| //===- InstCombinePHI.cpp -------------------------------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the visitPHINode function. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "InstCombine.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | using namespace llvm; | 
 |  | 
 | /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)] | 
 | /// and if a/b/c and the add's all have a single use, turn this into a phi | 
 | /// and a single binop. | 
 | Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { | 
 |   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); | 
 |   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); | 
 |   unsigned Opc = FirstInst->getOpcode(); | 
 |   Value *LHSVal = FirstInst->getOperand(0); | 
 |   Value *RHSVal = FirstInst->getOperand(1); | 
 |      | 
 |   Type *LHSType = LHSVal->getType(); | 
 |   Type *RHSType = RHSVal->getType(); | 
 |    | 
 |   bool isNUW = false, isNSW = false, isExact = false; | 
 |   if (OverflowingBinaryOperator *BO = | 
 |         dyn_cast<OverflowingBinaryOperator>(FirstInst)) { | 
 |     isNUW = BO->hasNoUnsignedWrap(); | 
 |     isNSW = BO->hasNoSignedWrap(); | 
 |   } else if (PossiblyExactOperator *PEO = | 
 |                dyn_cast<PossiblyExactOperator>(FirstInst)) | 
 |     isExact = PEO->isExact(); | 
 |    | 
 |   // Scan to see if all operands are the same opcode, and all have one use. | 
 |   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { | 
 |     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); | 
 |     if (!I || I->getOpcode() != Opc || !I->hasOneUse() || | 
 |         // Verify type of the LHS matches so we don't fold cmp's of different | 
 |         // types. | 
 |         I->getOperand(0)->getType() != LHSType || | 
 |         I->getOperand(1)->getType() != RHSType) | 
 |       return 0; | 
 |  | 
 |     // If they are CmpInst instructions, check their predicates | 
 |     if (CmpInst *CI = dyn_cast<CmpInst>(I)) | 
 |       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) | 
 |         return 0; | 
 |      | 
 |     if (isNUW) | 
 |       isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap(); | 
 |     if (isNSW) | 
 |       isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); | 
 |     if (isExact) | 
 |       isExact = cast<PossiblyExactOperator>(I)->isExact(); | 
 |      | 
 |     // Keep track of which operand needs a phi node. | 
 |     if (I->getOperand(0) != LHSVal) LHSVal = 0; | 
 |     if (I->getOperand(1) != RHSVal) RHSVal = 0; | 
 |   } | 
 |  | 
 |   // If both LHS and RHS would need a PHI, don't do this transformation, | 
 |   // because it would increase the number of PHIs entering the block, | 
 |   // which leads to higher register pressure. This is especially | 
 |   // bad when the PHIs are in the header of a loop. | 
 |   if (!LHSVal && !RHSVal) | 
 |     return 0; | 
 |    | 
 |   // Otherwise, this is safe to transform! | 
 |    | 
 |   Value *InLHS = FirstInst->getOperand(0); | 
 |   Value *InRHS = FirstInst->getOperand(1); | 
 |   PHINode *NewLHS = 0, *NewRHS = 0; | 
 |   if (LHSVal == 0) { | 
 |     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), | 
 |                              FirstInst->getOperand(0)->getName() + ".pn"); | 
 |     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); | 
 |     InsertNewInstBefore(NewLHS, PN); | 
 |     LHSVal = NewLHS; | 
 |   } | 
 |    | 
 |   if (RHSVal == 0) { | 
 |     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), | 
 |                              FirstInst->getOperand(1)->getName() + ".pn"); | 
 |     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); | 
 |     InsertNewInstBefore(NewRHS, PN); | 
 |     RHSVal = NewRHS; | 
 |   } | 
 |    | 
 |   // Add all operands to the new PHIs. | 
 |   if (NewLHS || NewRHS) { | 
 |     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |       Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); | 
 |       if (NewLHS) { | 
 |         Value *NewInLHS = InInst->getOperand(0); | 
 |         NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); | 
 |       } | 
 |       if (NewRHS) { | 
 |         Value *NewInRHS = InInst->getOperand(1); | 
 |         NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); | 
 |       } | 
 |     } | 
 |   } | 
 |      | 
 |   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { | 
 |     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), | 
 |                                      LHSVal, RHSVal); | 
 |     NewCI->setDebugLoc(FirstInst->getDebugLoc()); | 
 |     return NewCI; | 
 |   } | 
 |  | 
 |   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); | 
 |   BinaryOperator *NewBinOp = | 
 |     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); | 
 |   if (isNUW) NewBinOp->setHasNoUnsignedWrap(); | 
 |   if (isNSW) NewBinOp->setHasNoSignedWrap(); | 
 |   if (isExact) NewBinOp->setIsExact(); | 
