| //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the LoopInfo class that is used to identify natural loops | 
 | // and determine the loop depth of various nodes of the CFG.  A natural loop | 
 | // has exactly one entry-point, which is called the header. Note that natural | 
 | // loops may actually be several loops that share the same header node. | 
 | // | 
 | // This analysis calculates the nesting structure of loops in a function.  For | 
 | // each natural loop identified, this analysis identifies natural loops | 
 | // contained entirely within the loop and the basic blocks the make up the loop. | 
 | // | 
 | // It can calculate on the fly various bits of information, for example: | 
 | // | 
 | //  * whether there is a preheader for the loop | 
 | //  * the number of back edges to the header | 
 | //  * whether or not a particular block branches out of the loop | 
 | //  * the successor blocks of the loop | 
 | //  * the loop depth | 
 | //  * the trip count | 
 | //  * etc... | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef LLVM_ANALYSIS_LOOP_INFO_H | 
 | #define LLVM_ANALYSIS_LOOP_INFO_H | 
 |  | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/GraphTraits.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Support/CFG.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <map> | 
 |  | 
 | namespace llvm { | 
 |  | 
 | template<typename T> | 
 | static void RemoveFromVector(std::vector<T*> &V, T *N) { | 
 |   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N); | 
 |   assert(I != V.end() && "N is not in this list!"); | 
 |   V.erase(I); | 
 | } | 
 |  | 
 | class DominatorTree; | 
 | class LoopInfo; | 
 | class Loop; | 
 | class PHINode; | 
 | template<class N, class M> class LoopInfoBase; | 
 | template<class N, class M> class LoopBase; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | /// LoopBase class - Instances of this class are used to represent loops that | 
 | /// are detected in the flow graph | 
 | /// | 
 | template<class BlockT, class LoopT> | 
 | class LoopBase { | 
 |   LoopT *ParentLoop; | 
 |   // SubLoops - Loops contained entirely within this one. | 
 |   std::vector<LoopT *> SubLoops; | 
 |  | 
 |   // Blocks - The list of blocks in this loop.  First entry is the header node. | 
 |   std::vector<BlockT*> Blocks; | 
 |  | 
 |   // DO NOT IMPLEMENT | 
 |   LoopBase(const LoopBase<BlockT, LoopT> &); | 
 |   // DO NOT IMPLEMENT | 
 |   const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &); | 
 | public: | 
 |   /// Loop ctor - This creates an empty loop. | 
 |   LoopBase() : ParentLoop(0) {} | 
 |   ~LoopBase() { | 
 |     for (size_t i = 0, e = SubLoops.size(); i != e; ++i) | 
 |       delete SubLoops[i]; | 
 |   } | 
 |  | 
 |   /// getLoopDepth - Return the nesting level of this loop.  An outer-most | 
 |   /// loop has depth 1, for consistency with loop depth values used for basic | 
 |   /// blocks, where depth 0 is used for blocks not inside any loops. | 
 |   unsigned getLoopDepth() const { | 
 |     unsigned D = 1; | 
 |     for (const LoopT *CurLoop = ParentLoop; CurLoop; | 
 |          CurLoop = CurLoop->ParentLoop) | 
 |       ++D; | 
 |     return D; | 
 |   } | 
 |   BlockT *getHeader() const { return Blocks.front(); } | 
 |   LoopT *getParentLoop() const { return ParentLoop; } | 
 |  | 
 |   /// contains - Return true if the specified loop is contained within in | 
 |   /// this loop. | 
 |   /// | 
 |   bool contains(const LoopT *L) const { | 
 |     if (L == this) return true; | 
 |     if (L == 0)    return false; | 
 |     return contains(L->getParentLoop()); | 
 |   } | 
 |  | 
 |   /// contains - Return true if the specified basic block is in this loop. | 
 |   /// | 
 |   bool contains(const BlockT *BB) const { | 
 |     return std::find(block_begin(), block_end(), BB) != block_end(); | 
 |   } | 
 |  | 
 |   /// contains - Return true if the specified instruction is in this loop. | 
 |   /// | 
 |   template<class InstT> | 
 |   bool contains(const InstT *Inst) const { | 
 |     return contains(Inst->getParent()); | 
 |   } | 
 |  | 
 |   /// iterator/begin/end - Return the loops contained entirely within this loop. | 
 |   /// | 
 |   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; } | 
 |   typedef typename std::vector<LoopT *>::const_iterator iterator; | 
 |   iterator begin() const { return SubLoops.begin(); } | 
 |   iterator end() const { return SubLoops.end(); } | 
 |   bool empty() const { return SubLoops.empty(); } | 
 |  | 
 |   /// getBlocks - Get a list of the basic blocks which make up this loop. | 
 |   /// | 
 |   const std::vector<BlockT*> &getBlocks() const { return Blocks; } | 
 |   typedef typename std::vector<BlockT*>::const_iterator block_iterator; | 
 |   block_iterator block_begin() const { return Blocks.begin(); } | 
 |   block_iterator block_end() const { return Blocks.end(); } | 
 |  | 
 |   /// getNumBlocks - Get the number of blocks in this loop in constant time. | 
 |   unsigned getNumBlocks() const { | 
 |     return Blocks.size(); | 
 |   } | 
 |  | 
 |   /// isLoopExiting - True if terminator in the block can branch to another | 
 |   /// block that is outside of the current loop. | 
 |   /// | 
 |   bool isLoopExiting(const BlockT *BB) const { | 
 |     typedef GraphTraits<BlockT*> BlockTraits; | 
 |     for (typename BlockTraits::ChildIteratorType SI = | 
 |          BlockTraits::child_begin(const_cast<BlockT*>(BB)), | 
 |          SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) { | 
 |       if (!contains(*SI)) | 
 |         return true; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// getNumBackEdges - Calculate the number of back edges to the loop header | 
 |   /// | 
 |   unsigned getNumBackEdges() const { | 
 |     unsigned NumBackEdges = 0; | 
 |     BlockT *H = getHeader(); | 
 |  | 
 |     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; | 
 |     for (typename InvBlockTraits::ChildIteratorType I = | 
