|  | //===-- FunctionLoweringInfo.cpp ------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating functions from LLVM IR into | 
|  | // Machine IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "function-lowering-info" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Analysis/DebugInfo.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by | 
|  | /// PHI nodes or outside of the basic block that defines it, or used by a | 
|  | /// switch or atomic instruction, which may expand to multiple basic blocks. | 
|  | static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { | 
|  | if (I->use_empty()) return false; | 
|  | if (isa<PHINode>(I)) return true; | 
|  | const BasicBlock *BB = I->getParent(); | 
|  | for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); | 
|  | UI != E; ++UI) { | 
|  | const User *U = *UI; | 
|  | if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli) | 
|  | : TLI(tli) { | 
|  | } | 
|  |  | 
|  | void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) { | 
|  | Fn = &fn; | 
|  | MF = &mf; | 
|  | RegInfo = &MF->getRegInfo(); | 
|  |  | 
|  | // Check whether the function can return without sret-demotion. | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(Fn->getReturnType(), | 
|  | Fn->getAttributes().getRetAttributes(), Outs, TLI); | 
|  | CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), *MF, | 
|  | Fn->isVarArg(), | 
|  | Outs, Fn->getContext()); | 
|  |  | 
|  | // Initialize the mapping of values to registers.  This is only set up for | 
|  | // instruction values that are used outside of the block that defines | 
|  | // them. | 
|  | Function::const_iterator BB = Fn->begin(), EB = Fn->end(); | 
|  | for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) | 
|  | if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { | 
|  | Type *Ty = AI->getAllocatedType(); | 
|  | uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); | 
|  | unsigned Align = | 
|  | std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
|  | AI->getAlignment()); | 
|  |  | 
|  | TySize *= CUI->getZExtValue();   // Get total allocated size. | 
|  | if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. | 
|  |  | 
|  | // The object may need to be placed onto the stack near the stack | 
|  | // protector if one exists. Determine here if this object is a suitable | 
|  | // candidate. I.e., it would trigger the creation of a stack protector. | 
|  | bool MayNeedSP = | 
|  | (AI->isArrayAllocation() || | 
|  | (TySize > 8 && isa<ArrayType>(Ty) && | 
|  | cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8))); | 
|  | StaticAllocaMap[AI] = | 
|  | MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP); | 
|  | } | 
|  |  | 
|  | for (; BB != EB; ++BB) | 
|  | for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
|  | // Mark values used outside their block as exported, by allocating | 
|  | // a virtual register for them. | 
|  | if (isUsedOutsideOfDefiningBlock(I)) | 
|  | if (!isa<AllocaInst>(I) || | 
|  | !StaticAllocaMap.count(cast<AllocaInst>(I))) | 
|  | InitializeRegForValue(I); | 
|  |  | 
|  | // Collect llvm.dbg.declare information. This is done now instead of | 
|  | // during the initial isel pass through the IR so that it is done | 
|  | // in a predictable order. | 
|  | if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) { | 
|  | MachineModuleInfo &MMI = MF->getMMI(); | 
|  | if (MMI.hasDebugInfo() && | 
|  | DIVariable(DI->getVariable()).Verify() && | 
|  | !DI->getDebugLoc().isUnknown()) { | 
|  | // Don't handle byval struct arguments or VLAs, for example. | 
|  | // Non-byval arguments are handled here (they refer to the stack | 
|  | // temporary alloca at this point). | 
|  | const Value *Address = DI->getAddress(); | 
|  | if (Address) { | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) | 
|  | Address = BCI->getOperand(0); | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { | 
|  | DenseMap<const AllocaInst *, int>::iterator SI = | 
|  | StaticAllocaMap.find(AI); | 
|  | if (SI != StaticAllocaMap.end()) { // Check for VLAs. | 
|  | int FI = SI->second; | 
|  | MMI.setVariableDbgInfo(DI->getVariable(), | 
|  | FI, DI->getDebugLoc()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This | 
|  | // also creates the initial PHI MachineInstrs, though none of the input | 
