| //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Custom DAG lowering for R600 |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "R600ISelLowering.h" |
| #include "AMDGPUFrameLowering.h" |
| #include "AMDGPUSubtarget.h" |
| #include "R600Defines.h" |
| #include "R600FrameLowering.h" |
| #include "R600InstrInfo.h" |
| #include "R600MachineFunctionInfo.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/DAGCombine.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/IntrinsicsR600.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #include "R600GenCallingConv.inc" |
| |
| R600TargetLowering::R600TargetLowering(const TargetMachine &TM, |
| const R600Subtarget &STI) |
| : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) { |
| addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass); |
| addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass); |
| addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass); |
| addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass); |
| addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass); |
| addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass); |
| |
| setBooleanContents(ZeroOrNegativeOneBooleanContent); |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| computeRegisterProperties(Subtarget->getRegisterInfo()); |
| |
| // Legalize loads and stores to the private address space. |
| setOperationAction(ISD::LOAD, MVT::i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v2i32, Custom); |
| setOperationAction(ISD::LOAD, MVT::v4i32, Custom); |
| |
| // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address |
| // spaces, so it is custom lowered to handle those where it isn't. |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom); |
| |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom); |
| |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom); |
| } |
| |
| // Workaround for LegalizeDAG asserting on expansion of i1 vector loads. |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand); |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand); |
| |
| setOperationAction(ISD::STORE, MVT::i8, Custom); |
| setOperationAction(ISD::STORE, MVT::i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v2i32, Custom); |
| setOperationAction(ISD::STORE, MVT::v4i32, Custom); |
| |
| setTruncStoreAction(MVT::i32, MVT::i8, Custom); |
| setTruncStoreAction(MVT::i32, MVT::i16, Custom); |
| // We need to include these since trunc STORES to PRIVATE need |
| // special handling to accommodate RMW |
| setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom); |
| setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom); |
| setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom); |
| setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom); |
| setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); |
| setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom); |
| setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom); |
| setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom); |
| |
| // Workaround for LegalizeDAG asserting on expansion of i1 vector stores. |
| setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand); |
| setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand); |
| |
| // Set condition code actions |
| setCondCodeAction(ISD::SETO, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUO, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETLT, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETLE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOLT, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETONE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUGE, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETULT, MVT::f32, Expand); |
| setCondCodeAction(ISD::SETULE, MVT::f32, Expand); |
| |
| setCondCodeAction(ISD::SETLE, MVT::i32, Expand); |
| setCondCodeAction(ISD::SETLT, MVT::i32, Expand); |
| setCondCodeAction(ISD::SETULE, MVT::i32, Expand); |
| setCondCodeAction(ISD::SETULT, MVT::i32, Expand); |
| |
| setOperationAction(ISD::FCOS, MVT::f32, Custom); |
| setOperationAction(ISD::FSIN, MVT::f32, Custom); |
| |
| setOperationAction(ISD::SETCC, MVT::v4i32, Expand); |
| setOperationAction(ISD::SETCC, MVT::v2i32, Expand); |
| |
| setOperationAction(ISD::BR_CC, MVT::i32, Expand); |
| setOperationAction(ISD::BR_CC, MVT::f32, Expand); |
| setOperationAction(ISD::BRCOND, MVT::Other, Custom); |
| |
| setOperationAction(ISD::FSUB, MVT::f32, Expand); |
| |
| setOperationAction(ISD::FCEIL, MVT::f64, Custom); |
| setOperationAction(ISD::FTRUNC, MVT::f64, Custom); |
| setOperationAction(ISD::FRINT, MVT::f64, Custom); |
| setOperationAction(ISD::FFLOOR, MVT::f64, Custom); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| |
| setOperationAction(ISD::SETCC, MVT::i32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f32, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::v2i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::v4i32, Expand); |
| |
| // ADD, SUB overflow. |
| // TODO: turn these into Legal? |
| if (Subtarget->hasCARRY()) |
| setOperationAction(ISD::UADDO, MVT::i32, Custom); |
| |
| if (Subtarget->hasBORROW()) |
| setOperationAction(ISD::USUBO, MVT::i32, Custom); |
| |
| // Expand sign extension of vectors |
| if (!Subtarget->hasBFE()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand); |
| |
| if (!Subtarget->hasBFE()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand); |
| |
| if (!Subtarget->hasBFE()) |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand); |
| |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand); |
| |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand); |
| |
| setOperationAction(ISD::FrameIndex, MVT::i32, Custom); |
| |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32 |
| // to be Legal/Custom in order to avoid library calls. |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); |
| |
| if (!Subtarget->hasFMA()) { |
| setOperationAction(ISD::FMA, MVT::f32, Expand); |
| setOperationAction(ISD::FMA, MVT::f64, Expand); |
| } |
| |
| // FIXME: May need no denormals check |
| setOperationAction(ISD::FMAD, MVT::f32, Legal); |
| |
| if (!Subtarget->hasBFI()) { |
| // fcopysign can be done in a single instruction with BFI. |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| } |
| |
| if (!Subtarget->hasBCNT(32)) |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| |
| if (!Subtarget->hasBCNT(64)) |
| setOperationAction(ISD::CTPOP, MVT::i64, Expand); |
| |
| if (Subtarget->hasFFBH()) |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); |
| |
| if (Subtarget->hasFFBL()) |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); |
| |
| // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we |
| // need it for R600. |
| if (Subtarget->hasBFE()) |
| setHasExtractBitsInsn(true); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| |
| const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; |
| for (MVT VT : ScalarIntVTs) { |
| setOperationAction(ISD::ADDC, VT, Expand); |
| setOperationAction(ISD::SUBC, VT, Expand); |
