|  | //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This simple pass provides alias and mod/ref information for global values | 
|  | // that do not have their address taken, and keeps track of whether functions | 
|  | // read or write memory (are "pure").  For this simple (but very common) case, | 
|  | // we can provide pretty accurate and useful information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "globalsmodref-aa" | 
|  | #include "llvm/Analysis/Passes.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/CallGraph.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/InstIterator.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/SCCIterator.h" | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumNonAddrTakenGlobalVars, | 
|  | "Number of global vars without address taken"); | 
|  | STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); | 
|  | STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); | 
|  | STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); | 
|  | STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); | 
|  |  | 
|  | namespace { | 
|  | /// FunctionRecord - One instance of this structure is stored for every | 
|  | /// function in the program.  Later, the entries for these functions are | 
|  | /// removed if the function is found to call an external function (in which | 
|  | /// case we know nothing about it. | 
|  | struct FunctionRecord { | 
|  | /// GlobalInfo - Maintain mod/ref info for all of the globals without | 
|  | /// addresses taken that are read or written (transitively) by this | 
|  | /// function. | 
|  | std::map<const GlobalValue*, unsigned> GlobalInfo; | 
|  |  | 
|  | /// MayReadAnyGlobal - May read global variables, but it is not known which. | 
|  | bool MayReadAnyGlobal; | 
|  |  | 
|  | unsigned getInfoForGlobal(const GlobalValue *GV) const { | 
|  | unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0; | 
|  | std::map<const GlobalValue*, unsigned>::const_iterator I = | 
|  | GlobalInfo.find(GV); | 
|  | if (I != GlobalInfo.end()) | 
|  | Effect |= I->second; | 
|  | return Effect; | 
|  | } | 
|  |  | 
|  | /// FunctionEffect - Capture whether or not this function reads or writes to | 
|  | /// ANY memory.  If not, we can do a lot of aggressive analysis on it. | 
|  | unsigned FunctionEffect; | 
|  |  | 
|  | FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {} | 
|  | }; | 
|  |  | 
|  | /// GlobalsModRef - The actual analysis pass. | 
|  | class GlobalsModRef : public ModulePass, public AliasAnalysis { | 
|  | /// NonAddressTakenGlobals - The globals that do not have their addresses | 
|  | /// taken. | 
|  | std::set<const GlobalValue*> NonAddressTakenGlobals; | 
|  |  | 
|  | /// IndirectGlobals - The memory pointed to by this global is known to be | 
|  | /// 'owned' by the global. | 
|  | std::set<const GlobalValue*> IndirectGlobals; | 
|  |  | 
|  | /// AllocsForIndirectGlobals - If an instruction allocates memory for an | 
|  | /// indirect global, this map indicates which one. | 
|  | std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals; | 
|  |  | 
|  | /// FunctionInfo - For each function, keep track of what globals are | 
|  | /// modified or read. | 
|  | std::map<const Function*, FunctionRecord> FunctionInfo; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | GlobalsModRef() : ModulePass(ID) { | 
|  | initializeGlobalsModRefPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnModule(Module &M) { | 
|  | InitializeAliasAnalysis(this);                 // set up super class | 
|  | AnalyzeGlobals(M);                          // find non-addr taken globals | 
|  | AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG | 
|  | return false; | 
|  | } | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AliasAnalysis::getAnalysisUsage(AU); | 
|  | AU.addRequired<CallGraph>(); | 
|  | AU.setPreservesAll();                         // Does not transform code | 
|  | } | 
|  |  | 
|  | //------------------------------------------------ | 
|  | // Implement the AliasAnalysis API | 
|  | // | 
|  | AliasResult alias(const Location &LocA, const Location &LocB); | 
|  | ModRefResult getModRefInfo(ImmutableCallSite CS, | 
