|  | //===-- Constants.cpp - Implement Constant nodes --------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Constant* classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Constants.h" | 
|  | #include "LLVMContextImpl.h" | 
|  | #include "ConstantFold.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/GlobalValue.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Operator.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include <algorithm> | 
|  | #include <cstdarg> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              Constant Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool Constant::isNegativeZeroValue() const { | 
|  | // Floating point values have an explicit -0.0 value. | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->isZero() && CFP->isNegative(); | 
|  |  | 
|  | // Otherwise, just use +0.0. | 
|  | return isNullValue(); | 
|  | } | 
|  |  | 
|  | bool Constant::isNullValue() const { | 
|  | // 0 is null. | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
|  | return CI->isZero(); | 
|  |  | 
|  | // +0.0 is null. | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->isZero() && !CFP->isNegative(); | 
|  |  | 
|  | // constant zero is zero for aggregates and cpnull is null for pointers. | 
|  | return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); | 
|  | } | 
|  |  | 
|  | bool Constant::isAllOnesValue() const { | 
|  | // Check for -1 integers | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
|  | return CI->isMinusOne(); | 
|  |  | 
|  | // Check for FP which are bitcasted from -1 integers | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
|  | return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); | 
|  |  | 
|  | // Check for constant vectors | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
|  | return CV->isAllOnesValue(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | // Constructor to create a '0' constant of arbitrary type... | 
|  | Constant *Constant::getNullValue(Type *Ty) { | 
|  | switch (Ty->getTypeID()) { | 
|  | case Type::IntegerTyID: | 
|  | return ConstantInt::get(Ty, 0); | 
|  | case Type::FloatTyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::IEEEsingle)); | 
|  | case Type::DoubleTyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::IEEEdouble)); | 
|  | case Type::X86_FP80TyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::x87DoubleExtended)); | 
|  | case Type::FP128TyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getZero(APFloat::IEEEquad)); | 
|  | case Type::PPC_FP128TyID: | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat(APInt::getNullValue(128))); | 
|  | case Type::PointerTyID: | 
|  | return ConstantPointerNull::get(cast<PointerType>(Ty)); | 
|  | case Type::StructTyID: | 
|  | case Type::ArrayTyID: | 
|  | case Type::VectorTyID: | 
|  | return ConstantAggregateZero::get(Ty); | 
|  | default: | 
|  | // Function, Label, or Opaque type? | 
|  | assert(0 && "Cannot create a null constant of that type!"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { | 
|  | Type *ScalarTy = Ty->getScalarType(); | 
|  |  | 
|  | // Create the base integer constant. | 
|  | Constant *C = ConstantInt::get(Ty->getContext(), V); | 
|  |  | 
|  | // Convert an integer to a pointer, if necessary. | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) | 
|  | C = ConstantExpr::getIntToPtr(C, PTy); | 
|  |  | 
|  | // Broadcast a scalar to a vector, if necessary. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C)); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | Constant *Constant::getAllOnesValue(Type *Ty) { | 
|  | if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) | 
|  | return ConstantInt::get(Ty->getContext(), | 
|  | APInt::getAllOnesValue(ITy->getBitWidth())); | 
|  |  | 
|  | if (Ty->isFloatingPointTy()) { | 
|  | APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), | 
|  | !Ty->isPPC_FP128Ty()); | 
|  | return ConstantFP::get(Ty->getContext(), FL); | 
|  | } | 
|  |  | 
|  | SmallVector<Constant*, 16> Elts; | 
|  | VectorType *VTy = cast<VectorType>(Ty); | 
|  | Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); | 
|  | assert(Elts[0] && "Invalid AllOnes value!"); | 
|  | return cast<ConstantVector>(ConstantVector::get(Elts)); | 
|  | } | 
|  |  | 
|  | void Constant::destroyConstantImpl() { | 
|  | // When a Constant is destroyed, there may be lingering | 
|  | // references to the constant by other constants in the constant pool.  These | 
|  | // constants are implicitly dependent on the module that is being deleted, | 
|  | // but they don't know that.  Because we only find out when the CPV is | 
|  | // deleted, we must now notify all of our users (that should only be | 
|  | // Constants) that they are, in fact, invalid now and should be deleted. | 
|  | // | 
|  | while (!use_empty()) { | 
|  | Value *V = use_back(); | 
|  | #ifndef NDEBUG      // Only in -g mode... | 
|  | if (!isa<Constant>(V)) { | 
|  | dbgs() << "While deleting: " << *this | 
|  | << "\n\nUse still stuck around after Def is destroyed: " | 
|  | << *V << "\n\n"; | 
|  | } | 
|  | #endif | 
|  | assert(isa<Constant>(V) && "References remain to Constant being destroyed"); | 
|  | Constant *CV = cast<Constant>(V); | 
|  | CV->destroyConstant(); | 
|  |  | 
|  | // The constant should remove itself from our use list... | 
|  | assert((use_empty() || use_back() != V) && "Constant not removed!"); | 
|  | } | 
|  |  | 
|  | // Value has no outstanding references it is safe to delete it now... | 
|  | delete this; | 
|  | } | 
|  |  | 
|  | /// canTrap - Return true if evaluation of this constant could trap.  This is | 
|  | /// true for things like constant expressions that could divide by zero. | 
|  | bool Constant::canTrap() const { | 
|  | assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); | 
|  | // The only thing that could possibly trap are constant exprs. | 
|  | const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); | 
|  | if (!CE) return false; | 
|  |  | 
|  | // ConstantExpr traps if any operands can trap. | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (CE->getOperand(i)->canTrap()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, only specific operations can trap. | 
|  | switch (CE->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | // Div and rem can trap if the RHS is not known to be non-zero. | 
|  | if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isConstantUsed - Return true if the constant has users other than constant | 
|  | /// exprs and other dangling things. | 
|  | bool Constant::isConstantUsed() const { | 
|  | for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { | 
|  | const Constant *UC = dyn_cast<Constant>(*UI); | 
|  | if (UC == 0 || isa<GlobalValue>(UC)) | 
|  | return true; | 
|  |  | 
|  | if (UC->isConstantUsed()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// getRelocationInfo - This method classifies the entry according to | 
|  | /// whether or not it may generate a relocation entry.  This must be | 
|  | /// conservative, so if it might codegen to a relocatable entry, it should say | 
|  | /// so.  The return values are: | 
|  | /// | 
|  | ///  NoRelocation: This constant pool entry is guaranteed to never have a | 
|  | ///     relocation applied to it (because it holds a simple constant like | 
|  | ///     '4'). | 
|  | ///  LocalRelocation: This entry has relocations, but the entries are | 
|  | ///     guaranteed to be resolvable by the static linker, so the dynamic | 
|  | ///     linker will never see them. | 
|  | ///  GlobalRelocations: This entry may have arbitrary relocations. | 
|  | /// | 
|  | /// FIXME: This really should not be in VMCore. | 
|  | Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { | 
|  | if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) | 
|  | return LocalRelocation;  // Local to this file/library. | 
|  | return GlobalRelocations;    // Global reference. | 
|  | } | 
|  |  | 
|  | if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) | 
|  | return BA->getFunction()->getRelocationInfo(); | 
|  |  | 
|  | // While raw uses of blockaddress need to be relocated, differences between | 
|  | // two of them don't when they are for labels in the same function.  This is a | 
|  | // common idiom when creating a table for the indirect goto extension, so we | 
|  | // handle it efficiently here. | 
|  | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) | 
|  | if (CE->getOpcode() == Instruction::Sub) { | 
|  | ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); | 
|  | ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); | 
|  | if (LHS && RHS && | 
|  | LHS->getOpcode() == Instruction::PtrToInt && | 
|  | RHS->getOpcode() == Instruction::PtrToInt && | 
|  | isa<BlockAddress>(LHS->getOperand(0)) && | 
|  | isa<BlockAddress>(RHS->getOperand(0)) && | 
|  | cast<BlockAddress>(LHS->getOperand(0))->getFunction() == | 
|  | cast<BlockAddress>(RHS->getOperand(0))->getFunction()) | 
|  | return NoRelocation; | 
|  | } | 
|  |  | 
|  | PossibleRelocationsTy Result = NoRelocation; | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | Result = std::max(Result, | 