| setOperationAction(ISD::ADDE, VT, Expand); |
| setOperationAction(ISD::SUBE, VT, Expand); |
| } |
| |
| // LLVM will expand these to atomic_cmp_swap(0) |
| // and atomic_swap, respectively. |
| setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); |
| setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); |
| |
| // We need to custom lower some of the intrinsics |
| setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| setSchedulingPreference(Sched::Source); |
| |
| setTargetDAGCombine(ISD::FP_ROUND); |
| setTargetDAGCombine(ISD::FP_TO_SINT); |
| setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); |
| setTargetDAGCombine(ISD::SELECT_CC); |
| setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); |
| setTargetDAGCombine(ISD::LOAD); |
| } |
| |
| static inline bool isEOP(MachineBasicBlock::iterator I) { |
| if (std::next(I) == I->getParent()->end()) |
| return false; |
| return std::next(I)->getOpcode() == R600::RETURN; |
| } |
| |
| MachineBasicBlock * |
| R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, |
| MachineBasicBlock *BB) const { |
| MachineFunction *MF = BB->getParent(); |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| MachineBasicBlock::iterator I = MI; |
| const R600InstrInfo *TII = Subtarget->getInstrInfo(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| // Replace LDS_*_RET instruction that don't have any uses with the |
| // equivalent LDS_*_NORET instruction. |
| if (TII->isLDSRetInstr(MI.getOpcode())) { |
| int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst); |
| assert(DstIdx != -1); |
| MachineInstrBuilder NewMI; |
| // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add |
| // LDS_1A2D support and remove this special case. |
| if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) || |
| MI.getOpcode() == R600::LDS_CMPST_RET) |
| return BB; |
| |
| NewMI = BuildMI(*BB, I, BB->findDebugLoc(I), |
| TII->get(R600::getLDSNoRetOp(MI.getOpcode()))); |
| for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) { |
| NewMI.add(MI.getOperand(i)); |
| } |
| } else { |
| return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); |
| } |
| break; |
| |
| case R600::FABS_R600: { |
| MachineInstr *NewMI = TII->buildDefaultInstruction( |
| *BB, I, R600::MOV, MI.getOperand(0).getReg(), |
| MI.getOperand(1).getReg()); |
| TII->addFlag(*NewMI, 0, MO_FLAG_ABS); |
| break; |
| } |
| |
| case R600::FNEG_R600: { |
| MachineInstr *NewMI = TII->buildDefaultInstruction( |
| *BB, I, R600::MOV, MI.getOperand(0).getReg(), |
| MI.getOperand(1).getReg()); |
| TII->addFlag(*NewMI, 0, MO_FLAG_NEG); |
| break; |
| } |
| |
| case R600::MASK_WRITE: { |
| Register maskedRegister = MI.getOperand(0).getReg(); |
| assert(Register::isVirtualRegister(maskedRegister)); |
| MachineInstr * defInstr = MRI.getVRegDef(maskedRegister); |
| TII->addFlag(*defInstr, 0, MO_FLAG_MASK); |
| break; |
| } |
| |
| case R600::MOV_IMM_F32: |
| TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1) |
| .getFPImm() |
| ->getValueAPF() |
| .bitcastToAPInt() |
| .getZExtValue()); |
| break; |
| |
| case R600::MOV_IMM_I32: |
| TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), |
| MI.getOperand(1).getImm()); |
| break; |
| |
| case R600::MOV_IMM_GLOBAL_ADDR: { |
| //TODO: Perhaps combine this instruction with the next if possible |
| auto MIB = TII->buildDefaultInstruction( |
| *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X); |
| int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal); |
| //TODO: Ugh this is rather ugly |
| MIB->getOperand(Idx) = MI.getOperand(1); |
| break; |
| } |
| |
| case R600::CONST_COPY: { |
| MachineInstr *NewMI = TII->buildDefaultInstruction( |
| *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST); |
| TII->setImmOperand(*NewMI, R600::OpName::src0_sel, |
| MI.getOperand(1).getImm()); |
| break; |
| } |
| |
| case R600::RAT_WRITE_CACHELESS_32_eg: |
| case R600::RAT_WRITE_CACHELESS_64_eg: |
| case R600::RAT_WRITE_CACHELESS_128_eg: |
| BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)) |
| .addImm(isEOP(I)); // Set End of program bit |
| break; |
| |
| case R600::RAT_STORE_TYPED_eg: |
| BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)) |
| .add(MI.getOperand(2)) |
| .addImm(isEOP(I)); // Set End of program bit |
| break; |
| |
| case R600::BRANCH: |
| BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP)) |
| .add(MI.getOperand(0)); |
| break; |
| |
| case R600::BRANCH_COND_f32: { |
| MachineInstr *NewMI = |
| BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X), |
| R600::PREDICATE_BIT) |
| .add(MI.getOperand(1)) |
| .addImm(R600::PRED_SETNE) |
| .addImm(0); // Flags |
| TII->addFlag(*NewMI, 0, MO_FLAG_PUSH); |
| BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND)) |
| .add(MI.getOperand(0)) |
| .addReg(R600::PREDICATE_BIT, RegState::Kill); |
| break; |
| } |
| |
| case R600::BRANCH_COND_i32: { |
| MachineInstr *NewMI = |
| BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X), |
| R600::PREDICATE_BIT) |
| .add(MI.getOperand(1)) |
| .addImm(R600::PRED_SETNE_INT) |
| .addImm(0); // Flags |
| TII->addFlag(*NewMI, 0, MO_FLAG_PUSH); |
| BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND)) |
| .add(MI.getOperand(0)) |
| .addReg(R600::PREDICATE_BIT, RegState::Kill); |
| break; |
| } |
| |
| case R600::EG_ExportSwz: |
| case R600::R600_ExportSwz: { |
| // Instruction is left unmodified if its not the last one of its type |
| bool isLastInstructionOfItsType = true; |
| unsigned InstExportType = MI.getOperand(1).getImm(); |
| for (MachineBasicBlock::iterator NextExportInst = std::next(I), |
| EndBlock = BB->end(); NextExportInst != EndBlock; |
| NextExportInst = std::next(NextExportInst)) { |
| if (NextExportInst->getOpcode() == R600::EG_ExportSwz || |
| NextExportInst->getOpcode() == R600::R600_ExportSwz) { |
| unsigned CurrentInstExportType = NextExportInst->getOperand(1) |
| .getImm(); |
| if (CurrentInstExportType == InstExportType) { |
| isLastInstructionOfItsType = false; |
| break; |
| } |
| } |
| } |
| bool EOP = isEOP(I); |
| if (!EOP && !isLastInstructionOfItsType) |
| return BB; |
| unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40; |
| BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)) |
| .add(MI.getOperand(2)) |
| .add(MI.getOperand(3)) |
| .add(MI.getOperand(4)) |
| .add(MI.getOperand(5)) |
| .add(MI.getOperand(6)) |
| .addImm(CfInst) |
| .addImm(EOP); |
| break; |
| } |
| case R600::RETURN: { |
| return BB; |
| } |
| } |
| |
| MI.eraseFromParent(); |
| return BB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG Lowering Operations |
| //===----------------------------------------------------------------------===// |
| |
| SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); |
| switch (Op.getOpcode()) { |
| default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG); |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG); |
| case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY); |
| case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW); |
| case ISD::FCOS: |
