instruction extracts a contiguous chunk of bits from two existing |
| /// registers viewed as a high/low pair. This function looks for the pattern: |
| /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it |
| /// with an EXTR. Can't quite be done in TableGen because the two immediates |
| /// aren't independent. |
| static SDValue tryCombineToEXTR(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| EVT VT = N->getValueType(0); |
| |
| assert(N->getOpcode() == ISD::OR && "Unexpected root"); |
| |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| SDValue LHS; |
| uint32_t ShiftLHS = 0; |
| bool LHSFromHi = false; |
| if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) |
| return SDValue(); |
| |
| SDValue RHS; |
| uint32_t ShiftRHS = 0; |
| bool RHSFromHi = false; |
| if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) |
| return SDValue(); |
| |
| // If they're both trying to come from the high part of the register, they're |
| // not really an EXTR. |
| if (LHSFromHi == RHSFromHi) |
| return SDValue(); |
| |
| if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) |
| return SDValue(); |
| |
| if (LHSFromHi) { |
| std::swap(LHS, RHS); |
| std::swap(ShiftLHS, ShiftRHS); |
| } |
| |
| return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, |
| DAG.getConstant(ShiftRHS, DL, MVT::i64)); |
| } |
| |
| static SDValue tryCombineToBSL(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| EVT VT = N->getValueType(0); |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| SDValue N0 = N->getOperand(0); |
| if (N0.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| SDValue N1 = N->getOperand(1); |
| if (N1.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| // We only have to look for constant vectors here since the general, variable |
| // case can be handled in TableGen. |
| unsigned Bits = VT.getScalarSizeInBits(); |
| uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); |
| for (int i = 1; i >= 0; --i) |
| for (int j = 1; j >= 0; --j) { |
| BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); |
| BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); |
| if (!BVN0 || !BVN1) |
| continue; |
| |
| bool FoundMatch = true; |
| for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { |
| ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); |
| ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); |
| if (!CN0 || !CN1 || |
| CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { |
| FoundMatch = false; |
| break; |
| } |
| } |
| |
| if (FoundMatch) |
| return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0), |
| N0->getOperand(1 - i), N1->getOperand(1 - j)); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) |
| return SDValue(); |
| |
| if (SDValue Res = tryCombineToEXTR(N, DCI)) |
| return Res; |
| |
| if (SDValue Res = tryCombineToBSL(N, DCI)) |
| return Res; |
| |
| return SDValue(); |
| } |
| |
| static SDValue performSRLCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32 && VT != MVT::i64) |
| return SDValue(); |
| |
| // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the |
| // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32) |
| // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero. |
| SDValue N0 = N->getOperand(0); |
| if (N0.getOpcode() == ISD::BSWAP) { |
| SDLoc DL(N); |
| SDValue N1 = N->getOperand(1); |
| SDValue N00 = N0.getOperand(0); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { |
| uint64_t ShiftAmt = C->getZExtValue(); |
| if (VT == MVT::i32 && ShiftAmt == 16 && |
| DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16))) |
| return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); |
| if (VT == MVT::i64 && ShiftAmt == 32 && |
| DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32))) |
| return DAG.getNode(ISD::ROTR, DL, VT, N0, N1); |
| } |
| } |
| return SDValue(); |
| } |
| |
| static SDValue performBitcastCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| // Wait 'til after everything is legalized to try this. That way we have |
| // legal vector types and such. |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| // Remove extraneous bitcasts around an extract_subvector. |
| // For example, |
| // (v4i16 (bitconvert |
| // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1))))) |
| // becomes |
| // (extract_subvector ((v8i16 ...), (i64 4))) |
| |
| // Only interested in 64-bit vectors as the ultimate result. |
| EVT VT = N->getValueType(0); |
| if (!VT.isVector()) |
| return SDValue(); |
| if (VT.getSimpleVT().getSizeInBits() != 64) |
| return SDValue(); |
| // Is the operand an extract_subvector starting at the beginning or halfway |
| // point of the vector? A low half may also come through as an |
| // EXTRACT_SUBREG, so look for that, too. |
| SDValue Op0 = N->getOperand(0); |
| if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR && |
| !(Op0->isMachineOpcode() && |
| Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG)) |
| return SDValue(); |
| uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue(); |
| if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) { |
| if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0) |
| return SDValue(); |
| } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) { |
| if (idx != AArch64::dsub) |
| return SDValue(); |
| // The dsub reference is equivalent to a lane zero subvector reference. |
| idx = 0; |
| } |
| // Look through the bitcast of the input to the extract. |
| if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST) |
| return SDValue(); |
| SDValue Source = Op0->getOperand(0)->getOperand(0); |
| // If the source type has twice the number of elements as our destination |
| // type, we know this is an extract of the high or low half of the vector. |
| EVT SVT = Source->getValueType(0); |
| if (!SVT.isVector() || |
| SVT.getVectorNumElements() != VT.getVectorNumElements() * 2) |
| return SDValue(); |
| |
| LLVM_DEBUG( |
| dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n"); |
| |
| // Create the simplified form to just extract the low or high half of the |
| // vector directly rather than bothering with the bitcasts. |
| SDLoc dl(N); |
| unsigned NumElements = VT.getVectorNumElements(); |
| if (idx) { |
| SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx); |
| } else { |
| SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32); |
| return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT, |
| Source, SubReg), |
| 0); |
| } |
| } |
| |
| static SDValue performConcatVectorsCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| SDLoc dl(N); |
| EVT VT = N->getValueType(0); |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| |
| // Optimize concat_vectors of truncated vectors, where the intermediate |
| // type is illegal, to avoid said illegality, e.g., |
| // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), |
| // (v2i16 (truncate (v2i64))))) |
| // -> |
| // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), |
| // (v4i32 (bitcast (v2i64))), |
| // <0, 2, 4, 6>))) |
| // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed |
| // on both input and result type, so we might generate worse code. |
| // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. |
| if (N->getNumOperands() == 2 && |
| N0->getOpcode() == ISD::TRUNCATE && |
| N1->getOpcode() == ISD::TRUNCATE) { |
| SDValue N00 = N0->getOperand(0); |
| SDValue N10 = N1->getOperand(0); |
| EVT N00VT = N00.getValueType(); |
| |
| if (N00VT == N10.getValueType() && |
| (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && |
| N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { |
| MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); |
| SmallVector<int, 8> Mask(MidVT.getVectorNumElements()); |
| for (size_t i = 0; i < Mask.size(); ++i) |
| Mask[i] = i * 2; |
| return DAG.getNode(ISD::TRUNCATE, dl, VT, |
| DAG.getVectorShuffle( |
| MidVT, dl, |
| DAG.getNode(ISD::BITCAST, dl, MidVT, N00), |
| DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); |
| } |
| } |
| |
| // Wait 'til after everything is legalized to try this. That way we have |
| // legal vector types and such. |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector |
| // splat. The indexed instructions are going to be expecting a DUPLANE64, so |
| // canonicalise to that. |
| if (N0 == N1 && VT.getVectorNumElements() == 2) { |
| assert(VT.getScalarSizeInBits() == 64); |
| return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), |
| DAG.getConstant(0, dl, MVT::i64)); |
| } |
| |
| // Canonicalise concat_vectors so that the right-hand vector has as few |
| // bit-casts as possible before its real operation. The primary matching |
| // destination for these operations will be the narrowing "2" instructions, |
| // which depend on the operation being performed on this right-hand vector. |
| // For example, |
| // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) |
| // becomes |
| // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) |
| |
| if (N1->getOpcode() != ISD::BITCAST) |
| return SDValue(); |
| SDValue RHS = N1->getOperand(0); |
| MVT RHSTy = RHS.getValueType().getSimpleVT(); |
| // If the RHS is not a vector, this is not the pattern we're looking for. |
| if (!RHSTy.isVector()) |
| return SDValue(); |
| |
| LLVM_DEBUG( |
| dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); |
| |
| MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), |
| RHSTy.getVectorNumElements() * 2); |
| return DAG.getNode(ISD::BITCAST, dl, VT, |
| DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, |
| DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), |
| RHS)); |
| } |
| |
| static SDValue tryCombineFixedPointConvert(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| // Wait until after everything is legalized to try this. That way we have |
| // legal vector types and such. |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| // Transform a scalar conversion of a value from a lane extract into a |
| // lane extract of a vector conversion. E.g., from foo1 to foo2: |
| // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } |
| // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } |
| // |
| // The second form interacts better with instruction selection and the |
| // register allocator to avoid cross-class register copies that aren't |
| // coalescable due to a lane reference. |
| |
| // Check the operand and see if it originates from a lane extract. |
| SDValue Op1 = N->getOperand(1); |
| if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| // Yep, no additional predication needed. Perform the transform. |
| SDValue IID = N->getOperand(0); |
| SDValue Shift = N->getOperand(2); |
| SDValue Vec = Op1.getOperand(0); |
| SDValue Lane = Op1.getOperand(1); |
| EVT ResTy = N->getValueType(0); |
| EVT VecResTy; |
| SDLoc DL(N); |
| |
| // The vector width should be 128 bits by the time we get here, even |
| // if it started as 64 bits (the extract_vector handling will have |
| // done so). |
| assert(Vec.getValueSizeInBits() == 128 && |
| "unexpected vector size on extract_vector_elt!"); |
| if (Vec.getValueType() == MVT::v4i32) |
| VecResTy = MVT::v4f32; |
| else if (Vec.getValueType() == MVT::v2i64) |
| VecResTy = MVT::v2f64; |
| else |
| llvm_unreachable("unexpected vector type!"); |
| |
| SDValue Convert = |
| DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); |
| } |
| return SDValue(); |
| } |
| |
