| //===-- TargetInstrInfoImpl.cpp - Target Instruction Information ----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the TargetInstrInfoImpl class, it just provides default | 
 | // implementations of various methods. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> DisableHazardRecognizer( | 
 |   "disable-sched-hazard", cl::Hidden, cl::init(false), | 
 |   cl::desc("Disable hazard detection during preRA scheduling")); | 
 |  | 
 | /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything | 
 | /// after it, replacing it with an unconditional branch to NewDest. | 
 | void | 
 | TargetInstrInfoImpl::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, | 
 |                                              MachineBasicBlock *NewDest) const { | 
 |   MachineBasicBlock *MBB = Tail->getParent(); | 
 |  | 
 |   // Remove all the old successors of MBB from the CFG. | 
 |   while (!MBB->succ_empty()) | 
 |     MBB->removeSuccessor(MBB->succ_begin()); | 
 |  | 
 |   // Remove all the dead instructions from the end of MBB. | 
 |   MBB->erase(Tail, MBB->end()); | 
 |  | 
 |   // If MBB isn't immediately before MBB, insert a branch to it. | 
 |   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) | 
 |     InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(), | 
 |                  Tail->getDebugLoc()); | 
 |   MBB->addSuccessor(NewDest); | 
 | } | 
 |  | 
 | // commuteInstruction - The default implementation of this method just exchanges | 
 | // the two operands returned by findCommutedOpIndices. | 
 | MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI, | 
 |                                                       bool NewMI) const { | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |   bool HasDef = MCID.getNumDefs(); | 
 |   if (HasDef && !MI->getOperand(0).isReg()) | 
 |     // No idea how to commute this instruction. Target should implement its own. | 
 |     return 0; | 
 |   unsigned Idx1, Idx2; | 
 |   if (!findCommutedOpIndices(MI, Idx1, Idx2)) { | 
 |     std::string msg; | 
 |     raw_string_ostream Msg(msg); | 
 |     Msg << "Don't know how to commute: " << *MI; | 
 |     report_fatal_error(Msg.str()); | 
 |   } | 
 |  | 
 |   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && | 
 |          "This only knows how to commute register operands so far"); | 
 |   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; | 
 |   unsigned Reg1 = MI->getOperand(Idx1).getReg(); | 
 |   unsigned Reg2 = MI->getOperand(Idx2).getReg(); | 
 |   bool Reg1IsKill = MI->getOperand(Idx1).isKill(); | 
 |   bool Reg2IsKill = MI->getOperand(Idx2).isKill(); | 
 |   // If destination is tied to either of the commuted source register, then | 
 |   // it must be updated. | 
 |   if (HasDef && Reg0 == Reg1 && | 
 |       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { | 
 |     Reg2IsKill = false; | 
 |     Reg0 = Reg2; | 
 |   } else if (HasDef && Reg0 == Reg2 && | 
 |              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { | 
 |     Reg1IsKill = false; | 
 |     Reg0 = Reg1; | 
 |   } | 
 |  | 
 |   if (NewMI) { | 
 |     // Create a new instruction. | 
 |     bool Reg0IsDead = HasDef ? MI->getOperand(0).isDead() : false; | 
 |     MachineFunction &MF = *MI->getParent()->getParent(); | 
 |     if (HasDef) | 
 |       return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) | 
 |         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) | 
 |         .addReg(Reg2, getKillRegState(Reg2IsKill)) | 
 |         .addReg(Reg1, getKillRegState(Reg2IsKill)); | 
 |     else | 
 |       return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) | 
 |         .addReg(Reg2, getKillRegState(Reg2IsKill)) | 
 |         .addReg(Reg1, getKillRegState(Reg2IsKill)); | 
 |   } | 
 |  | 
 |   if (HasDef) | 
 |     MI->getOperand(0).setReg(Reg0); | 
 |   MI->getOperand(Idx2).setReg(Reg1); | 
 |   MI->getOperand(Idx1).setReg(Reg2); | 
 |   MI->getOperand(Idx2).setIsKill(Reg1IsKill); | 
 |   MI->getOperand(Idx1).setIsKill(Reg2IsKill); | 
 |   return MI; | 
 | } | 
 |  | 