 |          InvBlockTraits::child_begin(const_cast<BlockT*>(H)), | 
 |          E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I) | 
 |       if (contains(*I)) | 
 |         ++NumBackEdges; | 
 |  | 
 |     return NumBackEdges; | 
 |   } | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   // APIs for simple analysis of the loop. | 
 |   // | 
 |   // Note that all of these methods can fail on general loops (ie, there may not | 
 |   // be a preheader, etc).  For best success, the loop simplification and | 
 |   // induction variable canonicalization pass should be used to normalize loops | 
 |   // for easy analysis.  These methods assume canonical loops. | 
 |  | 
 |   /// getExitingBlocks - Return all blocks inside the loop that have successors | 
 |   /// outside of the loop.  These are the blocks _inside of the current loop_ | 
 |   /// which branch out.  The returned list is always unique. | 
 |   /// | 
 |   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const { | 
 |     // Sort the blocks vector so that we can use binary search to do quick | 
 |     // lookups. | 
 |     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); | 
 |     std::sort(LoopBBs.begin(), LoopBBs.end()); | 
 |  | 
 |     typedef GraphTraits<BlockT*> BlockTraits; | 
 |     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) | 
 |       for (typename BlockTraits::ChildIteratorType I = | 
 |           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); | 
 |           I != E; ++I) | 
 |         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) { | 
 |           // Not in current loop? It must be an exit block. | 
 |           ExitingBlocks.push_back(*BI); | 
 |           break; | 
 |         } | 
 |   } | 
 |  | 
 |   /// getExitingBlock - If getExitingBlocks would return exactly one block, | 
 |   /// return that block. Otherwise return null. | 
 |   BlockT *getExitingBlock() const { | 
 |     SmallVector<BlockT*, 8> ExitingBlocks; | 
 |     getExitingBlocks(ExitingBlocks); | 
 |     if (ExitingBlocks.size() == 1) | 
 |       return ExitingBlocks[0]; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /// getExitBlocks - Return all of the successor blocks of this loop.  These | 
 |   /// are the blocks _outside of the current loop_ which are branched to. | 
 |   /// | 
 |   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const { | 
 |     // Sort the blocks vector so that we can use binary search to do quick | 
 |     // lookups. | 
 |     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); | 
 |     std::sort(LoopBBs.begin(), LoopBBs.end()); | 
 |  | 
 |     typedef GraphTraits<BlockT*> BlockTraits; | 
 |     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) | 
 |       for (typename BlockTraits::ChildIteratorType I = | 
 |            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); | 
 |            I != E; ++I) | 
 |         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) | 
 |           // Not in current loop? It must be an exit block. | 
 |           ExitBlocks.push_back(*I); | 
 |   } | 
 |  | 
 |   /// getExitBlock - If getExitBlocks would return exactly one block, | 
 |   /// return that block. Otherwise return null. | 
 |   BlockT *getExitBlock() const { | 
 |     SmallVector<BlockT*, 8> ExitBlocks; | 
 |     getExitBlocks(ExitBlocks); | 
 |     if (ExitBlocks.size() == 1) | 
 |       return ExitBlocks[0]; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   /// Edge type. | 
 |   typedef std::pair<BlockT*, BlockT*> Edge; | 
 |  | 
 |   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). | 
 |   template <typename EdgeT> | 
 |   void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const { | 
 |     // Sort the blocks vector so that we can use binary search to do quick | 
 |     // lookups. | 
 |     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); | 
 |     array_pod_sort(LoopBBs.begin(), LoopBBs.end()); | 
 |  | 
 |     typedef GraphTraits<BlockT*> BlockTraits; | 
 |     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) | 
 |       for (typename BlockTraits::ChildIteratorType I = | 
 |            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI); | 
 |            I != E; ++I) | 
 |         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) | 
 |           // Not in current loop? It must be an exit block. | 
 |           ExitEdges.push_back(EdgeT(*BI, *I)); | 
 |   } | 
 |  | 
 |   /// getLoopPreheader - If there is a preheader for this loop, return it.  A | 
 |   /// loop has a preheader if there is only one edge to the header of the loop | 
 |   /// from outside of the loop.  If this is the case, the block branching to the | 
 |   /// header of the loop is the preheader node. | 
 |   /// | 
 |   /// This method returns null if there is no preheader for the loop. | 
 |   /// | 
 |   BlockT *getLoopPreheader() const { | 
 |     // Keep track of nodes outside the loop branching to the header... | 
 |     BlockT *Out = getLoopPredecessor(); | 
 |     if (!Out) return 0; | 
 |  | 
 |     // Make sure there is only one exit out of the preheader. | 
 |     typedef GraphTraits<BlockT*> BlockTraits; | 
 |     typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); | 
 |     ++SI; | 
 |     if (SI != BlockTraits::child_end(Out)) | 
 |       return 0;  // Multiple exits from the block, must not be a preheader. | 
 |  | 
 |     // The predecessor has exactly one successor, so it is a preheader. | 
 |     return Out; | 
 |   } | 
 |  | 
 |   /// getLoopPredecessor - If the given loop's header has exactly one unique | 
 |   /// predecessor outside the loop, return it. Otherwise return null. | 
 |   /// This is less strict that the loop "preheader" concept, which requires | 
 |   /// the predecessor to have exactly one successor. | 
 |   /// | 
 |   BlockT *getLoopPredecessor() const { | 
 |     // Keep track of nodes outside the loop branching to the header... | 
 |     BlockT *Out = 0; | 
 |  | 
 |     // Loop over the predecessors of the header node... | 