 |   NewBinOp->setDebugLoc(FirstInst->getDebugLoc()); | 
 |   return NewBinOp; | 
 | } | 
 |  | 
 | Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { | 
 |   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); | 
 |    | 
 |   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),  | 
 |                                         FirstInst->op_end()); | 
 |   // This is true if all GEP bases are allocas and if all indices into them are | 
 |   // constants. | 
 |   bool AllBasePointersAreAllocas = true; | 
 |  | 
 |   // We don't want to replace this phi if the replacement would require | 
 |   // more than one phi, which leads to higher register pressure. This is | 
 |   // especially bad when the PHIs are in the header of a loop. | 
 |   bool NeededPhi = false; | 
 |    | 
 |   bool AllInBounds = true; | 
 |    | 
 |   // Scan to see if all operands are the same opcode, and all have one use. | 
 |   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { | 
 |     GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); | 
 |     if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || | 
 |       GEP->getNumOperands() != FirstInst->getNumOperands()) | 
 |       return 0; | 
 |  | 
 |     AllInBounds &= GEP->isInBounds(); | 
 |      | 
 |     // Keep track of whether or not all GEPs are of alloca pointers. | 
 |     if (AllBasePointersAreAllocas && | 
 |         (!isa<AllocaInst>(GEP->getOperand(0)) || | 
 |          !GEP->hasAllConstantIndices())) | 
 |       AllBasePointersAreAllocas = false; | 
 |      | 
 |     // Compare the operand lists. | 
 |     for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { | 
 |       if (FirstInst->getOperand(op) == GEP->getOperand(op)) | 
 |         continue; | 
 |        | 
 |       // Don't merge two GEPs when two operands differ (introducing phi nodes) | 
 |       // if one of the PHIs has a constant for the index.  The index may be | 
 |       // substantially cheaper to compute for the constants, so making it a | 
 |       // variable index could pessimize the path.  This also handles the case | 
 |       // for struct indices, which must always be constant. | 
 |       if (isa<ConstantInt>(FirstInst->getOperand(op)) || | 
 |           isa<ConstantInt>(GEP->getOperand(op))) | 
 |         return 0; | 
 |        | 
 |       if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) | 
 |         return 0; | 
 |  | 
 |       // If we already needed a PHI for an earlier operand, and another operand | 
 |       // also requires a PHI, we'd be introducing more PHIs than we're | 
 |       // eliminating, which increases register pressure on entry to the PHI's | 
 |       // block. | 
 |       if (NeededPhi) | 
 |         return 0; | 
 |  | 
 |       FixedOperands[op] = 0;  // Needs a PHI. | 
 |       NeededPhi = true; | 
 |     } | 
 |   } | 
 |    | 
 |   // If all of the base pointers of the PHI'd GEPs are from allocas, don't | 
 |   // bother doing this transformation.  At best, this will just save a bit of | 
 |   // offset calculation, but all the predecessors will have to materialize the | 
 |   // stack address into a register anyway.  We'd actually rather *clone* the | 
 |   // load up into the predecessors so that we have a load of a gep of an alloca, | 
 |   // which can usually all be folded into the load. | 
 |   if (AllBasePointersAreAllocas) | 
 |     return 0; | 
 |    | 
 |   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand | 
 |   // that is variable. | 
 |   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); | 
 |    | 
 |   bool HasAnyPHIs = false; | 
 |   for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { | 
 |     if (FixedOperands[i]) continue;  // operand doesn't need a phi. | 
 |     Value *FirstOp = FirstInst->getOperand(i); | 
 |     PHINode *NewPN = PHINode::Create(FirstOp->getType(), e, | 
 |                                      FirstOp->getName()+".pn"); | 
 |     InsertNewInstBefore(NewPN, PN); | 
 |      | 
 |     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); | 
 |     OperandPhis[i] = NewPN; | 
 |     FixedOperands[i] = NewPN; | 
 |     HasAnyPHIs = true; | 
 |   } | 
 |  | 
 |    | 
 |   // Add all operands to the new PHIs. | 
 |   if (HasAnyPHIs) { | 
 |     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |       GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); | 
 |       BasicBlock *InBB = PN.getIncomingBlock(i); | 
 |        | 
 |       for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) | 
 |         if (PHINode *OpPhi = OperandPhis[op]) | 
 |           OpPhi->addIncoming(InGEP->getOperand(op), InBB); | 
 |     } | 
 |   } | 
 |    | 
 |   Value *Base = FixedOperands[0]; | 
 |   GetElementPtrInst *NewGEP =  | 
 |     GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1)); | 
 |   if (AllInBounds) NewGEP->setIsInBounds(); | 
 |   NewGEP->setDebugLoc(FirstInst->getDebugLoc()); | 
 |   return NewGEP; | 
 | } | 
