|  | //===-- ConstantRange.cpp - ConstantRange implementation ------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Represent a range of possible values that may occur when the program is run | 
|  | // for an integral value.  This keeps track of a lower and upper bound for the | 
|  | // constant, which MAY wrap around the end of the numeric range.  To do this, it | 
|  | // keeps track of a [lower, upper) bound, which specifies an interval just like | 
|  | // STL iterators.  When used with boolean values, the following are important | 
|  | // ranges (other integral ranges use min/max values for special range values): | 
|  | // | 
|  | //  [F, F) = {}     = Empty set | 
|  | //  [T, F) = {T} | 
|  | //  [F, T) = {F} | 
|  | //  [T, T) = {F, T} = Full set | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/InstrTypes.h" | 
|  | #include "llvm/Support/ConstantRange.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | /// Initialize a full (the default) or empty set for the specified type. | 
|  | /// | 
|  | ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) { | 
|  | if (Full) | 
|  | Lower = Upper = APInt::getMaxValue(BitWidth); | 
|  | else | 
|  | Lower = Upper = APInt::getMinValue(BitWidth); | 
|  | } | 
|  |  | 
|  | /// Initialize a range to hold the single specified value. | 
|  | /// | 
|  | ConstantRange::ConstantRange(const APInt &V) : Lower(V), Upper(V + 1) {} | 
|  |  | 
|  | ConstantRange::ConstantRange(const APInt &L, const APInt &U) : | 
|  | Lower(L), Upper(U) { | 
|  | assert(L.getBitWidth() == U.getBitWidth() && | 
|  | "ConstantRange with unequal bit widths"); | 
|  | assert((L != U || (L.isMaxValue() || L.isMinValue())) && | 
|  | "Lower == Upper, but they aren't min or max value!"); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::makeICmpRegion(unsigned Pred, | 
|  | const ConstantRange &CR) { | 
|  | if (CR.isEmptySet()) | 
|  | return CR; | 
|  |  | 
|  | uint32_t W = CR.getBitWidth(); | 
|  | switch (Pred) { | 
|  | default: assert(0 && "Invalid ICmp predicate to makeICmpRegion()"); | 
|  | case CmpInst::ICMP_EQ: | 
|  | return CR; | 
|  | case CmpInst::ICMP_NE: | 
|  | if (CR.isSingleElement()) | 
|  | return ConstantRange(CR.getUpper(), CR.getLower()); | 
|  | return ConstantRange(W); | 
|  | case CmpInst::ICMP_ULT: { | 
|  | APInt UMax(CR.getUnsignedMax()); | 
|  | if (UMax.isMinValue()) | 
|  | return ConstantRange(W, /* empty */ false); | 
|  | return ConstantRange(APInt::getMinValue(W), UMax); | 
|  | } | 
|  | case CmpInst::ICMP_SLT: { | 
|  | APInt SMax(CR.getSignedMax()); | 
|  | if (SMax.isMinSignedValue()) | 
|  | return ConstantRange(W, /* empty */ false); | 
|  | return ConstantRange(APInt::getSignedMinValue(W), SMax); | 
|  | } | 
|  | case CmpInst::ICMP_ULE: { | 
|  | APInt UMax(CR.getUnsignedMax()); | 
|  | if (UMax.isMaxValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(APInt::getMinValue(W), UMax + 1); | 
|  | } | 
|  | case CmpInst::ICMP_SLE: { | 
|  | APInt SMax(CR.getSignedMax()); | 
|  | if (SMax.isMaxSignedValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(APInt::getSignedMinValue(W), SMax + 1); | 
|  | } | 
|  | case CmpInst::ICMP_UGT: { | 
|  | APInt UMin(CR.getUnsignedMin()); | 
|  | if (UMin.isMaxValue()) | 
|  | return ConstantRange(W, /* empty */ false); | 
|  | return ConstantRange(UMin + 1, APInt::getNullValue(W)); | 
|  | } | 
|  | case CmpInst::ICMP_SGT: { | 
|  | APInt SMin(CR.getSignedMin()); | 
|  | if (SMin.isMaxSignedValue()) | 
|  | return ConstantRange(W, /* empty */ false); | 
|  | return ConstantRange(SMin + 1, APInt::getSignedMinValue(W)); | 
|  | } | 
|  | case CmpInst::ICMP_UGE: { | 
|  | APInt UMin(CR.getUnsignedMin()); | 
|  | if (UMin.isMinValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(UMin, APInt::getNullValue(W)); | 
|  | } | 
|  | case CmpInst::ICMP_SGE: { | 
|  | APInt SMin(CR.getSignedMin()); | 
|  | if (SMin.isMinSignedValue()) | 
|  | return ConstantRange(W); | 
|  | return ConstantRange(SMin, APInt::getSignedMinValue(W)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isFullSet - Return true if this set contains all of the elements possible | 
