| ; RUN: opt < %s -licm -S | FileCheck %s |
| ; RUN: opt < %s -aa-pipeline=basic-aa -passes='require<opt-remark-emit>,loop(licm)' -S | FileCheck %s |
| |
| @X = global i32 0 ; <i32*> [#uses=1] |
| |
| declare void @foo() |
| |
| declare i32 @llvm.bitreverse.i32(i32) |
| |
| ; This testcase tests for a problem where LICM hoists |
| ; potentially trapping instructions when they are not guaranteed to execute. |
| define i32 @test1(i1 %c) { |
| ; CHECK-LABEL: @test1( |
| %A = load i32, i32* @X ; <i32> [#uses=2] |
| br label %Loop |
| Loop: ; preds = %LoopTail, %0 |
| call void @foo( ) |
| br i1 %c, label %LoopTail, label %IfUnEqual |
| |
| IfUnEqual: ; preds = %Loop |
| ; CHECK: IfUnEqual: |
| ; CHECK-NEXT: sdiv i32 4, %A |
| %B1 = sdiv i32 4, %A ; <i32> [#uses=1] |
| br label %LoopTail |
| |
| LoopTail: ; preds = %IfUnEqual, %Loop |
| %B = phi i32 [ 0, %Loop ], [ %B1, %IfUnEqual ] ; <i32> [#uses=1] |
| br i1 %c, label %Loop, label %Out |
| Out: ; preds = %LoopTail |
| %C = sub i32 %A, %B ; <i32> [#uses=1] |
| ret i32 %C |
| } |
| |
| |
| declare void @foo2(i32) nounwind |
| |
| |
| ;; It is ok and desirable to hoist this potentially trapping instruction. |
| define i32 @test2(i1 %c) { |
| ; CHECK-LABEL: @test2( |
| ; CHECK-NEXT: load i32, i32* @X |
| ; CHECK-NEXT: %B = sdiv i32 4, %A |
| %A = load i32, i32* @X |
| br label %Loop |
| |
| Loop: |
| ;; Should have hoisted this div! |
| %B = sdiv i32 4, %A |
| br label %loop2 |
| |
| loop2: |
| call void @foo2( i32 %B ) |
| br i1 %c, label %Loop, label %Out |
| |
| Out: |
| %C = sub i32 %A, %B |
| ret i32 %C |
| } |
| |
| |
| ; This loop invariant instruction should be constant folded, not hoisted. |
| define i32 @test3(i1 %c) { |
| ; CHECK-LABEL: define i32 @test3( |
| ; CHECK: call void @foo2(i32 6) |
| %A = load i32, i32* @X ; <i32> [#uses=2] |
| br label %Loop |
| Loop: |
| %B = add i32 4, 2 ; <i32> [#uses=2] |
| call void @foo2( i32 %B ) |
| br i1 %c, label %Loop, label %Out |
| Out: ; preds = %Loop |
| %C = sub i32 %A, %B ; <i32> [#uses=1] |
| ret i32 %C |
| } |
| |
| ; CHECK-LABEL: @test4( |
| ; CHECK: call |
| ; CHECK: sdiv |
| ; CHECK: ret |
| define i32 @test4(i32 %x, i32 %y) nounwind uwtable ssp { |
| entry: |
| br label %for.body |
| |
| for.body: ; preds = %entry, %for.body |
| %i.02 = phi i32 [ 0, %entry ], [ %inc, %for.body ] |
| %n.01 = phi i32 [ 0, %entry ], [ %add, %for.body ] |
| call void @foo_may_call_exit(i32 0) |
| %div = sdiv i32 %x, %y |
| %add = add nsw i32 %n.01, %div |
| %inc = add nsw i32 %i.02, 1 |
| %cmp = icmp slt i32 %inc, 10000 |
| br i1 %cmp, label %for.body, label %for.end |
| |
| for.end: ; preds = %for.body |
| %n.0.lcssa = phi i32 [ %add, %for.body ] |
| ret i32 %n.0.lcssa |
| } |
| |
| declare void @foo_may_call_exit(i32) |
| |
| ; PR14854 |
| ; CHECK-LABEL: @test5( |
| ; CHECK: extractvalue |
| ; CHECK: br label %tailrecurse |
| ; CHECK: tailrecurse: |
| ; CHECK: ifend: |
| ; CHECK: insertvalue |
| define { i32*, i32 } @test5(i32 %i, { i32*, i32 } %e) { |
| entry: |
| br label %tailrecurse |
| |
| tailrecurse: ; preds = %then, %entry |
| %i.tr = phi i32 [ %i, %entry ], [ %cmp2, %then ] |
| %out = extractvalue { i32*, i32 } %e, 1 |
| %d = insertvalue { i32*, i32 } %e, i32* null, 0 |
| %cmp1 = icmp sgt i32 %out, %i.tr |
| br i1 %cmp1, label %then, label %ifend |
| |
| then: ; preds = %tailrecurse |
| call void @foo() |
| %cmp2 = add i32 %i.tr, 1 |
| br label %tailrecurse |
| |
| ifend: ; preds = %tailrecurse |