 |  | 
 |  | 
 | /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to | 
 | /// sink the load out of the block that defines it.  This means that it must be | 
 | /// obvious the value of the load is not changed from the point of the load to | 
 | /// the end of the block it is in. | 
 | /// | 
 | /// Finally, it is safe, but not profitable, to sink a load targeting a | 
 | /// non-address-taken alloca.  Doing so will cause us to not promote the alloca | 
 | /// to a register. | 
 | static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { | 
 |   BasicBlock::iterator BBI = L, E = L->getParent()->end(); | 
 |    | 
 |   for (++BBI; BBI != E; ++BBI) | 
 |     if (BBI->mayWriteToMemory()) | 
 |       return false; | 
 |    | 
 |   // Check for non-address taken alloca.  If not address-taken already, it isn't | 
 |   // profitable to do this xform. | 
 |   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { | 
 |     bool isAddressTaken = false; | 
 |     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); | 
 |          UI != E; ++UI) { | 
 |       User *U = *UI; | 
 |       if (isa<LoadInst>(U)) continue; | 
 |       if (StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
 |         // If storing TO the alloca, then the address isn't taken. | 
 |         if (SI->getOperand(1) == AI) continue; | 
 |       } | 
 |       isAddressTaken = true; | 
 |       break; | 
 |     } | 
 |      | 
 |     if (!isAddressTaken && AI->isStaticAlloca()) | 
 |       return false; | 
 |   } | 
 |    | 
 |   // If this load is a load from a GEP with a constant offset from an alloca, | 
 |   // then we don't want to sink it.  In its present form, it will be | 
 |   // load [constant stack offset].  Sinking it will cause us to have to | 
 |   // materialize the stack addresses in each predecessor in a register only to | 
 |   // do a shared load from register in the successor. | 
 |   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) | 
 |     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) | 
 |       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) | 
 |         return false; | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { | 
 |   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); | 
 |  | 
 |   // FIXME: This is overconservative; this transform is allowed in some cases | 
 |   // for atomic operations. | 
 |   if (FirstLI->isAtomic()) | 
 |     return 0; | 
 |  | 
 |   // When processing loads, we need to propagate two bits of information to the | 
 |   // sunk load: whether it is volatile, and what its alignment is.  We currently | 
 |   // don't sink loads when some have their alignment specified and some don't. | 
 |   // visitLoadInst will propagate an alignment onto the load when TD is around, | 
 |   // and if TD isn't around, we can't handle the mixed case. | 
 |   bool isVolatile = FirstLI->isVolatile(); | 
 |   unsigned LoadAlignment = FirstLI->getAlignment(); | 
 |   unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); | 
 |    | 
 |   // We can't sink the load if the loaded value could be modified between the | 
 |   // load and the PHI. | 
 |   if (FirstLI->getParent() != PN.getIncomingBlock(0) || | 
 |       !isSafeAndProfitableToSinkLoad(FirstLI)) | 
 |     return 0; | 
 |    | 
 |   // If the PHI is of volatile loads and the load block has multiple | 
 |   // successors, sinking it would remove a load of the volatile value from | 
 |   // the path through the other successor. | 
 |   if (isVolatile &&  | 
 |       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) | 
 |     return 0; | 
 |    | 
 |   // Check to see if all arguments are the same operation. | 
 |   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |     LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); | 
 |     if (!LI || !LI->hasOneUse()) | 
 |       return 0; | 
 |      | 
 |     // We can't sink the load if the loaded value could be modified between  | 
 |     // the load and the PHI. | 
 |     if (LI->isVolatile() != isVolatile || | 
 |         LI->getParent() != PN.getIncomingBlock(i) || | 
 |         LI->getPointerAddressSpace() != LoadAddrSpace || | 
 |         !isSafeAndProfitableToSinkLoad(LI)) | 
 |       return 0; | 
 |        | 
 |     // If some of the loads have an alignment specified but not all of them, | 
 |     // we can't do the transformation. | 
 |     if ((LoadAlignment != 0) != (LI->getAlignment() != 0)) | 
 |       return 0; | 
 |      | 
 |     LoadAlignment = std::min(LoadAlignment, LI->getAlignment()); | 
 |      | 
 |     // If the PHI is of volatile loads and the load block has multiple | 
 |     // successors, sinking it would remove a load of the volatile value from | 
 |     // the path through the other successor. | 
 |     if (isVolatile && | 
 |         LI->getParent()->getTerminator()->getNumSuccessors() != 1) | 
 |       return 0; | 
 |   } | 
 |    | 