|  | /// for this data-type | 
|  | bool ConstantRange::isFullSet() const { | 
|  | return Lower == Upper && Lower.isMaxValue(); | 
|  | } | 
|  |  | 
|  | /// isEmptySet - Return true if this set contains no members. | 
|  | /// | 
|  | bool ConstantRange::isEmptySet() const { | 
|  | return Lower == Upper && Lower.isMinValue(); | 
|  | } | 
|  |  | 
|  | /// isWrappedSet - Return true if this set wraps around the top of the range, | 
|  | /// for example: [100, 8) | 
|  | /// | 
|  | bool ConstantRange::isWrappedSet() const { | 
|  | return Lower.ugt(Upper); | 
|  | } | 
|  |  | 
|  | /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of | 
|  | /// its bitwidth, for example: i8 [120, 140). | 
|  | /// | 
|  | bool ConstantRange::isSignWrappedSet() const { | 
|  | return contains(APInt::getSignedMaxValue(getBitWidth())) && | 
|  | contains(APInt::getSignedMinValue(getBitWidth())); | 
|  | } | 
|  |  | 
|  | /// getSetSize - Return the number of elements in this set. | 
|  | /// | 
|  | APInt ConstantRange::getSetSize() const { | 
|  | if (isEmptySet()) | 
|  | return APInt(getBitWidth(), 0); | 
|  | if (getBitWidth() == 1) { | 
|  | if (Lower != Upper)  // One of T or F in the set... | 
|  | return APInt(2, 1); | 
|  | return APInt(2, 2);      // Must be full set... | 
|  | } | 
|  |  | 
|  | // Simply subtract the bounds... | 
|  | return Upper - Lower; | 
|  | } | 
|  |  | 
|  | /// getUnsignedMax - Return the largest unsigned value contained in the | 
|  | /// ConstantRange. | 
|  | /// | 
|  | APInt ConstantRange::getUnsignedMax() const { | 
|  | if (isFullSet() || isWrappedSet()) | 
|  | return APInt::getMaxValue(getBitWidth()); | 
|  | else | 
|  | return getUpper() - 1; | 
|  | } | 
|  |  | 
|  | /// getUnsignedMin - Return the smallest unsigned value contained in the | 
|  | /// ConstantRange. | 
|  | /// | 
|  | APInt ConstantRange::getUnsignedMin() const { | 
|  | if (isFullSet() || (isWrappedSet() && getUpper() != 0)) | 
|  | return APInt::getMinValue(getBitWidth()); | 
|  | else | 
|  | return getLower(); | 
|  | } | 
|  |  | 
|  | /// getSignedMax - Return the largest signed value contained in the | 
|  | /// ConstantRange. | 
|  | /// | 
|  | APInt ConstantRange::getSignedMax() const { | 
|  | APInt SignedMax(APInt::getSignedMaxValue(getBitWidth())); | 
|  | if (!isWrappedSet()) { | 
|  | if (getLower().sle(getUpper() - 1)) | 
|  | return getUpper() - 1; | 
|  | else | 
|  | return SignedMax; | 
|  | } else { | 
|  | if (getLower().isNegative() == getUpper().isNegative()) | 
|  | return SignedMax; | 
|  | else | 
|  | return getUpper() - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getSignedMin - Return the smallest signed value contained in the | 
|  | /// ConstantRange. | 
|  | /// | 
|  | APInt ConstantRange::getSignedMin() const { | 
|  | APInt SignedMin(APInt::getSignedMinValue(getBitWidth())); | 
|  | if (!isWrappedSet()) { | 
|  | if (getLower().sle(getUpper() - 1)) | 
|  | return getLower(); | 
|  | else | 
|  | return SignedMin; | 
|  | } else { | 
|  | if ((getUpper() - 1).slt(getLower())) { | 
|  | if (getUpper() != SignedMin) | 
|  | return SignedMin; | 
|  | else | 
|  | return getLower(); | 
|  | } else { | 
|  | return getLower(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// contains - Return true if the specified value is in the set. | 
|  | /// | 
|  | bool ConstantRange::contains(const APInt &V) const { | 
|  | if (Lower == Upper) | 
|  | return isFullSet(); | 
|  |  | 
|  | if (!isWrappedSet()) | 
|  | return Lower.ule(V) && V.ult(Upper); | 
|  | else | 
|  | return Lower.ule(V) || V.ult(Upper); | 
|  | } | 
|  |  | 
|  | /// contains - Return true if the argument is a subset of this range. | 
|  | /// Two equal sets contain each other. The empty set contained by all other | 
|  | /// sets. | 
|  | /// | 
|  | bool ConstantRange::contains(const ConstantRange &Other) const { | 
|  | if (isFullSet() || Other.isEmptySet()) return true; | 
|  | if (isEmptySet() || Other.isFullSet()) return false; | 