| // AArch64 high-vector "long" operations are formed by performing the non-high |
| // version on an extract_subvector of each operand which gets the high half: |
| // |
| // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) |
| // |
| // However, there are cases which don't have an extract_high explicitly, but |
| // have another operation that can be made compatible with one for free. For |
| // example: |
| // |
| // (dupv64 scalar) --> (extract_high (dup128 scalar)) |
| // |
| // This routine does the actual conversion of such DUPs, once outer routines |
| // have determined that everything else is in order. |
| // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold |
| // similarly here. |
| static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { |
| switch (N.getOpcode()) { |
| case AArch64ISD::DUP: |
| case AArch64ISD::DUPLANE8: |
| case AArch64ISD::DUPLANE16: |
| case AArch64ISD::DUPLANE32: |
| case AArch64ISD::DUPLANE64: |
| case AArch64ISD::MOVI: |
| case AArch64ISD::MOVIshift: |
| case AArch64ISD::MOVIedit: |
| case AArch64ISD::MOVImsl: |
| case AArch64ISD::MVNIshift: |
| case AArch64ISD::MVNImsl: |
| break; |
| default: |
| // FMOV could be supported, but isn't very useful, as it would only occur |
| // if you passed a bitcast' floating point immediate to an eligible long |
| // integer op (addl, smull, ...). |
| return SDValue(); |
| } |
| |
| MVT NarrowTy = N.getSimpleValueType(); |
| if (!NarrowTy.is64BitVector()) |
| return SDValue(); |
| |
| MVT ElementTy = NarrowTy.getVectorElementType(); |
| unsigned NumElems = NarrowTy.getVectorNumElements(); |
| MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); |
| |
| SDLoc dl(N); |
| return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy, |
| DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()), |
| DAG.getConstant(NumElems, dl, MVT::i64)); |
| } |
| |
| static bool isEssentiallyExtractSubvector(SDValue N) { |
| if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR) |
| return true; |
| |
| return N.getOpcode() == ISD::BITCAST && |
| N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR; |
| } |
| |
| /// Helper structure to keep track of ISD::SET_CC operands. |
| struct GenericSetCCInfo { |
| const SDValue *Opnd0; |
| const SDValue *Opnd1; |
| ISD::CondCode CC; |
| }; |
| |
| /// Helper structure to keep track of a SET_CC lowered into AArch64 code. |
| struct AArch64SetCCInfo { |
| const SDValue *Cmp; |
| AArch64CC::CondCode CC; |
| }; |
| |
| /// Helper structure to keep track of SetCC information. |
| union SetCCInfo { |
| GenericSetCCInfo Generic; |
| AArch64SetCCInfo AArch64; |
| }; |
| |
| /// Helper structure to be able to read SetCC information. If set to |
| /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a |
| /// GenericSetCCInfo. |
| struct SetCCInfoAndKind { |
| SetCCInfo Info; |
| bool IsAArch64; |
| }; |
| |
| /// Check whether or not \p Op is a SET_CC operation, either a generic or |
| /// an |
| /// AArch64 lowered one. |
| /// \p SetCCInfo is filled accordingly. |
| /// \post SetCCInfo is meanginfull only when this function returns true. |
| /// \return True when Op is a kind of SET_CC operation. |
| static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { |
| // If this is a setcc, this is straight forward. |
| if (Op.getOpcode() == ISD::SETCC) { |
| SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); |
| SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); |
| SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); |
| SetCCInfo.IsAArch64 = false; |
| return true; |
| } |
| // Otherwise, check if this is a matching csel instruction. |
| // In other words: |
| // - csel 1, 0, cc |
| // - csel 0, 1, !cc |
| if (Op.getOpcode() != AArch64ISD::CSEL) |
| return false; |
| // Set the information about the operands. |
| // TODO: we want the operands of the Cmp not the csel |
| SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); |
| SetCCInfo.IsAArch64 = true; |
| SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( |
| cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); |
| |
| // Check that the operands matches the constraints: |
| // (1) Both operands must be constants. |
| // (2) One must be 1 and the other must be 0. |
| ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); |
| |
| // Check (1). |
| if (!TValue || !FValue) |
| return false; |
| |
| // Check (2). |
| if (!TValue->isOne()) { |
| // Update the comparison when we are interested in !cc. |
| std::swap(TValue, FValue); |
| SetCCInfo.Info.AArch64.CC = |
| AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); |
| } |
| return TValue->isOne() && FValue->isNullValue(); |
| } |
| |
| // Returns true if Op is setcc or zext of setcc. |
| static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { |
| if (isSetCC(Op, Info)) |
| return true; |
| return ((Op.getOpcode() == ISD::ZERO_EXTEND) && |
| isSetCC(Op->getOperand(0), Info)); |
| } |
| |
| // The folding we want to perform is: |
| // (add x, [zext] (setcc cc ...) ) |
| // --> |
| // (csel x, (add x, 1), !cc ...) |
| // |
| // The latter will get matched to a CSINC instruction. |
| static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { |
| assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); |
| SDValue LHS = Op->getOperand(0); |
| SDValue RHS = Op->getOperand(1); |
| SetCCInfoAndKind InfoAndKind; |
| |
| // If neither operand is a SET_CC, give up. |
| if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { |
| std::swap(LHS, RHS); |
| if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) |
| return SDValue(); |
| } |
| |
| // FIXME: This could be generatized to work for FP comparisons. |
| EVT CmpVT = InfoAndKind.IsAArch64 |
| ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() |
| : InfoAndKind.Info.Generic.Opnd0->getValueType(); |
| if (CmpVT != MVT::i32 && CmpVT != MVT::i64) |
| return SDValue(); |
| |
| SDValue CCVal; |
| SDValue Cmp; |
| SDLoc dl(Op); |
| if (InfoAndKind.IsAArch64) { |
| CCVal = DAG.getConstant( |
| AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, |
| MVT::i32); |
| Cmp = *InfoAndKind.Info.AArch64.Cmp; |
| } else |
| Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0, |
| *InfoAndKind.Info.Generic.Opnd1, |
| ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true), |
| CCVal, DAG, dl); |
| |
| EVT VT = Op->getValueType(0); |
| LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); |
| return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); |
| } |
| |
| // The basic add/sub long vector instructions have variants with "2" on the end |
| // which act on the high-half of their inputs. They are normally matched by |
| // patterns like: |
| // |
| // (add (zeroext (extract_high LHS)), |
| // (zeroext (extract_high RHS))) |
| // -> uaddl2 vD, vN, vM |
| // |
| // However, if one of the extracts is something like a duplicate, this |
| // instruction can still be used profitably. This function puts the DAG into a |
| // more appropriate form for those patterns to trigger. |
| static SDValue performAddSubLongCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| MVT VT = N->getSimpleValueType(0); |
| if (!VT.is128BitVector()) { |
| if (N->getOpcode() == ISD::ADD) |
| return performSetccAddFolding(N, DAG); |
| return SDValue(); |
| } |
| |
| // Make sure both branches are extended in the same way. |
| SDValue LHS = N->getOperand(0); |
| SDValue RHS = N->getOperand(1); |
| if ((LHS.getOpcode() != ISD::ZERO_EXTEND && |
| LHS.getOpcode() != ISD::SIGN_EXTEND) || |
| LHS.getOpcode() != RHS.getOpcode()) |
| return SDValue(); |
| |
| unsigned ExtType = LHS.getOpcode(); |
| |
| // It's not worth doing if at least one of the inputs isn't already an |
| // extract, but we don't know which it'll be so we have to try both. |
| if (isEssentiallyExtractSubvector(LHS.getOperand(0))) { |
| RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); |
| if (!RHS.getNode()) |
| return SDValue(); |
| |
| RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); |
| } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) { |
| LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); |
| if (!LHS.getNode()) |
| return SDValue(); |
| |
| LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); |
| } |
| |
| return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); |
| } |
| |
| // Massage DAGs which we can use the high-half "long" operations on into |
| // something isel will recognize better. E.g. |
| // |
| // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> |
| // (aarch64_neon_umull (extract_high (v2i64 vec))) |
| // (extract_high (v2i64 (dup128 scalar))))) |
| // |
| static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SDValue LHS = N->getOperand(1); |
| SDValue RHS = N->getOperand(2); |
| assert(LHS.getValueType().is64BitVector() && |
| RHS.getValueType().is64BitVector() && |
| "unexpected shape for long operation"); |
| |
| // Either node could be a DUP, but it's not worth doing both of them (you'd |
| // just as well use the non-high version) so look for a corresponding extract |
| // operation on the other "wing". |
| if (isEssentiallyExtractSubvector(LHS)) { |
| RHS = tryExtendDUPToExtractHigh(RHS, DAG); |
| if (!RHS.getNode()) |
| return SDValue(); |
| } else if (isEssentiallyExtractSubvector(RHS)) { |
| LHS = tryExtendDUPToExtractHigh(LHS, DAG); |
| if (!LHS.getNode()) |
| return SDValue(); |
| } |
| |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), |
| N->getOperand(0), LHS, RHS); |
| } |
| |
| static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { |
| MVT ElemTy = N->getSimpleValueType(0).getScalarType(); |
| unsigned ElemBits = ElemTy.getSizeInBits(); |
| |
| int64_t ShiftAmount; |
| if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { |
| APInt SplatValue, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, |
| HasAnyUndefs, ElemBits) || |
| SplatBitSize != ElemBits) |
| return SDValue(); |
| |
| ShiftAmount = SplatValue.getSExtValue(); |
| } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { |
| ShiftAmount = CVN->getSExtValue(); |
| } else |
| return SDValue(); |
| |
| unsigned Opcode; |
| bool IsRightShift; |
| switch (IID) { |
| default: |
| llvm_unreachable("Unknown shift intrinsic"); |
| case Intrinsic::aarch64_neon_sqshl: |
| Opcode = AArch64ISD::SQSHL_I; |
| IsRightShift = false; |
| break; |
| case Intrinsic::aarch64_neon_uqshl: |
| Opcode = AArch64ISD::UQSHL_I; |
| IsRightShift = false; |
| break; |
| case Intrinsic::aarch64_neon_srshl: |
| Opcode = AArch64ISD::SRSHR_I; |
| IsRightShift = true; |
| break; |
| case Intrinsic::aarch64_neon_urshl: |
| Opcode = AArch64ISD::URSHR_I; |
| IsRightShift = true; |
| break; |
| case Intrinsic::aarch64_neon_sqshlu: |
| Opcode = AArch64ISD::SQSHLU_I; |
| IsRightShift = false; |
| break; |
| } |
| |
| if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { |
| SDLoc dl(N); |
| return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), |
| DAG.getConstant(-ShiftAmount, dl, MVT::i32)); |
| } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { |
| SDLoc dl(N); |
| return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), |
| DAG.getConstant(ShiftAmount, dl, MVT::i32)); |
| } |
| |
| return SDValue(); |
| } |
| |
| // The CRC32[BH] instructions ignore the high bits of their data operand. Since |
| // the intrinsics must be legal and take an i32, this means there's almost |
| // certainly going to be a zext in the DAG which we can eliminate. |