|  | const Location &Loc); | 
|  | ModRefResult getModRefInfo(ImmutableCallSite CS1, | 
|  | ImmutableCallSite CS2) { | 
|  | return AliasAnalysis::getModRefInfo(CS1, CS2); | 
|  | } | 
|  |  | 
|  | /// getModRefBehavior - Return the behavior of the specified function if | 
|  | /// called from the specified call site.  The call site may be null in which | 
|  | /// case the most generic behavior of this function should be returned. | 
|  | ModRefBehavior getModRefBehavior(const Function *F) { | 
|  | ModRefBehavior Min = UnknownModRefBehavior; | 
|  |  | 
|  | if (FunctionRecord *FR = getFunctionInfo(F)) { | 
|  | if (FR->FunctionEffect == 0) | 
|  | Min = DoesNotAccessMemory; | 
|  | else if ((FR->FunctionEffect & Mod) == 0) | 
|  | Min = OnlyReadsMemory; | 
|  | } | 
|  |  | 
|  | return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); | 
|  | } | 
|  |  | 
|  | /// getModRefBehavior - Return the behavior of the specified function if | 
|  | /// called from the specified call site.  The call site may be null in which | 
|  | /// case the most generic behavior of this function should be returned. | 
|  | ModRefBehavior getModRefBehavior(ImmutableCallSite CS) { | 
|  | ModRefBehavior Min = UnknownModRefBehavior; | 
|  |  | 
|  | if (const Function* F = CS.getCalledFunction()) | 
|  | if (FunctionRecord *FR = getFunctionInfo(F)) { | 
|  | if (FR->FunctionEffect == 0) | 
|  | Min = DoesNotAccessMemory; | 
|  | else if ((FR->FunctionEffect & Mod) == 0) | 
|  | Min = OnlyReadsMemory; | 
|  | } | 
|  |  | 
|  | return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); | 
|  | } | 
|  |  | 
|  | virtual void deleteValue(Value *V); | 
|  | virtual void copyValue(Value *From, Value *To); | 
|  | virtual void addEscapingUse(Use &U); | 
|  |  | 
|  | /// getAdjustedAnalysisPointer - This method is used when a pass implements | 
|  | /// an analysis interface through multiple inheritance.  If needed, it | 
|  | /// should override this to adjust the this pointer as needed for the | 
|  | /// specified pass info. | 
|  | virtual void *getAdjustedAnalysisPointer(AnalysisID PI) { | 
|  | if (PI == &AliasAnalysis::ID) | 
|  | return (AliasAnalysis*)this; | 
|  | return this; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// getFunctionInfo - Return the function info for the function, or null if | 
|  | /// we don't have anything useful to say about it. | 
|  | FunctionRecord *getFunctionInfo(const Function *F) { | 
|  | std::map<const Function*, FunctionRecord>::iterator I = | 
|  | FunctionInfo.find(F); | 
|  | if (I != FunctionInfo.end()) | 
|  | return &I->second; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void AnalyzeGlobals(Module &M); | 
|  | void AnalyzeCallGraph(CallGraph &CG, Module &M); | 
|  | bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers, | 
|  | std::vector<Function*> &Writers, | 
|  | GlobalValue *OkayStoreDest = 0); | 
|  | bool AnalyzeIndirectGlobalMemory(GlobalValue *GV); | 
|  | }; | 
|  | } | 
|  |  | 
|  | char GlobalsModRef::ID = 0; | 
|  | INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis, | 
|  | "globalsmodref-aa", "Simple mod/ref analysis for globals", | 
|  | false, true, false) | 
|  | INITIALIZE_AG_DEPENDENCY(CallGraph) | 
|  | INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis, | 
|  | "globalsmodref-aa", "Simple mod/ref analysis for globals", | 
|  | false, true, false) | 
|  |  | 
|  | Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); } | 
|  |  | 
|  | /// AnalyzeGlobals - Scan through the users of all of the internal | 
|  | /// GlobalValue's in the program.  If none of them have their "address taken" | 
|  | /// (really, their address passed to something nontrivial), record this fact, | 
|  | /// and record the functions that they are used directly in. | 
|  | void GlobalsModRef::AnalyzeGlobals(Module &M) { | 
|  | std::vector<Function*> Readers, Writers; | 
|  | for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) | 
|  | if (I->hasLocalLinkage()) { | 
|  | if (!AnalyzeUsesOfPointer(I, Readers, Writers)) { | 
|  | // Remember that we are tracking this global. | 
|  | NonAddressTakenGlobals.insert(I); | 
|  | ++NumNonAddrTakenFunctions; | 
|  | } | 