|  | cast<Constant>(getOperand(i))->getRelocationInfo()); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getVectorElements - This method, which is only valid on constant of vector | 
|  | /// type, returns the elements of the vector in the specified smallvector. | 
|  | /// This handles breaking down a vector undef into undef elements, etc.  For | 
|  | /// constant exprs and other cases we can't handle, we return an empty vector. | 
|  | void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const { | 
|  | assert(getType()->isVectorTy() && "Not a vector constant!"); | 
|  |  | 
|  | if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) { | 
|  | for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) | 
|  | Elts.push_back(CV->getOperand(i)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | VectorType *VT = cast<VectorType>(getType()); | 
|  | if (isa<ConstantAggregateZero>(this)) { | 
|  | Elts.assign(VT->getNumElements(), | 
|  | Constant::getNullValue(VT->getElementType())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isa<UndefValue>(this)) { | 
|  | Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Unknown type, must be constant expr etc. | 
|  | } | 
|  |  | 
|  |  | 
|  | /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove | 
|  | /// it.  This involves recursively eliminating any dead users of the | 
|  | /// constantexpr. | 
|  | static bool removeDeadUsersOfConstant(const Constant *C) { | 
|  | if (isa<GlobalValue>(C)) return false; // Cannot remove this | 
|  |  | 
|  | while (!C->use_empty()) { | 
|  | const Constant *User = dyn_cast<Constant>(C->use_back()); | 
|  | if (!User) return false; // Non-constant usage; | 
|  | if (!removeDeadUsersOfConstant(User)) | 
|  | return false; // Constant wasn't dead | 
|  | } | 
|  |  | 
|  | const_cast<Constant*>(C)->destroyConstant(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// removeDeadConstantUsers - If there are any dead constant users dangling | 
|  | /// off of this constant, remove them.  This method is useful for clients | 
|  | /// that want to check to see if a global is unused, but don't want to deal | 
|  | /// with potentially dead constants hanging off of the globals. | 
|  | void Constant::removeDeadConstantUsers() const { | 
|  | Value::const_use_iterator I = use_begin(), E = use_end(); | 
|  | Value::const_use_iterator LastNonDeadUser = E; | 
|  | while (I != E) { | 
|  | const Constant *User = dyn_cast<Constant>(*I); | 
|  | if (User == 0) { | 
|  | LastNonDeadUser = I; | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!removeDeadUsersOfConstant(User)) { | 
|  | // If the constant wasn't dead, remember that this was the last live use | 
|  | // and move on to the next constant. | 
|  | LastNonDeadUser = I; | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the constant was dead, then the iterator is invalidated. | 
|  | if (LastNonDeadUser == E) { | 
|  | I = use_begin(); | 
|  | if (I == E) break; | 
|  | } else { | 
|  | I = LastNonDeadUser; | 
|  | ++I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                ConstantInt | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) | 
|  | : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { | 
|  | assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); | 
|  | } | 
|  |  | 
|  | ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { | 
|  | LLVMContextImpl *pImpl = Context.pImpl; | 
|  | if (!pImpl->TheTrueVal) | 
|  | pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); | 
|  | return pImpl->TheTrueVal; | 
|  | } | 
|  |  | 
|  | ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { | 
|  | LLVMContextImpl *pImpl = Context.pImpl; | 
|  | if (!pImpl->TheFalseVal) | 
|  | pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); | 
|  | return pImpl->TheFalseVal; | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::getTrue(Type *Ty) { | 
|  | VectorType *VTy = dyn_cast<VectorType>(Ty); | 
|  | if (!VTy) { | 
|  | assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); | 
|  | return ConstantInt::getTrue(Ty->getContext()); | 
|  | } | 
|  | assert(VTy->getElementType()->isIntegerTy(1) && | 
|  | "True must be vector of i1 or i1."); | 
|  | SmallVector<Constant*, 16> Splat(VTy->getNumElements(), | 
|  | ConstantInt::getTrue(Ty->getContext())); | 
|  | return ConstantVector::get(Splat); | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::getFalse(Type *Ty) { | 
|  | VectorType *VTy = dyn_cast<VectorType>(Ty); | 
|  | if (!VTy) { | 
|  | assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); | 
|  | return ConstantInt::getFalse(Ty->getContext()); | 
|  | } | 
|  | assert(VTy->getElementType()->isIntegerTy(1) && | 
|  | "False must be vector of i1 or i1."); | 
|  | SmallVector<Constant*, 16> Splat(VTy->getNumElements(), | 
|  | ConstantInt::getFalse(Ty->getContext())); | 
|  | return ConstantVector::get(Splat); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap | 
|  | // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the | 
|  | // operator== and operator!= to ensure that the DenseMap doesn't attempt to | 
|  | // compare APInt's of different widths, which would violate an APInt class | 
|  | // invariant which generates an assertion. | 
|  | ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { | 
|  | // Get the corresponding integer type for the bit width of the value. | 
|  | IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); | 
|  | // get an existing value or the insertion position | 
|  | DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); | 
|  | ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; | 
|  | if (!Slot) Slot = new ConstantInt(ITy, V); | 
|  | return Slot; | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { | 
|  | Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); | 
|  |  | 
|  | // For vectors, broadcast the value. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::get(SmallVector<Constant*, | 
|  | 16>(VTy->getNumElements(), C)); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | ConstantInt* ConstantInt::get(IntegerType* Ty, uint64_t V, | 
|  | bool isSigned) { | 
|  | return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); | 
|  | } | 
|  |  | 
|  | ConstantInt* ConstantInt::getSigned(IntegerType* Ty, int64_t V) { | 
|  | return get(Ty, V, true); | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { | 
|  | return get(Ty, V, true); | 
|  | } | 
|  |  | 
|  | Constant *ConstantInt::get(Type* Ty, const APInt& V) { | 
|  | ConstantInt *C = get(Ty->getContext(), V); | 
|  | assert(C->getType() == Ty->getScalarType() && | 
|  | "ConstantInt type doesn't match the type implied by its value!"); | 
|  |  | 
|  | // For vectors, broadcast the value. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::get( | 
|  | SmallVector<Constant *, 16>(VTy->getNumElements(), C)); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  | ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str, | 
|  | uint8_t radix) { | 
|  | return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                ConstantFP | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static const fltSemantics *TypeToFloatSemantics(Type *Ty) { | 
|  | if (Ty->isFloatTy()) | 
|  | return &APFloat::IEEEsingle; | 
|  | if (Ty->isDoubleTy()) | 
|  | return &APFloat::IEEEdouble; | 
|  | if (Ty->isX86_FP80Ty()) | 
|  | return &APFloat::x87DoubleExtended; | 
|  | else if (Ty->isFP128Ty()) | 
|  | return &APFloat::IEEEquad; | 
|  |  | 
|  | assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); | 
|  | return &APFloat::PPCDoubleDouble; | 
|  | } | 
|  |  | 
|  | /// get() - This returns a constant fp for the specified value in the | 
|  | /// specified type.  This should only be used for simple constant values like | 
|  | /// 2.0/1.0 etc, that are known-valid both as double and as the target format. | 
|  | Constant *ConstantFP::get(Type* Ty, double V) { | 
|  | LLVMContext &Context = Ty->getContext(); | 
|  |  | 
|  | APFloat FV(V); | 
|  | bool ignored; | 
|  | FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), | 
|  | APFloat::rmNearestTiesToEven, &ignored); | 
|  | Constant *C = get(Context, FV); | 
|  |  | 
|  | // For vectors, broadcast the value. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::get( | 
|  | SmallVector<Constant *, 16>(VTy->getNumElements(), C)); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  |  | 
|  | Constant *ConstantFP::get(Type* Ty, StringRef Str) { | 
|  | LLVMContext &Context = Ty->getContext(); | 
|  |  | 
|  | APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); | 
|  | Constant *C = get(Context, FV); | 
|  |  | 
|  | // For vectors, broadcast the value. | 
|  | if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
|  | return ConstantVector::get( | 
|  | SmallVector<Constant *, 16>(VTy->getNumElements(), C)); | 
|  |  | 
|  | return C; | 
|  | } | 
|  |  | 
|  |  | 
|  | ConstantFP* ConstantFP::getNegativeZero(Type* Ty) { | 
|  | LLVMContext &Context = Ty->getContext(); | 
|  | APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); | 
|  | apf.changeSign(); | 
|  | return get(Context, apf); | 
|  | } | 
|  |  | 
|  |  | 
|  | Constant *ConstantFP::getZeroValueForNegation(Type* Ty) { | 
|  | if (VectorType *PTy = dyn_cast<VectorType>(Ty)) | 
