| //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | /// | 
 | /// \file | 
 | /// \brief | 
 | /// This file declares a class to represent arbitrary precision floating point | 
 | /// values and provide a variety of arithmetic operations on them. | 
 | /// | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #ifndef LLVM_ADT_APFLOAT_H | 
 | #define LLVM_ADT_APFLOAT_H | 
 |  | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include <memory> | 
 |  | 
 | namespace llvm { | 
 |  | 
 | struct fltSemantics; | 
 | class APSInt; | 
 | class StringRef; | 
 | class APFloat; | 
 | class raw_ostream; | 
 |  | 
 | template <typename T> class SmallVectorImpl; | 
 |  | 
 | /// Enum that represents what fraction of the LSB truncated bits of an fp number | 
 | /// represent. | 
 | /// | 
 | /// This essentially combines the roles of guard and sticky bits. | 
 | enum lostFraction { // Example of truncated bits: | 
 |   lfExactlyZero,    // 000000 | 
 |   lfLessThanHalf,   // 0xxxxx  x's not all zero | 
 |   lfExactlyHalf,    // 100000 | 
 |   lfMoreThanHalf    // 1xxxxx  x's not all zero | 
 | }; | 
 |  | 
 | /// \brief A self-contained host- and target-independent arbitrary-precision | 
 | /// floating-point software implementation. | 
 | /// | 
 | /// APFloat uses bignum integer arithmetic as provided by static functions in | 
 | /// the APInt class.  The library will work with bignum integers whose parts are | 
 | /// any unsigned type at least 16 bits wide, but 64 bits is recommended. | 
 | /// | 
 | /// Written for clarity rather than speed, in particular with a view to use in | 
 | /// the front-end of a cross compiler so that target arithmetic can be correctly | 
 | /// performed on the host.  Performance should nonetheless be reasonable, | 
 | /// particularly for its intended use.  It may be useful as a base | 
 | /// implementation for a run-time library during development of a faster | 
 | /// target-specific one. | 
 | /// | 
 | /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all | 
 | /// implemented operations.  Currently implemented operations are add, subtract, | 
 | /// multiply, divide, fused-multiply-add, conversion-to-float, | 
 | /// conversion-to-integer and conversion-from-integer.  New rounding modes | 
 | /// (e.g. away from zero) can be added with three or four lines of code. | 
 | /// | 
 | /// Four formats are built-in: IEEE single precision, double precision, | 
 | /// quadruple precision, and x87 80-bit extended double (when operating with | 
 | /// full extended precision).  Adding a new format that obeys IEEE semantics | 
 | /// only requires adding two lines of code: a declaration and definition of the | 
 | /// format. | 
 | /// | 
 | /// All operations return the status of that operation as an exception bit-mask, | 
 | /// so multiple operations can be done consecutively with their results or-ed | 
 | /// together.  The returned status can be useful for compiler diagnostics; e.g., | 
 | /// inexact, underflow and overflow can be easily diagnosed on constant folding, | 
 | /// and compiler optimizers can determine what exceptions would be raised by | 
 | /// folding operations and optimize, or perhaps not optimize, accordingly. | 
 | /// | 
 | /// At present, underflow tininess is detected after rounding; it should be | 
 | /// straight forward to add support for the before-rounding case too. | 
 | /// | 
 | /// The library reads hexadecimal floating point numbers as per C99, and | 
 | /// correctly rounds if necessary according to the specified rounding mode. | 
 | /// Syntax is required to have been validated by the caller.  It also converts | 
 | /// floating point numbers to hexadecimal text as per the C99 %a and %A | 
 | /// conversions.  The output precision (or alternatively the natural minimal | 
 | /// precision) can be specified; if the requested precision is less than the | 
 | /// natural precision the output is correctly rounded for the specified rounding | 
 | /// mode. | 
 | /// | 
 | /// It also reads decimal floating point numbers and correctly rounds according | 
 | /// to the specified rounding mode. | 
 | /// | 
 | /// Conversion to decimal text is not currently implemented. | 
 | /// | 
 | /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit | 
 | /// signed exponent, and the significand as an array of integer parts.  After | 
 | /// normalization of a number of precision P the exponent is within the range of | 
 | /// the format, and if the number is not denormal the P-th bit of the | 
 | /// significand is set as an explicit integer bit.  For denormals the most | 
 | /// significant bit is shifted right so that the exponent is maintained at the | 
 | /// format's minimum, so that the smallest denormal has just the least | 
 | /// significant bit of the significand set.  The sign of zeroes and infinities | 
 | /// is significant; the exponent and significand of such numbers is not stored, | 
 | /// but has a known implicit (deterministic) value: 0 for the significands, 0 | 
 | /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and | 
 | /// significand are deterministic, although not really meaningful, and preserved | 
 | /// in non-conversion operations.  The exponent is implicitly all 1 bits. | 
 | /// | 
 | /// APFloat does not provide any exception handling beyond default exception | 
 | /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause | 
 | /// by encoding Signaling NaNs with the first bit of its trailing significand as | 
 | /// 0. | 
 | /// | 
 | /// TODO | 
 | /// ==== | 
 | /// | 
 | /// Some features that may or may not be worth adding: | 
 | /// | 
 | /// Binary to decimal conversion (hard). | 
 | /// | 
 | /// Optional ability to detect underflow tininess before rounding. | 
 | /// | 