 |     BlockT *Header = getHeader(); | 
 |     typedef GraphTraits<BlockT*> BlockTraits; | 
 |     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; | 
 |     for (typename InvBlockTraits::ChildIteratorType PI = | 
 |          InvBlockTraits::child_begin(Header), | 
 |          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) { | 
 |       typename InvBlockTraits::NodeType *N = *PI; | 
 |       if (!contains(N)) {     // If the block is not in the loop... | 
 |         if (Out && Out != N) | 
 |           return 0;             // Multiple predecessors outside the loop | 
 |         Out = N; | 
 |       } | 
 |     } | 
 |  | 
 |     // Make sure there is only one exit out of the preheader. | 
 |     assert(Out && "Header of loop has no predecessors from outside loop?"); | 
 |     return Out; | 
 |   } | 
 |  | 
 |   /// getLoopLatch - If there is a single latch block for this loop, return it. | 
 |   /// A latch block is a block that contains a branch back to the header. | 
 |   BlockT *getLoopLatch() const { | 
 |     BlockT *Header = getHeader(); | 
 |     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; | 
 |     typename InvBlockTraits::ChildIteratorType PI = | 
 |                                             InvBlockTraits::child_begin(Header); | 
 |     typename InvBlockTraits::ChildIteratorType PE = | 
 |                                               InvBlockTraits::child_end(Header); | 
 |     BlockT *Latch = 0; | 
 |     for (; PI != PE; ++PI) { | 
 |       typename InvBlockTraits::NodeType *N = *PI; | 
 |       if (contains(N)) { | 
 |         if (Latch) return 0; | 
 |         Latch = N; | 
 |       } | 
 |     } | 
 |  | 
 |     return Latch; | 
 |   } | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   // APIs for updating loop information after changing the CFG | 
 |   // | 
 |  | 
 |   /// addBasicBlockToLoop - This method is used by other analyses to update loop | 
 |   /// information.  NewBB is set to be a new member of the current loop. | 
 |   /// Because of this, it is added as a member of all parent loops, and is added | 
 |   /// to the specified LoopInfo object as being in the current basic block.  It | 
 |   /// is not valid to replace the loop header with this method. | 
 |   /// | 
 |   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI); | 
 |  | 
 |   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces | 
 |   /// the OldChild entry in our children list with NewChild, and updates the | 
 |   /// parent pointer of OldChild to be null and the NewChild to be this loop. | 
 |   /// This updates the loop depth of the new child. | 
 |   void replaceChildLoopWith(LoopT *OldChild, | 
 |                             LoopT *NewChild) { | 
 |     assert(OldChild->ParentLoop == this && "This loop is already broken!"); | 
 |     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); | 
 |     typename std::vector<LoopT *>::iterator I = | 
 |                           std::find(SubLoops.begin(), SubLoops.end(), OldChild); | 
 |     assert(I != SubLoops.end() && "OldChild not in loop!"); | 
 |     *I = NewChild; | 
 |     OldChild->ParentLoop = 0; | 
 |     NewChild->ParentLoop = static_cast<LoopT *>(this); | 
 |   } | 
 |  | 
 |   /// addChildLoop - Add the specified loop to be a child of this loop.  This | 
 |   /// updates the loop depth of the new child. | 
 |   /// | 
 |   void addChildLoop(LoopT *NewChild) { | 
 |     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!"); | 
 |     NewChild->ParentLoop = static_cast<LoopT *>(this); | 
 |     SubLoops.push_back(NewChild); | 
 |   } | 
 |  | 
 |   /// removeChildLoop - This removes the specified child from being a subloop of | 
 |   /// this loop.  The loop is not deleted, as it will presumably be inserted | 
 |   /// into another loop. | 
 |   LoopT *removeChildLoop(iterator I) { | 
 |     assert(I != SubLoops.end() && "Cannot remove end iterator!"); | 
 |     LoopT *Child = *I; | 
 |     assert(Child->ParentLoop == this && "Child is not a child of this loop!"); | 
 |     SubLoops.erase(SubLoops.begin()+(I-begin())); | 
 |     Child->ParentLoop = 0; | 
 |     return Child; | 
 |   } | 
 |  | 
 |   /// addBlockEntry - This adds a basic block directly to the basic block list. | 
 |   /// This should only be used by transformations that create new loops.  Other | 
 |   /// transformations should use addBasicBlockToLoop. | 
 |   void addBlockEntry(BlockT *BB) { | 
 |     Blocks.push_back(BB); | 
 |   } | 
 |  | 
 |   /// moveToHeader - This method is used to move BB (which must be part of this | 
 |   /// loop) to be the loop header of the loop (the block that dominates all | 
 |   /// others). | 
 |   void moveToHeader(BlockT *BB) { | 
 |     if (Blocks[0] == BB) return; | 
 |     for (unsigned i = 0; ; ++i) { | 
 |       assert(i != Blocks.size() && "Loop does not contain BB!"); | 
 |       if (Blocks[i] == BB) { | 
 |         Blocks[i] = Blocks[0]; | 
 |         Blocks[0] = BB; | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /// removeBlockFromLoop - This removes the specified basic block from the | 
 |   /// current loop, updating the Blocks as appropriate.  This does not update | 
 |   /// the mapping in the LoopInfo class. | 
 |   void removeBlockFromLoop(BlockT *BB) { | 
 |     RemoveFromVector(Blocks, BB); | 
 |   } | 
 |  | 
 |   /// verifyLoop - Verify loop structure | 
 |   void verifyLoop() const { | 
 | #ifndef NDEBUG | 
 |     assert(!Blocks.empty() && "Loop header is missing"); | 
 |  | 
 |     // Sort the blocks vector so that we can use binary search to do quick | 
 |     // lookups. | 
 |     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end()); | 
 |     std::sort(LoopBBs.begin(), LoopBBs.end()); | 
 |  | 
 |     // Check the individual blocks. | 
 |     for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) { | 
 |       BlockT *BB = *I; | 
 |       bool HasInsideLoopSuccs = false; | 
 |       bool HasInsideLoopPreds = false; | 
