|  | //===-- Sink.cpp - Code Sinking -------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass moves instructions into successor blocks, when possible, so that | 
|  | // they aren't executed on paths where their results aren't needed. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "sink" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Assembly/Writer.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Support/CFG.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumSunk, "Number of instructions sunk"); | 
|  |  | 
|  | namespace { | 
|  | class Sinking : public FunctionPass { | 
|  | DominatorTree *DT; | 
|  | LoopInfo *LI; | 
|  | AliasAnalysis *AA; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  | Sinking() : FunctionPass(ID) { | 
|  | initializeSinkingPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | virtual bool runOnFunction(Function &F); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | FunctionPass::getAnalysisUsage(AU); | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addRequired<DominatorTree>(); | 
|  | AU.addRequired<LoopInfo>(); | 
|  | AU.addPreserved<DominatorTree>(); | 
|  | AU.addPreserved<LoopInfo>(); | 
|  | } | 
|  | private: | 
|  | bool ProcessBlock(BasicBlock &BB); | 
|  | bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores); | 
|  | bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char Sinking::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTree) | 
|  | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) | 
|  | INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createSinkingPass() { return new Sinking(); } | 
|  |  | 
|  | /// AllUsesDominatedByBlock - Return true if all uses of the specified value | 
|  | /// occur in blocks dominated by the specified block. | 
|  | bool Sinking::AllUsesDominatedByBlock(Instruction *Inst, | 
|  | BasicBlock *BB) const { | 
|  | // Ignoring debug uses is necessary so debug info doesn't affect the code. | 
|  | // This may leave a referencing dbg_value in the original block, before | 
|  | // the definition of the vreg.  Dwarf generator handles this although the | 
|  | // user might not get the right info at runtime. | 
|  | for (Value::use_iterator I = Inst->use_begin(), | 
|  | E = Inst->use_end(); I != E; ++I) { | 
|  | // Determine the block of the use. | 
|  | Instruction *UseInst = cast<Instruction>(*I); | 
|  | BasicBlock *UseBlock = UseInst->getParent(); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(UseInst)) { | 
|  | // PHI nodes use the operand in the predecessor block, not the block with | 
|  | // the PHI. | 
|  | unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo()); | 
|  | UseBlock = PN->getIncomingBlock(Num); | 
|  | } | 
|  | // Check that it dominates. | 
|  | if (!DT->dominates(BB, UseBlock)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Sinking::runOnFunction(Function &F) { | 
|  | DT = &getAnalysis<DominatorTree>(); | 
|  | LI = &getAnalysis<LoopInfo>(); | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  |  | 
|  | bool EverMadeChange = false; | 
|  |  | 
|  | while (1) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Process all basic blocks. | 
|  | for (Function::iterator I = F.begin(), E = F.end(); | 
|  | I != E; ++I) | 
|  | MadeChange |= ProcessBlock(*I); | 
|  |  | 
|  | // If this iteration over the code changed anything, keep iterating. | 
|  | if (!MadeChange) break; | 
|  | EverMadeChange = true; | 
|  | } | 
|  | return EverMadeChange; | 
|  | } | 
|  |  | 
|  | bool Sinking::ProcessBlock(BasicBlock &BB) { | 
|  | // Can't sink anything out of a block that has less than two successors. | 
|  | if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false; | 
|  |  | 
|  | // Don't bother sinking code out of unreachable blocks. In addition to being | 
|  | // unprofitable, it can also lead to infinite looping, because in an unreachable | 
|  | // loop there may be nowhere to stop. | 
|  | if (!DT->isReachableFromEntry(&BB)) return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Walk the basic block bottom-up.  Remember if we saw a store. | 
|  | BasicBlock::iterator I = BB.end(); | 
|  | --I; | 
|  | bool ProcessedBegin = false; | 
|  | SmallPtrSet<Instruction *, 8> Stores; | 
|  | do { | 
|  | Instruction *Inst = I;  // The instruction to sink. | 
|  |  | 
|  | // Predecrement I (if it's not begin) so that it isn't invalidated by | 
|  | // sinking. | 
|  | ProcessedBegin = I == BB.begin(); | 
|  | if (!ProcessedBegin) | 
|  | --I; | 
|  |  | 
|  | if (isa<DbgInfoIntrinsic>(Inst)) | 
|  | continue; | 
|  |  | 
|  | if (SinkInstruction(Inst, Stores)) | 
|  | ++NumSunk, MadeChange = true; | 
|  |  | 
|  | // If we just processed the first instruction in the block, we're done. | 