 |   // Okay, they are all the same operation.  Create a new PHI node of the | 
 |   // correct type, and PHI together all of the LHS's of the instructions. | 
 |   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), | 
 |                                    PN.getNumIncomingValues(), | 
 |                                    PN.getName()+".in"); | 
 |    | 
 |   Value *InVal = FirstLI->getOperand(0); | 
 |   NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); | 
 |    | 
 |   // Add all operands to the new PHI. | 
 |   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |     Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0); | 
 |     if (NewInVal != InVal) | 
 |       InVal = 0; | 
 |     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); | 
 |   } | 
 |    | 
 |   Value *PhiVal; | 
 |   if (InVal) { | 
 |     // The new PHI unions all of the same values together.  This is really | 
 |     // common, so we handle it intelligently here for compile-time speed. | 
 |     PhiVal = InVal; | 
 |     delete NewPN; | 
 |   } else { | 
 |     InsertNewInstBefore(NewPN, PN); | 
 |     PhiVal = NewPN; | 
 |   } | 
 |    | 
 |   // If this was a volatile load that we are merging, make sure to loop through | 
 |   // and mark all the input loads as non-volatile.  If we don't do this, we will | 
 |   // insert a new volatile load and the old ones will not be deletable. | 
 |   if (isVolatile) | 
 |     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | 
 |       cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false); | 
 |    | 
 |   LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment); | 
 |   NewLI->setDebugLoc(FirstLI->getDebugLoc()); | 
 |   return NewLI; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" | 
 | /// operator and they all are only used by the PHI, PHI together their | 
 | /// inputs, and do the operation once, to the result of the PHI. | 
 | Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { | 
 |   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); | 
 |  | 
 |   if (isa<GetElementPtrInst>(FirstInst)) | 
 |     return FoldPHIArgGEPIntoPHI(PN); | 
 |   if (isa<LoadInst>(FirstInst)) | 
 |     return FoldPHIArgLoadIntoPHI(PN); | 
 |    | 
 |   // Scan the instruction, looking for input operations that can be folded away. | 
 |   // If all input operands to the phi are the same instruction (e.g. a cast from | 
 |   // the same type or "+42") we can pull the operation through the PHI, reducing | 
 |   // code size and simplifying code. | 
 |   Constant *ConstantOp = 0; | 
 |   Type *CastSrcTy = 0; | 
 |   bool isNUW = false, isNSW = false, isExact = false; | 
 |    | 
 |   if (isa<CastInst>(FirstInst)) { | 
 |     CastSrcTy = FirstInst->getOperand(0)->getType(); | 
 |  | 
 |     // Be careful about transforming integer PHIs.  We don't want to pessimize | 
 |     // the code by turning an i32 into an i1293. | 
 |     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { | 
 |       if (!ShouldChangeType(PN.getType(), CastSrcTy)) | 
 |         return 0; | 
 |     } | 
 |   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { | 
 |     // Can fold binop, compare or shift here if the RHS is a constant,  | 
 |     // otherwise call FoldPHIArgBinOpIntoPHI. | 
 |     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); | 
 |     if (ConstantOp == 0) | 
 |       return FoldPHIArgBinOpIntoPHI(PN); | 
 |      | 
 |     if (OverflowingBinaryOperator *BO = | 
 |         dyn_cast<OverflowingBinaryOperator>(FirstInst)) { | 
 |       isNUW = BO->hasNoUnsignedWrap(); | 
 |       isNSW = BO->hasNoSignedWrap(); | 
 |     } else if (PossiblyExactOperator *PEO = | 
 |                dyn_cast<PossiblyExactOperator>(FirstInst)) | 
 |       isExact = PEO->isExact(); | 
 |   } else { | 
 |     return 0;  // Cannot fold this operation. | 
 |   } | 
 |  | 
 |   // Check to see if all arguments are the same operation. | 
 |   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); | 
 |     if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) | 
 |       return 0; | 
 |     if (CastSrcTy) { | 
 |       if (I->getOperand(0)->getType() != CastSrcTy) | 
 |         return 0;  // Cast operation must match. | 
 |     } else if (I->getOperand(1) != ConstantOp) { | 
 |       return 0; | 
 |     } | 
 |      | 
 |     if (isNUW) | 
 |       isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap(); | 
 |     if (isNSW) | 
 |       isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); | 
 |     if (isExact) | 
 |       isExact = cast<PossiblyExactOperator>(I)->isExact(); | 
 |   } | 
 |  | 
 |   // Okay, they are all the same operation.  Create a new PHI node of the | 
 |   // correct type, and PHI together all of the LHS's of the instructions. | 
 |   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), | 
 |                                    PN.getNumIncomingValues(), | 