 | /// New formats: x87 in single and double precision mode (IEEE apart from | 
 | /// extended exponent range) (hard). | 
 | /// | 
 | /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. | 
 | /// | 
 |  | 
 | // This is the common type definitions shared by APFloat and its internal | 
 | // implementation classes. This struct should not define any non-static data | 
 | // members. | 
 | struct APFloatBase { | 
 |   /// A signed type to represent a floating point numbers unbiased exponent. | 
 |   typedef signed short ExponentType; | 
 |  | 
 |   /// \name Floating Point Semantics. | 
 |   /// @{ | 
 |  | 
 |   static const fltSemantics &IEEEhalf(); | 
 |   static const fltSemantics &IEEEsingle(); | 
 |   static const fltSemantics &IEEEdouble(); | 
 |   static const fltSemantics &IEEEquad(); | 
 |   static const fltSemantics &PPCDoubleDouble(); | 
 |   static const fltSemantics &x87DoubleExtended(); | 
 |  | 
 |   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with | 
 |   /// anything real. | 
 |   static const fltSemantics &Bogus(); | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// IEEE-754R 5.11: Floating Point Comparison Relations. | 
 |   enum cmpResult { | 
 |     cmpLessThan, | 
 |     cmpEqual, | 
 |     cmpGreaterThan, | 
 |     cmpUnordered | 
 |   }; | 
 |  | 
 |   /// IEEE-754R 4.3: Rounding-direction attributes. | 
 |   enum roundingMode { | 
 |     rmNearestTiesToEven, | 
 |     rmTowardPositive, | 
 |     rmTowardNegative, | 
 |     rmTowardZero, | 
 |     rmNearestTiesToAway | 
 |   }; | 
 |  | 
 |   /// IEEE-754R 7: Default exception handling. | 
 |   /// | 
 |   /// opUnderflow or opOverflow are always returned or-ed with opInexact. | 
 |   enum opStatus { | 
 |     opOK = 0x00, | 
 |     opInvalidOp = 0x01, | 
 |     opDivByZero = 0x02, | 
 |     opOverflow = 0x04, | 
 |     opUnderflow = 0x08, | 
 |     opInexact = 0x10 | 
 |   }; | 
 |  | 
 |   /// Category of internally-represented number. | 
 |   enum fltCategory { | 
 |     fcInfinity, | 
 |     fcNaN, | 
 |     fcNormal, | 
 |     fcZero | 
 |   }; | 
 |  | 
 |   /// Convenience enum used to construct an uninitialized APFloat. | 
 |   enum uninitializedTag { | 
 |     uninitialized | 
 |   }; | 
 |  | 
 |   /// \brief Enumeration of \c ilogb error results. | 
 |   enum IlogbErrorKinds { | 
 |     IEK_Zero = INT_MIN + 1, | 
 |     IEK_NaN = INT_MIN, | 
 |     IEK_Inf = INT_MAX | 
 |   }; | 
 |  | 
 |   static unsigned int semanticsPrecision(const fltSemantics &); | 
 |   static ExponentType semanticsMinExponent(const fltSemantics &); | 
 |   static ExponentType semanticsMaxExponent(const fltSemantics &); | 
 |   static unsigned int semanticsSizeInBits(const fltSemantics &); | 
 |  | 
 |   /// Returns the size of the floating point number (in bits) in the given | 
 |   /// semantics. | 
 |   static unsigned getSizeInBits(const fltSemantics &Sem); | 
 | }; | 
 |  | 
 | namespace detail { | 
 |  | 
 | class IEEEFloat final : public APFloatBase { | 
 | public: | 
 |   /// \name Constructors | 
 |   /// @{ | 
 |  | 
 |   IEEEFloat(const fltSemantics &); // Default construct to 0.0 | 
 |   IEEEFloat(const fltSemantics &, integerPart); | 
 |   IEEEFloat(const fltSemantics &, uninitializedTag); | 
 |   IEEEFloat(const fltSemantics &, const APInt &); | 
 |   explicit IEEEFloat(double d); | 
 |   explicit IEEEFloat(float f); | 
 |   IEEEFloat(const IEEEFloat &); | 
 |   IEEEFloat(IEEEFloat &&); | 
 |   ~IEEEFloat(); | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// \brief Returns whether this instance allocated memory. | 
 |   bool needsCleanup() const { return partCount() > 1; } | 
 |  | 
 |   /// \name Convenience "constructors" | 
 |   /// @{ | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// Used to insert APFloat objects, or objects that contain APFloat objects, | 
 |   /// into FoldingSets. | 
 |   void Profile(FoldingSetNodeID &NID) const; | 
 |  | 
 |   /// \name Arithmetic | 
 |   /// @{ | 
 |  | 
 |   opStatus add(const IEEEFloat &, roundingMode); | 
 |   opStatus subtract(const IEEEFloat &, roundingMode); | 
 |   opStatus multiply(const IEEEFloat &, roundingMode); | 
 |   opStatus divide(const IEEEFloat &, roundingMode); | 
 |   /// IEEE remainder. | 
 |   opStatus remainder(const IEEEFloat &); | 
 |   /// C fmod, or llvm frem. | 
 |   opStatus mod(const IEEEFloat &); | 
 |   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); | 
 |   opStatus roundToIntegral(roundingMode); | 
 |   /// IEEE-754R 5.3.1: nextUp/nextDown. | 
 |   opStatus next(bool nextDown); | 
 |  | 
 |   /// \brief Operator+ overload which provides the default | 
 |   /// \c nmNearestTiesToEven rounding mode and *no* error checking. | 
 |   IEEEFloat operator+(const IEEEFloat &RHS) const { | 
 |     IEEEFloat Result = *this; | 
 |     Result.add(RHS, rmNearestTiesToEven); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   /// \brief Operator- overload which provides the default | 
 |   /// \c nmNearestTiesToEven rounding mode and *no* error checking. | 
 |   IEEEFloat operator-(const IEEEFloat &RHS) const { | 
 |     IEEEFloat Result = *this; | 
 |     Result.subtract(RHS, rmNearestTiesToEven); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   /// \brief Operator* overload which provides the default | 
 |   /// \c nmNearestTiesToEven rounding mode and *no* error checking. | 
 |   IEEEFloat operator*(const IEEEFloat &RHS) const { | 
 |     IEEEFloat Result = *this; | 
 |     Result.multiply(RHS, rmNearestTiesToEven); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   /// \brief Operator/ overload which provides the default | 
 |   /// \c nmNearestTiesToEven rounding mode and *no* error checking. | 
 |   IEEEFloat operator/(const IEEEFloat &RHS) const { | 
 |     IEEEFloat Result = *this; | 