| ret { i32*, i32 } %d |
| } |
| |
| ; CHECK: define i32 @hoist_bitreverse(i32) |
| ; CHECK: bitreverse |
| ; CHECK: br label %header |
| define i32 @hoist_bitreverse(i32) { |
| br label %header |
| |
| header: |
| %sum = phi i32 [ 0, %1 ], [ %5, %latch ] |
| %2 = phi i32 [ 0, %1 ], [ %6, %latch ] |
| %3 = icmp slt i32 %2, 1024 |
| br i1 %3, label %body, label %return |
| |
| body: |
| %4 = call i32 @llvm.bitreverse.i32(i32 %0) |
| %5 = add i32 %sum, %4 |
| br label %latch |
| |
| latch: |
| %6 = add nsw i32 %2, 1 |
| br label %header |
| |
| return: |
| ret i32 %sum |
| } |
| |
| declare {}* @llvm.invariant.start.p0i8(i64, i8* nocapture) nounwind readonly |
| declare void @llvm.invariant.end.p0i8({}*, i64, i8* nocapture) nounwind |
| declare void @escaping.invariant.start({}*) nounwind |
| ; invariant.start dominates the load, and in this scope, the |
| ; load is invariant. So, we can hoist the `addrld` load out of the loop. |
| define i32 @test_fence(i8* %addr, i32 %n, i8* %volatile) { |
| ; CHECK-LABEL: @test_fence |
| ; CHECK-LABEL: entry |
| ; CHECK: invariant.start |
| ; CHECK: %addrld = load atomic i32, i32* %addr.i unordered, align 8 |
| ; CHECK: br label %loop |
| entry: |
| %gep = getelementptr inbounds i8, i8* %addr, i64 8 |
| %addr.i = bitcast i8* %gep to i32 * |
| store atomic i32 5, i32 * %addr.i unordered, align 8 |
| fence release |
| %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep) |
| br label %loop |
| |
| loop: |
| %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ] |
| %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ] |
| %volload = load atomic i8, i8* %volatile unordered, align 8 |
| fence acquire |
| %volchk = icmp eq i8 %volload, 0 |
| %addrld = load atomic i32, i32* %addr.i unordered, align 8 |
| %sel = select i1 %volchk, i32 0, i32 %addrld |
| %sum.next = add i32 %sel, %sum |
| %indvar.next = add i32 %indvar, 1 |
| %cond = icmp slt i32 %indvar.next, %n |
| br i1 %cond, label %loop, label %loopexit |
| |
| loopexit: |
| ret i32 %sum |
| } |
| |
| |
| |
| ; Same as test above, but the load is no longer invariant (presence of |
| ; invariant.end). We cannot hoist the addrld out of loop. |
| define i32 @test_fence1(i8* %addr, i32 %n, i8* %volatile) { |
| ; CHECK-LABEL: @test_fence1 |
| ; CHECK-LABEL: entry |
| ; CHECK: invariant.start |
| ; CHECK-NEXT: invariant.end |
| ; CHECK-NEXT: br label %loop |
| entry: |
| %gep = getelementptr inbounds i8, i8* %addr, i64 8 |
| %addr.i = bitcast i8* %gep to i32 * |
| store atomic i32 5, i32 * %addr.i unordered, align 8 |
| fence release |
| %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep) |
| call void @llvm.invariant.end.p0i8({}* %invst, i64 4, i8* %gep) |
| br label %loop |
| |
| loop: |
| %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ] |
| %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ] |
| %volload = load atomic i8, i8* %volatile unordered, align 8 |
| fence acquire |
| %volchk = icmp eq i8 %volload, 0 |
| %addrld = load atomic i32, i32* %addr.i unordered, align 8 |
| %sel = select i1 %volchk, i32 0, i32 %addrld |
| %sum.next = add i32 %sel, %sum |
| %indvar.next = add i32 %indvar, 1 |
| %cond = icmp slt i32 %indvar.next, %n |
| br i1 %cond, label %loop, label %loopexit |
| |
| loopexit: |
| ret i32 %sum |
| } |
| |
| ; same as test above, but instead of invariant.end, we have the result of |
| ; invariant.start escaping through a call. We cannot hoist the load. |