 | /// findCommutedOpIndices - If specified MI is commutable, return the two | 
 | /// operand indices that would swap value. Return true if the instruction | 
 | /// is not in a form which this routine understands. | 
 | bool TargetInstrInfoImpl::findCommutedOpIndices(MachineInstr *MI, | 
 |                                                 unsigned &SrcOpIdx1, | 
 |                                                 unsigned &SrcOpIdx2) const { | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |   if (!MCID.isCommutable()) | 
 |     return false; | 
 |   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this | 
 |   // is not true, then the target must implement this. | 
 |   SrcOpIdx1 = MCID.getNumDefs(); | 
 |   SrcOpIdx2 = SrcOpIdx1 + 1; | 
 |   if (!MI->getOperand(SrcOpIdx1).isReg() || | 
 |       !MI->getOperand(SrcOpIdx2).isReg()) | 
 |     // No idea. | 
 |     return false; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool TargetInstrInfoImpl::PredicateInstruction(MachineInstr *MI, | 
 |                             const SmallVectorImpl<MachineOperand> &Pred) const { | 
 |   bool MadeChange = false; | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |   if (!MCID.isPredicable()) | 
 |     return false; | 
 |  | 
 |   for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     if (MCID.OpInfo[i].isPredicate()) { | 
 |       MachineOperand &MO = MI->getOperand(i); | 
 |       if (MO.isReg()) { | 
 |         MO.setReg(Pred[j].getReg()); | 
 |         MadeChange = true; | 
 |       } else if (MO.isImm()) { | 
 |         MO.setImm(Pred[j].getImm()); | 
 |         MadeChange = true; | 
 |       } else if (MO.isMBB()) { | 
 |         MO.setMBB(Pred[j].getMBB()); | 
 |         MadeChange = true; | 
 |       } | 
 |       ++j; | 
 |     } | 
 |   } | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | bool TargetInstrInfoImpl::hasLoadFromStackSlot(const MachineInstr *MI, | 
 |                                         const MachineMemOperand *&MMO, | 
 |                                         int &FrameIndex) const { | 
 |   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), | 
 |          oe = MI->memoperands_end(); | 
 |        o != oe; | 
 |        ++o) { | 
 |     if ((*o)->isLoad() && (*o)->getValue()) | 
 |       if (const FixedStackPseudoSourceValue *Value = | 
 |           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { | 
 |         FrameIndex = Value->getFrameIndex(); | 
 |         MMO = *o; | 
 |         return true; | 
 |       } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool TargetInstrInfoImpl::hasStoreToStackSlot(const MachineInstr *MI, | 
 |                                        const MachineMemOperand *&MMO, | 
 |                                        int &FrameIndex) const { | 
 |   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), | 
 |          oe = MI->memoperands_end(); | 
 |        o != oe; | 
 |        ++o) { | 
 |     if ((*o)->isStore() && (*o)->getValue()) | 
 |       if (const FixedStackPseudoSourceValue *Value = | 
 |           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { | 
 |         FrameIndex = Value->getFrameIndex(); | 
 |         MMO = *o; | 
 |         return true; | 
 |       } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void TargetInstrInfoImpl::reMaterialize(MachineBasicBlock &MBB, | 
 |                                         MachineBasicBlock::iterator I, | 
 |                                         unsigned DestReg, | 
 |                                         unsigned SubIdx, | 
 |                                         const MachineInstr *Orig, | 
 |                                         const TargetRegisterInfo &TRI) const { | 
 |   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); | 
 |   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); | 
 |   MBB.insert(I, MI); | 
 | } | 
 |  | 
 | bool | 
 | TargetInstrInfoImpl::produceSameValue(const MachineInstr *MI0, | 
 |                                       const MachineInstr *MI1, | 
 |                                       const MachineRegisterInfo *MRI) const { | 