| case ISD::FSIN: return LowerTrig(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::STORE: return LowerSTORE(Op, DAG); |
| case ISD::LOAD: { |
| SDValue Result = LowerLOAD(Op, DAG); |
| assert((!Result.getNode() || |
| Result.getNode()->getNumValues() == 2) && |
| "Load should return a value and a chain"); |
| return Result; |
| } |
| |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG); |
| case ISD::FrameIndex: return lowerFrameIndex(Op, DAG); |
| case ISD::INTRINSIC_VOID: { |
| SDValue Chain = Op.getOperand(0); |
| unsigned IntrinsicID = |
| cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| switch (IntrinsicID) { |
| case Intrinsic::r600_store_swizzle: { |
| SDLoc DL(Op); |
| const SDValue Args[8] = { |
| Chain, |
| Op.getOperand(2), // Export Value |
| Op.getOperand(3), // ArrayBase |
| Op.getOperand(4), // Type |
| DAG.getConstant(0, DL, MVT::i32), // SWZ_X |
| DAG.getConstant(1, DL, MVT::i32), // SWZ_Y |
| DAG.getConstant(2, DL, MVT::i32), // SWZ_Z |
| DAG.getConstant(3, DL, MVT::i32) // SWZ_W |
| }; |
| return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args); |
| } |
| |
| // default for switch(IntrinsicID) |
| default: break; |
| } |
| // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode()) |
| break; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntrinsicID = |
| cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| EVT VT = Op.getValueType(); |
| SDLoc DL(Op); |
| switch (IntrinsicID) { |
| case Intrinsic::r600_tex: |
| case Intrinsic::r600_texc: { |
| unsigned TextureOp; |
| switch (IntrinsicID) { |
| case Intrinsic::r600_tex: |
| TextureOp = 0; |
| break; |
| case Intrinsic::r600_texc: |
| TextureOp = 1; |
| break; |
| default: |
| llvm_unreachable("unhandled texture operation"); |
| } |
| |
| SDValue TexArgs[19] = { |
| DAG.getConstant(TextureOp, DL, MVT::i32), |
| Op.getOperand(1), |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getConstant(1, DL, MVT::i32), |
| DAG.getConstant(2, DL, MVT::i32), |
| DAG.getConstant(3, DL, MVT::i32), |
| Op.getOperand(2), |
| Op.getOperand(3), |
| Op.getOperand(4), |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getConstant(1, DL, MVT::i32), |
| DAG.getConstant(2, DL, MVT::i32), |
| DAG.getConstant(3, DL, MVT::i32), |
| Op.getOperand(5), |
| Op.getOperand(6), |
| Op.getOperand(7), |
| Op.getOperand(8), |
| Op.getOperand(9), |
| Op.getOperand(10) |
| }; |
| return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs); |
| } |
| case Intrinsic::r600_dot4: { |
| SDValue Args[8] = { |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), |
| DAG.getConstant(0, DL, MVT::i32)), |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), |
| DAG.getConstant(0, DL, MVT::i32)), |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), |
| DAG.getConstant(1, DL, MVT::i32)), |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), |
| DAG.getConstant(1, DL, MVT::i32)), |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), |
| DAG.getConstant(2, DL, MVT::i32)), |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), |
| DAG.getConstant(2, DL, MVT::i32)), |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), |
| DAG.getConstant(3, DL, MVT::i32)), |
| DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), |
| DAG.getConstant(3, DL, MVT::i32)) |
| }; |
| return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args); |
| } |
| |
| case Intrinsic::r600_implicitarg_ptr: { |
| MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS); |
| uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT); |
| return DAG.getConstant(ByteOffset, DL, PtrVT); |
| } |
| case Intrinsic::r600_read_ngroups_x: |
| return LowerImplicitParameter(DAG, VT, DL, 0); |
| case Intrinsic::r600_read_ngroups_y: |
| return LowerImplicitParameter(DAG, VT, DL, 1); |
| case Intrinsic::r600_read_ngroups_z: |
| return LowerImplicitParameter(DAG, VT, DL, 2); |
| case Intrinsic::r600_read_global_size_x: |
| return LowerImplicitParameter(DAG, VT, DL, 3); |
| case Intrinsic::r600_read_global_size_y: |
| return LowerImplicitParameter(DAG, VT, DL, 4); |
| case Intrinsic::r600_read_global_size_z: |
| return LowerImplicitParameter(DAG, VT, DL, 5); |
| case Intrinsic::r600_read_local_size_x: |
| return LowerImplicitParameter(DAG, VT, DL, 6); |
| case Intrinsic::r600_read_local_size_y: |
| return LowerImplicitParameter(DAG, VT, DL, 7); |
| case Intrinsic::r600_read_local_size_z: |
| return LowerImplicitParameter(DAG, VT, DL, 8); |
| |
| case Intrinsic::r600_read_tgid_x: |
| return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, |
| R600::T1_X, VT); |
| case Intrinsic::r600_read_tgid_y: |
| return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, |
| R600::T1_Y, VT); |
| case Intrinsic::r600_read_tgid_z: |
| return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, |
| R600::T1_Z, VT); |
| case Intrinsic::r600_read_tidig_x: |
| return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, |
| R600::T0_X, VT); |
| case Intrinsic::r600_read_tidig_y: |
| return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, |
| R600::T0_Y, VT); |
| case Intrinsic::r600_read_tidig_z: |
| return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, |
| R600::T0_Z, VT); |
| |
| case Intrinsic::r600_recipsqrt_ieee: |
| return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); |
| |
| case Intrinsic::r600_recipsqrt_clamped: |
| return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); |
| default: |
| return Op; |
| } |
| |
| // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode()) |
| break; |
| } |
| } // end switch(Op.getOpcode()) |
| return SDValue(); |
| } |
| |
| void R600TargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| default: |
| AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); |
| return; |
| case ISD::FP_TO_UINT: |
| if (N->getValueType(0) == MVT::i1) { |
| Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG)); |
| return; |
| } |
| // Since we don't care about out of bounds values we can use FP_TO_SINT for |
| // uints too. The DAGLegalizer code for uint considers some extra cases |
| // which are not necessary here. |
| LLVM_FALLTHROUGH; |
| case ISD::FP_TO_SINT: { |
| if (N->getValueType(0) == MVT::i1) { |
| Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG)); |
| return; |
| } |
| |
| SDValue Result; |
| if (expandFP_TO_SINT(N, Result, DAG)) |
| Results.push_back(Result); |
| return; |
| } |
| case ISD::SDIVREM: { |
| SDValue Op = SDValue(N, 1); |
| SDValue RES = LowerSDIVREM(Op, DAG); |
| Results.push_back(RES); |
| Results.push_back(RES.getValue(1)); |
| break; |
| } |
| case ISD::UDIVREM: { |
| SDValue Op = SDValue(N, 0); |
| LowerUDIVREM64(Op, DAG, Results); |
| break; |
| } |
| } |
| } |
| |
| SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG, |
| SDValue Vector) const { |
| SDLoc DL(Vector); |
| EVT VecVT = Vector.getValueType(); |
| EVT EltVT = VecVT.getVectorElementType(); |
| SmallVector<SDValue, 8> Args; |
| |
| for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) { |
| Args.push_back(DAG.getNode( |
| ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector, |
| DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout())))); |
| } |
| |
| return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args); |
| } |
| |
| SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Vector = Op.getOperand(0); |
| SDValue Index = Op.getOperand(1); |
| |
| if (isa<ConstantSDNode>(Index) || |
| Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) |
| return Op; |
| |
| Vector = vectorToVerticalVector(DAG, Vector); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(), |
| Vector, Index); |
| } |
| |
| SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue Vector = Op.getOperand(0); |
| SDValue Value = Op.getOperand(1); |
| SDValue Index = Op.getOperand(2); |
| |
| if (isa<ConstantSDNode>(Index) || |
| Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) |
| return Op; |
| |
| Vector = vectorToVerticalVector(DAG, Vector); |
| SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(), |
| Vector, Value, Index); |
| return vectorToVerticalVector(DAG, Insert); |
| } |
| |
| SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, |
| SDValue Op, |
| SelectionDAG &DAG) const { |
| GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); |
| if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) |
| return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); |
| |
| const DataLayout &DL = DAG.getDataLayout(); |
| const GlobalValue *GV = GSD->getGlobal(); |
| MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); |
| |
| SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT); |
| return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA); |
| } |
| |
| SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { |
| // On hw >= R700, COS/SIN input must be between -1. and 1. |
| // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5) |
| EVT VT = Op.getValueType(); |
| SDValue Arg = Op.getOperand(0); |
| SDLoc DL(Op); |
| |
| // TODO: Should this propagate fast-math-flags? |
| SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, |
| DAG.getNode(ISD::FADD, DL, VT, |
| DAG.getNode(ISD::FMUL, DL, VT, Arg, |
| DAG.getConstantFP(0.15915494309, DL, MVT::f32)), |
| DAG.getConstantFP(0.5, DL, MVT::f32))); |
| unsigned TrigNode; |
| switch (Op.getOpcode()) { |
| case ISD::FCOS: |
| TrigNode = AMDGPUISD::COS_HW; |
| break; |
| case ISD::FSIN: |
| TrigNode = AMDGPUISD::SIN_HW; |
| break; |
| default: |
| llvm_unreachable("Wrong trig opcode"); |
| } |
| SDValue TrigVal = DAG.getNode(TrigNode, DL, VT, |
| DAG.getNode(ISD::FADD, DL, VT, FractPart, |
| DAG.getConstantFP(-0.5, DL, MVT::f32))); |
| if (Gen >= AMDGPUSubtarget::R700) |
| return TrigVal; |
| // On R600 hw, COS/SIN input must be between -Pi and Pi. |
| return DAG.getNode(ISD::FMUL, DL, VT, TrigVal, |
| DAG.getConstantFP(numbers::pif, DL, MVT::f32)); |
| } |
| |
| SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Shift = Op.getOperand(2); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue One = DAG.getConstant(1, DL, VT); |
| |
| SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT); |
| SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); |
| SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width); |
| SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift); |
| |
| // The dance around Width1 is necessary for 0 special case. |
| // Without it the CompShift might be 32, producing incorrect results in |
| // Overflow. So we do the shift in two steps, the alternative is to |
| // add a conditional to filter the special case. |
| |
| SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift); |
| Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One); |
| |
| SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift); |
| HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow); |
| SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift); |
| |
| SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift); |
| SDValue LoBig = Zero; |
| |
| Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT); |
| Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi); |
| } |
| |
| SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| SDValue Shift = Op.getOperand(2); |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue One = DAG.getConstant(1, DL, VT); |
| |
| const bool SRA = Op.getOpcode() == ISD::SRA_PARTS; |
| |
| SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT); |
| SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); |
| SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width); |
| SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift); |
| |
| // The dance around Width1 is necessary for 0 special case. |
| // Without it the CompShift might be 32, producing incorrect results in |
| // Overflow. So we do the shift in two steps, the alternative is to |
| // add a conditional to filter the special case. |
| |
| SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift); |
| Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One); |
| |
| SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift); |
| SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift); |
| LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow); |
| |
| SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift); |
| SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero; |
| |
| Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT); |
| Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi); |
| } |
| |
| SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG, |
| unsigned mainop, unsigned ovf) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| SDValue Lo = Op.getOperand(0); |
| SDValue Hi = Op.getOperand(1); |
| |
| SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi); |
| // Extend sign. |
| OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF, |
| DAG.getValueType(MVT::i1)); |
| |
| SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi); |
| |
| return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF); |
| } |
| |
| SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| return DAG.getNode( |
| ISD::SETCC, |
| DL, |
| MVT::i1, |
| Op, DAG.getConstantFP(1.0f, DL, MVT::f32), |
| DAG.getCondCode(ISD::SETEQ)); |
| } |
| |
| SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| return DAG.getNode( |
| ISD::SETCC, |
| DL, |
| MVT::i1, |
| Op, DAG.getConstantFP(-1.0f, DL, MVT::f32), |
| DAG.getCondCode(ISD::SETEQ)); |
| } |
| |
| SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT, |
| const SDLoc &DL, |
| unsigned DwordOffset) const { |
| unsigned ByteOffset = DwordOffset * 4; |
| PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()), |
| AMDGPUAS::PARAM_I_ADDRESS); |
| |
| // We shouldn't be using an offset wider than 16-bits for implicit parameters. |
| assert(isInt<16>(ByteOffset)); |
| |
| return DAG.getLoad(VT, DL, DAG.getEntryNode(), |
| DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR |
| MachinePointerInfo(ConstantPointerNull::get(PtrType))); |
| } |
| |
| bool R600TargetLowering::isZero(SDValue Op) const { |
| if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) { |
| return Cst->isNullValue(); |
| } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){ |
| return CstFP->isZero(); |
| } else { |
| return false; |
| } |
| } |
| |
| bool R600TargetLowering::isHWTrueValue(SDValue Op) const { |
| if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { |
| return CFP->isExactlyValue(1.0); |
| } |
| return isAllOnesConstant(Op); |
| } |
| |
| bool R600TargetLowering::isHWFalseValue(SDValue Op) const { |
| if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { |
| return CFP->getValueAPF().isZero(); |
| } |
| return isNullConstant(Op); |
| } |
| |
| SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue True = Op.getOperand(2); |
| SDValue False = Op.getOperand(3); |
| SDValue CC = Op.getOperand(4); |
| SDValue Temp; |
| |
| if (VT == MVT::f32) { |
| DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); |
| SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); |
| if (MinMax) |
| return MinMax; |
| } |
| |
| // LHS and RHS are guaranteed to be the same value type |
| EVT CompareVT = LHS.getValueType(); |
| |
| // Check if we can lower this to a native operation. |
| |
| // Try to lower to a SET* instruction: |
| // |
| // SET* can match the following patterns: |
| // |
| // select_cc f32, f32, -1, 0, cc_supported |
| // select_cc f32, f32, 1.0f, 0.0f, cc_supported |
| // select_cc i32, i32, -1, 0, cc_supported |
| // |
| |
| // Move hardware True/False values to the correct operand. |
| if (isHWTrueValue(False) && isHWFalseValue(True)) { |
| ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT); |
| if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) { |
| std::swap(False, True); |
| CC = DAG.getCondCode(InverseCC); |
| } else { |
| ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC); |
| if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) { |
| std::swap(False, True); |
| std::swap(LHS, RHS); |
| CC = DAG.getCondCode(SwapInvCC); |
| } |
| } |
| } |
| |
| if (isHWTrueValue(True) && isHWFalseValue(False) && |
| (CompareVT == VT || VT == MVT::i32)) { |
| // This can be matched by a SET* instruction. |
| return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC); |
| } |
| |
| // Try to lower to a CND* instruction: |
| // |
| // CND* can match the following patterns: |
| // |
| // select_cc f32, 0.0, f32, f32, cc_supported |
| // select_cc f32, 0.0, i32, i32, cc_supported |
| // select_cc i32, 0, f32, f32, cc_supported |
| // select_cc i32, 0, i32, i32, cc_supported |
| // |
| |
| // Try to move the zero value to the RHS |
| if (isZero(LHS)) { |
| ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| // Try swapping the operands |
| ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode); |
| if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { |
| std::swap(LHS, RHS); |
| CC = DAG.getCondCode(CCSwapped); |
| } else { |
| // Try inverting the conditon and then swapping the operands |
| ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT); |
| CCSwapped = ISD::getSetCCSwappedOperands(CCInv); |
| if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { |
| std::swap(True, False); |
| std::swap(LHS, RHS); |
| CC = DAG.getCondCode(CCSwapped); |
| } |
| } |
| } |
| if (isZero(RHS)) { |
| SDValue Cond = LHS; |
| SDValue Zero = RHS; |
| ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| if (CompareVT != VT) { |
| // Bitcast True / False to the correct types. This will end up being |
| // a nop, but it allows us to define only a single pattern in the |
| // .TD files for each CND* instruction rather than having to have |
| // one pattern for integer True/False and one for fp True/False |
| True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True); |
| False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False); |
| } |
| |
| switch (CCOpcode) { |
| case ISD::SETONE: |
| case ISD::SETUNE: |
| case ISD::SETNE: |
| CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT); |
| Temp = True; |
| True = False; |
| False = Temp; |
| break; |
| default: |
| break; |
| } |
| SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, |
| Cond, Zero, |
| True, False, |
| DAG.getCondCode(CCOpcode)); |
| return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode); |
| } |
| |
| // If we make it this for it means we have no native instructions to handle |
| // this SELECT_CC, so we must lower it. |
| SDValue HWTrue, HWFalse; |
| |
| if (CompareVT == MVT::f32) { |
| HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT); |
| HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT); |
| } else if (CompareVT == MVT::i32) { |
| HWTrue = DAG.getConstant(-1, DL, CompareVT); |
| HWFalse = DAG.getConstant(0, DL, CompareVT); |
| } |
| else { |
| llvm_unreachable("Unhandled value type in LowerSELECT_CC"); |
| } |
| |
| // Lower this unsupported SELECT_CC into a combination of two supported |
| // SELECT_CC operations. |
| SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC); |
| |
| return DAG.getNode(ISD::SELECT_CC, DL, VT, |
| Cond, HWFalse, |
| True, False, |
| DAG.getCondCode(ISD::SETNE)); |
| } |
| |
| /// LLVM generates byte-addressed pointers. For indirect addressing, we need to |
| /// convert these pointers to a register index. Each register holds |
| /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the |
| /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used |
| /// for indirect addressing. |
| SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr, |
| unsigned StackWidth, |
| SelectionDAG &DAG) const { |
| unsigned SRLPad; |
| switch(StackWidth) { |
| case 1: |
| SRLPad = 2; |
| break; |
| case 2: |
| SRLPad = 3; |
| break; |
| case 4: |
| SRLPad = 4; |
| break; |
| default: llvm_unreachable("Invalid stack width"); |
| } |
| |
| SDLoc DL(Ptr); |
| return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr, |
| DAG.getConstant(SRLPad, DL, MVT::i32)); |
| } |
| |
| void R600TargetLowering::getStackAddress(unsigned StackWidth, |
| unsigned ElemIdx, |
| unsigned &Channel, |
| unsigned &PtrIncr) const { |
| switch (StackWidth) { |
| default: |
| case 1: |
| Channel = 0; |
| if (ElemIdx > 0) { |
| PtrIncr = 1; |
| } else { |
| PtrIncr = 0; |
| } |
| break; |
| case 2: |
| Channel = ElemIdx % 2; |
| if (ElemIdx == 2) { |
| PtrIncr = 1; |
| } else { |
| PtrIncr = 0; |
| } |
| break; |
| case 4: |
| Channel = ElemIdx; |
| PtrIncr = 0; |
| break; |
| } |
| } |
| |
| SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Store); |
| //TODO: Who creates the i8 stores? |
| assert(Store->isTruncatingStore() |
| || Store->getValue().getValueType() == MVT::i8); |
| assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS); |
| |
| SDValue Mask; |
| if (Store->getMemoryVT() == MVT::i8) { |
| assert(Store->getAlignment() >= 1); |
| Mask = DAG.getConstant(0xff, DL, MVT::i32); |
| } else if (Store->getMemoryVT() == MVT::i16) { |
| assert(Store->getAlignment() >= 2); |
| Mask = DAG.getConstant(0xffff, DL, MVT::i32); |
| } else { |
| llvm_unreachable("Unsupported private trunc store"); |
| } |
| |
| SDValue OldChain = Store->getChain(); |
| bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN); |
| // Skip dummy |
| SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain; |
| SDValue BasePtr = Store->getBasePtr(); |
| SDValue Offset = Store->getOffset(); |
| EVT MemVT = Store->getMemoryVT(); |
| |
| SDValue LoadPtr = BasePtr; |
| if (!Offset.isUndef()) { |
| LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset); |
| } |
| |
| // Get dword location |
| // TODO: this should be eliminated by the future SHR ptr, 2 |
| SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, |
| DAG.getConstant(0xfffffffc, DL, MVT::i32)); |
| |
| // Load dword |
| // TODO: can we be smarter about machine pointer info? |
| MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS); |
| SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo); |
| |
| Chain = Dst.getValue(1); |
| |
| // Get offset in dword |
| SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, |
| DAG.getConstant(0x3, DL, MVT::i32)); |
| |
| // Convert byte offset to bit shift |
| SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, |
| DAG.getConstant(3, DL, MVT::i32)); |
| |
| // TODO: Contrary to the name of the functiom, |
| // it also handles sub i32 non-truncating stores (like i1) |
| SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, |
| Store->getValue()); |
| |
| // Mask the value to the right type |
| SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); |
| |
| // Shift the value in place |
| SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, |
| MaskedValue, ShiftAmt); |
| |
| // Shift the mask in place |
| SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt); |
| |
| // Invert the mask. NOTE: if we had native ROL instructions we could |
| // use inverted mask |
| DstMask = DAG.getNOT(DL, DstMask, MVT::i32); |
| |
| // Cleanup the target bits |
| Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); |
| |
| // Add the new bits |
| SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); |
| |
| // Store dword |
| // TODO: Can we be smarter about MachinePointerInfo? |
| SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo); |
| |
| // If we are part of expanded vector, make our neighbors depend on this store |
| if (VectorTrunc) { |
| // Make all other vector elements depend on this store |
| Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore); |
| DAG.ReplaceAllUsesOfValueWith(OldChain, Chain); |
| } |
| return NewStore; |
| } |
| |
| SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { |
| StoreSDNode *StoreNode = cast<StoreSDNode>(Op); |
| unsigned AS = StoreNode->getAddressSpace(); |
| |
| SDValue Chain = StoreNode->getChain(); |
| SDValue Ptr = StoreNode->getBasePtr(); |
| SDValue Value = StoreNode->getValue(); |
| |
| EVT VT = Value.getValueType(); |
| EVT MemVT = StoreNode->getMemoryVT(); |
| EVT PtrVT = Ptr.getValueType(); |
| |
| SDLoc DL(Op); |
| |
| const bool TruncatingStore = StoreNode->isTruncatingStore(); |
| |
| // Neither LOCAL nor PRIVATE can do vectors at the moment |
| if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS || |
| TruncatingStore) && |
| VT.isVector()) { |
| if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) { |
| // Add an extra level of chain to isolate this vector |
| SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain); |
| // TODO: can the chain be replaced without creating a new store? |
| SDValue NewStore = DAG.getTruncStore( |
| NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(), |
| MemVT, StoreNode->getAlignment(), |
| StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo()); |
| StoreNode = cast<StoreSDNode>(NewStore); |
| } |
| |
| return scalarizeVectorStore(StoreNode, DAG); |
| } |
| |
| unsigned Align = StoreNode->getAlignment(); |
| if (Align < MemVT.getStoreSize() && |
| !allowsMisalignedMemoryAccesses( |
| MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) { |
| return expandUnalignedStore(StoreNode, DAG); |
| } |
| |
| SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr, |
| DAG.getConstant(2, DL, PtrVT)); |
| |
| if (AS == AMDGPUAS::GLOBAL_ADDRESS) { |
| // It is beneficial to create MSKOR here instead of combiner to avoid |
| // artificial dependencies introduced by RMW |
| if (TruncatingStore) { |
| assert(VT.bitsLE(MVT::i32)); |
| SDValue MaskConstant; |
| if (MemVT == MVT::i8) { |
| MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32); |
| } else { |
| assert(MemVT == MVT::i16); |
| assert(StoreNode->getAlignment() >= 2); |
| MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32); |
| } |
| |
| SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr, |
| DAG.getConstant(0x00000003, DL, PtrVT)); |
| SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex, |
| DAG.getConstant(3, DL, VT)); |
| |
| // Put the mask in correct place |
| SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift); |
| |
| // Put the value bits in correct place |
| SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant); |
| SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift); |
| |
| // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32 |
| // vector instead. |
| SDValue Src[4] = { |
| ShiftedValue, |
| DAG.getConstant(0, DL, MVT::i32), |
| DAG.getConstant(0, DL, MVT::i32), |
| Mask |
| }; |
| SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src); |
| SDValue Args[3] = { Chain, Input, DWordAddr }; |
| return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL, |
| Op->getVTList(), Args, MemVT, |
| StoreNode->getMemOperand()); |
| } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) { |
| // Convert pointer from byte address to dword address. |
| Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr); |
| |
| if (StoreNode->isIndexed()) { |
| llvm_unreachable("Indexed stores not supported yet"); |
| } else { |
| Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); |
| } |
| return Chain; |
| } |
| } |
| |
| // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes |
| if (AS != AMDGPUAS::PRIVATE_ADDRESS) |
| return SDValue(); |
| |
| if (MemVT.bitsLT(MVT::i32)) |
| return lowerPrivateTruncStore(StoreNode, DAG); |
| |
| // Standard i32+ store, tag it with DWORDADDR to note that the address |
| // has been shifted |
| if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { |
| Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr); |
| return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); |
| } |
| |
| // Tagged i32+ stores will be matched by patterns |
| return SDValue(); |
| } |
| |
| // return (512 + (kc_bank << 12) |
| static int |
| ConstantAddressBlock(unsigned AddressSpace) { |
| switch (AddressSpace) { |
| case AMDGPUAS::CONSTANT_BUFFER_0: |
| return 512; |
| case AMDGPUAS::CONSTANT_BUFFER_1: |
| return 512 + 4096; |
| case AMDGPUAS::CONSTANT_BUFFER_2: |
| return 512 + 4096 * 2; |
| case AMDGPUAS::CONSTANT_BUFFER_3: |
| return 512 + 4096 * 3; |
| case AMDGPUAS::CONSTANT_BUFFER_4: |
| return 512 + 4096 * 4; |
| case AMDGPUAS::CONSTANT_BUFFER_5: |
| return 512 + 4096 * 5; |
| case AMDGPUAS::CONSTANT_BUFFER_6: |
| return 512 + 4096 * 6; |
| case AMDGPUAS::CONSTANT_BUFFER_7: |
| return 512 + 4096 * 7; |
| case AMDGPUAS::CONSTANT_BUFFER_8: |