 |     Result.divide(RHS, rmNearestTiesToEven); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// \name Sign operations. | 
 |   /// @{ | 
 |  | 
 |   void changeSign(); | 
 |   void clearSign(); | 
 |   void copySign(const IEEEFloat &); | 
 |  | 
 |   /// \brief A static helper to produce a copy of an APFloat value with its sign | 
 |   /// copied from some other APFloat. | 
 |   static IEEEFloat copySign(IEEEFloat Value, const IEEEFloat &Sign) { | 
 |     Value.copySign(Sign); | 
 |     return Value; | 
 |   } | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// \name Conversions | 
 |   /// @{ | 
 |  | 
 |   opStatus convert(const fltSemantics &, roundingMode, bool *); | 
 |   opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode, | 
 |                             bool *) const; | 
 |   opStatus convertToInteger(APSInt &, roundingMode, bool *) const; | 
 |   opStatus convertFromAPInt(const APInt &, bool, roundingMode); | 
 |   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, | 
 |                                           bool, roundingMode); | 
 |   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, | 
 |                                           bool, roundingMode); | 
 |   opStatus convertFromString(StringRef, roundingMode); | 
 |   APInt bitcastToAPInt() const; | 
 |   double convertToDouble() const; | 
 |   float convertToFloat() const; | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// The definition of equality is not straightforward for floating point, so | 
 |   /// we won't use operator==.  Use one of the following, or write whatever it | 
 |   /// is you really mean. | 
 |   bool operator==(const IEEEFloat &) const = delete; | 
 |  | 
 |   /// IEEE comparison with another floating point number (NaNs compare | 
 |   /// unordered, 0==-0). | 
 |   cmpResult compare(const IEEEFloat &) const; | 
 |  | 
 |   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). | 
 |   bool bitwiseIsEqual(const IEEEFloat &) const; | 
 |  | 
 |   /// Write out a hexadecimal representation of the floating point value to DST, | 
 |   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. | 
 |   /// Return the number of characters written, excluding the terminating NUL. | 
 |   unsigned int convertToHexString(char *dst, unsigned int hexDigits, | 
 |                                   bool upperCase, roundingMode) const; | 
 |  | 
 |   /// \name IEEE-754R 5.7.2 General operations. | 
 |   /// @{ | 
 |  | 
 |   /// IEEE-754R isSignMinus: Returns true if and only if the current value is | 
 |   /// negative. | 
 |   /// | 
 |   /// This applies to zeros and NaNs as well. | 
 |   bool isNegative() const { return sign; } | 
 |  | 
 |   /// IEEE-754R isNormal: Returns true if and only if the current value is normal. | 
 |   /// | 
 |   /// This implies that the current value of the float is not zero, subnormal, | 
 |   /// infinite, or NaN following the definition of normality from IEEE-754R. | 
 |   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } | 
 |  | 
 |   /// Returns true if and only if the current value is zero, subnormal, or | 
 |   /// normal. | 
 |   /// | 
 |   /// This means that the value is not infinite or NaN. | 
 |   bool isFinite() const { return !isNaN() && !isInfinity(); } | 
 |  | 
 |   /// Returns true if and only if the float is plus or minus zero. | 
 |   bool isZero() const { return category == fcZero; } | 
 |  | 
 |   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a | 
 |   /// denormal. | 
 |   bool isDenormal() const; | 
 |  | 
 |   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. | 
 |   bool isInfinity() const { return category == fcInfinity; } | 
 |  | 
 |   /// Returns true if and only if the float is a quiet or signaling NaN. | 
 |   bool isNaN() const { return category == fcNaN; } | 
 |  | 
 |   /// Returns true if and only if the float is a signaling NaN. | 
 |   bool isSignaling() const; | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// \name Simple Queries | 
 |   /// @{ | 
 |  | 
 |   fltCategory getCategory() const { return category; } | 
 |   const fltSemantics &getSemantics() const { return *semantics; } | 
 |   bool isNonZero() const { return category != fcZero; } | 
 |   bool isFiniteNonZero() const { return isFinite() && !isZero(); } | 
 |   bool isPosZero() const { return isZero() && !isNegative(); } | 
 |   bool isNegZero() const { return isZero() && isNegative(); } | 
 |  | 
 |   /// Returns true if and only if the number has the smallest possible non-zero | 
 |   /// magnitude in the current semantics. | 
 |   bool isSmallest() const; | 
 |  | 
 |   /// Returns true if and only if the number has the largest possible finite | 
 |   /// magnitude in the current semantics. | 
 |   bool isLargest() const; | 
 |    | 
 |   /// Returns true if and only if the number is an exact integer. | 
 |   bool isInteger() const; | 
 |  | 
 |   /// @} | 
 |  | 
 |   IEEEFloat &operator=(const IEEEFloat &); | 
 |   IEEEFloat &operator=(IEEEFloat &&); | 
 |  | 
 |   /// \brief Overload to compute a hash code for an APFloat value. | 
 |   /// | 
 |   /// Note that the use of hash codes for floating point values is in general | 
 |   /// frought with peril. Equality is hard to define for these values. For | 
 |   /// example, should negative and positive zero hash to different codes? Are | 
 |   /// they equal or not? This hash value implementation specifically | 
 |   /// emphasizes producing different codes for different inputs in order to | 
 |   /// be used in canonicalization and memoization. As such, equality is | 
 |   /// bitwiseIsEqual, and 0 != -0. | 
 |   friend hash_code hash_value(const IEEEFloat &Arg); | 
 |  | 
 |   /// Converts this value into a decimal string. | 
 |   /// | 
 |   /// \param FormatPrecision The maximum number of digits of | 