| static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { |
| SDValue AndN = N->getOperand(2); |
| if (AndN.getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); |
| if (!CMask || CMask->getZExtValue() != Mask) |
| return SDValue(); |
| |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, |
| N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); |
| } |
| |
| static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, |
| SelectionDAG &DAG) { |
| SDLoc dl(N); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), |
| DAG.getNode(Opc, dl, |
| N->getOperand(1).getSimpleValueType(), |
| N->getOperand(1)), |
| DAG.getConstant(0, dl, MVT::i64)); |
| } |
| |
| static SDValue performIntrinsicCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const AArch64Subtarget *Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| unsigned IID = getIntrinsicID(N); |
| switch (IID) { |
| default: |
| break; |
| case Intrinsic::aarch64_neon_vcvtfxs2fp: |
| case Intrinsic::aarch64_neon_vcvtfxu2fp: |
| return tryCombineFixedPointConvert(N, DCI, DAG); |
| case Intrinsic::aarch64_neon_saddv: |
| return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); |
| case Intrinsic::aarch64_neon_uaddv: |
| return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); |
| case Intrinsic::aarch64_neon_sminv: |
| return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); |
| case Intrinsic::aarch64_neon_uminv: |
| return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); |
| case Intrinsic::aarch64_neon_smaxv: |
| return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); |
| case Intrinsic::aarch64_neon_umaxv: |
| return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); |
| case Intrinsic::aarch64_neon_fmax: |
| return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0), |
| N->getOperand(1), N->getOperand(2)); |
| case Intrinsic::aarch64_neon_fmin: |
| return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0), |
| N->getOperand(1), N->getOperand(2)); |
| case Intrinsic::aarch64_neon_fmaxnm: |
| return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), |
| N->getOperand(1), N->getOperand(2)); |
| case Intrinsic::aarch64_neon_fminnm: |
| return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), |
| N->getOperand(1), N->getOperand(2)); |
| case Intrinsic::aarch64_neon_smull: |
| case Intrinsic::aarch64_neon_umull: |
| case Intrinsic::aarch64_neon_pmull: |
| case Intrinsic::aarch64_neon_sqdmull: |
| return tryCombineLongOpWithDup(IID, N, DCI, DAG); |
| case Intrinsic::aarch64_neon_sqshl: |
| case Intrinsic::aarch64_neon_uqshl: |
| case Intrinsic::aarch64_neon_sqshlu: |
| case Intrinsic::aarch64_neon_srshl: |
| case Intrinsic::aarch64_neon_urshl: |
| return tryCombineShiftImm(IID, N, DAG); |
| case Intrinsic::aarch64_crc32b: |
| case Intrinsic::aarch64_crc32cb: |
| return tryCombineCRC32(0xff, N, DAG); |
| case Intrinsic::aarch64_crc32h: |
| case Intrinsic::aarch64_crc32ch: |
| return tryCombineCRC32(0xffff, N, DAG); |
| } |
| return SDValue(); |
| } |
| |
| static SDValue performExtendCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then |
| // we can convert that DUP into another extract_high (of a bigger DUP), which |
| // helps the backend to decide that an sabdl2 would be useful, saving a real |
| // extract_high operation. |
| if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && |
| N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { |
| SDNode *ABDNode = N->getOperand(0).getNode(); |
| unsigned IID = getIntrinsicID(ABDNode); |
| if (IID == Intrinsic::aarch64_neon_sabd || |
| IID == Intrinsic::aarch64_neon_uabd) { |
| SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); |
| if (!NewABD.getNode()) |
| return SDValue(); |
| |
| return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), |
| NewABD); |
| } |
| } |
| |
| // This is effectively a custom type legalization for AArch64. |
| // |
| // Type legalization will split an extend of a small, legal, type to a larger |
| // illegal type by first splitting the destination type, often creating |
| // illegal source types, which then get legalized in isel-confusing ways, |
| // leading to really terrible codegen. E.g., |
| // %result = v8i32 sext v8i8 %value |
| // becomes |
| // %losrc = extract_subreg %value, ... |
| // %hisrc = extract_subreg %value, ... |
| // %lo = v4i32 sext v4i8 %losrc |
| // %hi = v4i32 sext v4i8 %hisrc |
| // Things go rapidly downhill from there. |
| // |
| // For AArch64, the [sz]ext vector instructions can only go up one element |
| // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 |
| // take two instructions. |
| // |
| // This implies that the most efficient way to do the extend from v8i8 |
| // to two v4i32 values is to first extend the v8i8 to v8i16, then do |
| // the normal splitting to happen for the v8i16->v8i32. |
| |
| // This is pre-legalization to catch some cases where the default |
| // type legalization will create ill-tempered code. |
| if (!DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| // We're only interested in cleaning things up for non-legal vector types |
| // here. If both the source and destination are legal, things will just |
| // work naturally without any fiddling. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT ResVT = N->getValueType(0); |
| if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) |
| return SDValue(); |
| // If the vector type isn't a simple VT, it's beyond the scope of what |
| // we're worried about here. Let legalization do its thing and hope for |
| // the best. |
| SDValue Src = N->getOperand(0); |
| EVT SrcVT = Src->getValueType(0); |
| if (!ResVT.isSimple() || !SrcVT.isSimple()) |
| return SDValue(); |
| |
| // If the source VT is a 64-bit vector, we can play games and get the |
| // better results we want. |
| if (SrcVT.getSizeInBits() != 64) |
| return SDValue(); |
| |
| unsigned SrcEltSize = SrcVT.getScalarSizeInBits(); |
| unsigned ElementCount = SrcVT.getVectorNumElements(); |
| SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); |
| SDLoc DL(N); |
| Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); |
| |
| // Now split the rest of the operation into two halves, each with a 64 |
| // bit source. |
| EVT LoVT, HiVT; |
| SDValue Lo, Hi; |
| unsigned NumElements = ResVT.getVectorNumElements(); |
| assert(!(NumElements & 1) && "Splitting vector, but not in half!"); |
| LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), |
| ResVT.getVectorElementType(), NumElements / 2); |
| |
| EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), |
| LoVT.getVectorNumElements()); |
| Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, |
| DAG.getConstant(0, DL, MVT::i64)); |
| Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, |
| DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64)); |
| Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); |
| Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); |
| |
| // Now combine the parts back together so we still have a single result |
| // like the combiner expects. |
| return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); |
| } |
| |
| static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St, |
| SDValue SplatVal, unsigned NumVecElts) { |
| unsigned OrigAlignment = St.getAlignment(); |
| unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8; |
| |
| // Create scalar stores. This is at least as good as the code sequence for a |
| // split unaligned store which is a dup.s, ext.b, and two stores. |
| // Most of the time the three stores should be replaced by store pair |
| // instructions (stp). |
| SDLoc DL(&St); |
| SDValue BasePtr = St.getBasePtr(); |
| uint64_t BaseOffset = 0; |
| |
| const MachinePointerInfo &PtrInfo = St.getPointerInfo(); |
| SDValue NewST1 = |
| DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo, |
| OrigAlignment, St.getMemOperand()->getFlags()); |
| |
| // As this in ISel, we will not merge this add which may degrade results. |
| if (BasePtr->getOpcode() == ISD::ADD && |
| isa<ConstantSDNode>(BasePtr->getOperand(1))) { |
| BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); |
| BasePtr = BasePtr->getOperand(0); |
| } |
| |
| unsigned Offset = EltOffset; |
| while (--NumVecElts) { |
| unsigned Alignment = MinAlign(OrigAlignment, Offset); |
| SDValue OffsetPtr = |
| DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, |
| DAG.getConstant(BaseOffset + Offset, DL, MVT::i64)); |
| NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, |
| PtrInfo.getWithOffset(Offset), Alignment, |
| St.getMemOperand()->getFlags()); |
| Offset += EltOffset; |
| } |
| return NewST1; |
| } |
| |
| /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The |
| /// load store optimizer pass will merge them to store pair stores. This should |
| /// be better than a movi to create the vector zero followed by a vector store |
| /// if the zero constant is not re-used, since one instructions and one register |
| /// live range will be removed. |
| /// |
| /// For example, the final generated code should be: |
| /// |
| /// stp xzr, xzr, [x0] |
| /// |
| /// instead of: |
| /// |
| /// movi v0.2d, #0 |
| /// str q0, [x0] |
| /// |
| static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) { |
| SDValue StVal = St.getValue(); |
| EVT VT = StVal.getValueType(); |
| |
| // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or |
| // 2, 3 or 4 i32 elements. |
| int NumVecElts = VT.getVectorNumElements(); |
| if (!(((NumVecElts == 2 || NumVecElts == 3) && |
| VT.getVectorElementType().getSizeInBits() == 64) || |
| ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) && |
| VT.getVectorElementType().getSizeInBits() == 32))) |
| return SDValue(); |
| |
| if (StVal.getOpcode() != ISD::BUILD_VECTOR) |
| return SDValue(); |
| |
| // If the zero constant has more than one use then the vector store could be |
| // better since the constant mov will be amortized and stp q instructions |
| // should be able to be formed. |
| if (!StVal.hasOneUse()) |
| return SDValue(); |
| |
| // If the immediate offset of the address operand is too large for the stp |
| // instruction, then bail out. |
| if (DAG.isBaseWithConstantOffset(St.getBasePtr())) { |
| int64_t Offset = St.getBasePtr()->getConstantOperandVal(1); |
| if (Offset < -512 || Offset > 504) |
| return SDValue(); |
| } |
| |
| for (int I = 0; I < NumVecElts; ++I) { |
| SDValue EltVal = StVal.getOperand(I); |
| if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal)) |
| return SDValue(); |
| } |
| |
| // Use a CopyFromReg WZR/XZR here to prevent |
| // DAGCombiner::MergeConsecutiveStores from undoing this transformation. |
| SDLoc DL(&St); |
| unsigned ZeroReg; |
| EVT ZeroVT; |
| if (VT.getVectorElementType().getSizeInBits() == 32) { |
| ZeroReg = AArch64::WZR; |
| ZeroVT = MVT::i32; |
| } else { |
| ZeroReg = AArch64::XZR; |
| ZeroVT = MVT::i64; |
| } |
| SDValue SplatVal = |
| DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT); |
| return splitStoreSplat(DAG, St, SplatVal, NumVecElts); |
| } |
| |
| /// Replace a splat of a scalar to a vector store by scalar stores of the scalar |
| /// value. The load store optimizer pass will merge them to store pair stores. |
| /// This has better performance than a splat of the scalar followed by a split |
| /// vector store. Even if the stores are not merged it is four stores vs a dup, |