 |       SmallVector<BlockT *, 2> OutsideLoopPreds; | 
 |  | 
 |       typedef GraphTraits<BlockT*> BlockTraits; | 
 |       for (typename BlockTraits::ChildIteratorType SI = | 
 |            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB); | 
 |            SI != SE; ++SI) | 
 |         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) { | 
 |           HasInsideLoopSuccs = true; | 
 |           break; | 
 |         } | 
 |       typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; | 
 |       for (typename InvBlockTraits::ChildIteratorType PI = | 
 |            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB); | 
 |            PI != PE; ++PI) { | 
 |         typename InvBlockTraits::NodeType *N = *PI; | 
 |         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N)) | 
 |           HasInsideLoopPreds = true; | 
 |         else | 
 |           OutsideLoopPreds.push_back(N); | 
 |       } | 
 |  | 
 |       if (BB == getHeader()) { | 
 |         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!"); | 
 |       } else if (!OutsideLoopPreds.empty()) { | 
 |         // A non-header loop shouldn't be reachable from outside the loop, | 
 |         // though it is permitted if the predecessor is not itself actually | 
 |         // reachable. | 
 |         BlockT *EntryBB = BB->getParent()->begin(); | 
 |         for (df_iterator<BlockT *> NI = df_begin(EntryBB), | 
 |              NE = df_end(EntryBB); NI != NE; ++NI) | 
 |           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i) | 
 |             assert(*NI != OutsideLoopPreds[i] && | 
 |                    "Loop has multiple entry points!"); | 
 |       } | 
 |       assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!"); | 
 |       assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!"); | 
 |       assert(BB != getHeader()->getParent()->begin() && | 
 |              "Loop contains function entry block!"); | 
 |     } | 
 |  | 
 |     // Check the subloops. | 
 |     for (iterator I = begin(), E = end(); I != E; ++I) | 
 |       // Each block in each subloop should be contained within this loop. | 
 |       for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end(); | 
 |            BI != BE; ++BI) { | 
 |         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) && | 
 |                "Loop does not contain all the blocks of a subloop!"); | 
 |       } | 
 |  | 
 |     // Check the parent loop pointer. | 
 |     if (ParentLoop) { | 
 |       assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) != | 
 |                ParentLoop->end() && | 
 |              "Loop is not a subloop of its parent!"); | 
 |     } | 
 | #endif | 
 |   } | 
 |  | 
 |   /// verifyLoop - Verify loop structure of this loop and all nested loops. | 
 |   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const { | 
 |     Loops->insert(static_cast<const LoopT *>(this)); | 
 |     // Verify this loop. | 
 |     verifyLoop(); | 
 |     // Verify the subloops. | 
 |     for (iterator I = begin(), E = end(); I != E; ++I) | 
 |       (*I)->verifyLoopNest(Loops); | 
 |   } | 
 |  | 
 |   void print(raw_ostream &OS, unsigned Depth = 0) const { | 
 |     OS.indent(Depth*2) << "Loop at depth " << getLoopDepth() | 
 |        << " containing: "; | 
 |  | 
 |     for (unsigned i = 0; i < getBlocks().size(); ++i) { | 
 |       if (i) OS << ","; | 
 |       BlockT *BB = getBlocks()[i]; | 
 |       WriteAsOperand(OS, BB, false); | 
 |       if (BB == getHeader())    OS << "<header>"; | 
 |       if (BB == getLoopLatch()) OS << "<latch>"; | 
 |       if (isLoopExiting(BB))    OS << "<exiting>"; | 
 |     } | 
 |     OS << "\n"; | 
 |  | 
 |     for (iterator I = begin(), E = end(); I != E; ++I) | 
 |       (*I)->print(OS, Depth+2); | 
 |   } | 
 |  | 
 | protected: | 
 |   friend class LoopInfoBase<BlockT, LoopT>; | 
 |   explicit LoopBase(BlockT *BB) : ParentLoop(0) { | 
 |     Blocks.push_back(BB); | 
 |   } | 
 | }; | 
 |  | 
 | template<class BlockT, class LoopT> | 
 | raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) { | 
 |   Loop.print(OS); | 
 |   return OS; | 
 | } | 
 |  | 
 | class Loop : public LoopBase<BasicBlock, Loop> { | 
 | public: | 
 |   Loop() {} | 
 |  | 
 |   /// isLoopInvariant - Return true if the specified value is loop invariant | 
 |   /// | 
 |   bool isLoopInvariant(Value *V) const; | 
 |  | 
 |   /// hasLoopInvariantOperands - Return true if all the operands of the | 
 |   /// specified instruction are loop invariant. | 
 |   bool hasLoopInvariantOperands(Instruction *I) const; | 
 |  | 
 |   /// makeLoopInvariant - If the given value is an instruction inside of the | 
 |   /// loop and it can be hoisted, do so to make it trivially loop-invariant. | 
 |   /// Return true if the value after any hoisting is loop invariant. This | 
 |   /// function can be used as a slightly more aggressive replacement for | 
 |   /// isLoopInvariant. | 
 |   /// | 
 |   /// If InsertPt is specified, it is the point to hoist instructions to. | 
 |   /// If null, the terminator of the loop preheader is used. | 
 |   /// | 
 |   bool makeLoopInvariant(Value *V, bool &Changed, | 
 |                          Instruction *InsertPt = 0) const; | 
 |  | 
 |   /// makeLoopInvariant - If the given instruction is inside of the | 
 |   /// loop and it can be hoisted, do so to make it trivially loop-invariant. | 
 |   /// Return true if the instruction after any hoisting is loop invariant. This | 
 |   /// function can be used as a slightly more aggressive replacement for | 
 |   /// isLoopInvariant. | 
 |   /// | 
 |   /// If InsertPt is specified, it is the point to hoist instructions to. | 
 |   /// If null, the terminator of the loop preheader is used. | 
 |   /// | 
 |   bool makeLoopInvariant(Instruction *I, bool &Changed, | 
 |                          Instruction *InsertPt = 0) const; | 
 |  | 
 |   /// getCanonicalInductionVariable - Check to see if the loop has a canonical | 