|  | Readers.clear(); Writers.clear(); | 
|  | } | 
|  |  | 
|  | for (Module::global_iterator I = M.global_begin(), E = M.global_end(); | 
|  | I != E; ++I) | 
|  | if (I->hasLocalLinkage()) { | 
|  | if (!AnalyzeUsesOfPointer(I, Readers, Writers)) { | 
|  | // Remember that we are tracking this global, and the mod/ref fns | 
|  | NonAddressTakenGlobals.insert(I); | 
|  |  | 
|  | for (unsigned i = 0, e = Readers.size(); i != e; ++i) | 
|  | FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref; | 
|  |  | 
|  | if (!I->isConstant())  // No need to keep track of writers to constants | 
|  | for (unsigned i = 0, e = Writers.size(); i != e; ++i) | 
|  | FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod; | 
|  | ++NumNonAddrTakenGlobalVars; | 
|  |  | 
|  | // If this global holds a pointer type, see if it is an indirect global. | 
|  | if (I->getType()->getElementType()->isPointerTy() && | 
|  | AnalyzeIndirectGlobalMemory(I)) | 
|  | ++NumIndirectGlobalVars; | 
|  | } | 
|  | Readers.clear(); Writers.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. | 
|  | /// If this is used by anything complex (i.e., the address escapes), return | 
|  | /// true.  Also, while we are at it, keep track of those functions that read and | 
|  | /// write to the value. | 
|  | /// | 
|  | /// If OkayStoreDest is non-null, stores into this global are allowed. | 
|  | bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V, | 
|  | std::vector<Function*> &Readers, | 
|  | std::vector<Function*> &Writers, | 
|  | GlobalValue *OkayStoreDest) { | 
|  | if (!V->getType()->isPointerTy()) return true; | 
|  |  | 
|  | for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) { | 
|  | User *U = *UI; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(U)) { | 
|  | Readers.push_back(LI->getParent()->getParent()); | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
|  | if (V == SI->getOperand(1)) { | 
|  | Writers.push_back(SI->getParent()->getParent()); | 
|  | } else if (SI->getOperand(1) != OkayStoreDest) { | 
|  | return true;  // Storing the pointer | 
|  | } | 
|  | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { | 
|  | if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true; | 
|  | } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { | 
|  | if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest)) | 
|  | return true; | 
|  | } else if (isFreeCall(U)) { | 
|  | Writers.push_back(cast<Instruction>(U)->getParent()->getParent()); | 
|  | } else if (CallInst *CI = dyn_cast<CallInst>(U)) { | 
|  | // Make sure that this is just the function being called, not that it is | 
|  | // passing into the function. | 
|  | for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) | 
|  | if (CI->getArgOperand(i) == V) return true; | 
|  | } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) { | 
|  | // Make sure that this is just the function being called, not that it is | 
|  | // passing into the function. | 
|  | for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i) | 
|  | if (II->getArgOperand(i) == V) return true; | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) { | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr || | 
|  | CE->getOpcode() == Instruction::BitCast) { | 
|  | if (AnalyzeUsesOfPointer(CE, Readers, Writers)) | 
|  | return true; | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { | 
|  | if (!isa<ConstantPointerNull>(ICI->getOperand(1))) | 
|  | return true;  // Allow comparison against null. | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable | 
|  | /// which holds a pointer type.  See if the global always points to non-aliased | 
|  | /// heap memory: that is, all initializers of the globals are allocations, and | 
|  | /// those allocations have no use other than initialization of the global. | 
|  | /// Further, all loads out of GV must directly use the memory, not store the | 
|  | /// pointer somewhere.  If this is true, we consider the memory pointed to by | 
|  | /// GV to be owned by GV and can disambiguate other pointers from it. | 
|  | bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) { | 
|  | // Keep track of values related to the allocation of the memory, f.e. the | 