| /// followed by an ext.b and two stores. |
| static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) { |
| SDValue StVal = St.getValue(); |
| EVT VT = StVal.getValueType(); |
| |
| // Don't replace floating point stores, they possibly won't be transformed to |
| // stp because of the store pair suppress pass. |
| if (VT.isFloatingPoint()) |
| return SDValue(); |
| |
| // We can express a splat as store pair(s) for 2 or 4 elements. |
| unsigned NumVecElts = VT.getVectorNumElements(); |
| if (NumVecElts != 4 && NumVecElts != 2) |
| return SDValue(); |
| |
| // Check that this is a splat. |
| // Make sure that each of the relevant vector element locations are inserted |
| // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32. |
| std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1); |
| SDValue SplatVal; |
| for (unsigned I = 0; I < NumVecElts; ++I) { |
| // Check for insert vector elements. |
| if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) |
| return SDValue(); |
| |
| // Check that same value is inserted at each vector element. |
| if (I == 0) |
| SplatVal = StVal.getOperand(1); |
| else if (StVal.getOperand(1) != SplatVal) |
| return SDValue(); |
| |
| // Check insert element index. |
| ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2)); |
| if (!CIndex) |
| return SDValue(); |
| uint64_t IndexVal = CIndex->getZExtValue(); |
| if (IndexVal >= NumVecElts) |
| return SDValue(); |
| IndexNotInserted.reset(IndexVal); |
| |
| StVal = StVal.getOperand(0); |
| } |
| // Check that all vector element locations were inserted to. |
| if (IndexNotInserted.any()) |
| return SDValue(); |
| |
| return splitStoreSplat(DAG, St, SplatVal, NumVecElts); |
| } |
| |
| static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG, |
| const AArch64Subtarget *Subtarget) { |
| |
| StoreSDNode *S = cast<StoreSDNode>(N); |
| if (S->isVolatile() || S->isIndexed()) |
| return SDValue(); |
| |
| SDValue StVal = S->getValue(); |
| EVT VT = StVal.getValueType(); |
| if (!VT.isVector()) |
| return SDValue(); |
| |
| // If we get a splat of zeros, convert this vector store to a store of |
| // scalars. They will be merged into store pairs of xzr thereby removing one |
| // instruction and one register. |
| if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S)) |
| return ReplacedZeroSplat; |
| |
| // FIXME: The logic for deciding if an unaligned store should be split should |
| // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be |
| // a call to that function here. |
| |
| if (!Subtarget->isMisaligned128StoreSlow()) |
| return SDValue(); |
| |
| // Don't split at -Oz. |
| if (DAG.getMachineFunction().getFunction().optForMinSize()) |
| return SDValue(); |
| |
| // Don't split v2i64 vectors. Memcpy lowering produces those and splitting |
| // those up regresses performance on micro-benchmarks and olden/bh. |
| if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64) |
| return SDValue(); |
| |
| // Split unaligned 16B stores. They are terrible for performance. |
| // Don't split stores with alignment of 1 or 2. Code that uses clang vector |
| // extensions can use this to mark that it does not want splitting to happen |
| // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of |
| // eliminating alignment hazards is only 1 in 8 for alignment of 2. |
| if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || |
| S->getAlignment() <= 2) |
| return SDValue(); |
| |
| // If we get a splat of a scalar convert this vector store to a store of |
| // scalars. They will be merged into store pairs thereby removing two |
| // instructions. |
| if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S)) |
| return ReplacedSplat; |
| |
| SDLoc DL(S); |
| unsigned NumElts = VT.getVectorNumElements() / 2; |
| // Split VT into two. |
| EVT HalfVT = |
| EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts); |
| SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, |
| DAG.getConstant(0, DL, MVT::i64)); |
| SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, |
| DAG.getConstant(NumElts, DL, MVT::i64)); |
| SDValue BasePtr = S->getBasePtr(); |
| SDValue NewST1 = |
| DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), |
| S->getAlignment(), S->getMemOperand()->getFlags()); |
| SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, |
| DAG.getConstant(8, DL, MVT::i64)); |
| return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, |
| S->getPointerInfo(), S->getAlignment(), |
| S->getMemOperand()->getFlags()); |
| } |
| |
| /// Target-specific DAG combine function for post-increment LD1 (lane) and |
| /// post-increment LD1R. |
| static SDValue performPostLD1Combine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| bool IsLaneOp) { |
| if (DCI.isBeforeLegalizeOps()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| |
| unsigned LoadIdx = IsLaneOp ? 1 : 0; |
| SDNode *LD = N->getOperand(LoadIdx).getNode(); |
| // If it is not LOAD, can not do such combine. |
| if (LD->getOpcode() != ISD::LOAD) |
| return SDValue(); |
| |
| // The vector lane must be a constant in the LD1LANE opcode. |
| SDValue Lane; |
| if (IsLaneOp) { |
| Lane = N->getOperand(2); |
| auto *LaneC = dyn_cast<ConstantSDNode>(Lane); |
| if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements()) |
| return SDValue(); |
| } |
| |
| LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); |
| EVT MemVT = LoadSDN->getMemoryVT(); |
| // Check if memory operand is the same type as the vector element. |
| if (MemVT != VT.getVectorElementType()) |
| return SDValue(); |
| |
| // Check if there are other uses. If so, do not combine as it will introduce |
| // an extra load. |
| for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; |
| ++UI) { |
| if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. |
| continue; |
| if (*UI != N) |
| return SDValue(); |
| } |
| |
| SDValue Addr = LD->getOperand(1); |
| SDValue Vector = N->getOperand(0); |
| // Search for a use of the address operand that is an increment. |
| for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = |
| Addr.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User->getOpcode() != ISD::ADD |
| || UI.getUse().getResNo() != Addr.getResNo()) |
| continue; |
| |
| // Check that the add is independent of the load. Otherwise, folding it |
| // would create a cycle. |
| if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User)) |
| continue; |
| // Also check that add is not used in the vector operand. This would also |
| // create a cycle. |
| if (User->isPredecessorOf(Vector.getNode())) |
| continue; |
| |
| // If the increment is a constant, it must match the memory ref size. |
| SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); |
| if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { |
| uint32_t IncVal = CInc->getZExtValue(); |
| unsigned NumBytes = VT.getScalarSizeInBits() / 8; |
| if (IncVal != NumBytes) |
| continue; |
| Inc = DAG.getRegister(AArch64::XZR, MVT::i64); |
| } |
| |
| // Finally, check that the vector doesn't depend on the load. |
| // Again, this would create a cycle. |
| // The load depending on the vector is fine, as that's the case for the |
| // LD1*post we'll eventually generate anyway. |
| if (LoadSDN->isPredecessorOf(Vector.getNode())) |
| continue; |
| |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(LD->getOperand(0)); // Chain |
| if (IsLaneOp) { |
| Ops.push_back(Vector); // The vector to be inserted |
| Ops.push_back(Lane); // The lane to be inserted in the vector |
| } |
| Ops.push_back(Addr); |
| Ops.push_back(Inc); |
| |
| EVT Tys[3] = { VT, MVT::i64, MVT::Other }; |
| SDVTList SDTys = DAG.getVTList(Tys); |
| unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; |
| SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, |
| MemVT, |
| LoadSDN->getMemOperand()); |
| |
| // Update the uses. |
| SDValue NewResults[] = { |
| SDValue(LD, 0), // The result of load |
| SDValue(UpdN.getNode(), 2) // Chain |
| }; |
| DCI.CombineTo(LD, NewResults); |
| DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result |
| DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register |
| |
| break; |
| } |
| return SDValue(); |
| } |
| |
| /// Simplify ``Addr`` given that the top byte of it is ignored by HW during |
| /// address translation. |
| static bool performTBISimplification(SDValue Addr, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| APInt DemandedMask = APInt::getLowBitsSet(64, 56); |
| KnownBits Known; |
| TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) { |
| DCI.CommitTargetLoweringOpt(TLO); |
| return true; |
| } |
| return false; |
| } |
| |
| static SDValue performSTORECombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG, |
| const AArch64Subtarget *Subtarget) { |
| if (SDValue Split = splitStores(N, DCI, DAG, Subtarget)) |
| return Split; |
| |
| if (Subtarget->supportsAddressTopByteIgnored() && |
| performTBISimplification(N->getOperand(2), DCI, DAG)) |
| return SDValue(N, 0); |
| |
| return SDValue(); |
| } |
| |
| |
| /// Target-specific DAG combine function for NEON load/store intrinsics |
| /// to merge base address updates. |
| static SDValue performNEONPostLDSTCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| unsigned AddrOpIdx = N->getNumOperands() - 1; |
| SDValue Addr = N->getOperand(AddrOpIdx); |
| |
| // Search for a use of the address operand that is an increment. |
| for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), |
| UE = Addr.getNode()->use_end(); UI != UE; ++UI) { |
| SDNode *User = *UI; |
| if (User->getOpcode() != ISD::ADD || |
| UI.getUse().getResNo() != Addr.getResNo()) |
| continue; |
| |
| // Check that the add is independent of the load/store. Otherwise, folding |
| // it would create a cycle. |
| if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) |
| continue; |
| |
| // Find the new opcode for the updating load/store. |
| bool IsStore = false; |
| bool IsLaneOp = false; |
| bool IsDupOp = false; |
| unsigned NewOpc = 0; |
| unsigned NumVecs = 0; |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| default: llvm_unreachable("unexpected intrinsic for Neon base update"); |
| case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; |
| NumVecs = 2; break; |
| case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; |
| NumVecs = 3; break; |
| case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; |
| NumVecs = 4; break; |
| case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; |
| NumVecs = 2; IsStore = true; break; |
| case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; |
| NumVecs = 3; IsStore = true; break; |
| case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; |
| NumVecs = 4; IsStore = true; break; |
| case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; |
| NumVecs = 2; break; |
| case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; |
| NumVecs = 3; break; |
| case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; |
| NumVecs = 4; break; |
| case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; |
| NumVecs = 2; IsStore = true; break; |
| case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; |
| NumVecs = 3; IsStore = true; break; |
| case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; |
| NumVecs = 4; IsStore = true; break; |
| case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; |
| NumVecs = 2; IsDupOp = true; break; |
| case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; |