|  |  | 
|  | if (!isWrappedSet()) { | 
|  | if (Other.isWrappedSet()) | 
|  | return false; | 
|  |  | 
|  | return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); | 
|  | } | 
|  |  | 
|  | if (!Other.isWrappedSet()) | 
|  | return Other.getUpper().ule(Upper) || | 
|  | Lower.ule(Other.getLower()); | 
|  |  | 
|  | return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); | 
|  | } | 
|  |  | 
|  | /// subtract - Subtract the specified constant from the endpoints of this | 
|  | /// constant range. | 
|  | ConstantRange ConstantRange::subtract(const APInt &Val) const { | 
|  | assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); | 
|  | // If the set is empty or full, don't modify the endpoints. | 
|  | if (Lower == Upper) | 
|  | return *this; | 
|  | return ConstantRange(Lower - Val, Upper - Val); | 
|  | } | 
|  |  | 
|  | /// intersectWith - Return the range that results from the intersection of this | 
|  | /// range with another range.  The resultant range is guaranteed to include all | 
|  | /// elements contained in both input ranges, and to have the smallest possible | 
|  | /// set size that does so.  Because there may be two intersections with the | 
|  | /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A). | 
|  | ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { | 
|  | assert(getBitWidth() == CR.getBitWidth() && | 
|  | "ConstantRange types don't agree!"); | 
|  |  | 
|  | // Handle common cases. | 
|  | if (   isEmptySet() || CR.isFullSet()) return *this; | 
|  | if (CR.isEmptySet() ||    isFullSet()) return CR; | 
|  |  | 
|  | if (!isWrappedSet() && CR.isWrappedSet()) | 
|  | return CR.intersectWith(*this); | 
|  |  | 
|  | if (!isWrappedSet() && !CR.isWrappedSet()) { | 
|  | if (Lower.ult(CR.Lower)) { | 
|  | if (Upper.ule(CR.Lower)) | 
|  | return ConstantRange(getBitWidth(), false); | 
|  |  | 
|  | if (Upper.ult(CR.Upper)) | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  |  | 
|  | return CR; | 
|  | } else { | 
|  | if (Upper.ult(CR.Upper)) | 
|  | return *this; | 
|  |  | 
|  | if (Lower.ult(CR.Upper)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  |  | 
|  | return ConstantRange(getBitWidth(), false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isWrappedSet() && !CR.isWrappedSet()) { | 
|  | if (CR.Lower.ult(Upper)) { | 
|  | if (CR.Upper.ult(Upper)) | 
|  | return CR; | 
|  |  | 
|  | if (CR.Upper.ult(Lower)) | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  |  | 
|  | if (getSetSize().ult(CR.getSetSize())) | 
|  | return *this; | 
|  | else | 
|  | return CR; | 
|  | } else if (CR.Lower.ult(Lower)) { | 
|  | if (CR.Upper.ule(Lower)) | 
|  | return ConstantRange(getBitWidth(), false); | 
|  |  | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  | } | 
|  | return CR; | 
|  | } | 
|  |  | 
|  | if (CR.Upper.ult(Upper)) { | 
|  | if (CR.Lower.ult(Upper)) { | 
|  | if (getSetSize().ult(CR.getSetSize())) | 
|  | return *this; | 
|  | else | 
|  | return CR; | 
|  | } | 
|  |  | 
|  | if (CR.Lower.ult(Lower)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  |  | 
|  | return CR; | 
|  | } else if (CR.Upper.ult(Lower)) { | 
|  | if (CR.Lower.ult(Lower)) | 
|  | return *this; | 
|  |  | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  | } | 
|  | if (getSetSize().ult(CR.getSetSize())) | 
|  | return *this; | 
|  | else | 
|  | return CR; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// unionWith - Return the range that results from the union of this range with | 
|  | /// another range.  The resultant range is guaranteed to include the elements of | 
|  | /// both sets, but may contain more.  For example, [3, 9) union [12,15) is | 
|  | /// [3, 15), which includes 9, 10, and 11, which were not included in either | 
|  | /// set before. | 
|  | /// | 
|  | ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { | 
|  | assert(getBitWidth() == CR.getBitWidth() && | 
|  | "ConstantRange types don't agree!"); | 
|  |  | 
|  | if (   isFullSet() || CR.isEmptySet()) return *this; | 