|  | if (PTy->getElementType()->isFloatingPointTy()) { | 
|  | SmallVector<Constant*, 16> zeros(PTy->getNumElements(), | 
|  | getNegativeZero(PTy->getElementType())); | 
|  | return ConstantVector::get(zeros); | 
|  | } | 
|  |  | 
|  | if (Ty->isFloatingPointTy()) | 
|  | return getNegativeZero(Ty); | 
|  |  | 
|  | return Constant::getNullValue(Ty); | 
|  | } | 
|  |  | 
|  |  | 
|  | // ConstantFP accessors. | 
|  | ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { | 
|  | DenseMapAPFloatKeyInfo::KeyTy Key(V); | 
|  |  | 
|  | LLVMContextImpl* pImpl = Context.pImpl; | 
|  |  | 
|  | ConstantFP *&Slot = pImpl->FPConstants[Key]; | 
|  |  | 
|  | if (!Slot) { | 
|  | Type *Ty; | 
|  | if (&V.getSemantics() == &APFloat::IEEEsingle) | 
|  | Ty = Type::getFloatTy(Context); | 
|  | else if (&V.getSemantics() == &APFloat::IEEEdouble) | 
|  | Ty = Type::getDoubleTy(Context); | 
|  | else if (&V.getSemantics() == &APFloat::x87DoubleExtended) | 
|  | Ty = Type::getX86_FP80Ty(Context); | 
|  | else if (&V.getSemantics() == &APFloat::IEEEquad) | 
|  | Ty = Type::getFP128Ty(Context); | 
|  | else { | 
|  | assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && | 
|  | "Unknown FP format"); | 
|  | Ty = Type::getPPC_FP128Ty(Context); | 
|  | } | 
|  | Slot = new ConstantFP(Ty, V); | 
|  | } | 
|  |  | 
|  | return Slot; | 
|  | } | 
|  |  | 
|  | ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { | 
|  | const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); | 
|  | return ConstantFP::get(Ty->getContext(), | 
|  | APFloat::getInf(Semantics, Negative)); | 
|  | } | 
|  |  | 
|  | ConstantFP::ConstantFP(Type *Ty, const APFloat& V) | 
|  | : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { | 
|  | assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && | 
|  | "FP type Mismatch"); | 
|  | } | 
|  |  | 
|  | bool ConstantFP::isExactlyValue(const APFloat &V) const { | 
|  | return Val.bitwiseIsEqual(V); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            ConstantXXX Classes | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) | 
|  | : Constant(T, ConstantArrayVal, | 
|  | OperandTraits<ConstantArray>::op_end(this) - V.size(), | 
|  | V.size()) { | 
|  | assert(V.size() == T->getNumElements() && | 
|  | "Invalid initializer vector for constant array"); | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) | 
|  | assert(V[i]->getType() == T->getElementType() && | 
|  | "Initializer for array element doesn't match array element type!"); | 
|  | std::copy(V.begin(), V.end(), op_begin()); | 
|  | } | 
|  |  | 
|  | Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) { | 
|  | assert(V[i]->getType() == Ty->getElementType() && | 
|  | "Wrong type in array element initializer"); | 
|  | } | 
|  | LLVMContextImpl *pImpl = Ty->getContext().pImpl; | 
|  | // If this is an all-zero array, return a ConstantAggregateZero object | 
|  | if (!V.empty()) { | 
|  | Constant *C = V[0]; | 
|  | if (!C->isNullValue()) | 
|  | return pImpl->ArrayConstants.getOrCreate(Ty, V); | 
|  |  | 
|  | for (unsigned i = 1, e = V.size(); i != e; ++i) | 
|  | if (V[i] != C) | 
|  | return pImpl->ArrayConstants.getOrCreate(Ty, V); | 
|  | } | 
|  |  | 
|  | return ConstantAggregateZero::get(Ty); | 
|  | } | 
|  |  | 
|  | /// ConstantArray::get(const string&) - Return an array that is initialized to | 
|  | /// contain the specified string.  If length is zero then a null terminator is | 
|  | /// added to the specified string so that it may be used in a natural way. | 
|  | /// Otherwise, the length parameter specifies how much of the string to use | 
|  | /// and it won't be null terminated. | 
|  | /// | 
|  | Constant *ConstantArray::get(LLVMContext &Context, StringRef Str, | 
|  | bool AddNull) { | 
|  | std::vector<Constant*> ElementVals; | 
|  | ElementVals.reserve(Str.size() + size_t(AddNull)); | 
|  | for (unsigned i = 0; i < Str.size(); ++i) | 
|  | ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i])); | 
|  |  | 
|  | // Add a null terminator to the string... | 
|  | if (AddNull) { | 
|  | ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0)); | 
|  | } | 
|  |  | 
|  | ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size()); | 
|  | return get(ATy, ElementVals); | 
|  | } | 
|  |  | 
|  | /// getTypeForElements - Return an anonymous struct type to use for a constant | 
|  | /// with the specified set of elements.  The list must not be empty. | 
|  | StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, | 
|  | ArrayRef<Constant*> V, | 
|  | bool Packed) { | 
|  | SmallVector<Type*, 16> EltTypes; | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) | 
|  | EltTypes.push_back(V[i]->getType()); | 
|  |  | 
|  | return StructType::get(Context, EltTypes, Packed); | 
|  | } | 
|  |  | 
|  |  | 
|  | StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, | 
|  | bool Packed) { | 
|  | assert(!V.empty() && | 
|  | "ConstantStruct::getTypeForElements cannot be called on empty list"); | 
|  | return getTypeForElements(V[0]->getContext(), V, Packed); | 
|  | } | 
|  |  | 
|  |  | 
|  | ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) | 
|  | : Constant(T, ConstantStructVal, | 
|  | OperandTraits<ConstantStruct>::op_end(this) - V.size(), | 
|  | V.size()) { | 
|  | assert(V.size() == T->getNumElements() && | 
|  | "Invalid initializer vector for constant structure"); | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) | 
|  | assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && | 
|  | "Initializer for struct element doesn't match struct element type!"); | 
|  | std::copy(V.begin(), V.end(), op_begin()); | 
|  | } | 
|  |  | 
|  | // ConstantStruct accessors. | 
|  | Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { | 
|  | // Create a ConstantAggregateZero value if all elements are zeros. | 
|  | for (unsigned i = 0, e = V.size(); i != e; ++i) | 
|  | if (!V[i]->isNullValue()) | 
|  | return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); | 
|  |  | 
|  | assert((ST->isOpaque() || ST->getNumElements() == V.size()) && | 
|  | "Incorrect # elements specified to ConstantStruct::get"); | 
|  | return ConstantAggregateZero::get(ST); | 
|  | } | 
|  |  | 
|  | Constant *ConstantStruct::get(StructType *T, ...) { | 
|  | va_list ap; | 
|  | SmallVector<Constant*, 8> Values; | 
|  | va_start(ap, T); | 
|  | while (Constant *Val = va_arg(ap, llvm::Constant*)) | 
|  | Values.push_back(Val); | 
|  | va_end(ap); | 
|  | return get(T, Values); | 
|  | } | 
|  |  | 
|  | ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) | 
|  | : Constant(T, ConstantVectorVal, | 
|  | OperandTraits<ConstantVector>::op_end(this) - V.size(), | 
|  | V.size()) { | 
|  | for (size_t i = 0, e = V.size(); i != e; i++) | 
|  | assert(V[i]->getType() == T->getElementType() && | 
|  | "Initializer for vector element doesn't match vector element type!"); | 
|  | std::copy(V.begin(), V.end(), op_begin()); | 
|  | } | 
|  |  | 
|  | // ConstantVector accessors. | 
|  | Constant *ConstantVector::get(ArrayRef<Constant*> V) { | 
|  | assert(!V.empty() && "Vectors can't be empty"); | 
|  | VectorType *T = VectorType::get(V.front()->getType(), V.size()); | 
|  | LLVMContextImpl *pImpl = T->getContext().pImpl; | 
|  |  | 
|  | // If this is an all-undef or all-zero vector, return a | 
|  | // ConstantAggregateZero or UndefValue. | 
|  | Constant *C = V[0]; | 
|  | bool isZero = C->isNullValue(); | 
|  | bool isUndef = isa<UndefValue>(C); | 
|  |  | 
|  | if (isZero || isUndef) { | 
|  | for (unsigned i = 1, e = V.size(); i != e; ++i) | 
|  | if (V[i] != C) { | 
|  | isZero = isUndef = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isZero) | 
|  | return ConstantAggregateZero::get(T); | 
|  | if (isUndef) | 
|  | return UndefValue::get(T); | 
|  |  | 
|  | return pImpl->VectorConstants.getOrCreate(T, V); | 
|  | } | 
|  |  | 
|  | // Utility function for determining if a ConstantExpr is a CastOp or not. This | 
|  | // can't be inline because we don't want to #include Instruction.h into | 
|  | // Constant.h | 
|  | bool ConstantExpr::isCast() const { | 
|  | return Instruction::isCast(getOpcode()); | 
|  | } | 
|  |  | 
|  | bool ConstantExpr::isCompare() const { | 
|  | return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; | 
|  | } | 
|  |  | 
|  | bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { | 
|  | if (getOpcode() != Instruction::GetElementPtr) return false; | 
|  |  | 
|  | gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); | 
|  | User::const_op_iterator OI = llvm::next(this->op_begin()); | 
|  |  | 
|  | // Skip the first index, as it has no static limit. | 
|  | ++GEPI; | 
|  | ++OI; | 
|  |  | 
|  | // The remaining indices must be compile-time known integers within the | 
|  | // bounds of the corresponding notional static array types. | 
|  | for (; GEPI != E; ++GEPI, ++OI) { | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(*OI); | 
|  | if (!CI) return false; | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) | 
|  | if (CI->getValue().getActiveBits() > 64 || | 
|  | CI->getZExtValue() >= ATy->getNumElements()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // All the indices checked out. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ConstantExpr::hasIndices() const { | 