|  | // operands are populated. | 
|  | for (BB = Fn->begin(); BB != EB; ++BB) { | 
|  | MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); | 
|  | MBBMap[BB] = MBB; | 
|  | MF->push_back(MBB); | 
|  |  | 
|  | // Transfer the address-taken flag. This is necessary because there could | 
|  | // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only | 
|  | // the first one should be marked. | 
|  | if (BB->hasAddressTaken()) | 
|  | MBB->setHasAddressTaken(); | 
|  |  | 
|  | // Create Machine PHI nodes for LLVM PHI nodes, lowering them as | 
|  | // appropriate. | 
|  | for (BasicBlock::const_iterator I = BB->begin(); | 
|  | const PHINode *PN = dyn_cast<PHINode>(I); ++I) { | 
|  | if (PN->use_empty()) continue; | 
|  |  | 
|  | // Skip empty types | 
|  | if (PN->getType()->isEmptyTy()) | 
|  | continue; | 
|  |  | 
|  | DebugLoc DL = PN->getDebugLoc(); | 
|  | unsigned PHIReg = ValueMap[PN]; | 
|  | assert(PHIReg && "PHI node does not have an assigned virtual register!"); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, PN->getType(), ValueVTs); | 
|  | for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
|  | EVT VT = ValueVTs[vti]; | 
|  | unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); | 
|  | const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); | 
|  | for (unsigned i = 0; i != NumRegisters; ++i) | 
|  | BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); | 
|  | PHIReg += NumRegisters; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mark landing pad blocks. | 
|  | for (BB = Fn->begin(); BB != EB; ++BB) | 
|  | if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) | 
|  | MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); | 
|  | } | 
|  |  | 
|  | /// clear - Clear out all the function-specific state. This returns this | 
|  | /// FunctionLoweringInfo to an empty state, ready to be used for a | 
|  | /// different function. | 
|  | void FunctionLoweringInfo::clear() { | 
|  | assert(CatchInfoFound.size() == CatchInfoLost.size() && | 
|  | "Not all catch info was assigned to a landing pad!"); | 
|  |  | 
|  | MBBMap.clear(); | 
|  | ValueMap.clear(); | 
|  | StaticAllocaMap.clear(); | 
|  | #ifndef NDEBUG | 
|  | CatchInfoLost.clear(); | 
|  | CatchInfoFound.clear(); | 
|  | #endif | 
|  | LiveOutRegInfo.clear(); | 
|  | VisitedBBs.clear(); | 
|  | ArgDbgValues.clear(); | 
|  | ByValArgFrameIndexMap.clear(); | 
|  | RegFixups.clear(); | 
|  | } | 
|  |  | 
|  | /// CreateReg - Allocate a single virtual register for the given type. | 
|  | unsigned FunctionLoweringInfo::CreateReg(EVT VT) { | 
|  | return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); | 
|  | } | 
|  |  | 
|  | /// CreateRegs - Allocate the appropriate number of virtual registers of | 
|  | /// the correctly promoted or expanded types.  Assign these registers | 
|  | /// consecutive vreg numbers and return the first assigned number. | 
|  | /// | 
|  | /// In the case that the given value has struct or array type, this function | 
|  | /// will assign registers for each member or element. | 
|  | /// | 
|  | unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, Ty, ValueVTs); | 
|  |  | 
|  | unsigned FirstReg = 0; | 
|  | for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT); | 
|  |  | 
|  | unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | unsigned R = CreateReg(RegisterVT); | 
|  | if (!FirstReg) FirstReg = R; | 
|  | } | 
|  | } | 
|  | return FirstReg; | 
|  | } | 
|  |  | 
|  | /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the | 
|  | /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If | 
|  | /// the register's LiveOutInfo is for a smaller bit width, it is extended to | 
|  | /// the larger bit width by zero extension. The bit width must be no smaller | 
|  | /// than the LiveOutInfo's existing bit width. | 
|  | const FunctionLoweringInfo::LiveOutInfo * | 
|  | FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) { | 
|  | if (!LiveOutRegInfo.inBounds(Reg)) | 
|  | return NULL; | 
|  |  | 
|  | LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; | 
|  | if (!LOI->IsValid) | 
|  | return NULL; | 
|  |  | 
|  | if (BitWidth > LOI->KnownZero.getBitWidth()) { | 
|  | LOI->NumSignBits = 1; | 
|  | LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth); | 