|  | if (CR.isFullSet() ||    isEmptySet()) return CR; | 
|  |  | 
|  | if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this); | 
|  |  | 
|  | if (!isWrappedSet() && !CR.isWrappedSet()) { | 
|  | if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) { | 
|  | // If the two ranges are disjoint, find the smaller gap and bridge it. | 
|  | APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; | 
|  | if (d1.ult(d2)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  | else | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  | } | 
|  |  | 
|  | APInt L = Lower, U = Upper; | 
|  | if (CR.Lower.ult(L)) | 
|  | L = CR.Lower; | 
|  | if ((CR.Upper - 1).ugt(U - 1)) | 
|  | U = CR.Upper; | 
|  |  | 
|  | if (L == 0 && U == 0) | 
|  | return ConstantRange(getBitWidth()); | 
|  |  | 
|  | return ConstantRange(L, U); | 
|  | } | 
|  |  | 
|  | if (!CR.isWrappedSet()) { | 
|  | // ------U   L-----  and  ------U   L----- : this | 
|  | //   L--U                            L--U  : CR | 
|  | if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) | 
|  | return *this; | 
|  |  | 
|  | // ------U   L----- : this | 
|  | //    L---------U   : CR | 
|  | if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) | 
|  | return ConstantRange(getBitWidth()); | 
|  |  | 
|  | // ----U       L---- : this | 
|  | //       L---U       : CR | 
|  | //    <d1>  <d2> | 
|  | if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) { | 
|  | APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; | 
|  | if (d1.ult(d2)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  | else | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  | } | 
|  |  | 
|  | // ----U     L----- : this | 
|  | //        L----U    : CR | 
|  | if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) | 
|  | return ConstantRange(CR.Lower, Upper); | 
|  |  | 
|  | // ------U    L---- : this | 
|  | //    L-----U       : CR | 
|  | if (CR.Lower.ult(Upper) && CR.Upper.ult(Lower)) | 
|  | return ConstantRange(Lower, CR.Upper); | 
|  | } | 
|  |  | 
|  | assert(isWrappedSet() && CR.isWrappedSet() && | 
|  | "ConstantRange::unionWith missed wrapped union unwrapped case"); | 
|  |  | 
|  | // ------U    L----  and  ------U    L---- : this | 
|  | // -U  L-----------  and  ------------U  L : CR | 
|  | if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) | 
|  | return ConstantRange(getBitWidth()); | 
|  |  | 
|  | APInt L = Lower, U = Upper; | 
|  | if (CR.Upper.ugt(U)) | 
|  | U = CR.Upper; | 
|  | if (CR.Lower.ult(L)) | 
|  | L = CR.Lower; | 
|  |  | 
|  | return ConstantRange(L, U); | 
|  | } | 
|  |  | 
|  | /// zeroExtend - Return a new range in the specified integer type, which must | 
|  | /// be strictly larger than the current type.  The returned range will | 
|  | /// correspond to the possible range of values as if the source range had been | 
|  | /// zero extended. | 
|  | ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { | 
|  | if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); | 
|  |  | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | assert(SrcTySize < DstTySize && "Not a value extension"); | 
|  | if (isFullSet() || isWrappedSet()) | 
|  | // Change into [0, 1 << src bit width) | 
|  | return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize)); | 
|  |  | 
|  | return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); | 
|  | } | 
|  |  | 
|  | /// signExtend - Return a new range in the specified integer type, which must | 
|  | /// be strictly larger than the current type.  The returned range will | 
|  | /// correspond to the possible range of values as if the source range had been | 
|  | /// sign extended. | 
|  | ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { | 
|  | if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); | 
|  |  | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | assert(SrcTySize < DstTySize && "Not a value extension"); | 
|  | if (isFullSet() || isSignWrappedSet()) { | 
|  | return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), | 