|  | return getOpcode() == Instruction::ExtractValue || | 
|  | getOpcode() == Instruction::InsertValue; | 
|  | } | 
|  |  | 
|  | ArrayRef<unsigned> ConstantExpr::getIndices() const { | 
|  | if (const ExtractValueConstantExpr *EVCE = | 
|  | dyn_cast<ExtractValueConstantExpr>(this)) | 
|  | return EVCE->Indices; | 
|  |  | 
|  | return cast<InsertValueConstantExpr>(this)->Indices; | 
|  | } | 
|  |  | 
|  | unsigned ConstantExpr::getPredicate() const { | 
|  | assert(isCompare()); | 
|  | return ((const CompareConstantExpr*)this)->predicate; | 
|  | } | 
|  |  | 
|  | /// getWithOperandReplaced - Return a constant expression identical to this | 
|  | /// one, but with the specified operand set to the specified value. | 
|  | Constant * | 
|  | ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { | 
|  | assert(OpNo < getNumOperands() && "Operand num is out of range!"); | 
|  | assert(Op->getType() == getOperand(OpNo)->getType() && | 
|  | "Replacing operand with value of different type!"); | 
|  | if (getOperand(OpNo) == Op) | 
|  | return const_cast<ConstantExpr*>(this); | 
|  |  | 
|  | Constant *Op0, *Op1, *Op2; | 
|  | switch (getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | return ConstantExpr::getCast(getOpcode(), Op, getType()); | 
|  | case Instruction::Select: | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | Op2 = (OpNo == 2) ? Op : getOperand(2); | 
|  | return ConstantExpr::getSelect(Op0, Op1, Op2); | 
|  | case Instruction::InsertElement: | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | Op2 = (OpNo == 2) ? Op : getOperand(2); | 
|  | return ConstantExpr::getInsertElement(Op0, Op1, Op2); | 
|  | case Instruction::ExtractElement: | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | return ConstantExpr::getExtractElement(Op0, Op1); | 
|  | case Instruction::ShuffleVector: | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | Op2 = (OpNo == 2) ? Op : getOperand(2); | 
|  | return ConstantExpr::getShuffleVector(Op0, Op1, Op2); | 
|  | case Instruction::GetElementPtr: { | 
|  | SmallVector<Constant*, 8> Ops; | 
|  | Ops.resize(getNumOperands()-1); | 
|  | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) | 
|  | Ops[i-1] = getOperand(i); | 
|  | if (OpNo == 0) | 
|  | return | 
|  | ConstantExpr::getGetElementPtr(Op, Ops, | 
|  | cast<GEPOperator>(this)->isInBounds()); | 
|  | Ops[OpNo-1] = Op; | 
|  | return | 
|  | ConstantExpr::getGetElementPtr(getOperand(0), Ops, | 
|  | cast<GEPOperator>(this)->isInBounds()); | 
|  | } | 
|  | default: | 
|  | assert(getNumOperands() == 2 && "Must be binary operator?"); | 
|  | Op0 = (OpNo == 0) ? Op : getOperand(0); | 
|  | Op1 = (OpNo == 1) ? Op : getOperand(1); | 
|  | return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getWithOperands - This returns the current constant expression with the | 
|  | /// operands replaced with the specified values.  The specified array must | 
|  | /// have the same number of operands as our current one. | 
|  | Constant *ConstantExpr:: | 
|  | getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { | 
|  | assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); | 
|  | bool AnyChange = Ty != getType(); | 
|  | for (unsigned i = 0; i != Ops.size(); ++i) | 
|  | AnyChange |= Ops[i] != getOperand(i); | 
|  |  | 
|  | if (!AnyChange)  // No operands changed, return self. | 
|  | return const_cast<ConstantExpr*>(this); | 
|  |  | 
|  | switch (getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::BitCast: | 
|  | return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); | 
|  | case Instruction::Select: | 
|  | return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::InsertElement: | 
|  | return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::ExtractElement: | 
|  | return ConstantExpr::getExtractElement(Ops[0], Ops[1]); | 
|  | case Instruction::ShuffleVector: | 
|  | return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); | 
|  | case Instruction::GetElementPtr: | 
|  | return | 
|  | ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), | 
|  | cast<GEPOperator>(this)->isInBounds()); | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); | 
|  | default: | 
|  | assert(getNumOperands() == 2 && "Must be binary operator?"); | 
|  | return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      isValueValidForType implementations | 
|  |  | 
|  | bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { | 
|  | unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay | 
|  | if (Ty == Type::getInt1Ty(Ty->getContext())) | 
|  | return Val == 0 || Val == 1; | 
|  | if (NumBits >= 64) | 
|  | return true; // always true, has to fit in largest type | 
|  | uint64_t Max = (1ll << NumBits) - 1; | 
|  | return Val <= Max; | 
|  | } | 
|  |  | 
|  | bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { | 
|  | unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay | 
|  | if (Ty == Type::getInt1Ty(Ty->getContext())) | 
|  | return Val == 0 || Val == 1 || Val == -1; | 
|  | if (NumBits >= 64) | 
|  | return true; // always true, has to fit in largest type | 
|  | int64_t Min = -(1ll << (NumBits-1)); | 
|  | int64_t Max = (1ll << (NumBits-1)) - 1; | 
|  | return (Val >= Min && Val <= Max); | 
|  | } | 
|  |  | 
|  | bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { | 
|  | // convert modifies in place, so make a copy. | 
|  | APFloat Val2 = APFloat(Val); | 
|  | bool losesInfo; | 
|  | switch (Ty->getTypeID()) { | 
|  | default: | 
|  | return false;         // These can't be represented as floating point! | 
|  |  | 
|  | // FIXME rounding mode needs to be more flexible | 
|  | case Type::FloatTyID: { | 
|  | if (&Val2.getSemantics() == &APFloat::IEEEsingle) | 
|  | return true; | 
|  | Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); | 
|  | return !losesInfo; | 
|  | } | 
|  | case Type::DoubleTyID: { | 
|  | if (&Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble) | 
|  | return true; | 
|  | Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); | 
|  | return !losesInfo; | 
|  | } | 
|  | case Type::X86_FP80TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::x87DoubleExtended; | 
|  | case Type::FP128TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::IEEEquad; | 
|  | case Type::PPC_FP128TyID: | 
|  | return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
|  | &Val2.getSemantics() == &APFloat::IEEEdouble || | 
|  | &Val2.getSemantics() == &APFloat::PPCDoubleDouble; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                      Factory Function Implementation | 
|  |  | 
|  | ConstantAggregateZero* ConstantAggregateZero::get(Type* Ty) { | 
|  | assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && | 
|  | "Cannot create an aggregate zero of non-aggregate type!"); | 
|  |  | 
|  | LLVMContextImpl *pImpl = Ty->getContext().pImpl; | 
|  | return pImpl->AggZeroConstants.getOrCreate(Ty, 0); | 
|  | } | 
|  |  | 
|  | /// destroyConstant - Remove the constant from the constant table... | 
|  | /// | 
|  | void ConstantAggregateZero::destroyConstant() { | 
|  | getType()->getContext().pImpl->AggZeroConstants.remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | /// destroyConstant - Remove the constant from the constant table... | 
|  | /// | 
|  | void ConstantArray::destroyConstant() { | 
|  | getType()->getContext().pImpl->ArrayConstants.remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | /// isString - This method returns true if the array is an array of i8, and | 
|  | /// if the elements of the array are all ConstantInt's. | 
|  | bool ConstantArray::isString() const { | 
|  | // Check the element type for i8... | 
|  | if (!getType()->getElementType()->isIntegerTy(8)) | 
|  | return false; | 
|  | // Check the elements to make sure they are all integers, not constant | 
|  | // expressions. | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (!isa<ConstantInt>(getOperand(i))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isCString - This method returns true if the array is a string (see | 
|  | /// isString) and it ends in a null byte \\0 and does not contains any other | 
|  | /// null bytes except its terminator. | 
|  | bool ConstantArray::isCString() const { | 
|  | // Check the element type for i8... | 
|  | if (!getType()->getElementType()->isIntegerTy(8)) | 
|  | return false; | 
|  |  | 
|  | // Last element must be a null. | 
|  | if (!getOperand(getNumOperands()-1)->isNullValue()) | 
|  | return false; | 
|  | // Other elements must be non-null integers. | 
|  | for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) { | 
|  | if (!isa<ConstantInt>(getOperand(i))) | 
|  | return false; | 
|  | if (getOperand(i)->isNullValue()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// convertToString - Helper function for getAsString() and getAsCString(). | 
|  | static std::string convertToString(const User *U, unsigned len) { | 
|  | std::string Result; | 
|  | Result.reserve(len); | 
|  | for (unsigned i = 0; i != len; ++i) | 
|  | Result.push_back((char)cast<ConstantInt>(U->getOperand(i))->getZExtValue()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// getAsString - If this array is isString(), then this method converts the | 