 |   ///   precision to output.  If there are fewer digits available, | 
 |   ///   zero padding will not be used unless the value is | 
 |   ///   integral and small enough to be expressed in | 
 |   ///   FormatPrecision digits.  0 means to use the natural | 
 |   ///   precision of the number. | 
 |   /// \param FormatMaxPadding The maximum number of zeros to | 
 |   ///   consider inserting before falling back to scientific | 
 |   ///   notation.  0 means to always use scientific notation. | 
 |   /// | 
 |   /// Number       Precision    MaxPadding      Result | 
 |   /// ------       ---------    ----------      ------ | 
 |   /// 1.01E+4              5             2       10100 | 
 |   /// 1.01E+4              4             2       1.01E+4 | 
 |   /// 1.01E+4              5             1       1.01E+4 | 
 |   /// 1.01E-2              5             2       0.0101 | 
 |   /// 1.01E-2              4             2       0.0101 | 
 |   /// 1.01E-2              4             1       1.01E-2 | 
 |   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, | 
 |                 unsigned FormatMaxPadding = 3) const; | 
 |  | 
 |   /// If this value has an exact multiplicative inverse, store it in inv and | 
 |   /// return true. | 
 |   bool getExactInverse(IEEEFloat *inv) const; | 
 |  | 
 |   /// \brief Returns the exponent of the internal representation of the APFloat. | 
 |   /// | 
 |   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). | 
 |   /// For special APFloat values, this returns special error codes: | 
 |   /// | 
 |   ///   NaN -> \c IEK_NaN | 
 |   ///   0   -> \c IEK_Zero | 
 |   ///   Inf -> \c IEK_Inf | 
 |   /// | 
 |   friend int ilogb(const IEEEFloat &Arg); | 
 |  | 
 |   /// \brief Returns: X * 2^Exp for integral exponents. | 
 |   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); | 
 |  | 
 |   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); | 
 |  | 
 |   /// \name Special value setters. | 
 |   /// @{ | 
 |  | 
 |   void makeLargest(bool Neg = false); | 
 |   void makeSmallest(bool Neg = false); | 
 |   void makeNaN(bool SNaN = false, bool Neg = false, | 
 |                const APInt *fill = nullptr); | 
 |   void makeInf(bool Neg = false); | 
 |   void makeZero(bool Neg = false); | 
 |   void makeQuiet(); | 
 |  | 
 |   /// Returns the smallest (by magnitude) normalized finite number in the given | 
 |   /// semantics. | 
 |   /// | 
 |   /// \param Negative - True iff the number should be negative | 
 |   void makeSmallestNormalized(bool Negative = false); | 
 |  | 
 |   /// @} | 
 |  | 
 |   cmpResult compareAbsoluteValue(const IEEEFloat &) const; | 
 |  | 
 | private: | 
 |   /// \name Simple Queries | 
 |   /// @{ | 
 |  | 
 |   integerPart *significandParts(); | 
 |   const integerPart *significandParts() const; | 
 |   unsigned int partCount() const; | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// \name Significand operations. | 
 |   /// @{ | 
 |  | 
 |   integerPart addSignificand(const IEEEFloat &); | 
 |   integerPart subtractSignificand(const IEEEFloat &, integerPart); | 
 |   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); | 
 |   lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *); | 
 |   lostFraction divideSignificand(const IEEEFloat &); | 
 |   void incrementSignificand(); | 
 |   void initialize(const fltSemantics *); | 
 |   void shiftSignificandLeft(unsigned int); | 
 |   lostFraction shiftSignificandRight(unsigned int); | 
 |   unsigned int significandLSB() const; | 
 |   unsigned int significandMSB() const; | 
 |   void zeroSignificand(); | 
 |   /// Return true if the significand excluding the integral bit is all ones. | 
 |   bool isSignificandAllOnes() const; | 
 |   /// Return true if the significand excluding the integral bit is all zeros. | 
 |   bool isSignificandAllZeros() const; | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// \name Arithmetic on special values. | 
 |   /// @{ | 
 |  | 
 |   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); | 
 |   opStatus divideSpecials(const IEEEFloat &); | 
 |   opStatus multiplySpecials(const IEEEFloat &); | 
 |   opStatus modSpecials(const IEEEFloat &); | 
 |  | 
 |   /// @} | 
 |  | 
 |   /// \name Miscellany | 
 |   /// @{ | 
 |  | 
 |   bool convertFromStringSpecials(StringRef str); | 
 |   opStatus normalize(roundingMode, lostFraction); | 
 |   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); | 
 |   opStatus handleOverflow(roundingMode); | 
 |   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; | 
 |   opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool, | 
 |                                         roundingMode, bool *) const; | 
 |   opStatus convertFromUnsignedParts(const integerPart *, unsigned int, | 
 |                                     roundingMode); | 
 |   opStatus convertFromHexadecimalString(StringRef, roundingMode); | 
 |   opStatus convertFromDecimalString(StringRef, roundingMode); | 
 |   char *convertNormalToHexString(char *, unsigned int, bool, | 
 |                                  roundingMode) const; | 
 |   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, | 
 |                                         roundingMode); | 
 |  | 
 |   /// @} | 
 |  | 
 |   APInt convertHalfAPFloatToAPInt() const; | 
 |   APInt convertFloatAPFloatToAPInt() const; | 
 |   APInt convertDoubleAPFloatToAPInt() const; | 
 |   APInt convertQuadrupleAPFloatToAPInt() const; | 
 |   APInt convertF80LongDoubleAPFloatToAPInt() const; | 
 |   APInt convertPPCDoubleDoubleAPFloatToAPInt() const; | 
 |   void initFromAPInt(const fltSemantics *Sem, const APInt &api); | 
 |   void initFromHalfAPInt(const APInt &api); | 
 |   void initFromFloatAPInt(const APInt &api); | 
 |   void initFromDoubleAPInt(const APInt &api); | 