 |                                    PN.getName()+".in"); | 
 |  | 
 |   Value *InVal = FirstInst->getOperand(0); | 
 |   NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); | 
 |  | 
 |   // Add all operands to the new PHI. | 
 |   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); | 
 |     if (NewInVal != InVal) | 
 |       InVal = 0; | 
 |     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); | 
 |   } | 
 |  | 
 |   Value *PhiVal; | 
 |   if (InVal) { | 
 |     // The new PHI unions all of the same values together.  This is really | 
 |     // common, so we handle it intelligently here for compile-time speed. | 
 |     PhiVal = InVal; | 
 |     delete NewPN; | 
 |   } else { | 
 |     InsertNewInstBefore(NewPN, PN); | 
 |     PhiVal = NewPN; | 
 |   } | 
 |  | 
 |   // Insert and return the new operation. | 
 |   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { | 
 |     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, | 
 |                                        PN.getType()); | 
 |     NewCI->setDebugLoc(FirstInst->getDebugLoc()); | 
 |     return NewCI; | 
 |   } | 
 |    | 
 |   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { | 
 |     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); | 
 |     if (isNUW) BinOp->setHasNoUnsignedWrap(); | 
 |     if (isNSW) BinOp->setHasNoSignedWrap(); | 
 |     if (isExact) BinOp->setIsExact(); | 
 |     BinOp->setDebugLoc(FirstInst->getDebugLoc()); | 
 |     return BinOp; | 
 |   } | 
 |    | 
 |   CmpInst *CIOp = cast<CmpInst>(FirstInst); | 
 |   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), | 
 |                                    PhiVal, ConstantOp); | 
 |   NewCI->setDebugLoc(FirstInst->getDebugLoc()); | 
 |   return NewCI; | 
 | } | 
 |  | 
 | /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle | 
 | /// that is dead. | 
 | static bool DeadPHICycle(PHINode *PN, | 
 |                          SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) { | 
 |   if (PN->use_empty()) return true; | 
 |   if (!PN->hasOneUse()) return false; | 
 |  | 
 |   // Remember this node, and if we find the cycle, return. | 
 |   if (!PotentiallyDeadPHIs.insert(PN)) | 
 |     return true; | 
 |    | 
 |   // Don't scan crazily complex things. | 
 |   if (PotentiallyDeadPHIs.size() == 16) | 
 |     return false; | 
 |  | 
 |   if (PHINode *PU = dyn_cast<PHINode>(PN->use_back())) | 
 |     return DeadPHICycle(PU, PotentiallyDeadPHIs); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// PHIsEqualValue - Return true if this phi node is always equal to | 
 | /// NonPhiInVal.  This happens with mutually cyclic phi nodes like: | 
 | ///   z = some value; x = phi (y, z); y = phi (x, z) | 
 | static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,  | 
 |                            SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) { | 
 |   // See if we already saw this PHI node. | 
 |   if (!ValueEqualPHIs.insert(PN)) | 
 |     return true; | 
 |    | 
 |   // Don't scan crazily complex things. | 
 |   if (ValueEqualPHIs.size() == 16) | 
 |     return false; | 
 |   | 
 |   // Scan the operands to see if they are either phi nodes or are equal to | 
 |   // the value. | 
 |   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
 |     Value *Op = PN->getIncomingValue(i); | 
 |     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { | 
 |       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) | 
 |         return false; | 
 |     } else if (Op != NonPhiInVal) | 
 |       return false; | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | namespace { | 
 | struct PHIUsageRecord { | 
 |   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on) | 
 |   unsigned Shift;     // The amount shifted. | 
 |   Instruction *Inst;  // The trunc instruction. | 
 |    | 
 |   PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) | 
 |     : PHIId(pn), Shift(Sh), Inst(User) {} | 
 |    | 
 |   bool operator<(const PHIUsageRecord &RHS) const { | 
 |     if (PHIId < RHS.PHIId) return true; | 
 |     if (PHIId > RHS.PHIId) return false; | 
 |     if (Shift < RHS.Shift) return true; | 
 |     if (Shift > RHS.Shift) return false; | 
 |     return Inst->getType()->getPrimitiveSizeInBits() < | 
 |            RHS.Inst->getType()->getPrimitiveSizeInBits(); | 
 |   } | 
 | }; | 
 |    | 
 | struct LoweredPHIRecord { | 
 |   PHINode *PN;        // The PHI that was lowered. | 
 |   unsigned Shift;     // The amount shifted. | 
 |   unsigned Width;     // The width extracted. | 
 |    | 
 |   LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty) | 
 |     : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} | 
 |    | 
 |   // Ctor form used by DenseMap. | 
 |   LoweredPHIRecord(PHINode *pn, unsigned Sh) | 
 |     : PN(pn), Shift(Sh), Width(0) {} | 
 | }; | 
 | } | 
 |  | 
 | namespace llvm { | 
 |   template<> | 
 |   struct DenseMapInfo<LoweredPHIRecord> { | 