|  | /// array to an std::string and returns it.  Otherwise, it asserts out. | 
|  | /// | 
|  | std::string ConstantArray::getAsString() const { | 
|  | assert(isString() && "Not a string!"); | 
|  | return convertToString(this, getNumOperands()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getAsCString - If this array is isCString(), then this method converts the | 
|  | /// array (without the trailing null byte) to an std::string and returns it. | 
|  | /// Otherwise, it asserts out. | 
|  | /// | 
|  | std::string ConstantArray::getAsCString() const { | 
|  | assert(isCString() && "Not a string!"); | 
|  | return convertToString(this, getNumOperands() - 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---- ConstantStruct::get() implementation... | 
|  | // | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantStruct::destroyConstant() { | 
|  | getType()->getContext().pImpl->StructConstants.remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantVector::destroyConstant() { | 
|  | getType()->getContext().pImpl->VectorConstants.remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | /// This function will return true iff every element in this vector constant | 
|  | /// is set to all ones. | 
|  | /// @returns true iff this constant's elements are all set to all ones. | 
|  | /// @brief Determine if the value is all ones. | 
|  | bool ConstantVector::isAllOnesValue() const { | 
|  | // Check out first element. | 
|  | const Constant *Elt = getOperand(0); | 
|  | const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); | 
|  | const ConstantFP *CF = dyn_cast<ConstantFP>(Elt); | 
|  |  | 
|  | // Then make sure all remaining elements point to the same value. | 
|  | for (unsigned I = 1, E = getNumOperands(); I < E; ++I) | 
|  | if (getOperand(I) != Elt) | 
|  | return false; | 
|  |  | 
|  | // First value is all-ones. | 
|  | return (CI && CI->isAllOnesValue()) || | 
|  | (CF && CF->isAllOnesValue()); | 
|  | } | 
|  |  | 
|  | /// getSplatValue - If this is a splat constant, where all of the | 
|  | /// elements have the same value, return that value. Otherwise return null. | 
|  | Constant *ConstantVector::getSplatValue() const { | 
|  | // Check out first element. | 
|  | Constant *Elt = getOperand(0); | 
|  | // Then make sure all remaining elements point to the same value. | 
|  | for (unsigned I = 1, E = getNumOperands(); I < E; ++I) | 
|  | if (getOperand(I) != Elt) | 
|  | return 0; | 
|  | return Elt; | 
|  | } | 
|  |  | 
|  | //---- ConstantPointerNull::get() implementation. | 
|  | // | 
|  |  | 
|  | ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { | 
|  | return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantPointerNull::destroyConstant() { | 
|  | getType()->getContext().pImpl->NullPtrConstants.remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  |  | 
|  | //---- UndefValue::get() implementation. | 
|  | // | 
|  |  | 
|  | UndefValue *UndefValue::get(Type *Ty) { | 
|  | return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table. | 
|  | // | 
|  | void UndefValue::destroyConstant() { | 
|  | getType()->getContext().pImpl->UndefValueConstants.remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | //---- BlockAddress::get() implementation. | 
|  | // | 
|  |  | 
|  | BlockAddress *BlockAddress::get(BasicBlock *BB) { | 
|  | assert(BB->getParent() != 0 && "Block must have a parent"); | 
|  | return get(BB->getParent(), BB); | 
|  | } | 
|  |  | 
|  | BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { | 
|  | BlockAddress *&BA = | 
|  | F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; | 
|  | if (BA == 0) | 
|  | BA = new BlockAddress(F, BB); | 
|  |  | 
|  | assert(BA->getFunction() == F && "Basic block moved between functions"); | 
|  | return BA; | 
|  | } | 
|  |  | 
|  | BlockAddress::BlockAddress(Function *F, BasicBlock *BB) | 
|  | : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, | 
|  | &Op<0>(), 2) { | 
|  | setOperand(0, F); | 
|  | setOperand(1, BB); | 
|  | BB->AdjustBlockAddressRefCount(1); | 
|  | } | 
|  |  | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table. | 
|  | // | 
|  | void BlockAddress::destroyConstant() { | 
|  | getFunction()->getType()->getContext().pImpl | 
|  | ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); | 
|  | getBasicBlock()->AdjustBlockAddressRefCount(-1); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { | 
|  | // This could be replacing either the Basic Block or the Function.  In either | 
|  | // case, we have to remove the map entry. | 
|  | Function *NewF = getFunction(); | 
|  | BasicBlock *NewBB = getBasicBlock(); | 
|  |  | 
|  | if (U == &Op<0>()) | 
|  | NewF = cast<Function>(To); | 
|  | else | 
|  | NewBB = cast<BasicBlock>(To); | 
|  |  | 
|  | // See if the 'new' entry already exists, if not, just update this in place | 
|  | // and return early. | 
|  | BlockAddress *&NewBA = | 
|  | getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; | 
|  | if (NewBA == 0) { | 
|  | getBasicBlock()->AdjustBlockAddressRefCount(-1); | 
|  |  | 
|  | // Remove the old entry, this can't cause the map to rehash (just a | 
|  | // tombstone will get added). | 
|  | getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), | 
|  | getBasicBlock())); | 
|  | NewBA = this; | 
|  | setOperand(0, NewF); | 
|  | setOperand(1, NewBB); | 
|  | getBasicBlock()->AdjustBlockAddressRefCount(1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, I do need to replace this with an existing value. | 
|  | assert(NewBA != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | replaceAllUsesWith(NewBA); | 
|  |  | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  | //---- ConstantExpr::get() implementations. | 
|  | // | 
|  |  | 
|  | /// This is a utility function to handle folding of casts and lookup of the | 
|  | /// cast in the ExprConstants map. It is used by the various get* methods below. | 
|  | static inline Constant *getFoldedCast( | 
|  | Instruction::CastOps opc, Constant *C, Type *Ty) { | 
|  | assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); | 
|  | // Fold a few common cases | 
|  | if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) | 
|  | return FC; | 
|  |  | 
|  | LLVMContextImpl *pImpl = Ty->getContext().pImpl; | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> argVec(1, C); | 
|  | ExprMapKeyType Key(opc, argVec); | 
|  |  | 
|  | return pImpl->ExprConstants.getOrCreate(Ty, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { | 
|  | Instruction::CastOps opc = Instruction::CastOps(oc); | 
|  | assert(Instruction::isCast(opc) && "opcode out of range"); | 
|  | assert(C && Ty && "Null arguments to getCast"); | 
|  | assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); | 
|  |  | 
|  | switch (opc) { | 
|  | default: | 
|  | llvm_unreachable("Invalid cast opcode"); | 
|  | break; | 
|  | case Instruction::Trunc:    return getTrunc(C, Ty); | 
|  | case Instruction::ZExt:     return getZExt(C, Ty); | 
|  | case Instruction::SExt:     return getSExt(C, Ty); | 
|  | case Instruction::FPTrunc:  return getFPTrunc(C, Ty); | 
|  | case Instruction::FPExt:    return getFPExtend(C, Ty); | 
|  | case Instruction::UIToFP:   return getUIToFP(C, Ty); | 
|  | case Instruction::SIToFP:   return getSIToFP(C, Ty); | 
|  | case Instruction::FPToUI:   return getFPToUI(C, Ty); | 
|  | case Instruction::FPToSI:   return getFPToSI(C, Ty); | 
|  | case Instruction::PtrToInt: return getPtrToInt(C, Ty); | 
|  | case Instruction::IntToPtr: return getIntToPtr(C, Ty); | 
|  | case Instruction::BitCast:  return getBitCast(C, Ty); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { | 
|  | if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return getBitCast(C, Ty); | 
|  | return getZExt(C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { | 
|  | if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return getBitCast(C, Ty); | 
|  | return getSExt(C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { | 
|  | if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
|  | return getBitCast(C, Ty); | 
|  | return getTrunc(C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { | 
|  | assert(S->getType()->isPointerTy() && "Invalid cast"); | 
|  | assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast"); | 
|  |  | 
|  | if (Ty->isIntegerTy()) | 
|  | return getPtrToInt(S, Ty); | 
|  | return getBitCast(S, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, | 
|  | bool isSigned) { | 
|  | assert(C->getType()->isIntOrIntVectorTy() && | 
|  | Ty->isIntOrIntVectorTy() && "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Ty->getScalarSizeInBits(); | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits == DstBits ? Instruction::BitCast : | 
|  | (SrcBits > DstBits ? Instruction::Trunc : | 
|  | (isSigned ? Instruction::SExt : Instruction::ZExt))); | 
|  | return getCast(opcode, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | "Invalid cast"); | 
|  | unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Ty->getScalarSizeInBits(); | 
|  | if (SrcBits == DstBits) | 
|  | return C; // Avoid a useless cast | 
|  | Instruction::CastOps opcode = | 
|  | (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); | 