 |   void initFromQuadrupleAPInt(const APInt &api); | 
 |   void initFromF80LongDoubleAPInt(const APInt &api); | 
 |   void initFromPPCDoubleDoubleAPInt(const APInt &api); | 
 |  | 
 |   void assign(const IEEEFloat &); | 
 |   void copySignificand(const IEEEFloat &); | 
 |   void freeSignificand(); | 
 |  | 
 |   /// Note: this must be the first data member. | 
 |   /// The semantics that this value obeys. | 
 |   const fltSemantics *semantics; | 
 |  | 
 |   /// A binary fraction with an explicit integer bit. | 
 |   /// | 
 |   /// The significand must be at least one bit wider than the target precision. | 
 |   union Significand { | 
 |     integerPart part; | 
 |     integerPart *parts; | 
 |   } significand; | 
 |  | 
 |   /// The signed unbiased exponent of the value. | 
 |   ExponentType exponent; | 
 |  | 
 |   /// What kind of floating point number this is. | 
 |   /// | 
 |   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. | 
 |   /// Using the extra bit keeps it from failing under VisualStudio. | 
 |   fltCategory category : 3; | 
 |  | 
 |   /// Sign bit of the number. | 
 |   unsigned int sign : 1; | 
 | }; | 
 |  | 
 | hash_code hash_value(const IEEEFloat &Arg); | 
 | int ilogb(const IEEEFloat &Arg); | 
 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); | 
 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); | 
 |  | 
 | // This mode implements more precise float in terms of two APFloats. | 
 | // The interface and layout is designed for arbitray underlying semantics, | 
 | // though currently only PPCDoubleDouble semantics are supported, whose | 
 | // corresponding underlying semantics are IEEEdouble. | 
 | class DoubleAPFloat final : public APFloatBase { | 
 |   // Note: this must be the first data member. | 
 |   const fltSemantics *Semantics; | 
 |   std::unique_ptr<APFloat[]> Floats; | 
 |  | 
 |   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, | 
 |                    const APFloat &cc, roundingMode RM); | 
 |  | 
 |   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, | 
 |                           DoubleAPFloat &Out, roundingMode RM); | 
 |  | 
 | public: | 
 |   DoubleAPFloat(const fltSemantics &S); | 
 |   DoubleAPFloat(const fltSemantics &S, uninitializedTag); | 
 |   DoubleAPFloat(const fltSemantics &S, integerPart); | 
 |   DoubleAPFloat(const fltSemantics &S, const APInt &I); | 
 |   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); | 
 |   DoubleAPFloat(const DoubleAPFloat &RHS); | 
 |   DoubleAPFloat(DoubleAPFloat &&RHS); | 
 |  | 
 |   DoubleAPFloat &operator=(const DoubleAPFloat &RHS); | 
 |  | 
 |   DoubleAPFloat &operator=(DoubleAPFloat &&RHS) { | 
 |     if (this != &RHS) { | 
 |       this->~DoubleAPFloat(); | 
 |       new (this) DoubleAPFloat(std::move(RHS)); | 
 |     } | 
 |     return *this; | 
 |   } | 
 |  | 
 |   bool needsCleanup() const { return Floats != nullptr; } | 
 |  | 
 |   APFloat &getFirst() { return Floats[0]; } | 
 |   const APFloat &getFirst() const { return Floats[0]; } | 
 |   APFloat &getSecond() { return Floats[1]; } | 
 |   const APFloat &getSecond() const { return Floats[1]; } | 
 |  | 
 |   opStatus add(const DoubleAPFloat &RHS, roundingMode RM); | 
 |   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); | 
 |   void changeSign(); | 
 |   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; | 
 |  | 
 |   fltCategory getCategory() const; | 
 |   bool isNegative() const; | 
 |  | 
 |   void makeInf(bool Neg); | 
 |   void makeNaN(bool SNaN, bool Neg, const APInt *fill); | 
 | }; | 
 |  | 
 | } // End detail namespace | 
 |  | 
 | // This is a interface class that is currently forwarding functionalities from | 
 | // detail::IEEEFloat. | 
 | class APFloat : public APFloatBase { | 
 |   typedef detail::IEEEFloat IEEEFloat; | 
 |   typedef detail::DoubleAPFloat DoubleAPFloat; | 
 |  | 
 |   static_assert(std::is_standard_layout<IEEEFloat>::value, ""); | 
 |  | 
 |   union Storage { | 
 |     const fltSemantics *semantics; | 
 |     IEEEFloat IEEE; | 
 |     DoubleAPFloat Double; | 
 |  | 
 |     explicit Storage(IEEEFloat F, const fltSemantics &S); | 
 |     explicit Storage(DoubleAPFloat F, const fltSemantics &S) | 
 |         : Double(std::move(F)) { | 
 |       assert(&S == &PPCDoubleDouble()); | 
 |     } | 
 |  | 
 |     template <typename... ArgTypes> | 
 |     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { | 
 |       if (usesLayout<IEEEFloat>(Semantics)) { | 
 |         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...); | 
 |         return; | 
 |       } | 
 |       if (usesLayout<DoubleAPFloat>(Semantics)) { | 
 |         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...); | 
 |         return; | 
 |       } | 
 |       llvm_unreachable("Unexpected semantics"); | 
 |     } | 
 |  | 
 |     ~Storage() { | 
 |       if (usesLayout<IEEEFloat>(*semantics)) { | 
 |         IEEE.~IEEEFloat(); | 
 |         return; | 
 |       } | 
 |       if (usesLayout<DoubleAPFloat>(*semantics)) { | 
 |         Double.~DoubleAPFloat(); | 
 |         return; | 
 |       } | 
 |       llvm_unreachable("Unexpected semantics"); | 
 |     } | 
 |  | 
 |     Storage(const Storage &RHS) { | 
 |       if (usesLayout<IEEEFloat>(*RHS.semantics)) { | 
 |         new (this) IEEEFloat(RHS.IEEE); | 
 |         return; | 
 |       } | 
 |       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { | 
 |         new (this) DoubleAPFloat(RHS.Double); | 
 |         return; | 
 |       } | 
 |       llvm_unreachable("Unexpected semantics"); | 
 |     } | 
 |  | 
 |     Storage(Storage &&RHS) { | 
 |       if (usesLayout<IEEEFloat>(*RHS.semantics)) { | 
 |         new (this) IEEEFloat(std::move(RHS.IEEE)); | 
 |         return; | 
 |       } | 
 |       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { | 