|  | // value produced by the malloc call and any casts. | 
|  | std::vector<Value*> AllocRelatedValues; | 
|  |  | 
|  | // Walk the user list of the global.  If we find anything other than a direct | 
|  | // load or store, bail out. | 
|  | for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){ | 
|  | User *U = *I; | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(U)) { | 
|  | // The pointer loaded from the global can only be used in simple ways: | 
|  | // we allow addressing of it and loading storing to it.  We do *not* allow | 
|  | // storing the loaded pointer somewhere else or passing to a function. | 
|  | std::vector<Function*> ReadersWriters; | 
|  | if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters)) | 
|  | return false;  // Loaded pointer escapes. | 
|  | // TODO: Could try some IP mod/ref of the loaded pointer. | 
|  | } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
|  | // Storing the global itself. | 
|  | if (SI->getOperand(0) == GV) return false; | 
|  |  | 
|  | // If storing the null pointer, ignore it. | 
|  | if (isa<ConstantPointerNull>(SI->getOperand(0))) | 
|  | continue; | 
|  |  | 
|  | // Check the value being stored. | 
|  | Value *Ptr = GetUnderlyingObject(SI->getOperand(0)); | 
|  |  | 
|  | if (isMalloc(Ptr)) { | 
|  | // Okay, easy case. | 
|  | } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) { | 
|  | Function *F = CI->getCalledFunction(); | 
|  | if (!F || !F->isDeclaration()) return false;     // Too hard to analyze. | 
|  | if (F->getName() != "calloc") return false;   // Not calloc. | 
|  | } else { | 
|  | return false;  // Too hard to analyze. | 
|  | } | 
|  |  | 
|  | // Analyze all uses of the allocation.  If any of them are used in a | 
|  | // non-simple way (e.g. stored to another global) bail out. | 
|  | std::vector<Function*> ReadersWriters; | 
|  | if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV)) | 
|  | return false;  // Loaded pointer escapes. | 
|  |  | 
|  | // Remember that this allocation is related to the indirect global. | 
|  | AllocRelatedValues.push_back(Ptr); | 
|  | } else { | 
|  | // Something complex, bail out. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Okay, this is an indirect global.  Remember all of the allocations for | 
|  | // this global in AllocsForIndirectGlobals. | 
|  | while (!AllocRelatedValues.empty()) { | 
|  | AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; | 
|  | AllocRelatedValues.pop_back(); | 
|  | } | 
|  | IndirectGlobals.insert(GV); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AnalyzeCallGraph - At this point, we know the functions where globals are | 
|  | /// immediately stored to and read from.  Propagate this information up the call | 
|  | /// graph to all callers and compute the mod/ref info for all memory for each | 
|  | /// function. | 
|  | void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) { | 
|  | // We do a bottom-up SCC traversal of the call graph.  In other words, we | 
|  | // visit all callees before callers (leaf-first). | 
|  | for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E; | 
|  | ++I) { | 
|  | std::vector<CallGraphNode *> &SCC = *I; | 
|  | assert(!SCC.empty() && "SCC with no functions?"); | 
|  |  | 
|  | if (!SCC[0]->getFunction()) { | 
|  | // Calls externally - can't say anything useful.  Remove any existing | 
|  | // function records (may have been created when scanning globals). | 
|  | for (unsigned i = 0, e = SCC.size(); i != e; ++i) | 
|  | FunctionInfo.erase(SCC[i]->getFunction()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()]; | 
|  |  | 
|  | bool KnowNothing = false; | 
|  | unsigned FunctionEffect = 0; | 
|  |  | 
|  | // Collect the mod/ref properties due to called functions.  We only compute | 
|  | // one mod-ref set. | 
|  | for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { | 
|  | Function *F = SCC[i]->getFunction(); | 
|  | if (!F) { | 
|  | KnowNothing = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (F->isDeclaration()) { | 
|  | // Try to get mod/ref behaviour from function attributes. | 
|  | if (F->doesNotAccessMemory()) { | 
|  | // Can't do better than that! | 
|  | } else if (F->onlyReadsMemory()) { | 