| NumVecs = 3; IsDupOp = true; break; |
| case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; |
| NumVecs = 4; IsDupOp = true; break; |
| case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; |
| NumVecs = 2; IsLaneOp = true; break; |
| case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; |
| NumVecs = 3; IsLaneOp = true; break; |
| case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; |
| NumVecs = 4; IsLaneOp = true; break; |
| case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; |
| NumVecs = 2; IsStore = true; IsLaneOp = true; break; |
| case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; |
| NumVecs = 3; IsStore = true; IsLaneOp = true; break; |
| case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; |
| NumVecs = 4; IsStore = true; IsLaneOp = true; break; |
| } |
| |
| EVT VecTy; |
| if (IsStore) |
| VecTy = N->getOperand(2).getValueType(); |
| else |
| VecTy = N->getValueType(0); |
| |
| // If the increment is a constant, it must match the memory ref size. |
| SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); |
| if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { |
| uint32_t IncVal = CInc->getZExtValue(); |
| unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; |
| if (IsLaneOp || IsDupOp) |
| NumBytes /= VecTy.getVectorNumElements(); |
| if (IncVal != NumBytes) |
| continue; |
| Inc = DAG.getRegister(AArch64::XZR, MVT::i64); |
| } |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(N->getOperand(0)); // Incoming chain |
| // Load lane and store have vector list as input. |
| if (IsLaneOp || IsStore) |
| for (unsigned i = 2; i < AddrOpIdx; ++i) |
| Ops.push_back(N->getOperand(i)); |
| Ops.push_back(Addr); // Base register |
| Ops.push_back(Inc); |
| |
| // Return Types. |
| EVT Tys[6]; |
| unsigned NumResultVecs = (IsStore ? 0 : NumVecs); |
| unsigned n; |
| for (n = 0; n < NumResultVecs; ++n) |
| Tys[n] = VecTy; |
| Tys[n++] = MVT::i64; // Type of write back register |
| Tys[n] = MVT::Other; // Type of the chain |
| SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); |
| |
| MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); |
| SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, |
| MemInt->getMemoryVT(), |
| MemInt->getMemOperand()); |
| |
| // Update the uses. |
| std::vector<SDValue> NewResults; |
| for (unsigned i = 0; i < NumResultVecs; ++i) { |
| NewResults.push_back(SDValue(UpdN.getNode(), i)); |
| } |
| NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); |
| DCI.CombineTo(N, NewResults); |
| DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); |
| |
| break; |
| } |
| return SDValue(); |
| } |
| |
| // Checks to see if the value is the prescribed width and returns information |
| // about its extension mode. |
| static |
| bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { |
| ExtType = ISD::NON_EXTLOAD; |
| switch(V.getNode()->getOpcode()) { |
| default: |
| return false; |
| case ISD::LOAD: { |
| LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode()); |
| if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) |
| || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { |
| ExtType = LoadNode->getExtensionType(); |
| return true; |
| } |
| return false; |
| } |
| case ISD::AssertSext: { |
| VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); |
| if ((TypeNode->getVT() == MVT::i8 && width == 8) |
| || (TypeNode->getVT() == MVT::i16 && width == 16)) { |
| ExtType = ISD::SEXTLOAD; |
| return true; |
| } |
| return false; |
| } |
| case ISD::AssertZext: { |
| VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); |
| if ((TypeNode->getVT() == MVT::i8 && width == 8) |
| || (TypeNode->getVT() == MVT::i16 && width == 16)) { |
| ExtType = ISD::ZEXTLOAD; |
| return true; |
| } |
| return false; |
| } |
| case ISD::Constant: |
| case ISD::TargetConstant: { |
| return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) < |
| 1LL << (width - 1); |
| } |
| } |
| |
| return true; |
| } |
| |
| // This function does a whole lot of voodoo to determine if the tests are |
| // equivalent without and with a mask. Essentially what happens is that given a |
| // DAG resembling: |
| // |
| // +-------------+ +-------------+ +-------------+ +-------------+ |
| // | Input | | AddConstant | | CompConstant| | CC | |
| // +-------------+ +-------------+ +-------------+ +-------------+ |
| // | | | | |
| // V V | +----------+ |
| // +-------------+ +----+ | | |
| // | ADD | |0xff| | | |
| // +-------------+ +----+ | | |
| // | | | | |
| // V V | | |
| // +-------------+ | | |
| // | AND | | | |
| // +-------------+ | | |
| // | | | |
| // +-----+ | | |
| // | | | |
| // V V V |
| // +-------------+ |
| // | CMP | |
| // +-------------+ |
| // |
| // The AND node may be safely removed for some combinations of inputs. In |
| // particular we need to take into account the extension type of the Input, |
| // the exact values of AddConstant, CompConstant, and CC, along with the nominal |
| // width of the input (this can work for any width inputs, the above graph is |
| // specific to 8 bits. |
| // |
| // The specific equations were worked out by generating output tables for each |
| // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The |
| // problem was simplified by working with 4 bit inputs, which means we only |
| // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero |
| // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 |
| // patterns present in both extensions (0,7). For every distinct set of |
| // AddConstant and CompConstants bit patterns we can consider the masked and |
| // unmasked versions to be equivalent if the result of this function is true for |
| // all 16 distinct bit patterns of for the current extension type of Input (w0). |
| // |
| // sub w8, w0, w1 |
| // and w10, w8, #0x0f |
| // cmp w8, w2 |
| // cset w9, AArch64CC |
| // cmp w10, w2 |
| // cset w11, AArch64CC |
| // cmp w9, w11 |
| // cset w0, eq |
| // ret |
| // |
| // Since the above function shows when the outputs are equivalent it defines |
| // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and |
| // would be expensive to run during compiles. The equations below were written |
| // in a test harness that confirmed they gave equivalent outputs to the above |
| // for all inputs function, so they can be used determine if the removal is |
| // legal instead. |
| // |
| // isEquivalentMaskless() is the code for testing if the AND can be removed |
| // factored out of the DAG recognition as the DAG can take several forms. |
| |
| static bool isEquivalentMaskless(unsigned CC, unsigned width, |
| ISD::LoadExtType ExtType, int AddConstant, |
| int CompConstant) { |
| // By being careful about our equations and only writing the in term |
| // symbolic values and well known constants (0, 1, -1, MaxUInt) we can |
| // make them generally applicable to all bit widths. |
| int MaxUInt = (1 << width); |
| |
| // For the purposes of these comparisons sign extending the type is |
| // equivalent to zero extending the add and displacing it by half the integer |
| // width. Provided we are careful and make sure our equations are valid over |
| // the whole range we can just adjust the input and avoid writing equations |
| // for sign extended inputs. |
| if (ExtType == ISD::SEXTLOAD) |
| AddConstant -= (1 << (width-1)); |
| |
| switch(CC) { |
| case AArch64CC::LE: |
| case AArch64CC::GT: |
| if ((AddConstant == 0) || |
| (CompConstant == MaxUInt - 1 && AddConstant < 0) || |
| (AddConstant >= 0 && CompConstant < 0) || |
| (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) |
| return true; |
| break; |
| case AArch64CC::LT: |
| case AArch64CC::GE: |
| if ((AddConstant == 0) || |
| (AddConstant >= 0 && CompConstant <= 0) || |
| (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) |
| return true; |
| break; |
| case AArch64CC::HI: |
| case AArch64CC::LS: |
| if ((AddConstant >= 0 && CompConstant < 0) || |
| (AddConstant <= 0 && CompConstant >= -1 && |
| CompConstant < AddConstant + MaxUInt)) |
| return true; |
| break; |
| case AArch64CC::PL: |
| case AArch64CC::MI: |
| if ((AddConstant == 0) || |
| (AddConstant > 0 && CompConstant <= 0) || |
| (AddConstant < 0 && CompConstant <= AddConstant)) |
| return true; |
| break; |
| case AArch64CC::LO: |
| case AArch64CC::HS: |
| if ((AddConstant >= 0 && CompConstant <= 0) || |
| (AddConstant <= 0 && CompConstant >= 0 && |
| CompConstant <= AddConstant + MaxUInt)) |
| return true; |
| break; |
| case AArch64CC::EQ: |
| case AArch64CC::NE: |
| if ((AddConstant > 0 && CompConstant < 0) || |
| (AddConstant < 0 && CompConstant >= 0 && |
| CompConstant < AddConstant + MaxUInt) || |
| (AddConstant >= 0 && CompConstant >= 0 && |
| CompConstant >= AddConstant) || |
| (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) |
| return true; |
| break; |
| case AArch64CC::VS: |
| case AArch64CC::VC: |
| case AArch64CC::AL: |
| case AArch64CC::NV: |
| return true; |
| case AArch64CC::Invalid: |
| break; |
| } |
| |
| return false; |
| } |
| |
| static |
| SDValue performCONDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG, unsigned CCIndex, |
| unsigned CmpIndex) { |
| unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue(); |
| SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); |
| unsigned CondOpcode = SubsNode->getOpcode(); |
| |
| if (CondOpcode != AArch64ISD::SUBS) |
| return SDValue(); |
| |
| // There is a SUBS feeding this condition. Is it fed by a mask we can |
| // use? |
| |
| SDNode *AndNode = SubsNode->getOperand(0).getNode(); |
| unsigned MaskBits = 0; |
| |
| if (AndNode->getOpcode() != ISD::AND) |
| return SDValue(); |
| |
| if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) { |
| uint32_t CNV = CN->getZExtValue(); |
| if (CNV == 255) |
| MaskBits = 8; |
| else if (CNV == 65535) |
| MaskBits = 16; |
| } |
| |
| if (!MaskBits) |
| return SDValue(); |
| |
| SDValue AddValue = AndNode->getOperand(0); |
| |
| if (AddValue.getOpcode() != ISD::ADD) |
| return SDValue(); |
| |
| // The basic dag structure is correct, grab the inputs and validate them. |
| |
| SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); |
| SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); |
| SDValue SubsInputValue = SubsNode->getOperand(1); |
| |
| // The mask is present and the provenance of all the values is a smaller type, |
| // lets see if the mask is superfluous. |
| |
| if (!isa<ConstantSDNode>(AddInputValue2.getNode()) || |
| !isa<ConstantSDNode>(SubsInputValue.getNode())) |
| return SDValue(); |
| |
| ISD::LoadExtType ExtType; |
| |
| if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || |
| !checkValueWidth(AddInputValue2, MaskBits, ExtType) || |
| !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) |
| return SDValue(); |
| |
| if(!isEquivalentMaskless(CC, MaskBits, ExtType, |
| cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(), |
| cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue())) |
| return SDValue(); |
| |
| // The AND is not necessary, remove it. |
| |
| SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), |
| SubsNode->getValueType(1)); |
| SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; |
| |
| SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); |
| DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); |
| |
| return SDValue(N, 0); |
| } |
| |
| // Optimize compare with zero and branch. |