 |         new (this) DoubleAPFloat(std::move(RHS.Double)); | 
 |         return; | 
 |       } | 
 |       llvm_unreachable("Unexpected semantics"); | 
 |     } | 
 |  | 
 |     Storage &operator=(const Storage &RHS) { | 
 |       if (usesLayout<IEEEFloat>(*semantics) && | 
 |           usesLayout<IEEEFloat>(*RHS.semantics)) { | 
 |         IEEE = RHS.IEEE; | 
 |       } else if (usesLayout<DoubleAPFloat>(*semantics) && | 
 |                  usesLayout<DoubleAPFloat>(*RHS.semantics)) { | 
 |         Double = RHS.Double; | 
 |       } else if (this != &RHS) { | 
 |         this->~Storage(); | 
 |         new (this) Storage(RHS); | 
 |       } | 
 |       return *this; | 
 |     } | 
 |  | 
 |     Storage &operator=(Storage &&RHS) { | 
 |       if (usesLayout<IEEEFloat>(*semantics) && | 
 |           usesLayout<IEEEFloat>(*RHS.semantics)) { | 
 |         IEEE = std::move(RHS.IEEE); | 
 |       } else if (usesLayout<DoubleAPFloat>(*semantics) && | 
 |                  usesLayout<DoubleAPFloat>(*RHS.semantics)) { | 
 |         Double = std::move(RHS.Double); | 
 |       } else if (this != &RHS) { | 
 |         this->~Storage(); | 
 |         new (this) Storage(std::move(RHS)); | 
 |       } | 
 |       return *this; | 
 |     } | 
 |   } U; | 
 |  | 
 |   template <typename T> static bool usesLayout(const fltSemantics &Semantics) { | 
 |     static_assert(std::is_same<T, IEEEFloat>::value || | 
 |                   std::is_same<T, DoubleAPFloat>::value, ""); | 
 |     if (std::is_same<T, DoubleAPFloat>::value) { | 
 |       return &Semantics == &PPCDoubleDouble(); | 
 |     } | 
 |     return &Semantics != &PPCDoubleDouble(); | 
 |   } | 
 |  | 
 |   IEEEFloat &getIEEE() { | 
 |     if (usesLayout<IEEEFloat>(*U.semantics)) | 
 |       return U.IEEE; | 
 |     if (usesLayout<DoubleAPFloat>(*U.semantics)) | 
 |       return U.Double.getFirst().U.IEEE; | 
 |     llvm_unreachable("Unexpected semantics"); | 
 |   } | 
 |  | 
 |   const IEEEFloat &getIEEE() const { | 
 |     if (usesLayout<IEEEFloat>(*U.semantics)) | 
 |       return U.IEEE; | 
 |     if (usesLayout<DoubleAPFloat>(*U.semantics)) | 
 |       return U.Double.getFirst().U.IEEE; | 
 |     llvm_unreachable("Unexpected semantics"); | 
 |   } | 
 |  | 
 |   void makeZero(bool Neg) { getIEEE().makeZero(Neg); } | 
 |  | 
 |   void makeInf(bool Neg) { | 
 |     if (usesLayout<IEEEFloat>(*U.semantics)) | 
 |       return U.IEEE.makeInf(Neg); | 
 |     if (usesLayout<DoubleAPFloat>(*U.semantics)) | 
 |       return U.Double.makeInf(Neg); | 
 |     llvm_unreachable("Unexpected semantics"); | 
 |   } | 
 |  | 
 |   void makeNaN(bool SNaN, bool Neg, const APInt *fill) { | 
 |     getIEEE().makeNaN(SNaN, Neg, fill); | 
 |   } | 
 |  | 
 |   void makeLargest(bool Neg) { getIEEE().makeLargest(Neg); } | 
 |  | 
 |   void makeSmallest(bool Neg) { getIEEE().makeSmallest(Neg); } | 
 |  | 
 |   void makeSmallestNormalized(bool Neg) { | 
 |     getIEEE().makeSmallestNormalized(Neg); | 
 |   } | 
 |  | 
 |   // FIXME: This is due to clang 3.3 (or older version) always checks for the | 
 |   // default constructor in an array aggregate initialization, even if no | 
 |   // elements in the array is default initialized. | 
 |   APFloat() : U(IEEEdouble()) { | 
 |     llvm_unreachable("This is a workaround for old clang."); | 
 |   } | 
 |  | 
 |   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} | 
 |   explicit APFloat(DoubleAPFloat F, const fltSemantics &S) | 
 |       : U(std::move(F), S) {} | 
 |  | 
 |   cmpResult compareAbsoluteValue(const APFloat &RHS) const { | 
 |     assert(&getSemantics() == &RHS.getSemantics()); | 
 |     if (usesLayout<IEEEFloat>(getSemantics())) | 
 |       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); | 
 |     if (usesLayout<DoubleAPFloat>(getSemantics())) | 
 |       return U.Double.compareAbsoluteValue(RHS.U.Double); | 
 |     llvm_unreachable("Unexpected semantics"); | 
 |   } | 
 |  | 
 | public: | 
 |   APFloat(const fltSemantics &Semantics) : U(Semantics) {} | 
 |   APFloat(const fltSemantics &Semantics, StringRef S); | 
 |   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} | 
 |   // TODO: Remove this constructor. This isn't faster than the first one. | 
 |   APFloat(const fltSemantics &Semantics, uninitializedTag) | 
 |       : U(Semantics, uninitialized) {} | 
 |   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} | 
 |   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} | 
 |   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} | 
 |   APFloat(const APFloat &RHS) = default; | 
 |   APFloat(APFloat &&RHS) = default; | 
 |  | 
 |   ~APFloat() = default; | 
 |  | 
 |   bool needsCleanup() const { | 
 |     if (usesLayout<IEEEFloat>(getSemantics())) | 
 |       return U.IEEE.needsCleanup(); | 
 |     if (usesLayout<DoubleAPFloat>(getSemantics())) | 
 |       return U.Double.needsCleanup(); | 
 |     llvm_unreachable("Unexpected semantics"); | 
 |   } | 
 |  | 
 |   /// Factory for Positive and Negative Zero. | 
 |   /// | 
 |   /// \param Negative True iff the number should be negative. | 
 |   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { | 
 |     APFloat Val(Sem, uninitialized); | 
 |     Val.makeZero(Negative); | 
 |     return Val; | 
 |   } | 
 |  | 
 |   /// Factory for Positive and Negative Infinity. | 
 |   /// | 
 |   /// \param Negative True iff the number should be negative. | 
 |   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { | 
 |     APFloat Val(Sem, uninitialized); | 
 |     Val.makeInf(Negative); | 
 |     return Val; | 
 |   } | 
 |  | 
 |   /// Factory for NaN values. | 
 |   /// | 
 |   /// \param Negative - True iff the NaN generated should be negative. | 
 |   /// \param type - The unspecified fill bits for creating the NaN, 0 by | 