 |     static inline LoweredPHIRecord getEmptyKey() { | 
 |       return LoweredPHIRecord(0, 0); | 
 |     } | 
 |     static inline LoweredPHIRecord getTombstoneKey() { | 
 |       return LoweredPHIRecord(0, 1); | 
 |     } | 
 |     static unsigned getHashValue(const LoweredPHIRecord &Val) { | 
 |       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ | 
 |              (Val.Width>>3); | 
 |     } | 
 |     static bool isEqual(const LoweredPHIRecord &LHS, | 
 |                         const LoweredPHIRecord &RHS) { | 
 |       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && | 
 |              LHS.Width == RHS.Width; | 
 |     } | 
 |   }; | 
 |   template <> | 
 |   struct isPodLike<LoweredPHIRecord> { static const bool value = true; }; | 
 | } | 
 |  | 
 |  | 
 | /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an | 
 | /// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If | 
 | /// so, we split the PHI into the various pieces being extracted.  This sort of | 
 | /// thing is introduced when SROA promotes an aggregate to large integer values. | 
 | /// | 
 | /// TODO: The user of the trunc may be an bitcast to float/double/vector or an | 
 | /// inttoptr.  We should produce new PHIs in the right type. | 
 | /// | 
 | Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { | 
 |   // PHIUsers - Keep track of all of the truncated values extracted from a set | 
 |   // of PHIs, along with their offset.  These are the things we want to rewrite. | 
 |   SmallVector<PHIUsageRecord, 16> PHIUsers; | 
 |    | 
 |   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI | 
 |   // nodes which are extracted from. PHIsToSlice is a set we use to avoid | 
 |   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to | 
 |   // check the uses of (to ensure they are all extracts). | 
 |   SmallVector<PHINode*, 8> PHIsToSlice; | 
 |   SmallPtrSet<PHINode*, 8> PHIsInspected; | 
 |    | 
 |   PHIsToSlice.push_back(&FirstPhi); | 
 |   PHIsInspected.insert(&FirstPhi); | 
 |    | 
 |   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { | 
 |     PHINode *PN = PHIsToSlice[PHIId]; | 
 |      | 
 |     // Scan the input list of the PHI.  If any input is an invoke, and if the | 
 |     // input is defined in the predecessor, then we won't be split the critical | 
 |     // edge which is required to insert a truncate.  Because of this, we have to | 
 |     // bail out. | 
 |     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
 |       InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); | 
 |       if (II == 0) continue; | 
 |       if (II->getParent() != PN->getIncomingBlock(i)) | 
 |         continue; | 
 |       | 
 |       // If we have a phi, and if it's directly in the predecessor, then we have | 
 |       // a critical edge where we need to put the truncate.  Since we can't | 
 |       // split the edge in instcombine, we have to bail out. | 
 |       return 0; | 
 |     } | 
 |        | 
 |      | 
 |     for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); | 
 |          UI != E; ++UI) { | 
 |       Instruction *User = cast<Instruction>(*UI); | 
 |        | 
 |       // If the user is a PHI, inspect its uses recursively. | 
 |       if (PHINode *UserPN = dyn_cast<PHINode>(User)) { | 
 |         if (PHIsInspected.insert(UserPN)) | 
 |           PHIsToSlice.push_back(UserPN); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // Truncates are always ok. | 
 |       if (isa<TruncInst>(User)) { | 
 |         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User)); | 
 |         continue; | 
 |       } | 
 |        | 
 |       // Otherwise it must be a lshr which can only be used by one trunc. | 
 |       if (User->getOpcode() != Instruction::LShr || | 
 |           !User->hasOneUse() || !isa<TruncInst>(User->use_back()) || | 
 |           !isa<ConstantInt>(User->getOperand(1))) | 
 |         return 0; | 
 |        | 
 |       unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue(); | 
 |       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back())); | 
 |     } | 
 |   } | 
 |    | 
 |   // If we have no users, they must be all self uses, just nuke the PHI. | 
 |   if (PHIUsers.empty()) | 
 |     return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); | 
 |    | 
 |   // If this phi node is transformable, create new PHIs for all the pieces | 
 |   // extracted out of it.  First, sort the users by their offset and size. | 
 |   array_pod_sort(PHIUsers.begin(), PHIUsers.end()); | 
 |    | 
 |   DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n'; | 
 |             for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) | 
 |               errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n'; | 
 |         ); | 
 |    | 
 |   // PredValues - This is a temporary used when rewriting PHI nodes.  It is | 
 |   // hoisted out here to avoid construction/destruction thrashing. | 