| define i32 @test_fence2(i8* %addr, i32 %n, i8* %volatile) { |
| ; CHECK-LABEL: @test_fence2 |
| ; CHECK-LABEL: entry |
| ; CHECK-NOT: load |
| ; CHECK: br label %loop |
| entry: |
| %gep = getelementptr inbounds i8, i8* %addr, i64 8 |
| %addr.i = bitcast i8* %gep to i32 * |
| store atomic i32 5, i32 * %addr.i unordered, align 8 |
| fence release |
| %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep) |
| call void @escaping.invariant.start({}* %invst) |
| br label %loop |
| |
| loop: |
| %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ] |
| %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ] |
| %volload = load atomic i8, i8* %volatile unordered, align 8 |
| fence acquire |
| %volchk = icmp eq i8 %volload, 0 |
| %addrld = load atomic i32, i32* %addr.i unordered, align 8 |
| %sel = select i1 %volchk, i32 0, i32 %addrld |
| %sum.next = add i32 %sel, %sum |
| %indvar.next = add i32 %indvar, 1 |
| %cond = icmp slt i32 %indvar.next, %n |
| br i1 %cond, label %loop, label %loopexit |
| |
| loopexit: |
| ret i32 %sum |
| } |
| |
| ; FIXME: invariant.start dominates the load, and in this scope, the |
| ; load is invariant. So, we can hoist the `addrld` load out of the loop. |
| ; Consider the loadoperand addr.i bitcasted before being passed to |
| ; invariant.start |
| define i32 @test_fence3(i32* %addr, i32 %n, i8* %volatile) { |
| ; CHECK-LABEL: @test_fence3 |
| ; CHECK-LABEL: entry |
| ; CHECK: invariant.start |
| ; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8 |
| ; CHECK: br label %loop |
| entry: |
| %addr.i = getelementptr inbounds i32, i32* %addr, i64 8 |
| %gep = bitcast i32* %addr.i to i8 * |
| store atomic i32 5, i32 * %addr.i unordered, align 8 |
| fence release |
| %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep) |
| br label %loop |
| |
| loop: |
| %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ] |
| %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ] |
| %volload = load atomic i8, i8* %volatile unordered, align 8 |
| fence acquire |
| %volchk = icmp eq i8 %volload, 0 |
| %addrld = load atomic i32, i32* %addr.i unordered, align 8 |
| %sel = select i1 %volchk, i32 0, i32 %addrld |
| %sum.next = add i32 %sel, %sum |
| %indvar.next = add i32 %indvar, 1 |
| %cond = icmp slt i32 %indvar.next, %n |
| br i1 %cond, label %loop, label %loopexit |
| |
| loopexit: |
| ret i32 %sum |
| } |
| |
| ; We should not hoist the addrld out of the loop. |
| define i32 @test_fence4(i32* %addr, i32 %n, i8* %volatile) { |
| ; CHECK-LABEL: @test_fence4 |
| ; CHECK-LABEL: entry |
| ; CHECK-NOT: %addrld = load atomic i32, i32* %addr.i unordered, align 8 |
| ; CHECK: br label %loop |
| entry: |
| %addr.i = getelementptr inbounds i32, i32* %addr, i64 8 |
| %gep = bitcast i32* %addr.i to i8 * |
| br label %loop |
| |
| loop: |
| %indvar = phi i32 [ %indvar.next, %loop ], [ 0, %entry ] |
| %sum = phi i32 [ %sum.next, %loop ], [ 0, %entry ] |
| store atomic i32 5, i32 * %addr.i unordered, align 8 |
| fence release |
| %invst = call {}* @llvm.invariant.start.p0i8(i64 4, i8* %gep) |
| %volload = load atomic i8, i8* %volatile unordered, align 8 |
| fence acquire |
| %volchk = icmp eq i8 %volload, 0 |
| %addrld = load atomic i32, i32* %addr.i unordered, align 8 |
| %sel = select i1 %volchk, i32 0, i32 %addrld |
| %sum.next = add i32 %sel, %sum |
| %indvar.next = add i32 %indvar, 1 |
| %cond = icmp slt i32 %indvar.next, %n |
| br i1 %cond, label %loop, label %loopexit |
| |
| loopexit: |
| ret i32 %sum |
| } |