 |   /// induction variable: an integer recurrence that starts at 0 and increments | 
 |   /// by one each time through the loop.  If so, return the phi node that | 
 |   /// corresponds to it. | 
 |   /// | 
 |   /// The IndVarSimplify pass transforms loops to have a canonical induction | 
 |   /// variable. | 
 |   /// | 
 |   PHINode *getCanonicalInductionVariable() const; | 
 |  | 
 |   /// getTripCount - Return a loop-invariant LLVM value indicating the number of | 
 |   /// times the loop will be executed.  Note that this means that the backedge | 
 |   /// of the loop executes N-1 times.  If the trip-count cannot be determined, | 
 |   /// this returns null. | 
 |   /// | 
 |   /// The IndVarSimplify pass transforms loops to have a form that this | 
 |   /// function easily understands. | 
 |   /// | 
 |   Value *getTripCount() const; | 
 |  | 
 |   /// getSmallConstantTripCount - Returns the trip count of this loop as a | 
 |   /// normal unsigned value, if possible. Returns 0 if the trip count is unknown | 
 |   /// of not constant. Will also return 0 if the trip count is very large | 
 |   /// (>= 2^32) | 
 |   /// | 
 |   /// The IndVarSimplify pass transforms loops to have a form that this | 
 |   /// function easily understands. | 
 |   /// | 
 |   unsigned getSmallConstantTripCount() const; | 
 |  | 
 |   /// getSmallConstantTripMultiple - Returns the largest constant divisor of the | 
 |   /// trip count of this loop as a normal unsigned value, if possible. This | 
 |   /// means that the actual trip count is always a multiple of the returned | 
 |   /// value (don't forget the trip count could very well be zero as well!). | 
 |   /// | 
 |   /// Returns 1 if the trip count is unknown or not guaranteed to be the | 
 |   /// multiple of a constant (which is also the case if the trip count is simply | 
 |   /// constant, use getSmallConstantTripCount for that case), Will also return 1 | 
 |   /// if the trip count is very large (>= 2^32). | 
 |   unsigned getSmallConstantTripMultiple() const; | 
 |  | 
 |   /// isLCSSAForm - Return true if the Loop is in LCSSA form | 
 |   bool isLCSSAForm(DominatorTree &DT) const; | 
 |  | 
 |   /// isLoopSimplifyForm - Return true if the Loop is in the form that | 
 |   /// the LoopSimplify form transforms loops to, which is sometimes called | 
 |   /// normal form. | 
 |   bool isLoopSimplifyForm() const; | 
 |  | 
 |   /// hasDedicatedExits - Return true if no exit block for the loop | 
 |   /// has a predecessor that is outside the loop. | 
 |   bool hasDedicatedExits() const; | 
 |  | 
 |   /// getUniqueExitBlocks - Return all unique successor blocks of this loop. | 
 |   /// These are the blocks _outside of the current loop_ which are branched to. | 
 |   /// This assumes that loop exits are in canonical form. | 
 |   /// | 
 |   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const; | 
 |  | 
 |   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one | 
 |   /// block, return that block. Otherwise return null. | 
 |   BasicBlock *getUniqueExitBlock() const; | 
 |  | 
 |   void dump() const; | 
 |  | 
 | private: | 
 |   friend class LoopInfoBase<BasicBlock, Loop>; | 
 |   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {} | 
 | }; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | /// LoopInfo - This class builds and contains all of the top level loop | 
 | /// structures in the specified function. | 
 | /// | 
 |  | 
 | template<class BlockT, class LoopT> | 
 | class LoopInfoBase { | 
 |   // BBMap - Mapping of basic blocks to the inner most loop they occur in | 
 |   DenseMap<BlockT *, LoopT *> BBMap; | 
 |   std::vector<LoopT *> TopLevelLoops; | 
 |   friend class LoopBase<BlockT, LoopT>; | 
 |   friend class LoopInfo; | 
 |  | 
 |   void operator=(const LoopInfoBase &); // do not implement | 
 |   LoopInfoBase(const LoopInfo &);       // do not implement | 
 | public: | 
 |   LoopInfoBase() { } | 
 |   ~LoopInfoBase() { releaseMemory(); } | 
 |  | 
 |   void releaseMemory() { | 
 |     for (typename std::vector<LoopT *>::iterator I = | 
 |          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I) | 
 |       delete *I;   // Delete all of the loops... | 
 |  | 
 |     BBMap.clear();                           // Reset internal state of analysis | 
 |     TopLevelLoops.clear(); | 
 |   } | 
 |  | 
 |   /// iterator/begin/end - The interface to the top-level loops in the current | 
 |   /// function. | 
 |   /// | 
 |   typedef typename std::vector<LoopT *>::const_iterator iterator; | 
 |   iterator begin() const { return TopLevelLoops.begin(); } | 
 |   iterator end() const { return TopLevelLoops.end(); } | 
 |   bool empty() const { return TopLevelLoops.empty(); } | 
 |  | 
 |   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic | 
 |   /// block is in no loop (for example the entry node), null is returned. | 
 |   /// | 
 |   LoopT *getLoopFor(const BlockT *BB) const { | 
 |     typename DenseMap<BlockT *, LoopT *>::const_iterator I= | 
 |       BBMap.find(const_cast<BlockT*>(BB)); | 
 |     return I != BBMap.end() ? I->second : 0; | 
 |   } | 
 |  | 
 |   /// operator[] - same as getLoopFor... | 
 |   /// | 
 |   const LoopT *operator[](const BlockT *BB) const { | 
 |     return getLoopFor(BB); | 
 |   } | 
 |  | 
 |   /// getLoopDepth - Return the loop nesting level of the specified block.  A | 
 |   /// depth of 0 means the block is not inside any loop. | 
 |   /// | 
 |   unsigned getLoopDepth(const BlockT *BB) const { | 
 |     const LoopT *L = getLoopFor(BB); | 
 |     return L ? L->getLoopDepth() : 0; | 
 |   } | 
 |  | 
 |   // isLoopHeader - True if the block is a loop header node | 
 |   bool isLoopHeader(BlockT *BB) const { | 
 |     const LoopT *L = getLoopFor(BB); | 
 |     return L && L->getHeader() == BB; | 
 |   } | 
 |  | 
 |   /// removeLoop - This removes the specified top-level loop from this loop info | 
 |   /// object.  The loop is not deleted, as it will presumably be inserted into | 
 |   /// another loop. | 