| return 512 + 4096 * 8; |
| case AMDGPUAS::CONSTANT_BUFFER_9: |
| return 512 + 4096 * 9; |
| case AMDGPUAS::CONSTANT_BUFFER_10: |
| return 512 + 4096 * 10; |
| case AMDGPUAS::CONSTANT_BUFFER_11: |
| return 512 + 4096 * 11; |
| case AMDGPUAS::CONSTANT_BUFFER_12: |
| return 512 + 4096 * 12; |
| case AMDGPUAS::CONSTANT_BUFFER_13: |
| return 512 + 4096 * 13; |
| case AMDGPUAS::CONSTANT_BUFFER_14: |
| return 512 + 4096 * 14; |
| case AMDGPUAS::CONSTANT_BUFFER_15: |
| return 512 + 4096 * 15; |
| default: |
| return -1; |
| } |
| } |
| |
| SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| ISD::LoadExtType ExtType = Load->getExtensionType(); |
| EVT MemVT = Load->getMemoryVT(); |
| assert(Load->getAlignment() >= MemVT.getStoreSize()); |
| |
| SDValue BasePtr = Load->getBasePtr(); |
| SDValue Chain = Load->getChain(); |
| SDValue Offset = Load->getOffset(); |
| |
| SDValue LoadPtr = BasePtr; |
| if (!Offset.isUndef()) { |
| LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset); |
| } |
| |
| // Get dword location |
| // NOTE: this should be eliminated by the future SHR ptr, 2 |
| SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, |
| DAG.getConstant(0xfffffffc, DL, MVT::i32)); |
| |
| // Load dword |
| // TODO: can we be smarter about machine pointer info? |
| MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS); |
| SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo); |
| |
| // Get offset within the register. |
| SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, |
| LoadPtr, DAG.getConstant(0x3, DL, MVT::i32)); |
| |
| // Bit offset of target byte (byteIdx * 8). |
| SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, |
| DAG.getConstant(3, DL, MVT::i32)); |
| |
| // Shift to the right. |
| SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt); |
| |
| // Eliminate the upper bits by setting them to ... |
| EVT MemEltVT = MemVT.getScalarType(); |
| |
| if (ExtType == ISD::SEXTLOAD) { // ... ones. |
| SDValue MemEltVTNode = DAG.getValueType(MemEltVT); |
| Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode); |
| } else { // ... or zeros. |
| Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT); |
| } |
| |
| SDValue Ops[] = { |
| Ret, |
| Read.getValue(1) // This should be our output chain |
| }; |
| |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { |
| LoadSDNode *LoadNode = cast<LoadSDNode>(Op); |
| unsigned AS = LoadNode->getAddressSpace(); |
| EVT MemVT = LoadNode->getMemoryVT(); |
| ISD::LoadExtType ExtType = LoadNode->getExtensionType(); |
| |
| if (AS == AMDGPUAS::PRIVATE_ADDRESS && |
| ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) { |
| return lowerPrivateExtLoad(Op, DAG); |
| } |
| |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue Chain = LoadNode->getChain(); |
| SDValue Ptr = LoadNode->getBasePtr(); |
| |
| if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
| LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && |
| VT.isVector()) { |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG); |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| // This is still used for explicit load from addrspace(8) |
| int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace()); |
| if (ConstantBlock > -1 && |
| ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) || |
| (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) { |
| SDValue Result; |
| if (isa<Constant>(LoadNode->getMemOperand()->getValue()) || |
| isa<ConstantSDNode>(Ptr)) { |
| return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG); |
| } else { |
| //TODO: Does this even work? |
| // non-constant ptr can't be folded, keeps it as a v4f32 load |
| Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32, |
| DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, |
| DAG.getConstant(4, DL, MVT::i32)), |
| DAG.getConstant(LoadNode->getAddressSpace() - |
| AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32) |
| ); |
| } |
| |
| if (!VT.isVector()) { |
| Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, |
| DAG.getConstant(0, DL, MVT::i32)); |
| } |
| |
| SDValue MergedValues[2] = { |
| Result, |
| Chain |
| }; |
| return DAG.getMergeValues(MergedValues, DL); |
| } |
| |
| // For most operations returning SDValue() will result in the node being |
| // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we |
| // need to manually expand loads that may be legal in some address spaces and |
| // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for |
| // compute shaders, since the data is sign extended when it is uploaded to the |
| // buffer. However SEXT loads from other address spaces are not supported, so |
| // we need to expand them here. |
| if (LoadNode->getExtensionType() == ISD::SEXTLOAD) { |
| assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8)); |
| SDValue NewLoad = DAG.getExtLoad( |
| ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT, |
| LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags()); |
| SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad, |
| DAG.getValueType(MemVT)); |
| |
| SDValue MergedValues[2] = { Res, Chain }; |
| return DAG.getMergeValues(MergedValues, DL); |
| } |
| |
| if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) { |
| return SDValue(); |
| } |
| |
| // DWORDADDR ISD marks already shifted address |
| if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { |
| assert(VT == MVT::i32); |
| Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32)); |
| Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr); |
| return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand()); |
| } |
| return SDValue(); |
| } |
| |
| SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Cond = Op.getOperand(1); |
| SDValue Jump = Op.getOperand(2); |
| |
| return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(), |
| Chain, Jump, Cond); |
| } |
| |
| SDValue R600TargetLowering::lowerFrameIndex(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const R600FrameLowering *TFL = Subtarget->getFrameLowering(); |
| |
| FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); |
| |
| unsigned FrameIndex = FIN->getIndex(); |
| unsigned IgnoredFrameReg; |
| unsigned Offset = |
| TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); |
| return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), |
| Op.getValueType()); |
| } |
| |
| CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
| bool IsVarArg) const { |
| switch (CC) { |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| case CallingConv::C: |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| llvm_unreachable("kernels should not be handled here"); |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_LS: |
| return CC_R600; |
| default: |
| report_fatal_error("Unsupported calling convention."); |
| } |
| } |
| |
| /// XXX Only kernel functions are supported, so we can assume for now that |
| /// every function is a kernel function, but in the future we should use |
| /// separate calling conventions for kernel and non-kernel functions. |
| SDValue R600TargetLowering::LowerFormalArguments( |