|  | LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth); | 
|  | } | 
|  |  | 
|  | return LOI; | 
|  | } | 
|  |  | 
|  | /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination | 
|  | /// register based on the LiveOutInfo of its operands. | 
|  | void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { | 
|  | Type *Ty = PN->getType(); | 
|  | if (!Ty->isIntegerTy() || Ty->isVectorTy()) | 
|  | return; | 
|  |  | 
|  | SmallVector<EVT, 1> ValueVTs; | 
|  | ComputeValueVTs(TLI, Ty, ValueVTs); | 
|  | assert(ValueVTs.size() == 1 && | 
|  | "PHIs with non-vector integer types should have a single VT."); | 
|  | EVT IntVT = ValueVTs[0]; | 
|  |  | 
|  | if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1) | 
|  | return; | 
|  | IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT); | 
|  | unsigned BitWidth = IntVT.getSizeInBits(); | 
|  |  | 
|  | unsigned DestReg = ValueMap[PN]; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DestReg)) | 
|  | return; | 
|  | LiveOutRegInfo.grow(DestReg); | 
|  | LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; | 
|  |  | 
|  | Value *V = PN->getIncomingValue(0); | 
|  | if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { | 
|  | DestLOI.NumSignBits = 1; | 
|  | APInt Zero(BitWidth, 0); | 
|  | DestLOI.KnownZero = Zero; | 
|  | DestLOI.KnownOne = Zero; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | APInt Val = CI->getValue().zextOrTrunc(BitWidth); | 
|  | DestLOI.NumSignBits = Val.getNumSignBits(); | 
|  | DestLOI.KnownZero = ~Val; | 
|  | DestLOI.KnownOne = Val; | 
|  | } else { | 
|  | assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" | 
|  | "CopyToReg node was created."); | 
|  | unsigned SrcReg = ValueMap[V]; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { | 
|  | DestLOI.IsValid = false; | 
|  | return; | 
|  | } | 
|  | const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); | 
|  | if (!SrcLOI) { | 
|  | DestLOI.IsValid = false; | 
|  | return; | 
|  | } | 
|  | DestLOI = *SrcLOI; | 
|  | } | 
|  |  | 
|  | assert(DestLOI.KnownZero.getBitWidth() == BitWidth && | 
|  | DestLOI.KnownOne.getBitWidth() == BitWidth && | 
|  | "Masks should have the same bit width as the type."); | 
|  |  | 
|  | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *V = PN->getIncomingValue(i); | 
|  | if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { | 
|  | DestLOI.NumSignBits = 1; | 
|  | APInt Zero(BitWidth, 0); | 
|  | DestLOI.KnownZero = Zero; | 
|  | DestLOI.KnownOne = Zero; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | APInt Val = CI->getValue().zextOrTrunc(BitWidth); | 
|  | DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); | 
|  | DestLOI.KnownZero &= ~Val; | 
|  | DestLOI.KnownOne &= Val; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | assert(ValueMap.count(V) && "V should have been placed in ValueMap when " | 
|  | "its CopyToReg node was created."); | 
|  | unsigned SrcReg = ValueMap[V]; | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) { | 
|  | DestLOI.IsValid = false; | 
|  | return; | 
|  | } | 
|  | const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); | 
|  | if (!SrcLOI) { | 
|  | DestLOI.IsValid = false; | 
|  | return; | 
|  | } | 
|  | DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); | 
|  | DestLOI.KnownZero &= SrcLOI->KnownZero; | 
|  | DestLOI.KnownOne &= SrcLOI->KnownOne; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// setArgumentFrameIndex - Record frame index for the byval | 
|  | /// argument. This overrides previous frame index entry for this argument, | 
|  | /// if any. | 
|  | void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, | 
|  | int FI) { | 
|  | ByValArgFrameIndexMap[A] = FI; | 
|  | } | 
|  |  | 
|  | /// getArgumentFrameIndex - Get frame index for the byval argument. | 
|  | /// If the argument does not have any assigned frame index then 0 is | 
|  | /// returned. | 
|  | int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { | 
|  | DenseMap<const Argument *, int>::iterator I = | 
|  | ByValArgFrameIndexMap.find(A); | 
|  | if (I != ByValArgFrameIndexMap.end()) | 
|  | return I->second; | 
|  | DEBUG(dbgs() << "Argument does not have assigned frame index!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// AddCatchInfo - Extract the personality and type infos from an eh.selector | 