 |   LoopT *removeLoop(iterator I) { | 
 |     assert(I != end() && "Cannot remove end iterator!"); | 
 |     LoopT *L = *I; | 
 |     assert(L->getParentLoop() == 0 && "Not a top-level loop!"); | 
 |     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); | 
 |     return L; | 
 |   } | 
 |  | 
 |   /// changeLoopFor - Change the top-level loop that contains BB to the | 
 |   /// specified loop.  This should be used by transformations that restructure | 
 |   /// the loop hierarchy tree. | 
 |   void changeLoopFor(BlockT *BB, LoopT *L) { | 
 |     if (!L) { | 
 |       typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB); | 
 |       if (I != BBMap.end()) | 
 |         BBMap.erase(I); | 
 |       return; | 
 |     } | 
 |     BBMap[BB] = L; | 
 |   } | 
 |  | 
 |   /// changeTopLevelLoop - Replace the specified loop in the top-level loops | 
 |   /// list with the indicated loop. | 
 |   void changeTopLevelLoop(LoopT *OldLoop, | 
 |                           LoopT *NewLoop) { | 
 |     typename std::vector<LoopT *>::iterator I = | 
 |                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); | 
 |     assert(I != TopLevelLoops.end() && "Old loop not at top level!"); | 
 |     *I = NewLoop; | 
 |     assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 && | 
 |            "Loops already embedded into a subloop!"); | 
 |   } | 
 |  | 
 |   /// addTopLevelLoop - This adds the specified loop to the collection of | 
 |   /// top-level loops. | 
 |   void addTopLevelLoop(LoopT *New) { | 
 |     assert(New->getParentLoop() == 0 && "Loop already in subloop!"); | 
 |     TopLevelLoops.push_back(New); | 
 |   } | 
 |  | 
 |   /// removeBlock - This method completely removes BB from all data structures, | 
 |   /// including all of the Loop objects it is nested in and our mapping from | 
 |   /// BasicBlocks to loops. | 
 |   void removeBlock(BlockT *BB) { | 
 |     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB); | 
 |     if (I != BBMap.end()) { | 
 |       for (LoopT *L = I->second; L; L = L->getParentLoop()) | 
 |         L->removeBlockFromLoop(BB); | 
 |  | 
 |       BBMap.erase(I); | 
 |     } | 
 |   } | 
 |  | 
 |   // Internals | 
 |  | 
 |   static bool isNotAlreadyContainedIn(const LoopT *SubLoop, | 
 |                                       const LoopT *ParentLoop) { | 
 |     if (SubLoop == 0) return true; | 
 |     if (SubLoop == ParentLoop) return false; | 
 |     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); | 
 |   } | 
 |  | 
 |   void Calculate(DominatorTreeBase<BlockT> &DT) { | 
 |     BlockT *RootNode = DT.getRootNode()->getBlock(); | 
 |  | 
 |     for (df_iterator<BlockT*> NI = df_begin(RootNode), | 
 |            NE = df_end(RootNode); NI != NE; ++NI) | 
 |       if (LoopT *L = ConsiderForLoop(*NI, DT)) | 
 |         TopLevelLoops.push_back(L); | 
 |   } | 
 |  | 
 |   LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) { | 
 |     if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node? | 
 |  | 
 |     std::vector<BlockT *> TodoStack; | 
 |  | 
 |     // Scan the predecessors of BB, checking to see if BB dominates any of | 
 |     // them.  This identifies backedges which target this node... | 
 |     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; | 
 |     for (typename InvBlockTraits::ChildIteratorType I = | 
 |          InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB); | 
 |          I != E; ++I) { | 
 |       typename InvBlockTraits::NodeType *N = *I; | 
 |       if (DT.dominates(BB, N))   // If BB dominates its predecessor... | 
 |           TodoStack.push_back(N); | 
 |     } | 
 |  | 
 |     if (TodoStack.empty()) return 0;  // No backedges to this block... | 
 |  | 
 |     // Create a new loop to represent this basic block... | 
 |     LoopT *L = new LoopT(BB); | 
 |     BBMap[BB] = L; | 
 |  | 
 |     BlockT *EntryBlock = BB->getParent()->begin(); | 
 |  | 
 |     while (!TodoStack.empty()) {  // Process all the nodes in the loop | 
 |       BlockT *X = TodoStack.back(); | 
 |       TodoStack.pop_back(); | 
 |  | 
 |       if (!L->contains(X) &&         // As of yet unprocessed?? | 
 |           DT.dominates(EntryBlock, X)) {   // X is reachable from entry block? | 
 |         // Check to see if this block already belongs to a loop.  If this occurs | 
 |         // then we have a case where a loop that is supposed to be a child of | 
 |         // the current loop was processed before the current loop.  When this | 
 |         // occurs, this child loop gets added to a part of the current loop, | 
 |         // making it a sibling to the current loop.  We have to reparent this | 
 |         // loop. | 
 |         if (LoopT *SubLoop = | 
 |             const_cast<LoopT *>(getLoopFor(X))) | 
 |           if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){ | 
 |             // Remove the subloop from its current parent... | 
 |             assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L); | 
 |             LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent | 
 |             typename std::vector<LoopT *>::iterator I = | 
 |               std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop); | 
 |             assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?"); | 
 |             SLP->SubLoops.erase(I);   // Remove from parent... | 
 |  | 
 |             // Add the subloop to THIS loop... | 
 |             SubLoop->ParentLoop = L; | 
 |             L->SubLoops.push_back(SubLoop); | 
 |           } | 
 |  | 
 |         // Normal case, add the block to our loop... | 
 |         L->Blocks.push_back(X); | 
 |  | 
 |         typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits; | 
 |  | 
 |         // Add all of the predecessors of X to the end of the work stack... | 
 |         for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(X), PE = InvBlockTraits::child_end(X); PI != PE; ++PI) {  | 
 |           typename InvBlockTraits::NodeType *N = *PI;  | 
