blob: 13a7a98511370b33ee1138bbd5303d31075573bc [file] [log] [blame]
//===- RelocationResolver.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines utilities to resolve relocations in object files.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/RelocationResolver.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/BinaryFormat/Wasm.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <vector>
namespace llvm {
namespace object {
static int64_t getELFAddend(RelocationRef R) {
Expected<int64_t> AddendOrErr = ELFRelocationRef(R).getAddend();
handleAllErrors(AddendOrErr.takeError(), [](const ErrorInfoBase &EI) {
report_fatal_error(Twine(EI.message()));
});
return *AddendOrErr;
}
static bool supportsX86_64(uint64_t Type) {
switch (Type) {
case ELF::R_X86_64_NONE:
case ELF::R_X86_64_64:
case ELF::R_X86_64_DTPOFF32:
case ELF::R_X86_64_DTPOFF64:
case ELF::R_X86_64_PC32:
case ELF::R_X86_64_PC64:
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S:
return true;
default:
return false;
}
}
static uint64_t resolveX86_64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t Addend) {
switch (Type) {
case ELF::R_X86_64_NONE:
return LocData;
case ELF::R_X86_64_64:
case ELF::R_X86_64_DTPOFF32:
case ELF::R_X86_64_DTPOFF64:
return S + Addend;
case ELF::R_X86_64_PC32:
case ELF::R_X86_64_PC64:
return S + Addend - Offset;
case ELF::R_X86_64_32:
case ELF::R_X86_64_32S:
return (S + Addend) & 0xFFFFFFFF;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsAArch64(uint64_t Type) {
switch (Type) {
case ELF::R_AARCH64_ABS32:
case ELF::R_AARCH64_ABS64:
case ELF::R_AARCH64_PREL16:
case ELF::R_AARCH64_PREL32:
case ELF::R_AARCH64_PREL64:
return true;
default:
return false;
}
}
static uint64_t resolveAArch64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_AARCH64_ABS32:
return (S + Addend) & 0xFFFFFFFF;
case ELF::R_AARCH64_ABS64:
return S + Addend;
case ELF::R_AARCH64_PREL16:
return (S + Addend - Offset) & 0xFFFF;
case ELF::R_AARCH64_PREL32:
return (S + Addend - Offset) & 0xFFFFFFFF;
case ELF::R_AARCH64_PREL64:
return S + Addend - Offset;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsBPF(uint64_t Type) {
switch (Type) {
case ELF::R_BPF_64_ABS32:
case ELF::R_BPF_64_ABS64:
return true;
default:
return false;
}
}
static uint64_t resolveBPF(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
switch (Type) {
case ELF::R_BPF_64_ABS32:
return (S + LocData) & 0xFFFFFFFF;
case ELF::R_BPF_64_ABS64:
return S + LocData;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsMips64(uint64_t Type) {
switch (Type) {
case ELF::R_MIPS_32:
case ELF::R_MIPS_64:
case ELF::R_MIPS_TLS_DTPREL64:
case ELF::R_MIPS_PC32:
return true;
default:
return false;
}
}
static uint64_t resolveMips64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_MIPS_32:
return (S + Addend) & 0xFFFFFFFF;
case ELF::R_MIPS_64:
return S + Addend;
case ELF::R_MIPS_TLS_DTPREL64:
return S + Addend - 0x8000;
case ELF::R_MIPS_PC32:
return S + Addend - Offset;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsMSP430(uint64_t Type) {
switch (Type) {
case ELF::R_MSP430_32:
case ELF::R_MSP430_16_BYTE:
return true;
default:
return false;
}
}
static uint64_t resolveMSP430(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_MSP430_32:
return (S + Addend) & 0xFFFFFFFF;
case ELF::R_MSP430_16_BYTE:
return (S + Addend) & 0xFFFF;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsPPC64(uint64_t Type) {
switch (Type) {
case ELF::R_PPC64_ADDR32:
case ELF::R_PPC64_ADDR64:
case ELF::R_PPC64_REL32:
case ELF::R_PPC64_REL64:
return true;
default:
return false;
}
}
static uint64_t resolvePPC64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_PPC64_ADDR32:
return (S + Addend) & 0xFFFFFFFF;
case ELF::R_PPC64_ADDR64:
return S + Addend;
case ELF::R_PPC64_REL32:
return (S + Addend - Offset) & 0xFFFFFFFF;
case ELF::R_PPC64_REL64:
return S + Addend - Offset;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsSystemZ(uint64_t Type) {
switch (Type) {
case ELF::R_390_32:
case ELF::R_390_64:
return true;
default:
return false;
}
}
static uint64_t resolveSystemZ(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_390_32:
return (S + Addend) & 0xFFFFFFFF;
case ELF::R_390_64:
return S + Addend;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsSparc64(uint64_t Type) {
switch (Type) {
case ELF::R_SPARC_32:
case ELF::R_SPARC_64:
case ELF::R_SPARC_UA32:
case ELF::R_SPARC_UA64:
return true;
default:
return false;
}
}
static uint64_t resolveSparc64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_SPARC_32:
case ELF::R_SPARC_64:
case ELF::R_SPARC_UA32:
case ELF::R_SPARC_UA64:
return S + Addend;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsAmdgpu(uint64_t Type) {
switch (Type) {
case ELF::R_AMDGPU_ABS32:
case ELF::R_AMDGPU_ABS64:
return true;
default:
return false;
}
}
static uint64_t resolveAmdgpu(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_AMDGPU_ABS32:
case ELF::R_AMDGPU_ABS64:
return S + Addend;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsX86(uint64_t Type) {
switch (Type) {
case ELF::R_386_NONE:
case ELF::R_386_32:
case ELF::R_386_PC32:
return true;
default:
return false;
}
}
static uint64_t resolveX86(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
switch (Type) {
case ELF::R_386_NONE:
return LocData;
case ELF::R_386_32:
return S + LocData;
case ELF::R_386_PC32:
return S - Offset + LocData;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsPPC32(uint64_t Type) {
switch (Type) {
case ELF::R_PPC_ADDR32:
case ELF::R_PPC_REL32:
return true;
default:
return false;
}
}
static uint64_t resolvePPC32(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_PPC_ADDR32:
return (S + Addend) & 0xFFFFFFFF;
case ELF::R_PPC_REL32:
return (S + Addend - Offset) & 0xFFFFFFFF;
}
llvm_unreachable("Invalid relocation type");
}
static bool supportsARM(uint64_t Type) {
switch (Type) {
case ELF::R_ARM_ABS32:
case ELF::R_ARM_REL32:
return true;
default:
return false;
}
}
static uint64_t resolveARM(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t Addend) {
// Support both RELA and REL relocations. The caller is responsible
// for supplying the correct values for LocData and Addend, i.e.
// Addend == 0 for REL and LocData == 0 for RELA.
assert((LocData == 0 || Addend == 0) &&
"one of LocData and Addend must be 0");
switch (Type) {
case ELF::R_ARM_ABS32:
return (S + LocData + Addend) & 0xFFFFFFFF;
case ELF::R_ARM_REL32:
return (S + LocData + Addend - Offset) & 0xFFFFFFFF;
}
llvm_unreachable("Invalid relocation type");
}
static bool supportsAVR(uint64_t Type) {
switch (Type) {
case ELF::R_AVR_16:
case ELF::R_AVR_32:
return true;
default:
return false;
}
}
static uint64_t resolveAVR(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
switch (Type) {
case ELF::R_AVR_16:
return (S + Addend) & 0xFFFF;
case ELF::R_AVR_32:
return (S + Addend) & 0xFFFFFFFF;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsLanai(uint64_t Type) {
return Type == ELF::R_LANAI_32;
}
static uint64_t resolveLanai(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
if (Type == ELF::R_LANAI_32)
return (S + Addend) & 0xFFFFFFFF;
llvm_unreachable("Invalid relocation type");
}
static bool supportsMips32(uint64_t Type) {
switch (Type) {
case ELF::R_MIPS_32:
case ELF::R_MIPS_TLS_DTPREL32:
return true;
default:
return false;
}
}
static uint64_t resolveMips32(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
// FIXME: Take in account implicit addends to get correct results.