| static SDValue performBRCONDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3)) |
| N = NV.getNode(); |
| SDValue Chain = N->getOperand(0); |
| SDValue Dest = N->getOperand(1); |
| SDValue CCVal = N->getOperand(2); |
| SDValue Cmp = N->getOperand(3); |
| |
| assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); |
| unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); |
| if (CC != AArch64CC::EQ && CC != AArch64CC::NE) |
| return SDValue(); |
| |
| unsigned CmpOpc = Cmp.getOpcode(); |
| if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) |
| return SDValue(); |
| |
| // Only attempt folding if there is only one use of the flag and no use of the |
| // value. |
| if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) |
| return SDValue(); |
| |
| SDValue LHS = Cmp.getOperand(0); |
| SDValue RHS = Cmp.getOperand(1); |
| |
| assert(LHS.getValueType() == RHS.getValueType() && |
| "Expected the value type to be the same for both operands!"); |
| if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) |
| return SDValue(); |
| |
| if (isNullConstant(LHS)) |
| std::swap(LHS, RHS); |
| |
| if (!isNullConstant(RHS)) |
| return SDValue(); |
| |
| if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || |
| LHS.getOpcode() == ISD::SRL) |
| return SDValue(); |
| |
| // Fold the compare into the branch instruction. |
| SDValue BR; |
| if (CC == AArch64CC::EQ) |
| BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); |
| else |
| BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); |
| |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, BR, false); |
| |
| return SDValue(); |
| } |
| |
| // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test |
| // as well as whether the test should be inverted. This code is required to |
| // catch these cases (as opposed to standard dag combines) because |
| // AArch64ISD::TBZ is matched during legalization. |
| static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert, |
| SelectionDAG &DAG) { |
| |
| if (!Op->hasOneUse()) |
| return Op; |
| |
| // We don't handle undef/constant-fold cases below, as they should have |
| // already been taken care of (e.g. and of 0, test of undefined shifted bits, |
| // etc.) |
| |
| // (tbz (trunc x), b) -> (tbz x, b) |
| // This case is just here to enable more of the below cases to be caught. |
| if (Op->getOpcode() == ISD::TRUNCATE && |
| Bit < Op->getValueType(0).getSizeInBits()) { |
| return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); |
| } |
| |
| if (Op->getNumOperands() != 2) |
| return Op; |
| |
| auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); |
| if (!C) |
| return Op; |
| |
| switch (Op->getOpcode()) { |
| default: |
| return Op; |
| |
| // (tbz (and x, m), b) -> (tbz x, b) |
| case ISD::AND: |
| if ((C->getZExtValue() >> Bit) & 1) |
| return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); |
| return Op; |
| |
| // (tbz (shl x, c), b) -> (tbz x, b-c) |
| case ISD::SHL: |
| if (C->getZExtValue() <= Bit && |
| (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { |
| Bit = Bit - C->getZExtValue(); |
| return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); |
| } |
| return Op; |
| |
| // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x |
| case ISD::SRA: |
| Bit = Bit + C->getZExtValue(); |
| if (Bit >= Op->getValueType(0).getSizeInBits()) |
| Bit = Op->getValueType(0).getSizeInBits() - 1; |
| return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); |
| |
| // (tbz (srl x, c), b) -> (tbz x, b+c) |
| case ISD::SRL: |
| if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { |
| Bit = Bit + C->getZExtValue(); |
| return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); |
| } |
| return Op; |
| |
| // (tbz (xor x, -1), b) -> (tbnz x, b) |
| case ISD::XOR: |
| if ((C->getZExtValue() >> Bit) & 1) |
| Invert = !Invert; |
| return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); |
| } |
| } |
| |
| // Optimize test single bit zero/non-zero and branch. |
| static SDValue performTBZCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| SelectionDAG &DAG) { |
| unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); |
| bool Invert = false; |
| SDValue TestSrc = N->getOperand(1); |
| SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG); |
| |
| if (TestSrc == NewTestSrc) |
| return SDValue(); |
| |
| unsigned NewOpc = N->getOpcode(); |
| if (Invert) { |
| if (NewOpc == AArch64ISD::TBZ) |
| NewOpc = AArch64ISD::TBNZ; |
| else { |
| assert(NewOpc == AArch64ISD::TBNZ); |
| NewOpc = AArch64ISD::TBZ; |
| } |
| } |
| |
| SDLoc DL(N); |
| return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc, |
| DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3)); |
| } |
| |
| // vselect (v1i1 setcc) -> |
| // vselect (v1iXX setcc) (XX is the size of the compared operand type) |
| // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as |
| // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine |
| // such VSELECT. |
| static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { |
| SDValue N0 = N->getOperand(0); |
| EVT CCVT = N0.getValueType(); |
| |
| if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || |
| CCVT.getVectorElementType() != MVT::i1) |
| return SDValue(); |
| |
| EVT ResVT = N->getValueType(0); |
| EVT CmpVT = N0.getOperand(0).getValueType(); |
| // Only combine when the result type is of the same size as the compared |
| // operands. |
| if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) |
| return SDValue(); |
| |
| SDValue IfTrue = N->getOperand(1); |
| SDValue IfFalse = N->getOperand(2); |
| SDValue SetCC = |
| DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), |
| N0.getOperand(0), N0.getOperand(1), |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, |
| IfTrue, IfFalse); |
| } |
| |
| /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with |
| /// the compare-mask instructions rather than going via NZCV, even if LHS and |
| /// RHS are really scalar. This replaces any scalar setcc in the above pattern |
| /// with a vector one followed by a DUP shuffle on the result. |
| static SDValue performSelectCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| EVT ResVT = N->getValueType(0); |
| |
| if (N0.getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered |
| // scalar SetCCResultType. We also don't expect vectors, because we assume |
| // that selects fed by vector SETCCs are canonicalized to VSELECT. |
| assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && |
| "Scalar-SETCC feeding SELECT has unexpected result type!"); |
| |
| // If NumMaskElts == 0, the comparison is larger than select result. The |
| // largest real NEON comparison is 64-bits per lane, which means the result is |
| // at most 32-bits and an illegal vector. Just bail out for now. |
| EVT SrcVT = N0.getOperand(0).getValueType(); |
| |
| // Don't try to do this optimization when the setcc itself has i1 operands. |
| // There are no legal vectors of i1, so this would be pointless. |
| if (SrcVT == MVT::i1) |
| return SDValue(); |
| |
| int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); |
| if (!ResVT.isVector() || NumMaskElts == 0) |
| return SDValue(); |
| |
| SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); |
| EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); |
| |
| // Also bail out if the vector CCVT isn't the same size as ResVT. |
| // This can happen if the SETCC operand size doesn't divide the ResVT size |
| // (e.g., f64 vs v3f32). |
| if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) |
| return SDValue(); |
| |
| // Make sure we didn't create illegal types, if we're not supposed to. |
| assert(DCI.isBeforeLegalize() || |
| DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)); |
| |
| // First perform a vector comparison, where lane 0 is the one we're interested |
| // in. |
| SDLoc DL(N0); |
| SDValue LHS = |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); |
| SDValue RHS = |
| DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); |
| SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); |
| |
| // Now duplicate the comparison mask we want across all other lanes. |
| SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); |
| SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask); |
| Mask = DAG.getNode(ISD::BITCAST, DL, |
| ResVT.changeVectorElementTypeToInteger(), Mask); |
| |
| return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); |
| } |
| |
| /// Get rid of unnecessary NVCASTs (that don't change the type). |
| static SDValue performNVCASTCombine(SDNode *N) { |
| if (N->getValueType(0) == N->getOperand(0).getValueType()) |
| return N->getOperand(0); |
| |
| return SDValue(); |
| } |
| |
| // If all users of the globaladdr are of the form (globaladdr + constant), find |
| // the smallest constant, fold it into the globaladdr's offset and rewrite the |
| // globaladdr as (globaladdr + constant) - constant. |
| static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG, |
| const AArch64Subtarget *Subtarget, |
| const TargetMachine &TM) { |
| auto *GN = dyn_cast<GlobalAddressSDNode>(N); |
| if (!GN || Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) != |
| AArch64II::MO_NO_FLAG) |
| return SDValue(); |
| |
| uint64_t MinOffset = -1ull; |
| for (SDNode *N : GN->uses()) { |
| if (N->getOpcode() != ISD::ADD) |
| return SDValue(); |
| auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0)); |
| if (!C) |
| C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| MinOffset = std::min(MinOffset, C->getZExtValue()); |
| } |
| uint64_t Offset = MinOffset + GN->getOffset(); |
| |
| // Require that the new offset is larger than the existing one. Otherwise, we |
| // can end up oscillating between two possible DAGs, for example, |
| // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1). |
| if (Offset <= uint64_t(GN->getOffset())) |
| return SDValue(); |
| |
| // Check whether folding this offset is legal. It must not go out of bounds of |
| // the referenced object to avoid violating the code model, and must be |
| // smaller than 2^21 because this is the largest offset expressible in all |
| // object formats. |
| // |
| // This check also prevents us from folding negative offsets, which will end |
| // up being treated in the same way as large positive ones. They could also |
| // cause code model violations, and aren't really common enough to matter. |
| if (Offset >= (1 << 21)) |
| return SDValue(); |
| |
| const GlobalValue *GV = GN->getGlobal(); |
| Type *T = GV->getValueType(); |
| if (!T->isSized() || |
| Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) |
| return SDValue(); |
| |
| SDLoc DL(GN); |
| SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset); |
| return DAG.getNode(ISD::SUB, DL, MVT::i64, Result, |
| DAG.getConstant(MinOffset, DL, MVT::i64)); |
| } |
| |
| SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| switch (N->getOpcode()) { |
| default: |
| LLVM_DEBUG(dbgs() << "Custom combining: skipping\n"); |
| break; |
| case ISD::ADD: |
| case ISD::SUB: |
| return performAddSubLongCombine(N, DCI, DAG); |
| case ISD::XOR: |
| return performXorCombine(N, DAG, DCI, Subtarget); |
| case ISD::MUL: |
| return performMulCombine(N, DAG, DCI, Subtarget); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| return performIntToFpCombine(N, DAG, Subtarget); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| return performFpToIntCombine(N, DAG, DCI, Subtarget); |