|  | return getCast(opcode, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); | 
|  | assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); | 
|  | assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& | 
|  | "SrcTy must be larger than DestTy for Trunc!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::Trunc, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); | 
|  | assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); | 
|  | assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
|  | "SrcTy must be smaller than DestTy for SExt!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::SExt, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); | 
|  | assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); | 
|  | assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
|  | "SrcTy must be smaller than DestTy for ZExt!"); | 
|  |  | 
|  | return getFoldedCast(Instruction::ZExt, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& | 
|  | "This is an illegal floating point truncation!"); | 
|  | return getFoldedCast(Instruction::FPTrunc, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
|  | "This is an illegal floating point extension!"); | 
|  | return getFoldedCast(Instruction::FPExt, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | "This is an illegal uint to floating point cast!"); | 
|  | return getFoldedCast(Instruction::UIToFP, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && | 
|  | "This is an illegal sint to floating point cast!"); | 
|  | return getFoldedCast(Instruction::SIToFP, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && | 
|  | "This is an illegal floating point to uint cast!"); | 
|  | return getFoldedCast(Instruction::FPToUI, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { | 
|  | #ifndef NDEBUG | 
|  | bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; | 
|  | bool toVec = Ty->getTypeID() == Type::VectorTyID; | 
|  | #endif | 
|  | assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
|  | assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && | 
|  | "This is an illegal floating point to sint cast!"); | 
|  | return getFoldedCast(Instruction::FPToSI, C, Ty); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { | 
|  | assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer"); | 
|  | assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral"); | 
|  | return getFoldedCast(Instruction::PtrToInt, C, DstTy); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { | 
|  | assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral"); | 
|  | assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer"); | 
|  | return getFoldedCast(Instruction::IntToPtr, C, DstTy); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { | 
|  | assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && | 
|  | "Invalid constantexpr bitcast!"); | 
|  |  | 
|  | // It is common to ask for a bitcast of a value to its own type, handle this | 
|  | // speedily. | 
|  | if (C->getType() == DstTy) return C; | 
|  |  | 
|  | return getFoldedCast(Instruction::BitCast, C, DstTy); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, | 
|  | unsigned Flags) { | 
|  | // Check the operands for consistency first. | 
|  | assert(Opcode >= Instruction::BinaryOpsBegin && | 
|  | Opcode <  Instruction::BinaryOpsEnd   && | 
|  | "Invalid opcode in binary constant expression"); | 
|  | assert(C1->getType() == C2->getType() && | 
|  | "Operand types in binary constant expression should match"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create an integer operation on a non-integer type!"); | 
|  | break; | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isFPOrFPVectorTy() && | 
|  | "Tried to create a floating-point operation on a " | 
|  | "non-floating-point type!"); | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::FDiv: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isFPOrFPVectorTy() && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::FRem: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isFPOrFPVectorTy() && | 
|  | "Tried to create an arithmetic operation on a non-arithmetic type!"); | 
|  | break; | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create a logical operation on a non-integral type!"); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  | assert(C1->getType()->isIntOrIntVectorTy() && | 
|  | "Tried to create a shift operation on a non-integer type!"); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | std::vector<Constant*> argVec(1, C1); | 
|  | argVec.push_back(C2); | 
|  | ExprMapKeyType Key(Opcode, argVec, 0, Flags); | 
|  |  | 
|  | LLVMContextImpl *pImpl = C1->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSizeOf(Type* Ty) { | 
|  | // sizeof is implemented as: (i64) gep (Ty*)null, 1 | 
|  | // Note that a non-inbounds gep is used, as null isn't within any object. | 
|  | Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); | 
|  | Constant *GEP = getGetElementPtr( | 
|  | Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); | 
|  | return getPtrToInt(GEP, | 
|  | Type::getInt64Ty(Ty->getContext())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAlignOf(Type* Ty) { | 
|  | // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 | 
|  | // Note that a non-inbounds gep is used, as null isn't within any object. | 
|  | Type *AligningTy = | 
|  | StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); | 
|  | Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); | 
|  | Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); | 
|  | Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); | 
|  | Constant *Indices[2] = { Zero, One }; | 
|  | Constant *GEP = getGetElementPtr(NullPtr, Indices); | 
|  | return getPtrToInt(GEP, | 
|  | Type::getInt64Ty(Ty->getContext())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { | 
|  | return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), | 
|  | FieldNo)); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { | 
|  | // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo | 
|  | // Note that a non-inbounds gep is used, as null isn't within any object. | 
|  | Constant *GEPIdx[] = { | 
|  | ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), | 
|  | FieldNo | 
|  | }; | 
|  | Constant *GEP = getGetElementPtr( | 
|  | Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); | 
|  | return getPtrToInt(GEP, | 
|  | Type::getInt64Ty(Ty->getContext())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getCompare(unsigned short Predicate, | 
|  | Constant *C1, Constant *C2) { | 
|  | assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
|  |  | 
|  | switch (Predicate) { | 
|  | default: llvm_unreachable("Invalid CmpInst predicate"); | 
|  | case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: | 
|  | case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: | 
|  | case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: | 
|  | case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: | 
|  | case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: | 
|  | case CmpInst::FCMP_TRUE: | 
|  | return getFCmp(Predicate, C1, C2); | 
|  |  | 
|  | case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT: | 
|  | case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: | 
|  | case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: | 
|  | case CmpInst::ICMP_SLE: | 
|  | return getICmp(Predicate, C1, C2); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { | 
|  | assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); | 
|  |  | 
|  | if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) | 
|  | return SC;        // Fold common cases | 
|  |  | 
|  | std::vector<Constant*> argVec(3, C); | 
|  | argVec[1] = V1; | 
|  | argVec[2] = V2; | 
|  | ExprMapKeyType Key(Instruction::Select, argVec); | 
|  |  | 
|  | LLVMContextImpl *pImpl = C->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, | 
|  | bool InBounds) { | 
|  | if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | // Get the result type of the getelementptr! | 
|  | Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); | 
|  | assert(Ty && "GEP indices invalid!"); | 
|  | unsigned AS = cast<PointerType>(C->getType())->getAddressSpace(); | 
|  | Type *ReqTy = Ty->getPointerTo(AS); | 
|  |  | 
|  | assert(C->getType()->isPointerTy() && | 
|  | "Non-pointer type for constant GetElementPtr expression"); | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec; | 
|  | ArgVec.reserve(1 + Idxs.size()); | 
|  | ArgVec.push_back(C); | 
|  | for (unsigned i = 0, e = Idxs.size(); i != e; ++i) | 
|  | ArgVec.push_back(cast<Constant>(Idxs[i])); | 
|  | const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, | 
|  | InBounds ? GEPOperator::IsInBounds : 0); | 
|  |  | 
|  | LLVMContextImpl *pImpl = C->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant * | 
|  | ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { | 
|  | assert(LHS->getType() == RHS->getType()); | 
|  | assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && | 
|  | pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) | 
|  | return FC;          // Fold a few common cases... | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec; | 