if (Type == ELF::R_MIPS_32)
return (S + LocData) & 0xFFFFFFFF;
if (Type == ELF::R_MIPS_TLS_DTPREL32)
return (S + LocData) & 0xFFFFFFFF;
llvm_unreachable("Invalid relocation type");
}
static bool supportsSparc32(uint64_t Type) {
switch (Type) {
case ELF::R_SPARC_32:
case ELF::R_SPARC_UA32:
return true;
default:
return false;
}
}
static uint64_t resolveSparc32(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t Addend) {
if (Type == ELF::R_SPARC_32 || Type == ELF::R_SPARC_UA32)
return S + Addend;
return LocData;
}
static bool supportsHexagon(uint64_t Type) {
return Type == ELF::R_HEX_32;
}
static uint64_t resolveHexagon(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t /*LocData*/, int64_t Addend) {
if (Type == ELF::R_HEX_32)
return S + Addend;
llvm_unreachable("Invalid relocation type");
}
static bool supportsRISCV(uint64_t Type) {
switch (Type) {
case ELF::R_RISCV_NONE:
case ELF::R_RISCV_32:
case ELF::R_RISCV_32_PCREL:
case ELF::R_RISCV_64:
case ELF::R_RISCV_SET6:
case ELF::R_RISCV_SET8:
case ELF::R_RISCV_SUB6:
case ELF::R_RISCV_ADD8:
case ELF::R_RISCV_SUB8:
case ELF::R_RISCV_SET16:
case ELF::R_RISCV_ADD16:
case ELF::R_RISCV_SUB16:
case ELF::R_RISCV_SET32:
case ELF::R_RISCV_ADD32:
case ELF::R_RISCV_SUB32:
case ELF::R_RISCV_ADD64:
case ELF::R_RISCV_SUB64:
return true;
default:
return false;
}
}
static uint64_t resolveRISCV(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t Addend) {
int64_t RA = Addend;
uint64_t A = LocData;
switch (Type) {
case ELF::R_RISCV_NONE:
return LocData;
case ELF::R_RISCV_32:
return (S + RA) & 0xFFFFFFFF;
case ELF::R_RISCV_32_PCREL:
return (S + RA - Offset) & 0xFFFFFFFF;
case ELF::R_RISCV_64:
return S + RA;
case ELF::R_RISCV_SET6:
return (A & 0xC0) | ((S + RA) & 0x3F);
case ELF::R_RISCV_SUB6:
return (A & 0xC0) | (((A & 0x3F) - (S + RA)) & 0x3F);
case ELF::R_RISCV_SET8:
return (S + RA) & 0xFF;
case ELF::R_RISCV_ADD8:
return (A + (S + RA)) & 0xFF;
case ELF::R_RISCV_SUB8:
return (A - (S + RA)) & 0xFF;
case ELF::R_RISCV_SET16:
return (S + RA) & 0xFFFF;
case ELF::R_RISCV_ADD16:
return (A + (S + RA)) & 0xFFFF;
case ELF::R_RISCV_SUB16:
return (A - (S + RA)) & 0xFFFF;
case ELF::R_RISCV_SET32:
return (S + RA) & 0xFFFFFFFF;
case ELF::R_RISCV_ADD32:
return (A + (S + RA)) & 0xFFFFFFFF;
case ELF::R_RISCV_SUB32:
return (A - (S + RA)) & 0xFFFFFFFF;
case ELF::R_RISCV_ADD64:
return (A + (S + RA));
case ELF::R_RISCV_SUB64:
return (A - (S + RA));
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsCSKY(uint64_t Type) {
switch (Type) {
case ELF::R_CKCORE_NONE:
case ELF::R_CKCORE_ADDR32:
case ELF::R_CKCORE_PCREL32:
return true;
default:
return false;
}
}
static uint64_t resolveCSKY(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t Addend) {
switch (Type) {
case ELF::R_CKCORE_NONE:
return LocData;
case ELF::R_CKCORE_ADDR32:
return (S + Addend) & 0xFFFFFFFF;
case ELF::R_CKCORE_PCREL32:
return (S + Addend - Offset) & 0xFFFFFFFF;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsLoongArch(uint64_t Type) {
switch (Type) {
case ELF::R_LARCH_NONE:
case ELF::R_LARCH_32:
case ELF::R_LARCH_32_PCREL:
case ELF::R_LARCH_64:
case ELF::R_LARCH_ADD8:
case ELF::R_LARCH_SUB8:
case ELF::R_LARCH_ADD16:
case ELF::R_LARCH_SUB16:
case ELF::R_LARCH_ADD32:
case ELF::R_LARCH_SUB32:
case ELF::R_LARCH_ADD64:
case ELF::R_LARCH_SUB64:
return true;
default:
return false;
}
}
static uint64_t resolveLoongArch(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t Addend) {
switch (Type) {
case ELF::R_LARCH_NONE:
return LocData;
case ELF::R_LARCH_32:
return (S + Addend) & 0xFFFFFFFF;
case ELF::R_LARCH_32_PCREL:
return (S + Addend - Offset) & 0xFFFFFFFF;
case ELF::R_LARCH_64:
return S + Addend;
case ELF::R_LARCH_ADD8:
return (LocData + (S + Addend)) & 0xFF;
case ELF::R_LARCH_SUB8:
return (LocData - (S + Addend)) & 0xFF;
case ELF::R_LARCH_ADD16:
return (LocData + (S + Addend)) & 0xFFFF;
case ELF::R_LARCH_SUB16:
return (LocData - (S + Addend)) & 0xFFFF;
case ELF::R_LARCH_ADD32:
return (LocData + (S + Addend)) & 0xFFFFFFFF;
case ELF::R_LARCH_SUB32:
return (LocData - (S + Addend)) & 0xFFFFFFFF;
case ELF::R_LARCH_ADD64:
return (LocData + (S + Addend));
case ELF::R_LARCH_SUB64:
return (LocData - (S + Addend));
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsCOFFX86(uint64_t Type) {
switch (Type) {
case COFF::IMAGE_REL_I386_SECREL:
case COFF::IMAGE_REL_I386_DIR32:
return true;
default:
return false;
}
}
static uint64_t resolveCOFFX86(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
switch (Type) {
case COFF::IMAGE_REL_I386_SECREL:
case COFF::IMAGE_REL_I386_DIR32:
return (S + LocData) & 0xFFFFFFFF;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsCOFFX86_64(uint64_t Type) {
switch (Type) {
case COFF::IMAGE_REL_AMD64_SECREL:
case COFF::IMAGE_REL_AMD64_ADDR64:
return true;
default:
return false;
}
}
static uint64_t resolveCOFFX86_64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
switch (Type) {
case COFF::IMAGE_REL_AMD64_SECREL:
return (S + LocData) & 0xFFFFFFFF;
case COFF::IMAGE_REL_AMD64_ADDR64:
return S + LocData;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsCOFFARM(uint64_t Type) {
switch (Type) {
case COFF::IMAGE_REL_ARM_SECREL:
case COFF::IMAGE_REL_ARM_ADDR32:
return true;
default:
return false;
}
}
static uint64_t resolveCOFFARM(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
switch (Type) {
case COFF::IMAGE_REL_ARM_SECREL:
case COFF::IMAGE_REL_ARM_ADDR32:
return (S + LocData) & 0xFFFFFFFF;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsCOFFARM64(uint64_t Type) {
switch (Type) {
case COFF::IMAGE_REL_ARM64_SECREL:
case COFF::IMAGE_REL_ARM64_ADDR64:
return true;
default:
return false;
}
}
static uint64_t resolveCOFFARM64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
switch (Type) {
case COFF::IMAGE_REL_ARM64_SECREL:
return (S + LocData) & 0xFFFFFFFF;
case COFF::IMAGE_REL_ARM64_ADDR64:
return S + LocData;
default:
llvm_unreachable("Invalid relocation type");
}
}
static bool supportsMachOX86_64(uint64_t Type) {
return Type == MachO::X86_64_RELOC_UNSIGNED;
}
static uint64_t resolveMachOX86_64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
if (Type == MachO::X86_64_RELOC_UNSIGNED)
return S;
llvm_unreachable("Invalid relocation type");
}
static bool supportsWasm32(uint64_t Type) {
switch (Type) {
case wasm::R_WASM_FUNCTION_INDEX_LEB:
case wasm::R_WASM_TABLE_INDEX_SLEB:
case wasm::R_WASM_TABLE_INDEX_I32:
case wasm::R_WASM_MEMORY_ADDR_LEB:
case wasm::R_WASM_MEMORY_ADDR_SLEB:
case wasm::R_WASM_MEMORY_ADDR_I32:
case wasm::R_WASM_TYPE_INDEX_LEB:
case wasm::R_WASM_GLOBAL_INDEX_LEB:
case wasm::R_WASM_FUNCTION_OFFSET_I32:
case wasm::R_WASM_SECTION_OFFSET_I32:
case wasm::R_WASM_TAG_INDEX_LEB:
case wasm::R_WASM_GLOBAL_INDEX_I32:
case wasm::R_WASM_TABLE_NUMBER_LEB:
case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32:
return true;
default:
return false;
}
}
static bool supportsWasm64(uint64_t Type) {
switch (Type) {
case wasm::R_WASM_MEMORY_ADDR_LEB64:
case wasm::R_WASM_MEMORY_ADDR_SLEB64:
case wasm::R_WASM_MEMORY_ADDR_I64:
case wasm::R_WASM_TABLE_INDEX_SLEB64:
case wasm::R_WASM_TABLE_INDEX_I64:
case wasm::R_WASM_FUNCTION_OFFSET_I64:
return true;
default:
return supportsWasm32(Type);
}
}
static uint64_t resolveWasm32(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t /*Addend*/) {
switch (Type) {
case wasm::R_WASM_FUNCTION_INDEX_LEB:
case wasm::R_WASM_TABLE_INDEX_SLEB:
case wasm::R_WASM_TABLE_INDEX_I32:
case wasm::R_WASM_MEMORY_ADDR_LEB:
case wasm::R_WASM_MEMORY_ADDR_SLEB:
case wasm::R_WASM_MEMORY_ADDR_I32:
case wasm::R_WASM_TYPE_INDEX_LEB:
case wasm::R_WASM_GLOBAL_INDEX_LEB:
case wasm::R_WASM_FUNCTION_OFFSET_I32:
case wasm::R_WASM_SECTION_OFFSET_I32:
case wasm::R_WASM_TAG_INDEX_LEB:
case wasm::R_WASM_GLOBAL_INDEX_I32:
case wasm::R_WASM_TABLE_NUMBER_LEB:
case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32:
// For wasm section, its offset at 0 -- ignoring Value
return LocData;
default:
llvm_unreachable("Invalid relocation type");
}
}
static uint64_t resolveWasm64(uint64_t Type, uint64_t Offset, uint64_t S,
uint64_t LocData, int64_t Addend) {
switch (Type) {
case wasm::R_WASM_MEMORY_ADDR_LEB64:
case wasm::R_WASM_MEMORY_ADDR_SLEB64:
case wasm::R_WASM_MEMORY_ADDR_I64:
case wasm::R_WASM_TABLE_INDEX_SLEB64:
case wasm::R_WASM_TABLE_INDEX_I64:
case wasm::R_WASM_FUNCTION_OFFSET_I64:
// For wasm section, its offset at 0 -- ignoring Value
return LocData;
default:
return resolveWasm32(Type, Offset, S, LocData, Addend);
}
}
std::pair<SupportsRelocation, RelocationResolver>
getRelocationResolver(const ObjectFile &Obj) {
if (Obj.isCOFF()) {
switch (Obj.getArch()) {
case Triple::x86_64:
return {supportsCOFFX86_64, resolveCOFFX86_64};
case Triple::x86:
return {supportsCOFFX86, resolveCOFFX86};
case Triple::arm:
case Triple::thumb:
return {supportsCOFFARM, resolveCOFFARM};
case Triple::aarch64:
return {supportsCOFFARM64, resolveCOFFARM64};
default:
return {nullptr, nullptr};
}
} else if (Obj.isELF()) {
if (Obj.getBytesInAddress() == 8) {
switch (Obj.getArch()) {
case Triple::x86_64:
return {supportsX86_64, resolveX86_64};
case Triple::aarch64:
case Triple::aarch64_be:
return {supportsAArch64, resolveAArch64};
case Triple::bpfel:
case Triple::bpfeb:
return {supportsBPF, resolveBPF};
case Triple::loongarch64:
return {supportsLoongArch, resolveLoongArch};
case Triple::mips64el:
case Triple::mips64:
return {supportsMips64, resolveMips64};
case Triple::ppc64le:
case Triple::ppc64:
return {supportsPPC64, resolvePPC64};
case Triple::systemz:
return {supportsSystemZ, resolveSystemZ};
case Triple::sparcv9:
return {supportsSparc64, resolveSparc64};
case Triple::amdgcn:
return {supportsAmdgpu, resolveAmdgpu};
case Triple::riscv64:
return {supportsRISCV, resolveRISCV};
default:
return {nullptr, nullptr};
}
}
// 32-bit object file
assert(Obj.getBytesInAddress() == 4 &&
"Invalid word size in object file");
switch (Obj.getArch()) {
case Triple::x86:
return {supportsX86, resolveX86};
case Triple::ppcle:
case Triple::ppc:
return {supportsPPC32, resolvePPC32};
case Triple::arm:
case Triple::armeb:
return {supportsARM, resolveARM};
case Triple::avr:
return {supportsAVR, resolveAVR};
case Triple::lanai:
return {supportsLanai, resolveLanai};
case Triple::loongarch32:
return {supportsLoongArch, resolveLoongArch};
case Triple::mipsel:
case Triple::mips:
return {supportsMips32, resolveMips32};
case Triple::msp430:
return {supportsMSP430, resolveMSP430};
case Triple::sparc:
return {supportsSparc32, resolveSparc32};
case Triple::hexagon:
return {supportsHexagon, resolveHexagon};
case Triple::riscv32:
return {supportsRISCV, resolveRISCV};
case Triple::csky:
return {supportsCSKY, resolveCSKY};
default:
return {nullptr, nullptr};
}
} else if (Obj.isMachO()) {
if (Obj.getArch() == Triple::x86_64)
return {supportsMachOX86_64, resolveMachOX86_64};
return {nullptr, nullptr};
} else if (Obj.isWasm()) {
if (Obj.getArch() == Triple::wasm32)
return {supportsWasm32, resolveWasm32};
if (Obj.getArch() == Triple::wasm64)
return {supportsWasm64, resolveWasm64};
return {nullptr, nullptr};
}
llvm_unreachable("Invalid object file");
}
uint64_t resolveRelocation(RelocationResolver Resolver, const RelocationRef &R,
uint64_t S, uint64_t LocData) {
if (const ObjectFile *Obj = R.getObject()) {
int64_t Addend = 0;
if (Obj->isELF()) {
auto GetRelSectionType = [&]() -> unsigned {
if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
return Elf32LEObj->getRelSection(R.getRawDataRefImpl())->sh_type;
if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
return Elf64LEObj->getRelSection(R.getRawDataRefImpl())->sh_type;
if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
return Elf32BEObj->getRelSection(R.getRawDataRefImpl())->sh_type;
auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj);
return Elf64BEObj->getRelSection(R.getRawDataRefImpl())->sh_type;
};
if (GetRelSectionType() == ELF::SHT_RELA) {
Addend = getELFAddend(R);
// RISCV relocations use both LocData and Addend.
if (Obj->getArch() != Triple::riscv32 &&
Obj->getArch() != Triple::riscv64)
LocData = 0;
}
}
return Resolver(R.getType(), R.getOffset(), S, LocData, Addend);
}
// Sometimes the caller might want to use its own specific implementation of
// the resolver function. E.g. this is used by LLD when it resolves debug
// relocations and assumes that all of them have the same computation (S + A).
// The relocation R has no owner object in this case and we don't need to
// provide Type and Offset fields. It is also assumed the DataRefImpl.p
// contains the addend, provided by the caller.
return Resolver(/*Type=*/0, /*Offset=*/0, S, LocData,
R.getRawDataRefImpl().p);
}
} // namespace object
} // namespace llvm