|  | APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); | 
|  | } | 
|  |  | 
|  | return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); | 
|  | } | 
|  |  | 
|  | /// truncate - Return a new range in the specified integer type, which must be | 
|  | /// strictly smaller than the current type.  The returned range will | 
|  | /// correspond to the possible range of values as if the source range had been | 
|  | /// truncated to the specified type. | 
|  | ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | assert(SrcTySize > DstTySize && "Not a value truncation"); | 
|  | APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize)); | 
|  | if (isFullSet() || getSetSize().ugt(Size)) | 
|  | return ConstantRange(DstTySize, /*isFullSet=*/true); | 
|  |  | 
|  | return ConstantRange(Lower.trunc(DstTySize), Upper.trunc(DstTySize)); | 
|  | } | 
|  |  | 
|  | /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The | 
|  | /// value is zero extended, truncated, or left alone to make it that width. | 
|  | ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | if (SrcTySize > DstTySize) | 
|  | return truncate(DstTySize); | 
|  | else if (SrcTySize < DstTySize) | 
|  | return zeroExtend(DstTySize); | 
|  | else | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The | 
|  | /// value is sign extended, truncated, or left alone to make it that width. | 
|  | ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { | 
|  | unsigned SrcTySize = getBitWidth(); | 
|  | if (SrcTySize > DstTySize) | 
|  | return truncate(DstTySize); | 
|  | else if (SrcTySize < DstTySize) | 
|  | return signExtend(DstTySize); | 
|  | else | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::add(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | if (isFullSet() || Other.isFullSet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); | 
|  | APInt NewLower = getLower() + Other.getLower(); | 
|  | APInt NewUpper = getUpper() + Other.getUpper() - 1; | 
|  | if (NewLower == NewUpper) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | ConstantRange X = ConstantRange(NewLower, NewUpper); | 
|  | if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) | 
|  | // We've wrapped, therefore, full set. | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | return X; | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::sub(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | if (isFullSet() || Other.isFullSet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize(); | 
|  | APInt NewLower = getLower() - Other.getUpper() + 1; | 
|  | APInt NewUpper = getUpper() - Other.getLower(); | 
|  | if (NewLower == NewUpper) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | ConstantRange X = ConstantRange(NewLower, NewUpper); | 
|  | if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) | 
|  | // We've wrapped, therefore, full set. | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | return X; | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::multiply(const ConstantRange &Other) const { | 
|  | // TODO: If either operand is a single element and the multiply is known to | 
|  | // be non-wrapping, round the result min and max value to the appropriate | 
|  | // multiple of that element. If wrapping is possible, at least adjust the | 
|  | // range according to the greatest power-of-two factor of the single element. | 
|  |  | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | if (isFullSet() || Other.isFullSet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); | 
|  | APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); | 
|  | APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); | 
|  | APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); | 
|  |  | 
|  | ConstantRange Result_zext = ConstantRange(this_min * Other_min, | 
|  | this_max * Other_max + 1); | 
|  | return Result_zext.truncate(getBitWidth()); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::smax(const ConstantRange &Other) const { | 
|  | // X smax Y is: range(smax(X_smin, Y_smin), | 