 |   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); | 
 | } | 
 |  | 
 | MachineInstr *TargetInstrInfoImpl::duplicate(MachineInstr *Orig, | 
 |                                              MachineFunction &MF) const { | 
 |   assert(!Orig->getDesc().isNotDuplicable() && | 
 |          "Instruction cannot be duplicated"); | 
 |   return MF.CloneMachineInstr(Orig); | 
 | } | 
 |  | 
 | // If the COPY instruction in MI can be folded to a stack operation, return | 
 | // the register class to use. | 
 | static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, | 
 |                                               unsigned FoldIdx) { | 
 |   assert(MI->isCopy() && "MI must be a COPY instruction"); | 
 |   if (MI->getNumOperands() != 2) | 
 |     return 0; | 
 |   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); | 
 |  | 
 |   const MachineOperand &FoldOp = MI->getOperand(FoldIdx); | 
 |   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); | 
 |  | 
 |   if (FoldOp.getSubReg() || LiveOp.getSubReg()) | 
 |     return 0; | 
 |  | 
 |   unsigned FoldReg = FoldOp.getReg(); | 
 |   unsigned LiveReg = LiveOp.getReg(); | 
 |  | 
 |   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && | 
 |          "Cannot fold physregs"); | 
 |  | 
 |   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | 
 |   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); | 
 |  | 
 |   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) | 
 |     return RC->contains(LiveOp.getReg()) ? RC : 0; | 
 |  | 
 |   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) | 
 |     return RC; | 
 |  | 
 |   // FIXME: Allow folding when register classes are memory compatible. | 
 |   return 0; | 
 | } | 
 |  | 
 | bool TargetInstrInfoImpl:: | 
 | canFoldMemoryOperand(const MachineInstr *MI, | 
 |                      const SmallVectorImpl<unsigned> &Ops) const { | 
 |   return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); | 
 | } | 
 |  | 
 | /// foldMemoryOperand - Attempt to fold a load or store of the specified stack | 
 | /// slot into the specified machine instruction for the specified operand(s). | 
 | /// If this is possible, a new instruction is returned with the specified | 
 | /// operand folded, otherwise NULL is returned. The client is responsible for | 
 | /// removing the old instruction and adding the new one in the instruction | 
 | /// stream. | 
 | MachineInstr* | 
 | TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, | 
 |                                    const SmallVectorImpl<unsigned> &Ops, | 
 |                                    int FI) const { | 
 |   unsigned Flags = 0; | 
 |   for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
 |     if (MI->getOperand(Ops[i]).isDef()) | 
 |       Flags |= MachineMemOperand::MOStore; | 
 |     else | 
 |       Flags |= MachineMemOperand::MOLoad; | 
 |  | 
 |   MachineBasicBlock *MBB = MI->getParent(); | 
 |   assert(MBB && "foldMemoryOperand needs an inserted instruction"); | 
 |   MachineFunction &MF = *MBB->getParent(); | 
 |  | 
 |   // Ask the target to do the actual folding. | 
 |   if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) { | 
 |     // Add a memory operand, foldMemoryOperandImpl doesn't do that. | 
 |     assert((!(Flags & MachineMemOperand::MOStore) || | 
 |             NewMI->getDesc().mayStore()) && | 
 |            "Folded a def to a non-store!"); | 
 |     assert((!(Flags & MachineMemOperand::MOLoad) || | 
 |             NewMI->getDesc().mayLoad()) && | 
 |            "Folded a use to a non-load!"); | 
 |     const MachineFrameInfo &MFI = *MF.getFrameInfo(); | 
 |     assert(MFI.getObjectOffset(FI) != -1); | 
 |     MachineMemOperand *MMO = | 
 |       MF.getMachineMemOperand( | 
 |                     MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), | 
 |                               Flags, MFI.getObjectSize(FI), | 
 |                               MFI.getObjectAlignment(FI)); | 
 |     NewMI->addMemOperand(MF, MMO); | 
 |  | 
 |     // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. | 