 |   /// default.  The value is truncated as necessary. | 
 |   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, | 
 |                         unsigned type = 0) { | 
 |     if (type) { | 
 |       APInt fill(64, type); | 
 |       return getQNaN(Sem, Negative, &fill); | 
 |     } else { | 
 |       return getQNaN(Sem, Negative, nullptr); | 
 |     } | 
 |   } | 
 |  | 
 |   /// Factory for QNaN values. | 
 |   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, | 
 |                          const APInt *payload = nullptr) { | 
 |     APFloat Val(Sem, uninitialized); | 
 |     Val.makeNaN(false, Negative, payload); | 
 |     return Val; | 
 |   } | 
 |  | 
 |   /// Factory for SNaN values. | 
 |   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, | 
 |                          const APInt *payload = nullptr) { | 
 |     APFloat Val(Sem, uninitialized); | 
 |     Val.makeNaN(true, Negative, payload); | 
 |     return Val; | 
 |   } | 
 |  | 
 |   /// Returns the largest finite number in the given semantics. | 
 |   /// | 
 |   /// \param Negative - True iff the number should be negative | 
 |   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { | 
 |     APFloat Val(Sem, uninitialized); | 
 |     Val.makeLargest(Negative); | 
 |     return Val; | 
 |   } | 
 |  | 
 |   /// Returns the smallest (by magnitude) finite number in the given semantics. | 
 |   /// Might be denormalized, which implies a relative loss of precision. | 
 |   /// | 
 |   /// \param Negative - True iff the number should be negative | 
 |   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { | 
 |     APFloat Val(Sem, uninitialized); | 
 |     Val.makeSmallest(Negative); | 
 |     return Val; | 
 |   } | 
 |  | 
 |   /// Returns the smallest (by magnitude) normalized finite number in the given | 
 |   /// semantics. | 
 |   /// | 
 |   /// \param Negative - True iff the number should be negative | 
 |   static APFloat getSmallestNormalized(const fltSemantics &Sem, | 
 |                                        bool Negative = false) { | 
 |     APFloat Val(Sem, uninitialized); | 
 |     Val.makeSmallestNormalized(Negative); | 
 |     return Val; | 
 |   } | 
 |  | 
 |   /// Returns a float which is bitcasted from an all one value int. | 
 |   /// | 
 |   /// \param BitWidth - Select float type | 
 |   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE | 
 |   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false); | 
 |  | 
 |   void Profile(FoldingSetNodeID &NID) const { getIEEE().Profile(NID); } | 
 |  | 
 |   opStatus add(const APFloat &RHS, roundingMode RM) { | 
 |     if (usesLayout<IEEEFloat>(getSemantics())) | 
 |       return U.IEEE.add(RHS.U.IEEE, RM); | 
 |     if (usesLayout<DoubleAPFloat>(getSemantics())) | 
 |       return U.Double.add(RHS.U.Double, RM); | 
 |     llvm_unreachable("Unexpected semantics"); | 
 |   } | 
 |   opStatus subtract(const APFloat &RHS, roundingMode RM) { | 
 |     if (usesLayout<IEEEFloat>(getSemantics())) | 
 |       return U.IEEE.subtract(RHS.U.IEEE, RM); | 
 |     if (usesLayout<DoubleAPFloat>(getSemantics())) | 
 |       return U.Double.subtract(RHS.U.Double, RM); | 
 |     llvm_unreachable("Unexpected semantics"); | 
 |   } | 
 |   opStatus multiply(const APFloat &RHS, roundingMode RM) { | 
 |     return getIEEE().multiply(RHS.getIEEE(), RM); | 
 |   } | 
 |   opStatus divide(const APFloat &RHS, roundingMode RM) { | 
 |     return getIEEE().divide(RHS.getIEEE(), RM); | 
 |   } | 
 |   opStatus remainder(const APFloat &RHS) { | 
 |     return getIEEE().remainder(RHS.getIEEE()); | 
 |   } | 
 |   opStatus mod(const APFloat &RHS) { return getIEEE().mod(RHS.getIEEE()); } | 
 |   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, | 
 |                             roundingMode RM) { | 
 |     return getIEEE().fusedMultiplyAdd(Multiplicand.getIEEE(), Addend.getIEEE(), | 
 |                                       RM); | 
 |   } | 
 |   opStatus roundToIntegral(roundingMode RM) { | 
 |     return getIEEE().roundToIntegral(RM); | 
 |   } | 
 |   opStatus next(bool nextDown) { return getIEEE().next(nextDown); } | 
 |  | 
 |   APFloat operator+(const APFloat &RHS) const { | 
 |     return APFloat(getIEEE() + RHS.getIEEE(), getSemantics()); | 
 |   } | 
 |  | 
 |   APFloat operator-(const APFloat &RHS) const { | 
 |     return APFloat(getIEEE() - RHS.getIEEE(), getSemantics()); | 
 |   } | 
 |  | 
 |   APFloat operator*(const APFloat &RHS) const { | 
 |     return APFloat(getIEEE() * RHS.getIEEE(), getSemantics()); | 
 |   } | 
 |  | 
 |   APFloat operator/(const APFloat &RHS) const { | 
 |     return APFloat(getIEEE() / RHS.getIEEE(), getSemantics()); | 
 |   } | 
 |  | 
 |   void changeSign() { getIEEE().changeSign(); } | 
 |   void clearSign() { getIEEE().clearSign(); } | 
 |   void copySign(const APFloat &RHS) { getIEEE().copySign(RHS.getIEEE()); } | 
 |  | 
 |   static APFloat copySign(APFloat Value, const APFloat &Sign) { | 
 |     return APFloat(IEEEFloat::copySign(Value.getIEEE(), Sign.getIEEE()), | 
 |                    Value.getSemantics()); | 
 |   } | 
 |  | 
 |   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, | 
 |                    bool *losesInfo); | 
 |   opStatus convertToInteger(integerPart *Input, unsigned int Width, | 
 |                             bool IsSigned, roundingMode RM, | 
 |                             bool *IsExact) const { | 
 |     return getIEEE().convertToInteger(Input, Width, IsSigned, RM, IsExact); | 
 |   } | 
 |   opStatus convertToInteger(APSInt &Result, roundingMode RM, | 
 |                             bool *IsExact) const { | 
 |     return getIEEE().convertToInteger(Result, RM, IsExact); | 
 |   } | 
 |   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, | 
 |                             roundingMode RM) { | 