 |           TodoStack.push_back(N);  | 
 |         }  | 
 |       } | 
 |     } | 
 |  | 
 |     // If there are any loops nested within this loop, create them now! | 
 |     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(), | 
 |          E = L->Blocks.end(); I != E; ++I) | 
 |       if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) { | 
 |         L->SubLoops.push_back(NewLoop); | 
 |         NewLoop->ParentLoop = L; | 
 |       } | 
 |  | 
 |     // Add the basic blocks that comprise this loop to the BBMap so that this | 
 |     // loop can be found for them. | 
 |     // | 
 |     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(), | 
 |            E = L->Blocks.end(); I != E; ++I) | 
 |       BBMap.insert(std::make_pair(*I, L)); | 
 |  | 
 |     // Now that we have a list of all of the child loops of this loop, check to | 
 |     // see if any of them should actually be nested inside of each other.  We | 
 |     // can accidentally pull loops our of their parents, so we must make sure to | 
 |     // organize the loop nests correctly now. | 
 |     { | 
 |       std::map<BlockT *, LoopT *> ContainingLoops; | 
 |       for (unsigned i = 0; i != L->SubLoops.size(); ++i) { | 
 |         LoopT *Child = L->SubLoops[i]; | 
 |         assert(Child->getParentLoop() == L && "Not proper child loop?"); | 
 |  | 
 |         if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) { | 
 |           // If there is already a loop which contains this loop, move this loop | 
 |           // into the containing loop. | 
 |           MoveSiblingLoopInto(Child, ContainingLoop); | 
 |           --i;  // The loop got removed from the SubLoops list. | 
 |         } else { | 
 |           // This is currently considered to be a top-level loop.  Check to see | 
 |           // if any of the contained blocks are loop headers for subloops we | 
 |           // have already processed. | 
 |           for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) { | 
 |             LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]]; | 
 |             if (BlockLoop == 0) {   // Child block not processed yet... | 
 |               BlockLoop = Child; | 
 |             } else if (BlockLoop != Child) { | 
 |               LoopT *SubLoop = BlockLoop; | 
 |               // Reparent all of the blocks which used to belong to BlockLoops | 
 |               for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j) | 
 |                 ContainingLoops[SubLoop->Blocks[j]] = Child; | 
 |  | 
 |               // There is already a loop which contains this block, that means | 
 |               // that we should reparent the loop which the block is currently | 
 |               // considered to belong to to be a child of this loop. | 
 |               MoveSiblingLoopInto(SubLoop, Child); | 
 |               --i;  // We just shrunk the SubLoops list. | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return L; | 
 |   } | 
 |  | 
 |   /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside | 
 |   /// of the NewParent Loop, instead of being a sibling of it. | 
 |   void MoveSiblingLoopInto(LoopT *NewChild, | 
 |                            LoopT *NewParent) { | 
 |     LoopT *OldParent = NewChild->getParentLoop(); | 
 |     assert(OldParent && OldParent == NewParent->getParentLoop() && | 
 |            NewChild != NewParent && "Not sibling loops!"); | 
 |  | 
 |     // Remove NewChild from being a child of OldParent | 
 |     typename std::vector<LoopT *>::iterator I = | 
 |       std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), | 
 |                 NewChild); | 
 |     assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??"); | 
 |     OldParent->SubLoops.erase(I);   // Remove from parent's subloops list | 
 |     NewChild->ParentLoop = 0; | 
 |  | 
 |     InsertLoopInto(NewChild, NewParent); | 
 |   } | 
 |  | 
 |   /// InsertLoopInto - This inserts loop L into the specified parent loop.  If | 
 |   /// the parent loop contains a loop which should contain L, the loop gets | 
 |   /// inserted into L instead. | 
 |   void InsertLoopInto(LoopT *L, LoopT *Parent) { | 
 |     BlockT *LHeader = L->getHeader(); | 
 |     assert(Parent->contains(LHeader) && | 
 |            "This loop should not be inserted here!"); | 
 |  | 
 |     // Check to see if it belongs in a child loop... | 
 |     for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size()); | 
 |          i != e; ++i) | 
 |       if (Parent->SubLoops[i]->contains(LHeader)) { | 
 |         InsertLoopInto(L, Parent->SubLoops[i]); | 
 |         return; | 
 |       } | 
 |  | 
 |     // If not, insert it here! | 
 |     Parent->SubLoops.push_back(L); | 
 |     L->ParentLoop = Parent; | 
 |   } | 
 |  | 
 |   // Debugging | 
 |  | 
 |   void print(raw_ostream &OS) const { | 
 |     for (unsigned i = 0; i < TopLevelLoops.size(); ++i) | 
 |       TopLevelLoops[i]->print(OS); | 
 |   #if 0 | 
 |     for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(), | 
 |            E = BBMap.end(); I != E; ++I) | 
 |       OS << "BB '" << I->first->getName() << "' level = " | 
 |          << I->second->getLoopDepth() << "\n"; | 
 |   #endif | 
 |   } | 
 | }; | 
 |  | 
 | class LoopInfo : public FunctionPass { | 
 |   LoopInfoBase<BasicBlock, Loop> LI; | 
 |   friend class LoopBase<BasicBlock, Loop>; | 
 |  | 
 |   void operator=(const LoopInfo &); // do not implement | 
 |   LoopInfo(const LoopInfo &);       // do not implement | 
 | public: | 
 |   static char ID; // Pass identification, replacement for typeid | 
 |  | 
 |   LoopInfo() : FunctionPass(ID) { | 
 |     initializeLoopInfoPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; } | 
 |  | 
 |   /// iterator/begin/end - The interface to the top-level loops in the current | 
 |   /// function. | 
 |   /// | 
 |   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator; | 
 |   inline iterator begin() const { return LI.begin(); } | 
 |   inline iterator end() const { return LI.end(); } | 