 |   DenseMap<BasicBlock*, Value*> PredValues; | 
 |    | 
 |   // ExtractedVals - Each new PHI we introduce is saved here so we don't | 
 |   // introduce redundant PHIs. | 
 |   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; | 
 |    | 
 |   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { | 
 |     unsigned PHIId = PHIUsers[UserI].PHIId; | 
 |     PHINode *PN = PHIsToSlice[PHIId]; | 
 |     unsigned Offset = PHIUsers[UserI].Shift; | 
 |     Type *Ty = PHIUsers[UserI].Inst->getType(); | 
 |      | 
 |     PHINode *EltPHI; | 
 |      | 
 |     // If we've already lowered a user like this, reuse the previously lowered | 
 |     // value. | 
 |     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) { | 
 |        | 
 |       // Otherwise, Create the new PHI node for this user. | 
 |       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), | 
 |                                PN->getName()+".off"+Twine(Offset), PN); | 
 |       assert(EltPHI->getType() != PN->getType() && | 
 |              "Truncate didn't shrink phi?"); | 
 |      | 
 |       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
 |         BasicBlock *Pred = PN->getIncomingBlock(i); | 
 |         Value *&PredVal = PredValues[Pred]; | 
 |          | 
 |         // If we already have a value for this predecessor, reuse it. | 
 |         if (PredVal) { | 
 |           EltPHI->addIncoming(PredVal, Pred); | 
 |           continue; | 
 |         } | 
 |  | 
 |         // Handle the PHI self-reuse case. | 
 |         Value *InVal = PN->getIncomingValue(i); | 
 |         if (InVal == PN) { | 
 |           PredVal = EltPHI; | 
 |           EltPHI->addIncoming(PredVal, Pred); | 
 |           continue; | 
 |         } | 
 |          | 
 |         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { | 
 |           // If the incoming value was a PHI, and if it was one of the PHIs we | 
 |           // already rewrote it, just use the lowered value. | 
 |           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { | 
 |             PredVal = Res; | 
 |             EltPHI->addIncoming(PredVal, Pred); | 
 |             continue; | 
 |           } | 
 |         } | 
 |          | 
 |         // Otherwise, do an extract in the predecessor. | 
 |         Builder->SetInsertPoint(Pred, Pred->getTerminator()); | 
 |         Value *Res = InVal; | 
 |         if (Offset) | 
 |           Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(), | 
 |                                                           Offset), "extract"); | 
 |         Res = Builder->CreateTrunc(Res, Ty, "extract.t"); | 
 |         PredVal = Res; | 
 |         EltPHI->addIncoming(Res, Pred); | 
 |          | 
 |         // If the incoming value was a PHI, and if it was one of the PHIs we are | 
 |         // rewriting, we will ultimately delete the code we inserted.  This | 
 |         // means we need to revisit that PHI to make sure we extract out the | 
 |         // needed piece. | 
 |         if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) | 
 |           if (PHIsInspected.count(OldInVal)) { | 
 |             unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(), | 
 |                                           OldInVal)-PHIsToSlice.begin(); | 
 |             PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,  | 
 |                                               cast<Instruction>(Res))); | 
 |             ++UserE; | 
 |           } | 
 |       } | 
 |       PredValues.clear(); | 
 |        | 
 |       DEBUG(errs() << "  Made element PHI for offset " << Offset << ": " | 
 |                    << *EltPHI << '\n'); | 
 |       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; | 
 |     } | 
 |      | 
 |     // Replace the use of this piece with the PHI node. | 
 |     ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); | 
 |   } | 
 |    | 
 |   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) | 
 |   // with undefs. | 
 |   Value *Undef = UndefValue::get(FirstPhi.getType()); | 
 |   for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) | 
 |     ReplaceInstUsesWith(*PHIsToSlice[i], Undef); | 
 |   return ReplaceInstUsesWith(FirstPhi, Undef); | 
 | } | 
 |  | 
 | // PHINode simplification | 
 | // | 
 | Instruction *InstCombiner::visitPHINode(PHINode &PN) { | 
 |   if (Value *V = SimplifyInstruction(&PN, TD)) | 
 |     return ReplaceInstUsesWith(PN, V); | 
 |  | 
 |   // If all PHI operands are the same operation, pull them through the PHI, | 
 |   // reducing code size. | 
 |   if (isa<Instruction>(PN.getIncomingValue(0)) && | 
 |       isa<Instruction>(PN.getIncomingValue(1)) && | 
 |       cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == | 
 |       cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && | 
 |       // FIXME: The hasOneUse check will fail for PHIs that use the value more | 
 |       // than themselves more than once. | 