|  | /// call, and add them to the specified machine basic block. | 
|  | void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, | 
|  | MachineBasicBlock *MBB) { | 
|  | // Inform the MachineModuleInfo of the personality for this landing pad. | 
|  | const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1)); | 
|  | assert(CE->getOpcode() == Instruction::BitCast && | 
|  | isa<Function>(CE->getOperand(0)) && | 
|  | "Personality should be a function"); | 
|  | MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); | 
|  |  | 
|  | // Gather all the type infos for this landing pad and pass them along to | 
|  | // MachineModuleInfo. | 
|  | std::vector<const GlobalVariable *> TyInfo; | 
|  | unsigned N = I.getNumArgOperands(); | 
|  |  | 
|  | for (unsigned i = N - 1; i > 1; --i) { | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) { | 
|  | unsigned FilterLength = CI->getZExtValue(); | 
|  | unsigned FirstCatch = i + FilterLength + !FilterLength; | 
|  | assert(FirstCatch <= N && "Invalid filter length"); | 
|  |  | 
|  | if (FirstCatch < N) { | 
|  | TyInfo.reserve(N - FirstCatch); | 
|  | for (unsigned j = FirstCatch; j < N; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); | 
|  | MMI->addCatchTypeInfo(MBB, TyInfo); | 
|  | TyInfo.clear(); | 
|  | } | 
|  |  | 
|  | if (!FilterLength) { | 
|  | // Cleanup. | 
|  | MMI->addCleanup(MBB); | 
|  | } else { | 
|  | // Filter. | 
|  | TyInfo.reserve(FilterLength - 1); | 
|  | for (unsigned j = i + 1; j < FirstCatch; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); | 
|  | MMI->addFilterTypeInfo(MBB, TyInfo); | 
|  | TyInfo.clear(); | 
|  | } | 
|  |  | 
|  | N = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N > 2) { | 
|  | TyInfo.reserve(N - 2); | 
|  | for (unsigned j = 2; j < N; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j))); | 
|  | MMI->addCatchTypeInfo(MBB, TyInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | void llvm::CopyCatchInfo(const BasicBlock *SuccBB, const BasicBlock *LPad, | 
|  | MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { | 
|  | SmallPtrSet<const BasicBlock*, 4> Visited; | 
|  |  | 
|  | // The 'eh.selector' call may not be in the direct successor of a basic block, | 
|  | // but could be several successors deeper. If we don't find it, try going one | 
|  | // level further. <rdar://problem/8824861> | 
|  | while (Visited.insert(SuccBB)) { | 
|  | for (BasicBlock::const_iterator I = SuccBB->begin(), E = --SuccBB->end(); | 
|  | I != E; ++I) | 
|  | if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { | 
|  | // Apply the catch info to LPad. | 
|  | AddCatchInfo(*EHSel, MMI, FLI.MBBMap[LPad]); | 
|  | #ifndef NDEBUG | 
|  | if (!FLI.MBBMap[SuccBB]->isLandingPad()) | 
|  | FLI.CatchInfoFound.insert(EHSel); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | const BranchInst *Br = dyn_cast<BranchInst>(SuccBB->getTerminator()); | 
|  | if (Br && Br->isUnconditional()) | 
|  | SuccBB = Br->getSuccessor(0); | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddLandingPadInfo - Extract the exception handling information from the | 
|  | /// landingpad instruction and add them to the specified machine module info. | 
|  | void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI, | 
|  | MachineBasicBlock *MBB) { | 
|  | MMI.addPersonality(MBB, | 
|  | cast<Function>(I.getPersonalityFn()->stripPointerCasts())); | 
|  |  | 
|  | if (I.isCleanup()) | 
|  | MMI.addCleanup(MBB); | 
|  |  | 
|  | // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct, | 
|  | //        but we need to do it this way because of how the DWARF EH emitter | 
|  | //        processes the clauses. | 
|  | for (unsigned i = I.getNumClauses(); i != 0; --i) { | 
|  | Value *Val = I.getClause(i - 1); | 
|  | if (I.isCatch(i - 1)) { | 
|  | MMI.addCatchTypeInfo(MBB, | 
|  | dyn_cast<GlobalVariable>(Val->stripPointerCasts())); | 
|  | } else { | 
|  | // Add filters in a list. | 
|  | Constant *CVal = cast<Constant>(Val); | 
|  | SmallVector<const GlobalVariable*, 4> FilterList; | 
|  | for (User::op_iterator | 
|  | II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II) | 
|  | FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts())); | 
|  |  | 
|  | MMI.addFilterTypeInfo(MBB, FilterList); | 
|  | } | 
|  | } | 
|  | } |