|  | ArgVec.push_back(LHS); | 
|  | ArgVec.push_back(RHS); | 
|  | // Get the key type with both the opcode and predicate | 
|  | const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); | 
|  |  | 
|  | Type *ResultTy = Type::getInt1Ty(LHS->getContext()); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) | 
|  | ResultTy = VectorType::get(ResultTy, VT->getNumElements()); | 
|  |  | 
|  | LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ResultTy, Key); | 
|  | } | 
|  |  | 
|  | Constant * | 
|  | ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { | 
|  | assert(LHS->getType() == RHS->getType()); | 
|  | assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) | 
|  | return FC;          // Fold a few common cases... | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec; | 
|  | ArgVec.push_back(LHS); | 
|  | ArgVec.push_back(RHS); | 
|  | // Get the key type with both the opcode and predicate | 
|  | const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); | 
|  |  | 
|  | Type *ResultTy = Type::getInt1Ty(LHS->getContext()); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) | 
|  | ResultTy = VectorType::get(ResultTy, VT->getNumElements()); | 
|  |  | 
|  | LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ResultTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { | 
|  | assert(Val->getType()->isVectorTy() && | 
|  | "Tried to create extractelement operation on non-vector type!"); | 
|  | assert(Idx->getType()->isIntegerTy(32) && | 
|  | "Extractelement index must be i32 type!"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec(1, Val); | 
|  | ArgVec.push_back(Idx); | 
|  | const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); | 
|  |  | 
|  | LLVMContextImpl *pImpl = Val->getContext().pImpl; | 
|  | Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); | 
|  | return pImpl->ExprConstants.getOrCreate(ReqTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, | 
|  | Constant *Idx) { | 
|  | assert(Val->getType()->isVectorTy() && | 
|  | "Tried to create insertelement operation on non-vector type!"); | 
|  | assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() | 
|  | && "Insertelement types must match!"); | 
|  | assert(Idx->getType()->isIntegerTy(32) && | 
|  | "Insertelement index must be i32 type!"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) | 
|  | return FC;          // Fold a few common cases. | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec(1, Val); | 
|  | ArgVec.push_back(Elt); | 
|  | ArgVec.push_back(Idx); | 
|  | const ExprMapKeyType Key(Instruction::InsertElement,ArgVec); | 
|  |  | 
|  | LLVMContextImpl *pImpl = Val->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, | 
|  | Constant *Mask) { | 
|  | assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && | 
|  | "Invalid shuffle vector constant expr operands!"); | 
|  |  | 
|  | if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) | 
|  | return FC;          // Fold a few common cases. | 
|  |  | 
|  | unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements(); | 
|  | Type *EltTy = cast<VectorType>(V1->getType())->getElementType(); | 
|  | Type *ShufTy = VectorType::get(EltTy, NElts); | 
|  |  | 
|  | // Look up the constant in the table first to ensure uniqueness | 
|  | std::vector<Constant*> ArgVec(1, V1); | 
|  | ArgVec.push_back(V2); | 
|  | ArgVec.push_back(Mask); | 
|  | const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec); | 
|  |  | 
|  | LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; | 
|  | return pImpl->ExprConstants.getOrCreate(ShufTy, Key); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, | 
|  | ArrayRef<unsigned> Idxs) { | 
|  | assert(ExtractValueInst::getIndexedType(Agg->getType(), | 
|  | Idxs) == Val->getType() && | 
|  | "insertvalue indices invalid!"); | 
|  | assert(Agg->getType()->isFirstClassType() && | 
|  | "Non-first-class type for constant insertvalue expression"); | 
|  | Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); | 
|  | assert(FC && "insertvalue constant expr couldn't be folded!"); | 
|  | return FC; | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getExtractValue(Constant *Agg, | 
|  | ArrayRef<unsigned> Idxs) { | 
|  | assert(Agg->getType()->isFirstClassType() && | 
|  | "Tried to create extractelement operation on non-first-class type!"); | 
|  |  | 
|  | Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); | 
|  | (void)ReqTy; | 
|  | assert(ReqTy && "extractvalue indices invalid!"); | 
|  |  | 
|  | assert(Agg->getType()->isFirstClassType() && | 
|  | "Non-first-class type for constant extractvalue expression"); | 
|  | Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); | 
|  | assert(FC && "ExtractValue constant expr couldn't be folded!"); | 
|  | return FC; | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { | 
|  | assert(C->getType()->isIntOrIntVectorTy() && | 
|  | "Cannot NEG a nonintegral value!"); | 
|  | return getSub(ConstantFP::getZeroValueForNegation(C->getType()), | 
|  | C, HasNUW, HasNSW); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFNeg(Constant *C) { | 
|  | assert(C->getType()->isFPOrFPVectorTy() && | 
|  | "Cannot FNEG a non-floating-point value!"); | 
|  | return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getNot(Constant *C) { | 
|  | assert(C->getType()->isIntOrIntVectorTy() && | 
|  | "Cannot NOT a nonintegral value!"); | 
|  | return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, | 
|  | bool HasNUW, bool HasNSW) { | 
|  | unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
|  | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
|  | return get(Instruction::Add, C1, C2, Flags); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FAdd, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, | 
|  | bool HasNUW, bool HasNSW) { | 
|  | unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
|  | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
|  | return get(Instruction::Sub, C1, C2, Flags); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FSub, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, | 
|  | bool HasNUW, bool HasNSW) { | 
|  | unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
|  | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
|  | return get(Instruction::Mul, C1, C2, Flags); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FMul, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { | 
|  | return get(Instruction::UDiv, C1, C2, | 
|  | isExact ? PossiblyExactOperator::IsExact : 0); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { | 
|  | return get(Instruction::SDiv, C1, C2, | 
|  | isExact ? PossiblyExactOperator::IsExact : 0); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FDiv, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::URem, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::SRem, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::FRem, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::And, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Or, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { | 
|  | return get(Instruction::Xor, C1, C2); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, | 
|  | bool HasNUW, bool HasNSW) { | 
|  | unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
|  | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
|  | return get(Instruction::Shl, C1, C2, Flags); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { | 
|  | return get(Instruction::LShr, C1, C2, | 
|  | isExact ? PossiblyExactOperator::IsExact : 0); | 
|  | } | 
|  |  | 
|  | Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { | 
|  | return get(Instruction::AShr, C1, C2, | 
|  | isExact ? PossiblyExactOperator::IsExact : 0); | 
|  | } | 
|  |  | 
|  | // destroyConstant - Remove the constant from the constant table... | 
|  | // | 
|  | void ConstantExpr::destroyConstant() { | 
|  | getType()->getContext().pImpl->ExprConstants.remove(this); | 
|  | destroyConstantImpl(); | 
|  | } | 
|  |  | 
|  | const char *ConstantExpr::getOpcodeName() const { | 
|  | return Instruction::getOpcodeName(getOpcode()); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | GetElementPtrConstantExpr:: | 
|  | GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, | 
|  | Type *DestTy) | 
|  | : ConstantExpr(DestTy, Instruction::GetElementPtr, | 
|  | OperandTraits<GetElementPtrConstantExpr>::op_end(this) | 
|  | - (IdxList.size()+1), IdxList.size()+1) { | 
|  | OperandList[0] = C; | 
|  | for (unsigned i = 0, E = IdxList.size(); i != E; ++i) | 
|  | OperandList[i+1] = IdxList[i]; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                replaceUsesOfWithOnConstant implementations | 
|  |  | 
|  | /// replaceUsesOfWithOnConstant - Update this constant array to change uses of | 
|  | /// 'From' to be uses of 'To'.  This must update the uniquing data structures | 
|  | /// etc. | 
|  | /// | 
|  | /// Note that we intentionally replace all uses of From with To here.  Consider | 
|  | /// a large array that uses 'From' 1000 times.  By handling this case all here, | 
|  | /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that | 
|  | /// single invocation handles all 1000 uses.  Handling them one at a time would | 