| case ISD::FDIV: |
| return performFDivCombine(N, DAG, DCI, Subtarget); |
| case ISD::OR: |
| return performORCombine(N, DCI, Subtarget); |
| case ISD::SRL: |
| return performSRLCombine(N, DCI); |
| case ISD::INTRINSIC_WO_CHAIN: |
| return performIntrinsicCombine(N, DCI, Subtarget); |
| case ISD::ANY_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| return performExtendCombine(N, DCI, DAG); |
| case ISD::BITCAST: |
| return performBitcastCombine(N, DCI, DAG); |
| case ISD::CONCAT_VECTORS: |
| return performConcatVectorsCombine(N, DCI, DAG); |
| case ISD::SELECT: |
| return performSelectCombine(N, DCI); |
| case ISD::VSELECT: |
| return performVSelectCombine(N, DCI.DAG); |
| case ISD::LOAD: |
| if (performTBISimplification(N->getOperand(1), DCI, DAG)) |
| return SDValue(N, 0); |
| break; |
| case ISD::STORE: |
| return performSTORECombine(N, DCI, DAG, Subtarget); |
| case AArch64ISD::BRCOND: |
| return performBRCONDCombine(N, DCI, DAG); |
| case AArch64ISD::TBNZ: |
| case AArch64ISD::TBZ: |
| return performTBZCombine(N, DCI, DAG); |
| case AArch64ISD::CSEL: |
| return performCONDCombine(N, DCI, DAG, 2, 3); |
| case AArch64ISD::DUP: |
| return performPostLD1Combine(N, DCI, false); |
| case AArch64ISD::NVCAST: |
| return performNVCASTCombine(N); |
| case ISD::INSERT_VECTOR_ELT: |
| return performPostLD1Combine(N, DCI, true); |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: |
| switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { |
| case Intrinsic::aarch64_neon_ld2: |
| case Intrinsic::aarch64_neon_ld3: |
| case Intrinsic::aarch64_neon_ld4: |
| case Intrinsic::aarch64_neon_ld1x2: |
| case Intrinsic::aarch64_neon_ld1x3: |
| case Intrinsic::aarch64_neon_ld1x4: |
| case Intrinsic::aarch64_neon_ld2lane: |
| case Intrinsic::aarch64_neon_ld3lane: |
| case Intrinsic::aarch64_neon_ld4lane: |
| case Intrinsic::aarch64_neon_ld2r: |
| case Intrinsic::aarch64_neon_ld3r: |
| case Intrinsic::aarch64_neon_ld4r: |
| case Intrinsic::aarch64_neon_st2: |
| case Intrinsic::aarch64_neon_st3: |
| case Intrinsic::aarch64_neon_st4: |
| case Intrinsic::aarch64_neon_st1x2: |
| case Intrinsic::aarch64_neon_st1x3: |
| case Intrinsic::aarch64_neon_st1x4: |
| case Intrinsic::aarch64_neon_st2lane: |
| case Intrinsic::aarch64_neon_st3lane: |
| case Intrinsic::aarch64_neon_st4lane: |
| return performNEONPostLDSTCombine(N, DCI, DAG); |
| default: |
| break; |
| } |
| case ISD::GlobalAddress: |
| return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine()); |
| } |
| return SDValue(); |
| } |
| |
| // Check if the return value is used as only a return value, as otherwise |
| // we can't perform a tail-call. In particular, we need to check for |
| // target ISD nodes that are returns and any other "odd" constructs |
| // that the generic analysis code won't necessarily catch. |
| bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, |
| SDValue &Chain) const { |
| if (N->getNumValues() != 1) |
| return false; |
| if (!N->hasNUsesOfValue(1, 0)) |
| return false; |
| |
| SDValue TCChain = Chain; |
| SDNode *Copy = *N->use_begin(); |
| if (Copy->getOpcode() == ISD::CopyToReg) { |
| // If the copy has a glue operand, we conservatively assume it isn't safe to |
| // perform a tail call. |
| if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == |
| MVT::Glue) |
| return false; |
| TCChain = Copy->getOperand(0); |
| } else if (Copy->getOpcode() != ISD::FP_EXTEND) |
| return false; |
| |
| bool HasRet = false; |
| for (SDNode *Node : Copy->uses()) { |
| if (Node->getOpcode() != AArch64ISD::RET_FLAG) |
| return false; |
| HasRet = true; |
| } |
| |
| if (!HasRet) |
| return false; |
| |
| Chain = TCChain; |
| return true; |
| } |
| |
| // Return whether the an instruction can potentially be optimized to a tail |
| // call. This will cause the optimizers to attempt to move, or duplicate, |
| // return instructions to help enable tail call optimizations for this |
| // instruction. |
| bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| return CI->isTailCall(); |
| } |
| |
| bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| bool &IsInc, |
| SelectionDAG &DAG) const { |
| if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) |
| return false; |
| |
| Base = Op->getOperand(0); |
| // All of the indexed addressing mode instructions take a signed |
| // 9 bit immediate offset. |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { |
| int64_t RHSC = RHS->getSExtValue(); |
| if (Op->getOpcode() == ISD::SUB) |
| RHSC = -(uint64_t)RHSC; |
| if (!isInt<9>(RHSC)) |
| return false; |
| IsInc = (Op->getOpcode() == ISD::ADD); |
| Offset = Op->getOperand(1); |
| return true; |
| } |
| return false; |
| } |
| |
| bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| EVT VT; |
| SDValue Ptr; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| Ptr = LD->getBasePtr(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| Ptr = ST->getBasePtr(); |
| } else |
| return false; |
| |
| bool IsInc; |
| if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) |
| return false; |
| AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; |
| return true; |
| } |
| |
| bool AArch64TargetLowering::getPostIndexedAddressParts( |
| SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, |
| ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { |
| EVT VT; |
| SDValue Ptr; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| Ptr = LD->getBasePtr(); |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| Ptr = ST->getBasePtr(); |
| } else |
| return false; |
| |
| bool IsInc; |
| if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) |
| return false; |
| // Post-indexing updates the base, so it's not a valid transform |
| // if that's not the same as the load's pointer. |
| if (Ptr != Base) |
| return false; |
| AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; |
| return true; |
| } |
| |
| static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) { |
| SDLoc DL(N); |
| SDValue Op = N->getOperand(0); |
| |
| if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16) |
| return; |
| |
| Op = SDValue( |
| DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, |
| DAG.getUNDEF(MVT::i32), Op, |
| DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), |
| 0); |
| Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); |
| Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); |
| } |
| |
| static void ReplaceReductionResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG, unsigned InterOp, |
| unsigned AcrossOp) { |
| EVT LoVT, HiVT; |
| SDValue Lo, Hi; |
| SDLoc dl(N); |
| std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); |
| std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); |
| SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); |
| SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); |
| Results.push_back(SplitVal); |
| } |
| |
| static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) { |
| SDLoc DL(N); |
| SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N); |
| SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, |
| DAG.getNode(ISD::SRL, DL, MVT::i128, N, |
| DAG.getConstant(64, DL, MVT::i64))); |
| return std::make_pair(Lo, Hi); |
| } |
| |
| // Create an even/odd pair of X registers holding integer value V. |
| static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { |
| SDLoc dl(V.getNode()); |
| SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64); |
| SDValue VHi = DAG.getAnyExtOrTrunc( |
| DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)), |
| dl, MVT::i64); |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap (VLo, VHi); |
| SDValue RegClass = |
| DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32); |
| SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32); |
| SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32); |
| const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; |
| return SDValue( |
| DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); |
| } |
| |
| static void ReplaceCMP_SWAP_128Results(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG, |
| const AArch64Subtarget *Subtarget) { |
| assert(N->getValueType(0) == MVT::i128 && |
| "AtomicCmpSwap on types less than 128 should be legal"); |
| |
| if (Subtarget->hasLSE()) { |
| // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type, |
| // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG. |
| SDValue Ops[] = { |
| createGPRPairNode(DAG, N->getOperand(2)), // Compare value |
| createGPRPairNode(DAG, N->getOperand(3)), // Store value |
| N->getOperand(1), // Ptr |
| N->getOperand(0), // Chain in |
| }; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1); |
| MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); |
| |
| unsigned Opcode; |
| switch (MemOp[0]->getOrdering()) { |
| case AtomicOrdering::Monotonic: |
| Opcode = AArch64::CASPX; |
| break; |
| case AtomicOrdering::Acquire: |
| Opcode = AArch64::CASPAX; |
| break; |
| case AtomicOrdering::Release: |
| Opcode = AArch64::CASPLX; |
| break; |
| case AtomicOrdering::AcquireRelease: |
| case AtomicOrdering::SequentiallyConsistent: |
| Opcode = AArch64::CASPALX; |
| break; |
| default: |
| llvm_unreachable("Unexpected ordering!"); |
| } |
| |
| MachineSDNode *CmpSwap = DAG.getMachineNode( |
| Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops); |
| CmpSwap->setMemRefs(MemOp, MemOp + 1); |
| |
| unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64; |
| if (DAG.getDataLayout().isBigEndian()) |
| std::swap(SubReg1, SubReg2); |
| Results.push_back(DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64, |
| SDValue(CmpSwap, 0))); |
| Results.push_back(DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64, |
| SDValue(CmpSwap, 0))); |
| Results.push_back(SDValue(CmpSwap, 1)); // Chain out |
| return; |
| } |
| |
| auto Desired = splitInt128(N->getOperand(2), DAG); |
| auto New = splitInt128(N->getOperand(3), DAG); |
| SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second, |
| New.first, New.second, N->getOperand(0)}; |
| SDNode *CmpSwap = DAG.getMachineNode( |
| AArch64::CMP_SWAP_128, SDLoc(N), |
| DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1); |
| MemOp[0] = cast<MemSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1); |
| |
| Results.push_back(SDValue(CmpSwap, 0)); |
| Results.push_back(SDValue(CmpSwap, 1)); |
| Results.push_back(SDValue(CmpSwap, 3)); |
| } |
| |
| void AArch64TargetLowering::ReplaceNodeResults( |
| SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Don't know how to custom expand this"); |
| case ISD::BITCAST: |
| ReplaceBITCASTResults(N, Results, DAG); |
| return; |
| case ISD::VECREDUCE_ADD: |
| case ISD::VECREDUCE_SMAX: |
| case ISD::VECREDUCE_SMIN: |
| case ISD::VECREDUCE_UMAX: |
| case ISD::VECREDUCE_UMIN: |
| Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG)); |
| return; |
| |
| case AArch64ISD::SADDV: |
| ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); |
| return; |
| case AArch64ISD::UADDV: |
| ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); |
| return; |
| case AArch64ISD::SMINV: |
| ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); |
| return; |
| case AArch64ISD::UMINV: |
| ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); |
| return; |
| case AArch64ISD::SMAXV: |
| ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); |
| return; |