|  | FunctionEffect |= Ref; | 
|  | if (!F->isIntrinsic()) | 
|  | // This function might call back into the module and read a global - | 
|  | // consider every global as possibly being read by this function. | 
|  | FR.MayReadAnyGlobal = true; | 
|  | } else { | 
|  | FunctionEffect |= ModRef; | 
|  | // Can't say anything useful unless it's an intrinsic - they don't | 
|  | // read or write global variables of the kind considered here. | 
|  | KnowNothing = !F->isIntrinsic(); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); | 
|  | CI != E && !KnowNothing; ++CI) | 
|  | if (Function *Callee = CI->second->getFunction()) { | 
|  | if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) { | 
|  | // Propagate function effect up. | 
|  | FunctionEffect |= CalleeFR->FunctionEffect; | 
|  |  | 
|  | // Incorporate callee's effects on globals into our info. | 
|  | for (std::map<const GlobalValue*, unsigned>::iterator GI = | 
|  | CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end(); | 
|  | GI != E; ++GI) | 
|  | FR.GlobalInfo[GI->first] |= GI->second; | 
|  | FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal; | 
|  | } else { | 
|  | // Can't say anything about it.  However, if it is inside our SCC, | 
|  | // then nothing needs to be done. | 
|  | CallGraphNode *CalleeNode = CG[Callee]; | 
|  | if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end()) | 
|  | KnowNothing = true; | 
|  | } | 
|  | } else { | 
|  | KnowNothing = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can't say anything useful about this SCC, remove all SCC functions | 
|  | // from the FunctionInfo map. | 
|  | if (KnowNothing) { | 
|  | for (unsigned i = 0, e = SCC.size(); i != e; ++i) | 
|  | FunctionInfo.erase(SCC[i]->getFunction()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Scan the function bodies for explicit loads or stores. | 
|  | for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i) | 
|  | for (inst_iterator II = inst_begin(SCC[i]->getFunction()), | 
|  | E = inst_end(SCC[i]->getFunction()); | 
|  | II != E && FunctionEffect != ModRef; ++II) | 
|  | if (isa<LoadInst>(*II)) { | 
|  | FunctionEffect |= Ref; | 
|  | if (cast<LoadInst>(*II).isVolatile()) | 
|  | // Volatile loads may have side-effects, so mark them as writing | 
|  | // memory (for example, a flag inside the processor). | 
|  | FunctionEffect |= Mod; | 
|  | } else if (isa<StoreInst>(*II)) { | 
|  | FunctionEffect |= Mod; | 
|  | if (cast<StoreInst>(*II).isVolatile()) | 
|  | // Treat volatile stores as reading memory somewhere. | 
|  | FunctionEffect |= Ref; | 
|  | } else if (isMalloc(&cast<Instruction>(*II)) || | 
|  | isFreeCall(&cast<Instruction>(*II))) { | 
|  | FunctionEffect |= ModRef; | 
|  | } | 
|  |  | 
|  | if ((FunctionEffect & Mod) == 0) | 
|  | ++NumReadMemFunctions; | 
|  | if (FunctionEffect == 0) | 
|  | ++NumNoMemFunctions; | 
|  | FR.FunctionEffect = FunctionEffect; | 
|  |  | 
|  | // Finally, now that we know the full effect on this SCC, clone the | 
|  | // information to each function in the SCC. | 
|  | for (unsigned i = 1, e = SCC.size(); i != e; ++i) | 
|  | FunctionInfo[SCC[i]->getFunction()] = FR; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// alias - If one of the pointers is to a global that we are tracking, and the | 
|  | /// other is some random pointer, we know there cannot be an alias, because the | 
|  | /// address of the global isn't taken. | 
|  | AliasAnalysis::AliasResult | 
|  | GlobalsModRef::alias(const Location &LocA, | 
|  | const Location &LocB) { | 
|  | // Get the base object these pointers point to. | 
|  | const Value *UV1 = GetUnderlyingObject(LocA.Ptr); | 
|  | const Value *UV2 = GetUnderlyingObject(LocB.Ptr); | 
|  |  | 
|  | // If either of the underlying values is a global, they may be non-addr-taken | 
|  | // globals, which we can answer queries about. | 
|  | const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); | 
|  | const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); | 
|  | if (GV1 || GV2) { | 
|  | // If the global's address is taken, pretend we don't know it's a pointer to | 
|  | // the global. | 
|  | if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0; | 