|  | /// work, but would be really slow because it would have to unique each updated | 
|  | /// array instance. | 
|  | /// | 
|  | void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, | 
|  | Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *ToC = cast<Constant>(To); | 
|  |  | 
|  | LLVMContextImpl *pImpl = getType()->getContext().pImpl; | 
|  |  | 
|  | std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup; | 
|  | Lookup.first.first = cast<ArrayType>(getType()); | 
|  | Lookup.second = this; | 
|  |  | 
|  | std::vector<Constant*> &Values = Lookup.first.second; | 
|  | Values.reserve(getNumOperands());  // Build replacement array. | 
|  |  | 
|  | // Fill values with the modified operands of the constant array.  Also, | 
|  | // compute whether this turns into an all-zeros array. | 
|  | bool isAllZeros = false; | 
|  | unsigned NumUpdated = 0; | 
|  | if (!ToC->isNullValue()) { | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | if (Val == From) { | 
|  | Val = ToC; | 
|  | ++NumUpdated; | 
|  | } | 
|  | Values.push_back(Val); | 
|  | } | 
|  | } else { | 
|  | isAllZeros = true; | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | if (Val == From) { | 
|  | Val = ToC; | 
|  | ++NumUpdated; | 
|  | } | 
|  | Values.push_back(Val); | 
|  | if (isAllZeros) isAllZeros = Val->isNullValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *Replacement = 0; | 
|  | if (isAllZeros) { | 
|  | Replacement = ConstantAggregateZero::get(getType()); | 
|  | } else { | 
|  | // Check to see if we have this array type already. | 
|  | bool Exists; | 
|  | LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = | 
|  | pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists); | 
|  |  | 
|  | if (Exists) { | 
|  | Replacement = I->second; | 
|  | } else { | 
|  | // Okay, the new shape doesn't exist in the system yet.  Instead of | 
|  | // creating a new constant array, inserting it, replaceallusesof'ing the | 
|  | // old with the new, then deleting the old... just update the current one | 
|  | // in place! | 
|  | pImpl->ArrayConstants.MoveConstantToNewSlot(this, I); | 
|  |  | 
|  | // Update to the new value.  Optimize for the case when we have a single | 
|  | // operand that we're changing, but handle bulk updates efficiently. | 
|  | if (NumUpdated == 1) { | 
|  | unsigned OperandToUpdate = U - OperandList; | 
|  | assert(getOperand(OperandToUpdate) == From && | 
|  | "ReplaceAllUsesWith broken!"); | 
|  | setOperand(OperandToUpdate, ToC); | 
|  | } else { | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
|  | if (getOperand(i) == From) | 
|  | setOperand(i, ToC); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, I do need to replace this with an existing value. | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | replaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  | void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, | 
|  | Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *ToC = cast<Constant>(To); | 
|  |  | 
|  | unsigned OperandToUpdate = U-OperandList; | 
|  | assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); | 
|  |  | 
|  | std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup; | 
|  | Lookup.first.first = cast<StructType>(getType()); | 
|  | Lookup.second = this; | 
|  | std::vector<Constant*> &Values = Lookup.first.second; | 
|  | Values.reserve(getNumOperands());  // Build replacement struct. | 
|  |  | 
|  |  | 
|  | // Fill values with the modified operands of the constant struct.  Also, | 
|  | // compute whether this turns into an all-zeros struct. | 
|  | bool isAllZeros = false; | 
|  | if (!ToC->isNullValue()) { | 
|  | for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) | 
|  | Values.push_back(cast<Constant>(O->get())); | 
|  | } else { | 
|  | isAllZeros = true; | 
|  | for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
|  | Constant *Val = cast<Constant>(O->get()); | 
|  | Values.push_back(Val); | 
|  | if (isAllZeros) isAllZeros = Val->isNullValue(); | 
|  | } | 
|  | } | 
|  | Values[OperandToUpdate] = ToC; | 
|  |  | 
|  | LLVMContextImpl *pImpl = getContext().pImpl; | 
|  |  | 
|  | Constant *Replacement = 0; | 
|  | if (isAllZeros) { | 
|  | Replacement = ConstantAggregateZero::get(getType()); | 
|  | } else { | 
|  | // Check to see if we have this struct type already. | 
|  | bool Exists; | 
|  | LLVMContextImpl::StructConstantsTy::MapTy::iterator I = | 
|  | pImpl->StructConstants.InsertOrGetItem(Lookup, Exists); | 
|  |  | 
|  | if (Exists) { | 
|  | Replacement = I->second; | 
|  | } else { | 
|  | // Okay, the new shape doesn't exist in the system yet.  Instead of | 
|  | // creating a new constant struct, inserting it, replaceallusesof'ing the | 
|  | // old with the new, then deleting the old... just update the current one | 
|  | // in place! | 
|  | pImpl->StructConstants.MoveConstantToNewSlot(this, I); | 
|  |  | 
|  | // Update to the new value. | 
|  | setOperand(OperandToUpdate, ToC); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | replaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  | void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, | 
|  | Use *U) { | 
|  | assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
|  |  | 
|  | std::vector<Constant*> Values; | 
|  | Values.reserve(getNumOperands());  // Build replacement array... | 
|  | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
|  | Constant *Val = getOperand(i); | 
|  | if (Val == From) Val = cast<Constant>(To); | 
|  | Values.push_back(Val); | 
|  | } | 
|  |  | 
|  | Constant *Replacement = get(Values); | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | replaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } | 
|  |  | 
|  | void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, | 
|  | Use *U) { | 
|  | assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); | 
|  | Constant *To = cast<Constant>(ToV); | 
|  |  | 
|  | Constant *Replacement = 0; | 
|  | if (getOpcode() == Instruction::GetElementPtr) { | 
|  | SmallVector<Constant*, 8> Indices; | 
|  | Constant *Pointer = getOperand(0); | 
|  | Indices.reserve(getNumOperands()-1); | 
|  | if (Pointer == From) Pointer = To; | 
|  |  | 
|  | for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { | 
|  | Constant *Val = getOperand(i); | 
|  | if (Val == From) Val = To; | 
|  | Indices.push_back(Val); | 
|  | } | 
|  | Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices, | 
|  | cast<GEPOperator>(this)->isInBounds()); | 
|  | } else if (getOpcode() == Instruction::ExtractValue) { | 
|  | Constant *Agg = getOperand(0); | 
|  | if (Agg == From) Agg = To; | 
|  |  | 
|  | ArrayRef<unsigned> Indices = getIndices(); | 
|  | Replacement = ConstantExpr::getExtractValue(Agg, Indices); | 
|  | } else if (getOpcode() == Instruction::InsertValue) { | 
|  | Constant *Agg = getOperand(0); | 
|  | Constant *Val = getOperand(1); | 
|  | if (Agg == From) Agg = To; | 
|  | if (Val == From) Val = To; | 
|  |  | 
|  | ArrayRef<unsigned> Indices = getIndices(); | 
|  | Replacement = ConstantExpr::getInsertValue(Agg, Val, Indices); | 
|  | } else if (isCast()) { | 
|  | assert(getOperand(0) == From && "Cast only has one use!"); | 
|  | Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); | 
|  | } else if (getOpcode() == Instruction::Select) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | Constant *C3 = getOperand(2); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | if (C3 == From) C3 = To; | 
|  | Replacement = ConstantExpr::getSelect(C1, C2, C3); | 
|  | } else if (getOpcode() == Instruction::ExtractElement) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | Replacement = ConstantExpr::getExtractElement(C1, C2); | 
|  | } else if (getOpcode() == Instruction::InsertElement) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | Constant *C3 = getOperand(1); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | if (C3 == From) C3 = To; | 
|  | Replacement = ConstantExpr::getInsertElement(C1, C2, C3); | 
|  | } else if (getOpcode() == Instruction::ShuffleVector) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | Constant *C3 = getOperand(2); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | if (C3 == From) C3 = To; | 
|  | Replacement = ConstantExpr::getShuffleVector(C1, C2, C3); | 
|  | } else if (isCompare()) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | if (getOpcode() == Instruction::ICmp) | 
|  | Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); | 
|  | else { | 
|  | assert(getOpcode() == Instruction::FCmp); | 
|  | Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); | 
|  | } | 
|  | } else if (getNumOperands() == 2) { | 
|  | Constant *C1 = getOperand(0); | 
|  | Constant *C2 = getOperand(1); | 
|  | if (C1 == From) C1 = To; | 
|  | if (C2 == From) C2 = To; | 
|  | Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData); | 
|  | } else { | 
|  | llvm_unreachable("Unknown ConstantExpr type!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(Replacement != this && "I didn't contain From!"); | 
|  |  | 
|  | // Everyone using this now uses the replacement. | 
|  | replaceAllUsesWith(Replacement); | 
|  |  | 
|  | // Delete the old constant! | 
|  | destroyConstant(); | 
|  | } |