 |       PN.getIncomingValue(0)->hasOneUse()) | 
 |     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) | 
 |       return Result; | 
 |  | 
 |   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if | 
 |   // this PHI only has a single use (a PHI), and if that PHI only has one use (a | 
 |   // PHI)... break the cycle. | 
 |   if (PN.hasOneUse()) { | 
 |     Instruction *PHIUser = cast<Instruction>(PN.use_back()); | 
 |     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { | 
 |       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; | 
 |       PotentiallyDeadPHIs.insert(&PN); | 
 |       if (DeadPHICycle(PU, PotentiallyDeadPHIs)) | 
 |         return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); | 
 |     } | 
 |     | 
 |     // If this phi has a single use, and if that use just computes a value for | 
 |     // the next iteration of a loop, delete the phi.  This occurs with unused | 
 |     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this | 
 |     // common case here is good because the only other things that catch this | 
 |     // are induction variable analysis (sometimes) and ADCE, which is only run | 
 |     // late. | 
 |     if (PHIUser->hasOneUse() && | 
 |         (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && | 
 |         PHIUser->use_back() == &PN) { | 
 |       return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); | 
 |     } | 
 |   } | 
 |  | 
 |   // We sometimes end up with phi cycles that non-obviously end up being the | 
 |   // same value, for example: | 
 |   //   z = some value; x = phi (y, z); y = phi (x, z) | 
 |   // where the phi nodes don't necessarily need to be in the same block.  Do a | 
 |   // quick check to see if the PHI node only contains a single non-phi value, if | 
 |   // so, scan to see if the phi cycle is actually equal to that value. | 
 |   { | 
 |     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); | 
 |     // Scan for the first non-phi operand. | 
 |     while (InValNo != NumIncomingVals && | 
 |            isa<PHINode>(PN.getIncomingValue(InValNo))) | 
 |       ++InValNo; | 
 |  | 
 |     if (InValNo != NumIncomingVals) { | 
 |       Value *NonPhiInVal = PN.getIncomingValue(InValNo); | 
 |        | 
 |       // Scan the rest of the operands to see if there are any conflicts, if so | 
 |       // there is no need to recursively scan other phis. | 
 |       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { | 
 |         Value *OpVal = PN.getIncomingValue(InValNo); | 
 |         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) | 
 |           break; | 
 |       } | 
 |        | 
 |       // If we scanned over all operands, then we have one unique value plus | 
 |       // phi values.  Scan PHI nodes to see if they all merge in each other or | 
 |       // the value. | 
 |       if (InValNo == NumIncomingVals) { | 
 |         SmallPtrSet<PHINode*, 16> ValueEqualPHIs; | 
 |         if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) | 
 |           return ReplaceInstUsesWith(PN, NonPhiInVal); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If there are multiple PHIs, sort their operands so that they all list | 
 |   // the blocks in the same order. This will help identical PHIs be eliminated | 
 |   // by other passes. Other passes shouldn't depend on this for correctness | 
 |   // however. | 
 |   PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); | 
 |   if (&PN != FirstPN) | 
 |     for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { | 
 |       BasicBlock *BBA = PN.getIncomingBlock(i); | 
 |       BasicBlock *BBB = FirstPN->getIncomingBlock(i); | 
 |       if (BBA != BBB) { | 
 |         Value *VA = PN.getIncomingValue(i); | 
 |         unsigned j = PN.getBasicBlockIndex(BBB); | 
 |         Value *VB = PN.getIncomingValue(j); | 
 |         PN.setIncomingBlock(i, BBB); | 
 |         PN.setIncomingValue(i, VB); | 
 |         PN.setIncomingBlock(j, BBA); | 
 |         PN.setIncomingValue(j, VA); | 
 |         // NOTE: Instcombine normally would want us to "return &PN" if we | 
 |         // modified any of the operands of an instruction.  However, since we | 
 |         // aren't adding or removing uses (just rearranging them) we don't do | 
 |         // this in this case. | 
 |       } | 
 |     } | 
 |  | 
 |   // If this is an integer PHI and we know that it has an illegal type, see if | 
 |   // it is only used by trunc or trunc(lshr) operations.  If so, we split the | 
 |   // PHI into the various pieces being extracted.  This sort of thing is | 
 |   // introduced when SROA promotes an aggregate to a single large integer type. | 
 |   if (PN.getType()->isIntegerTy() && TD && | 
 |       !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) | 
 |     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) | 
 |       return Res; | 
 |    | 
 |   return 0; | 
 | } |