|  | } while (!ProcessedBegin); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA, | 
|  | SmallPtrSet<Instruction *, 8> &Stores) { | 
|  |  | 
|  | if (Inst->mayWriteToMemory()) { | 
|  | Stores.insert(Inst); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(Inst)) { | 
|  | AliasAnalysis::Location Loc = AA->getLocation(L); | 
|  | for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(), | 
|  | E = Stores.end(); I != E; ++I) | 
|  | if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SinkInstruction - Determine whether it is safe to sink the specified machine | 
|  | /// instruction out of its current block into a successor. | 
|  | bool Sinking::SinkInstruction(Instruction *Inst, | 
|  | SmallPtrSet<Instruction *, 8> &Stores) { | 
|  | // Check if it's safe to move the instruction. | 
|  | if (!isSafeToMove(Inst, AA, Stores)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: This should include support for sinking instructions within the | 
|  | // block they are currently in to shorten the live ranges.  We often get | 
|  | // instructions sunk into the top of a large block, but it would be better to | 
|  | // also sink them down before their first use in the block.  This xform has to | 
|  | // be careful not to *increase* register pressure though, e.g. sinking | 
|  | // "x = y + z" down if it kills y and z would increase the live ranges of y | 
|  | // and z and only shrink the live range of x. | 
|  |  | 
|  | // Loop over all the operands of the specified instruction.  If there is | 
|  | // anything we can't handle, bail out. | 
|  | BasicBlock *ParentBlock = Inst->getParent(); | 
|  |  | 
|  | // SuccToSinkTo - This is the successor to sink this instruction to, once we | 
|  | // decide. | 
|  | BasicBlock *SuccToSinkTo = 0; | 
|  |  | 
|  | // FIXME: This picks a successor to sink into based on having one | 
|  | // successor that dominates all the uses.  However, there are cases where | 
|  | // sinking can happen but where the sink point isn't a successor.  For | 
|  | // example: | 
|  | //   x = computation | 
|  | //   if () {} else {} | 
|  | //   use x | 
|  | // the instruction could be sunk over the whole diamond for the | 
|  | // if/then/else (or loop, etc), allowing it to be sunk into other blocks | 
|  | // after that. | 
|  |  | 
|  | // Instructions can only be sunk if all their uses are in blocks | 
|  | // dominated by one of the successors. | 
|  | // Look at all the successors and decide which one | 
|  | // we should sink to. | 
|  | for (succ_iterator SI = succ_begin(ParentBlock), | 
|  | E = succ_end(ParentBlock); SI != E; ++SI) { | 
|  | if (AllUsesDominatedByBlock(Inst, *SI)) { | 
|  | SuccToSinkTo = *SI; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we couldn't find a block to sink to, ignore this instruction. | 
|  | if (SuccToSinkTo == 0) | 
|  | return false; | 
|  |  | 
|  | // It is not possible to sink an instruction into its own block.  This can | 
|  | // happen with loops. | 
|  | if (Inst->getParent() == SuccToSinkTo) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "Sink instr " << *Inst); | 
|  | DEBUG(dbgs() << "to block "; | 
|  | WriteAsOperand(dbgs(), SuccToSinkTo, false)); | 
|  |  | 
|  | // If the block has multiple predecessors, this would introduce computation on | 
|  | // a path that it doesn't already exist.  We could split the critical edge, | 
|  | // but for now we just punt. | 
|  | // FIXME: Split critical edges if not backedges. | 
|  | if (SuccToSinkTo->getUniquePredecessor() != ParentBlock) { | 
|  | // We cannot sink a load across a critical edge - there may be stores in | 
|  | // other code paths. | 
|  | if (!Inst->isSafeToSpeculativelyExecute()) { | 
|  | DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We don't want to sink across a critical edge if we don't dominate the | 
|  | // successor. We could be introducing calculations to new code paths. | 
|  | if (!DT->dominates(ParentBlock, SuccToSinkTo)) { | 
|  | DEBUG(dbgs() << " *** PUNTING: Critical edge found\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Don't sink instructions into a loop. | 
|  | if (LI->isLoopHeader(SuccToSinkTo)) { | 
|  | DEBUG(dbgs() << " *** PUNTING: Loop header found\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise we are OK with sinking along a critical edge. | 
|  | DEBUG(dbgs() << "Sinking along critical edge.\n"); | 
|  | } | 
|  |  | 
|  | // Determine where to insert into.  Skip phi nodes. | 
|  | BasicBlock::iterator InsertPos = SuccToSinkTo->begin(); | 
|  | while (InsertPos != SuccToSinkTo->end() && isa<PHINode>(InsertPos)) | 
|  | ++InsertPos; | 
|  |  | 
|  | // Move the instruction. | 
|  | Inst->moveBefore(InsertPos); | 
|  | return true; | 
|  | } |