 |     return MBB->insert(MI, NewMI); | 
 |   } | 
 |  | 
 |   // Straight COPY may fold as load/store. | 
 |   if (!MI->isCopy() || Ops.size() != 1) | 
 |     return 0; | 
 |  | 
 |   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); | 
 |   if (!RC) | 
 |     return 0; | 
 |  | 
 |   const MachineOperand &MO = MI->getOperand(1-Ops[0]); | 
 |   MachineBasicBlock::iterator Pos = MI; | 
 |   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); | 
 |  | 
 |   if (Flags == MachineMemOperand::MOStore) | 
 |     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); | 
 |   else | 
 |     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); | 
 |   return --Pos; | 
 | } | 
 |  | 
 | /// foldMemoryOperand - Same as the previous version except it allows folding | 
 | /// of any load and store from / to any address, not just from a specific | 
 | /// stack slot. | 
 | MachineInstr* | 
 | TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, | 
 |                                    const SmallVectorImpl<unsigned> &Ops, | 
 |                                    MachineInstr* LoadMI) const { | 
 |   assert(LoadMI->getDesc().canFoldAsLoad() && "LoadMI isn't foldable!"); | 
 | #ifndef NDEBUG | 
 |   for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
 |     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); | 
 | #endif | 
 |   MachineBasicBlock &MBB = *MI->getParent(); | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |  | 
 |   // Ask the target to do the actual folding. | 
 |   MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); | 
 |   if (!NewMI) return 0; | 
 |  | 
 |   NewMI = MBB.insert(MI, NewMI); | 
 |  | 
 |   // Copy the memoperands from the load to the folded instruction. | 
 |   NewMI->setMemRefs(LoadMI->memoperands_begin(), | 
 |                     LoadMI->memoperands_end()); | 
 |  | 
 |   return NewMI; | 
 | } | 
 |  | 
 | bool TargetInstrInfo:: | 
 | isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, | 
 |                                          AliasAnalysis *AA) const { | 
 |   const MachineFunction &MF = *MI->getParent()->getParent(); | 
 |   const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |   const TargetMachine &TM = MF.getTarget(); | 
 |   const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
 |   const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); | 
 |  | 
 |   // Remat clients assume operand 0 is the defined register. | 
 |   if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) | 
 |     return false; | 
 |   unsigned DefReg = MI->getOperand(0).getReg(); | 
 |  | 
 |   // A sub-register definition can only be rematerialized if the instruction | 
 |   // doesn't read the other parts of the register.  Otherwise it is really a | 
 |   // read-modify-write operation on the full virtual register which cannot be | 
 |   // moved safely. | 
 |   if (TargetRegisterInfo::isVirtualRegister(DefReg) && | 
 |       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) | 
 |     return false; | 
 |  | 
 |   // A load from a fixed stack slot can be rematerialized. This may be | 
 |   // redundant with subsequent checks, but it's target-independent, | 
 |   // simple, and a common case. | 
 |   int FrameIdx = 0; | 
 |   if (TII.isLoadFromStackSlot(MI, FrameIdx) && | 
 |       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) | 
 |     return true; | 
 |  | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |  | 
 |   // Avoid instructions obviously unsafe for remat. | 
 |   if (MCID.isNotDuplicable() || MCID.mayStore() || | 
 |       MI->hasUnmodeledSideEffects()) | 
 |     return false; | 
 |  | 
 |   // Don't remat inline asm. We have no idea how expensive it is | 
 |   // even if it's side effect free. | 
 |   if (MI->isInlineAsm()) | 
 |     return false; | 
 |  | 
 |   // Avoid instructions which load from potentially varying memory. | 
 |   if (MCID.mayLoad() && !MI->isInvariantLoad(AA)) | 
 |     return false; | 
 |  | 
 |   // If any of the registers accessed are non-constant, conservatively assume | 