| case AArch64ISD::UMAXV: |
| ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); |
| return; |
| case ISD::FP_TO_UINT: |
| case ISD::FP_TO_SINT: |
| assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); |
| // Let normal code take care of it by not adding anything to Results. |
| return; |
| case ISD::ATOMIC_CMP_SWAP: |
| ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget); |
| return; |
| } |
| } |
| |
| bool AArch64TargetLowering::useLoadStackGuardNode() const { |
| if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia()) |
| return TargetLowering::useLoadStackGuardNode(); |
| return true; |
| } |
| |
| unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { |
| // Combine multiple FDIVs with the same divisor into multiple FMULs by the |
| // reciprocal if there are three or more FDIVs. |
| return 3; |
| } |
| |
| TargetLoweringBase::LegalizeTypeAction |
| AArch64TargetLowering::getPreferredVectorAction(EVT VT) const { |
| MVT SVT = VT.getSimpleVT(); |
| // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, |
| // v4i16, v2i32 instead of to promote. |
| if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32 |
| || SVT == MVT::v1f32) |
| return TypeWidenVector; |
| |
| return TargetLoweringBase::getPreferredVectorAction(VT); |
| } |
| |
| // Loads and stores less than 128-bits are already atomic; ones above that |
| // are doomed anyway, so defer to the default libcall and blame the OS when |
| // things go wrong. |
| bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { |
| unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); |
| return Size == 128; |
| } |
| |
| // Loads and stores less than 128-bits are already atomic; ones above that |
| // are doomed anyway, so defer to the default libcall and blame the OS when |
| // things go wrong. |
| TargetLowering::AtomicExpansionKind |
| AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { |
| unsigned Size = LI->getType()->getPrimitiveSizeInBits(); |
| return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None; |
| } |
| |
| // For the real atomic operations, we have ldxr/stxr up to 128 bits, |
| TargetLowering::AtomicExpansionKind |
| AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { |
| unsigned Size = AI->getType()->getPrimitiveSizeInBits(); |
| if (Size > 128) return AtomicExpansionKind::None; |
| // Nand not supported in LSE. |
| if (AI->getOperation() == AtomicRMWInst::Nand) return AtomicExpansionKind::LLSC; |
| // Leave 128 bits to LLSC. |
| return (Subtarget->hasLSE() && Size < 128) ? AtomicExpansionKind::None : AtomicExpansionKind::LLSC; |
| } |
| |
| bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( |
| AtomicCmpXchgInst *AI) const { |
| // If subtarget has LSE, leave cmpxchg intact for codegen. |
| if (Subtarget->hasLSE()) return false; |
| // At -O0, fast-regalloc cannot cope with the live vregs necessary to |
| // implement cmpxchg without spilling. If the address being exchanged is also |
| // on the stack and close enough to the spill slot, this can lead to a |
| // situation where the monitor always gets cleared and the atomic operation |
| // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. |
| return getTargetMachine().getOptLevel() != 0; |
| } |
| |
| Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, |
| AtomicOrdering Ord) const { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); |
| bool IsAcquire = isAcquireOrStronger(Ord); |
| |
| // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd |
| // intrinsic must return {i64, i64} and we have to recombine them into a |
| // single i128 here. |
| if (ValTy->getPrimitiveSizeInBits() == 128) { |
| Intrinsic::ID Int = |
| IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; |
| Function *Ldxr = Intrinsic::getDeclaration(M, Int); |
| |
| Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); |
| Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); |
| |
| Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); |
| Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); |
| Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); |
| Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); |
| return Builder.CreateOr( |
| Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); |
| } |
| |
| Type *Tys[] = { Addr->getType() }; |
| Intrinsic::ID Int = |
| IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; |
| Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys); |
| |
| return Builder.CreateTruncOrBitCast( |
| Builder.CreateCall(Ldxr, Addr), |
| cast<PointerType>(Addr->getType())->getElementType()); |
| } |
| |
| void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( |
| IRBuilder<> &Builder) const { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); |
| } |
| |
| Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, |
| Value *Val, Value *Addr, |
| AtomicOrdering Ord) const { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| bool IsRelease = isReleaseOrStronger(Ord); |
| |
| // Since the intrinsics must have legal type, the i128 intrinsics take two |
| // parameters: "i64, i64". We must marshal Val into the appropriate form |
| // before the call. |
| if (Val->getType()->getPrimitiveSizeInBits() == 128) { |
| Intrinsic::ID Int = |
| IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; |
| Function *Stxr = Intrinsic::getDeclaration(M, Int); |
| Type *Int64Ty = Type::getInt64Ty(M->getContext()); |
| |
| Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); |
| Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); |
| Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); |
| return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); |
| } |
| |
| Intrinsic::ID Int = |
| IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; |
| Type *Tys[] = { Addr->getType() }; |
| Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); |
| |
| return Builder.CreateCall(Stxr, |
| {Builder.CreateZExtOrBitCast( |
| Val, Stxr->getFunctionType()->getParamType(0)), |
| Addr}); |
| } |
| |
| bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( |
| Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { |
| return Ty->isArrayTy(); |
| } |
| |
| bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, |
| EVT) const { |
| return false; |
| } |
| |
| static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) { |
| Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| Function *ThreadPointerFunc = |
| Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); |
| return IRB.CreatePointerCast( |
| IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), Offset), |
| Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0)); |
| } |
| |
| Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const { |
| // Android provides a fixed TLS slot for the stack cookie. See the definition |
| // of TLS_SLOT_STACK_GUARD in |
| // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h |
| if (Subtarget->isTargetAndroid()) |
| return UseTlsOffset(IRB, 0x28); |
| |
| // Fuchsia is similar. |
| // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. |
| if (Subtarget->isTargetFuchsia()) |
| return UseTlsOffset(IRB, -0x10); |
| |
| return TargetLowering::getIRStackGuard(IRB); |
| } |
| |
| Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { |
| // Android provides a fixed TLS slot for the SafeStack pointer. See the |
| // definition of TLS_SLOT_SAFESTACK in |
| // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h |
| if (Subtarget->isTargetAndroid()) |
| return UseTlsOffset(IRB, 0x48); |
| |
| // Fuchsia is similar. |
| // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value. |
| if (Subtarget->isTargetFuchsia()) |
| return UseTlsOffset(IRB, -0x8); |
| |
| return TargetLowering::getSafeStackPointerLocation(IRB); |
| } |
| |
| bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial( |
| const Instruction &AndI) const { |
| // Only sink 'and' mask to cmp use block if it is masking a single bit, since |
| // this is likely to be fold the and/cmp/br into a single tbz instruction. It |
| // may be beneficial to sink in other cases, but we would have to check that |
| // the cmp would not get folded into the br to form a cbz for these to be |
| // beneficial. |
| ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1)); |
| if (!Mask) |
| return false; |
| return Mask->getValue().isPowerOf2(); |
| } |
| |
| void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { |
| // Update IsSplitCSR in AArch64unctionInfo. |
| AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>(); |
| AFI->setIsSplitCSR(true); |
| } |
| |
| void AArch64TargetLowering::insertCopiesSplitCSR( |
| MachineBasicBlock *Entry, |
| const SmallVectorImpl<MachineBasicBlock *> &Exits) const { |
| const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); |
| if (!IStart) |
| return; |
| |
| const TargetInstrInfo *TII = Subtarget->getInstrInfo(); |
| MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); |
| MachineBasicBlock::iterator MBBI = Entry->begin(); |
| for (const MCPhysReg *I = IStart; *I; ++I) { |
| const TargetRegisterClass *RC = nullptr; |
| if (AArch64::GPR64RegClass.contains(*I)) |
| RC = &AArch64::GPR64RegClass; |
| else if (AArch64::FPR64RegClass.contains(*I)) |
| RC = &AArch64::FPR64RegClass; |
| else |
| llvm_unreachable("Unexpected register class in CSRsViaCopy!"); |
| |
| unsigned NewVR = MRI->createVirtualRegister(RC); |
| // Create copy from CSR to a virtual register. |
| // FIXME: this currently does not emit CFI pseudo-instructions, it works |
| // fine for CXX_FAST_TLS since the C++-style TLS access functions should be |
| // nounwind. If we want to generalize this later, we may need to emit |
| // CFI pseudo-instructions. |
| assert(Entry->getParent()->getFunction().hasFnAttribute( |
| Attribute::NoUnwind) && |
| "Function should be nounwind in insertCopiesSplitCSR!"); |
| Entry->addLiveIn(*I); |
| BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) |
| .addReg(*I); |
| |
| // Insert the copy-back instructions right before the terminator. |
| for (auto *Exit : Exits) |
| BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), |
| TII->get(TargetOpcode::COPY), *I) |
| .addReg(NewVR); |
| } |
| } |
| |
| bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { |
| // Integer division on AArch64 is expensive. However, when aggressively |
| // optimizing for code size, we prefer to use a div instruction, as it is |
| // usually smaller than the alternative sequence. |
| // The exception to this is vector division. Since AArch64 doesn't have vector |
| // integer division, leaving the division as-is is a loss even in terms of |
| // size, because it will have to be scalarized, while the alternative code |
| // sequence can be performed in vector form. |
| bool OptSize = |
| Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize); |
| return OptSize && !VT.isVector(); |
| } |
| |
| bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const { |
| return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint(); |
| } |
| |
| unsigned |
| AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const { |
| if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) |
| return getPointerTy(DL).getSizeInBits(); |
| |
| return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32; |
| } |
| |
| void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const { |
| MF.getFrameInfo().computeMaxCallFrameSize(MF); |
| TargetLoweringBase::finalizeLowering(MF); |
| } |