|  | //                    smax(X_smax, Y_smax)) | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); | 
|  | APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; | 
|  | if (NewU == NewL) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(NewL, NewU); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::umax(const ConstantRange &Other) const { | 
|  | // X umax Y is: range(umax(X_umin, Y_umin), | 
|  | //                    umax(X_umax, Y_umax)) | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); | 
|  | APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; | 
|  | if (NewU == NewL) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(NewL, NewU); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::udiv(const ConstantRange &RHS) const { | 
|  | if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | if (RHS.isFullSet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); | 
|  |  | 
|  | APInt RHS_umin = RHS.getUnsignedMin(); | 
|  | if (RHS_umin == 0) { | 
|  | // We want the lowest value in RHS excluding zero. Usually that would be 1 | 
|  | // except for a range in the form of [X, 1) in which case it would be X. | 
|  | if (RHS.getUpper() == 1) | 
|  | RHS_umin = RHS.getLower(); | 
|  | else | 
|  | RHS_umin = APInt(getBitWidth(), 1); | 
|  | } | 
|  |  | 
|  | APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; | 
|  |  | 
|  | // If the LHS is Full and the RHS is a wrapped interval containing 1 then | 
|  | // this could occur. | 
|  | if (Lower == Upper) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | return ConstantRange(Lower, Upper); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::binaryAnd(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | // TODO: replace this with something less conservative | 
|  |  | 
|  | APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); | 
|  | if (umin.isAllOnesValue()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::binaryOr(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | // TODO: replace this with something less conservative | 
|  |  | 
|  | APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); | 
|  | if (umax.isMinValue()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | return ConstantRange(umax, APInt::getNullValue(getBitWidth())); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::shl(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | APInt min = getUnsignedMin().shl(Other.getUnsignedMin()); | 
|  | APInt max = getUnsignedMax().shl(Other.getUnsignedMax()); | 
|  |  | 
|  | // there's no overflow! | 
|  | APInt Zeros(getBitWidth(), getUnsignedMax().countLeadingZeros()); | 
|  | if (Zeros.ugt(Other.getUnsignedMax())) | 
|  | return ConstantRange(min, max + 1); | 
|  |  | 
|  | // FIXME: implement the other tricky cases | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | } | 
|  |  | 
|  | ConstantRange | 
|  | ConstantRange::lshr(const ConstantRange &Other) const { | 
|  | if (isEmptySet() || Other.isEmptySet()) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  |  | 
|  | APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()); | 
|  | APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); | 
|  | if (min == max + 1) | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  |  | 
|  | return ConstantRange(min, max + 1); | 
|  | } | 
|  |  | 
|  | ConstantRange ConstantRange::inverse() const { | 
|  | if (isFullSet()) { | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/false); | 
|  | } else if (isEmptySet()) { | 
|  | return ConstantRange(getBitWidth(), /*isFullSet=*/true); | 
|  | } | 
|  | return ConstantRange(Upper, Lower); | 
|  | } | 
|  |  | 
|  | /// print - Print out the bounds to a stream... | 
|  | /// | 
|  | void ConstantRange::print(raw_ostream &OS) const { | 
|  | if (isFullSet()) | 
|  | OS << "full-set"; | 
|  | else if (isEmptySet()) | 
|  | OS << "empty-set"; | 
|  | else | 
|  | OS << "[" << Lower << "," << Upper << ")"; | 
|  | } | 
|  |  | 
|  | /// dump - Allow printing from a debugger easily... | 
|  | /// | 
|  | void ConstantRange::dump() const { | 
|  | print(dbgs()); | 
|  | } |