 |   // the instruction is not rematerializable. | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     const MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg()) continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (Reg == 0) | 
 |       continue; | 
 |  | 
 |     // Check for a well-behaved physical register. | 
 |     if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |       if (MO.isUse()) { | 
 |         // If the physreg has no defs anywhere, it's just an ambient register | 
 |         // and we can freely move its uses. Alternatively, if it's allocatable, | 
 |         // it could get allocated to something with a def during allocation. | 
 |         if (!MRI.def_empty(Reg)) | 
 |           return false; | 
 |         BitVector AllocatableRegs = TRI.getAllocatableSet(MF, 0); | 
 |         if (AllocatableRegs.test(Reg)) | 
 |           return false; | 
 |         // Check for a def among the register's aliases too. | 
 |         for (const unsigned *Alias = TRI.getAliasSet(Reg); *Alias; ++Alias) { | 
 |           unsigned AliasReg = *Alias; | 
 |           if (!MRI.def_empty(AliasReg)) | 
 |             return false; | 
 |           if (AllocatableRegs.test(AliasReg)) | 
 |             return false; | 
 |         } | 
 |       } else { | 
 |         // A physreg def. We can't remat it. | 
 |         return false; | 
 |       } | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Only allow one virtual-register def.  There may be multiple defs of the | 
 |     // same virtual register, though. | 
 |     if (MO.isDef() && Reg != DefReg) | 
 |       return false; | 
 |  | 
 |     // Don't allow any virtual-register uses. Rematting an instruction with | 
 |     // virtual register uses would length the live ranges of the uses, which | 
 |     // is not necessarily a good idea, certainly not "trivial". | 
 |     if (MO.isUse()) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Everything checked out. | 
 |   return true; | 
 | } | 
 |  | 
 | /// isSchedulingBoundary - Test if the given instruction should be | 
 | /// considered a scheduling boundary. This primarily includes labels | 
 | /// and terminators. | 
 | bool TargetInstrInfoImpl::isSchedulingBoundary(const MachineInstr *MI, | 
 |                                                const MachineBasicBlock *MBB, | 
 |                                                const MachineFunction &MF) const{ | 
 |   // Terminators and labels can't be scheduled around. | 
 |   if (MI->getDesc().isTerminator() || MI->isLabel()) | 
 |     return true; | 
 |  | 
 |   // Don't attempt to schedule around any instruction that defines | 
 |   // a stack-oriented pointer, as it's unlikely to be profitable. This | 
 |   // saves compile time, because it doesn't require every single | 
 |   // stack slot reference to depend on the instruction that does the | 
 |   // modification. | 
 |   const TargetLowering &TLI = *MF.getTarget().getTargetLowering(); | 
 |   if (MI->definesRegister(TLI.getStackPointerRegisterToSaveRestore())) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Provide a global flag for disabling the PreRA hazard recognizer that targets | 
 | // may choose to honor. | 
 | bool TargetInstrInfoImpl::usePreRAHazardRecognizer() const { | 
 |   return !DisableHazardRecognizer; | 
 | } | 
 |  | 
 | // Default implementation of CreateTargetRAHazardRecognizer. | 
 | ScheduleHazardRecognizer *TargetInstrInfoImpl:: | 
 | CreateTargetHazardRecognizer(const TargetMachine *TM, | 
 |                              const ScheduleDAG *DAG) const { | 
 |   // Dummy hazard recognizer allows all instructions to issue. | 
 |   return new ScheduleHazardRecognizer(); | 
 | } | 
 |  | 
 | // Default implementation of CreateTargetPostRAHazardRecognizer. | 
 | ScheduleHazardRecognizer *TargetInstrInfoImpl:: | 
 | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
 |                                    const ScheduleDAG *DAG) const { | 
 |   return (ScheduleHazardRecognizer *) | 
 |     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); | 
 | } |