 |   bool empty() const { return LI.empty(); } | 
 |  | 
 |   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic | 
 |   /// block is in no loop (for example the entry node), null is returned. | 
 |   /// | 
 |   inline Loop *getLoopFor(const BasicBlock *BB) const { | 
 |     return LI.getLoopFor(BB); | 
 |   } | 
 |  | 
 |   /// operator[] - same as getLoopFor... | 
 |   /// | 
 |   inline const Loop *operator[](const BasicBlock *BB) const { | 
 |     return LI.getLoopFor(BB); | 
 |   } | 
 |  | 
 |   /// getLoopDepth - Return the loop nesting level of the specified block.  A | 
 |   /// depth of 0 means the block is not inside any loop. | 
 |   /// | 
 |   inline unsigned getLoopDepth(const BasicBlock *BB) const { | 
 |     return LI.getLoopDepth(BB); | 
 |   } | 
 |  | 
 |   // isLoopHeader - True if the block is a loop header node | 
 |   inline bool isLoopHeader(BasicBlock *BB) const { | 
 |     return LI.isLoopHeader(BB); | 
 |   } | 
 |  | 
 |   /// runOnFunction - Calculate the natural loop information. | 
 |   /// | 
 |   virtual bool runOnFunction(Function &F); | 
 |  | 
 |   virtual void verifyAnalysis() const; | 
 |  | 
 |   virtual void releaseMemory() { LI.releaseMemory(); } | 
 |  | 
 |   virtual void print(raw_ostream &O, const Module* M = 0) const; | 
 |  | 
 |   virtual void getAnalysisUsage(AnalysisUsage &AU) const; | 
 |  | 
 |   /// removeLoop - This removes the specified top-level loop from this loop info | 
 |   /// object.  The loop is not deleted, as it will presumably be inserted into | 
 |   /// another loop. | 
 |   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); } | 
 |  | 
 |   /// changeLoopFor - Change the top-level loop that contains BB to the | 
 |   /// specified loop.  This should be used by transformations that restructure | 
 |   /// the loop hierarchy tree. | 
 |   inline void changeLoopFor(BasicBlock *BB, Loop *L) { | 
 |     LI.changeLoopFor(BB, L); | 
 |   } | 
 |  | 
 |   /// changeTopLevelLoop - Replace the specified loop in the top-level loops | 
 |   /// list with the indicated loop. | 
 |   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) { | 
 |     LI.changeTopLevelLoop(OldLoop, NewLoop); | 
 |   } | 
 |  | 
 |   /// addTopLevelLoop - This adds the specified loop to the collection of | 
 |   /// top-level loops. | 
 |   inline void addTopLevelLoop(Loop *New) { | 
 |     LI.addTopLevelLoop(New); | 
 |   } | 
 |  | 
 |   /// removeBlock - This method completely removes BB from all data structures, | 
 |   /// including all of the Loop objects it is nested in and our mapping from | 
 |   /// BasicBlocks to loops. | 
 |   void removeBlock(BasicBlock *BB) { | 
 |     LI.removeBlock(BB); | 
 |   } | 
 |  | 
 |   /// updateUnloop - Update LoopInfo after removing the last backedge from a | 
 |   /// loop--now the "unloop". This updates the loop forest and parent loops for | 
 |   /// each block so that Unloop is no longer referenced, but the caller must | 
 |   /// actually delete the Unloop object. | 
 |   void updateUnloop(Loop *Unloop); | 
 |  | 
 |   /// replacementPreservesLCSSAForm - Returns true if replacing From with To | 
 |   /// everywhere is guaranteed to preserve LCSSA form. | 
 |   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { | 
 |     // Preserving LCSSA form is only problematic if the replacing value is an | 
 |     // instruction. | 
 |     Instruction *I = dyn_cast<Instruction>(To); | 
 |     if (!I) return true; | 
 |     // If both instructions are defined in the same basic block then replacement | 
 |     // cannot break LCSSA form. | 
 |     if (I->getParent() == From->getParent()) | 
 |       return true; | 
 |     // If the instruction is not defined in a loop then it can safely replace | 
 |     // anything. | 
 |     Loop *ToLoop = getLoopFor(I->getParent()); | 
 |     if (!ToLoop) return true; | 
 |     // If the replacing instruction is defined in the same loop as the original | 
 |     // instruction, or in a loop that contains it as an inner loop, then using | 
 |     // it as a replacement will not break LCSSA form. | 
 |     return ToLoop->contains(getLoopFor(From->getParent())); | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | // Allow clients to walk the list of nested loops... | 
 | template <> struct GraphTraits<const Loop*> { | 
 |   typedef const Loop NodeType; | 
 |   typedef LoopInfo::iterator ChildIteratorType; | 
 |  | 
 |   static NodeType *getEntryNode(const Loop *L) { return L; } | 
 |   static inline ChildIteratorType child_begin(NodeType *N) { | 
 |     return N->begin(); | 
 |   } | 
 |   static inline ChildIteratorType child_end(NodeType *N) { | 
 |     return N->end(); | 
 |   } | 
 | }; | 
 |  | 
 | template <> struct GraphTraits<Loop*> { | 
 |   typedef Loop NodeType; | 
 |   typedef LoopInfo::iterator ChildIteratorType; | 
 |  | 
 |   static NodeType *getEntryNode(Loop *L) { return L; } | 
 |   static inline ChildIteratorType child_begin(NodeType *N) { | 
 |     return N->begin(); | 
 |   } | 
 |   static inline ChildIteratorType child_end(NodeType *N) { | 
 |     return N->end(); | 
 |   } | 
 | }; | 
 |  | 
 | template<class BlockT, class LoopT> | 
 | void | 
 | LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB, | 
 |                                              LoopInfoBase<BlockT, LoopT> &LIB) { | 
 |   assert((Blocks.empty() || LIB[getHeader()] == this) && | 
 |          "Incorrect LI specified for this loop!"); | 
 |   assert(NewBB && "Cannot add a null basic block to the loop!"); | 
 |   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!"); | 
 |  | 
 |   LoopT *L = static_cast<LoopT *>(this); | 
 |  | 
 |   // Add the loop mapping to the LoopInfo object... | 
 |   LIB.BBMap[NewBB] = L; | 
 |  | 
 |   // Add the basic block to this loop and all parent loops... | 
 |   while (L) { | 
 |     L->Blocks.push_back(NewBB); | 
 |     L = L->getParentLoop(); | 
 |   } | 
 | } | 
 |  | 
 | } // End llvm namespace | 
 |  | 
 | #endif |