|  | if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0; | 
|  |  | 
|  | // If the two pointers are derived from two different non-addr-taken | 
|  | // globals, or if one is and the other isn't, we know these can't alias. | 
|  | if ((GV1 || GV2) && GV1 != GV2) | 
|  | return NoAlias; | 
|  |  | 
|  | // Otherwise if they are both derived from the same addr-taken global, we | 
|  | // can't know the two accesses don't overlap. | 
|  | } | 
|  |  | 
|  | // These pointers may be based on the memory owned by an indirect global.  If | 
|  | // so, we may be able to handle this.  First check to see if the base pointer | 
|  | // is a direct load from an indirect global. | 
|  | GV1 = GV2 = 0; | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) | 
|  | if (IndirectGlobals.count(GV)) | 
|  | GV1 = GV; | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) | 
|  | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) | 
|  | if (IndirectGlobals.count(GV)) | 
|  | GV2 = GV; | 
|  |  | 
|  | // These pointers may also be from an allocation for the indirect global.  If | 
|  | // so, also handle them. | 
|  | if (AllocsForIndirectGlobals.count(UV1)) | 
|  | GV1 = AllocsForIndirectGlobals[UV1]; | 
|  | if (AllocsForIndirectGlobals.count(UV2)) | 
|  | GV2 = AllocsForIndirectGlobals[UV2]; | 
|  |  | 
|  | // Now that we know whether the two pointers are related to indirect globals, | 
|  | // use this to disambiguate the pointers.  If either pointer is based on an | 
|  | // indirect global and if they are not both based on the same indirect global, | 
|  | // they cannot alias. | 
|  | if ((GV1 || GV2) && GV1 != GV2) | 
|  | return NoAlias; | 
|  |  | 
|  | return AliasAnalysis::alias(LocA, LocB); | 
|  | } | 
|  |  | 
|  | AliasAnalysis::ModRefResult | 
|  | GlobalsModRef::getModRefInfo(ImmutableCallSite CS, | 
|  | const Location &Loc) { | 
|  | unsigned Known = ModRef; | 
|  |  | 
|  | // If we are asking for mod/ref info of a direct call with a pointer to a | 
|  | // global we are tracking, return information if we have it. | 
|  | if (const GlobalValue *GV = | 
|  | dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr))) | 
|  | if (GV->hasLocalLinkage()) | 
|  | if (const Function *F = CS.getCalledFunction()) | 
|  | if (NonAddressTakenGlobals.count(GV)) | 
|  | if (const FunctionRecord *FR = getFunctionInfo(F)) | 
|  | Known = FR->getInfoForGlobal(GV); | 
|  |  | 
|  | if (Known == NoModRef) | 
|  | return NoModRef; // No need to query other mod/ref analyses | 
|  | return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc)); | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Methods to update the analysis as a result of the client transformation. | 
|  | // | 
|  | void GlobalsModRef::deleteValue(Value *V) { | 
|  | if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | if (NonAddressTakenGlobals.erase(GV)) { | 
|  | // This global might be an indirect global.  If so, remove it and remove | 
|  | // any AllocRelatedValues for it. | 
|  | if (IndirectGlobals.erase(GV)) { | 
|  | // Remove any entries in AllocsForIndirectGlobals for this global. | 
|  | for (std::map<const Value*, const GlobalValue*>::iterator | 
|  | I = AllocsForIndirectGlobals.begin(), | 
|  | E = AllocsForIndirectGlobals.end(); I != E; ) { | 
|  | if (I->second == GV) { | 
|  | AllocsForIndirectGlobals.erase(I++); | 
|  | } else { | 
|  | ++I; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, if this is an allocation related to an indirect global, remove | 
|  | // it. | 
|  | AllocsForIndirectGlobals.erase(V); | 
|  |  | 
|  | AliasAnalysis::deleteValue(V); | 
|  | } | 
|  |  | 
|  | void GlobalsModRef::copyValue(Value *From, Value *To) { | 
|  | AliasAnalysis::copyValue(From, To); | 
|  | } | 
|  |  | 
|  | void GlobalsModRef::addEscapingUse(Use &U) { | 
|  | // For the purposes of this analysis, it is conservatively correct to treat | 
|  | // a newly escaping value equivalently to a deleted one.  We could perhaps | 
|  | // be more precise by processing the new use and attempting to update our | 
|  | // saved analysis results to accommodate it. | 
|  | deleteValue(U); | 
|  |  | 
|  | AliasAnalysis::addEscapingUse(U); | 
|  | } |