 |     return getIEEE().convertFromAPInt(Input, IsSigned, RM); | 
 |   } | 
 |   opStatus convertFromSignExtendedInteger(const integerPart *Input, | 
 |                                           unsigned int InputSize, bool IsSigned, | 
 |                                           roundingMode RM) { | 
 |     return getIEEE().convertFromSignExtendedInteger(Input, InputSize, IsSigned, | 
 |                                                     RM); | 
 |   } | 
 |   opStatus convertFromZeroExtendedInteger(const integerPart *Input, | 
 |                                           unsigned int InputSize, bool IsSigned, | 
 |                                           roundingMode RM) { | 
 |     return getIEEE().convertFromZeroExtendedInteger(Input, InputSize, IsSigned, | 
 |                                                     RM); | 
 |   } | 
 |   opStatus convertFromString(StringRef, roundingMode); | 
 |   APInt bitcastToAPInt() const { return getIEEE().bitcastToAPInt(); } | 
 |   double convertToDouble() const { return getIEEE().convertToDouble(); } | 
 |   float convertToFloat() const { return getIEEE().convertToFloat(); } | 
 |  | 
 |   bool operator==(const APFloat &) const = delete; | 
 |  | 
 |   cmpResult compare(const APFloat &RHS) const { | 
 |     return getIEEE().compare(RHS.getIEEE()); | 
 |   } | 
 |  | 
 |   bool bitwiseIsEqual(const APFloat &RHS) const { | 
 |     return getIEEE().bitwiseIsEqual(RHS.getIEEE()); | 
 |   } | 
 |  | 
 |   unsigned int convertToHexString(char *DST, unsigned int HexDigits, | 
 |                                   bool UpperCase, roundingMode RM) const { | 
 |     return getIEEE().convertToHexString(DST, HexDigits, UpperCase, RM); | 
 |   } | 
 |  | 
 |   bool isZero() const { return getCategory() == fcZero; } | 
 |   bool isInfinity() const { return getCategory() == fcInfinity; } | 
 |   bool isNaN() const { return getCategory() == fcNaN; } | 
 |  | 
 |   bool isNegative() const { return getIEEE().isNegative(); } | 
 |   bool isDenormal() const { return getIEEE().isDenormal(); } | 
 |   bool isSignaling() const { return getIEEE().isSignaling(); } | 
 |  | 
 |   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } | 
 |   bool isFinite() const { return !isNaN() && !isInfinity(); } | 
 |  | 
 |   fltCategory getCategory() const { return getIEEE().getCategory(); } | 
 |   const fltSemantics &getSemantics() const { return *U.semantics; } | 
 |   bool isNonZero() const { return !isZero(); } | 
 |   bool isFiniteNonZero() const { return isFinite() && !isZero(); } | 
 |   bool isPosZero() const { return isZero() && !isNegative(); } | 
 |   bool isNegZero() const { return isZero() && isNegative(); } | 
 |   bool isSmallest() const { return getIEEE().isSmallest(); } | 
 |   bool isLargest() const { return getIEEE().isLargest(); } | 
 |   bool isInteger() const { return getIEEE().isInteger(); } | 
 |  | 
 |   APFloat &operator=(const APFloat &RHS) = default; | 
 |   APFloat &operator=(APFloat &&RHS) = default; | 
 |  | 
 |   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, | 
 |                 unsigned FormatMaxPadding = 3) const { | 
 |     return getIEEE().toString(Str, FormatPrecision, FormatMaxPadding); | 
 |   } | 
 |  | 
 |   void print(raw_ostream &) const; | 
 |   void dump() const; | 
 |  | 
 |   bool getExactInverse(APFloat *inv) const { | 
 |     return getIEEE().getExactInverse(inv ? &inv->getIEEE() : nullptr); | 
 |   } | 
 |  | 
 |   // This is for internal test only. | 
 |   // TODO: Remove it after the PPCDoubleDouble transition. | 
 |   const APFloat &getSecondFloat() const { | 
 |     assert(&getSemantics() == &PPCDoubleDouble()); | 
 |     return U.Double.getSecond(); | 
 |   } | 
 |  | 
 |   friend hash_code hash_value(const APFloat &Arg); | 
 |   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } | 
 |   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); | 
 |   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); | 
 |   friend IEEEFloat; | 
 |   friend DoubleAPFloat; | 
 | }; | 
 |  | 
 | /// See friend declarations above. | 
 | /// | 
 | /// These additional declarations are required in order to compile LLVM with IBM | 
 | /// xlC compiler. | 
 | hash_code hash_value(const APFloat &Arg); | 
 | inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { | 
 |   return APFloat(scalbn(X.getIEEE(), Exp, RM), X.getSemantics()); | 
 | } | 
 |  | 
 | /// \brief Equivalent of C standard library function. | 
 | /// | 
 | /// While the C standard says Exp is an unspecified value for infinity and nan, | 
 | /// this returns INT_MAX for infinities, and INT_MIN for NaNs. | 
 | inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { | 
 |   return APFloat(frexp(X.getIEEE(), Exp, RM), X.getSemantics()); | 
 | } | 
 | /// \brief Returns the absolute value of the argument. | 
 | inline APFloat abs(APFloat X) { | 
 |   X.clearSign(); | 
 |   return X; | 
 | } | 
 |  | 
 | /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if | 
 | /// both are not NaN. If either argument is a NaN, returns the other argument. | 
 | LLVM_READONLY | 
 | inline APFloat minnum(const APFloat &A, const APFloat &B) { | 
 |   if (A.isNaN()) | 
 |     return B; | 
 |   if (B.isNaN()) | 
 |     return A; | 
 |   return (B.compare(A) == APFloat::cmpLessThan) ? B : A; | 
 | } | 
 |  | 
 | /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if | 
 | /// both are not NaN. If either argument is a NaN, returns the other argument. | 
 | LLVM_READONLY | 
 | inline APFloat maxnum(const APFloat &A, const APFloat &B) { | 
 |   if (A.isNaN()) | 
 |     return B; | 
 |   if (B.isNaN()) | 
 |     return A; | 
 |   return (A.compare(B) == APFloat::cmpLessThan) ? B : A; | 
 | } | 
 |  | 
 | } // namespace llvm | 
 |  | 
 | #endif // LLVM_ADT_APFLOAT_H |