| SDValue Chain, CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, |
| *DAG.getContext()); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SmallVector<ISD::InputArg, 8> LocalIns; |
| |
| if (AMDGPU::isShader(CallConv)) { |
| CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg)); |
| } else { |
| analyzeFormalArgumentsCompute(CCInfo, Ins); |
| } |
| |
| for (unsigned i = 0, e = Ins.size(); i < e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| const ISD::InputArg &In = Ins[i]; |
| EVT VT = In.VT; |
| EVT MemVT = VA.getLocVT(); |
| if (!VT.isVector() && MemVT.isVector()) { |
| // Get load source type if scalarized. |
| MemVT = MemVT.getVectorElementType(); |
| } |
| |
| if (AMDGPU::isShader(CallConv)) { |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass); |
| SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT); |
| InVals.push_back(Register); |
| continue; |
| } |
| |
| // i64 isn't a legal type, so the register type used ends up as i32, which |
| // isn't expected here. It attempts to create this sextload, but it ends up |
| // being invalid. Somehow this seems to work with i64 arguments, but breaks |
| // for <1 x i64>. |
| |
| // The first 36 bytes of the input buffer contains information about |
| // thread group and global sizes. |
| ISD::LoadExtType Ext = ISD::NON_EXTLOAD; |
| if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) { |
| // FIXME: This should really check the extload type, but the handling of |
| // extload vector parameters seems to be broken. |
| |
| // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD; |
| Ext = ISD::SEXTLOAD; |
| } |
| |
| // Compute the offset from the value. |
| // XXX - I think PartOffset should give you this, but it seems to give the |
| // size of the register which isn't useful. |
| |
| unsigned PartOffset = VA.getLocMemOffset(); |
| unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset); |
| |
| MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS); |
| SDValue Arg = DAG.getLoad( |
| ISD::UNINDEXED, Ext, VT, DL, Chain, |
| DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32), |
| PtrInfo, |
| MemVT, Alignment, MachineMemOperand::MONonTemporal | |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| |
| InVals.push_back(Arg); |
| } |
| return Chain; |
| } |
| |
| EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, |
| EVT VT) const { |
| if (!VT.isVector()) |
| return MVT::i32; |
| return VT.changeVectorElementTypeToInteger(); |
| } |
| |
| bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, |
| const SelectionDAG &DAG) const { |
| // Local and Private addresses do not handle vectors. Limit to i32 |
| if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) { |
| return (MemVT.getSizeInBits() <= 32); |
| } |
| return true; |
| } |
| |
| bool R600TargetLowering::allowsMisalignedMemoryAccesses( |
| EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, |
| bool *IsFast) const { |
| if (IsFast) |
| *IsFast = false; |
| |
| if (!VT.isSimple() || VT == MVT::Other) |
| return false; |
| |
| if (VT.bitsLT(MVT::i32)) |
| return false; |
| |
| // TODO: This is a rough estimate. |
| if (IsFast) |
| *IsFast = true; |
| |
| return VT.bitsGT(MVT::i32) && Align % 4 == 0; |
| } |
| |
| static SDValue CompactSwizzlableVector( |
| SelectionDAG &DAG, SDValue VectorEntry, |
| DenseMap<unsigned, unsigned> &RemapSwizzle) { |
| assert(RemapSwizzle.empty()); |
| |
| SDLoc DL(VectorEntry); |
| EVT EltTy = VectorEntry.getValueType().getVectorElementType(); |
| |
| SDValue NewBldVec[4]; |
| for (unsigned i = 0; i < 4; i++) |
| NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry, |
| DAG.getIntPtrConstant(i, DL)); |
| |
| for (unsigned i = 0; i < 4; i++) { |
| if (NewBldVec[i].isUndef()) |
| // We mask write here to teach later passes that the ith element of this |
| // vector is undef. Thus we can use it to reduce 128 bits reg usage, |
| // break false dependencies and additionnaly make assembly easier to read. |
| RemapSwizzle[i] = 7; // SEL_MASK_WRITE |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) { |
| if (C->isZero()) { |
| RemapSwizzle[i] = 4; // SEL_0 |
| NewBldVec[i] = DAG.getUNDEF(MVT::f32); |
| } else if (C->isExactlyValue(1.0)) { |
| RemapSwizzle[i] = 5; // SEL_1 |
| NewBldVec[i] = DAG.getUNDEF(MVT::f32); |
| } |
| } |
| |
| if (NewBldVec[i].isUndef()) |
| continue; |
| |
| for (unsigned j = 0; j < i; j++) { |
| if (NewBldVec[i] == NewBldVec[j]) { |
| NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType()); |
| RemapSwizzle[i] = j; |
| break; |
| } |
| } |
| } |
| |
| return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry), |
| NewBldVec); |
| } |
| |
| static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, |
| DenseMap<unsigned, unsigned> &RemapSwizzle) { |
| assert(RemapSwizzle.empty()); |
| |
| SDLoc DL(VectorEntry); |
| EVT EltTy = VectorEntry.getValueType().getVectorElementType(); |
| |
| SDValue NewBldVec[4]; |
| bool isUnmovable[4] = {false, false, false, false}; |
| for (unsigned i = 0; i < 4; i++) |
| NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry, |
| DAG.getIntPtrConstant(i, DL)); |
| |
| for (unsigned i = 0; i < 4; i++) { |
| RemapSwizzle[i] = i; |
| if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1)) |
| ->getZExtValue(); |
| if (i == Idx) |
| isUnmovable[Idx] = true; |
| } |
| } |
| |
| for (unsigned i = 0; i < 4; i++) { |
| if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1)) |
| ->getZExtValue(); |
| if (isUnmovable[Idx]) |
| continue; |
| // Swap i and Idx |
| std::swap(NewBldVec[Idx], NewBldVec[i]); |
| std::swap(RemapSwizzle[i], RemapSwizzle[Idx]); |
| break; |
| } |
| } |
| |
| return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry), |
| NewBldVec); |
| } |
| |
| SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4], |
| SelectionDAG &DAG, |
| const SDLoc &DL) const { |
| // Old -> New swizzle values |
| DenseMap<unsigned, unsigned> SwizzleRemap; |
| |
| BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap); |
| for (unsigned i = 0; i < 4; i++) { |
| unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue(); |
| if (SwizzleRemap.find(Idx) != SwizzleRemap.end()) |
| Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32); |
| } |
| |
| SwizzleRemap.clear(); |
| BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap); |
| for (unsigned i = 0; i < 4; i++) { |
| unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue(); |
| if (SwizzleRemap.find(Idx) != SwizzleRemap.end()) |
| Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32); |
| } |
| |
| return BuildVector; |
| } |
| |
| SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block, |
| SelectionDAG &DAG) const { |
| SDLoc DL(LoadNode); |
| EVT VT = LoadNode->getValueType(0); |
| SDValue Chain = LoadNode->getChain(); |
| SDValue Ptr = LoadNode->getBasePtr(); |
| assert (isa<ConstantSDNode>(Ptr)); |
| |
| //TODO: Support smaller loads |
| if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode)) |
| return SDValue(); |
| |
| if (LoadNode->getAlignment() < 4) |
| return SDValue(); |
| |
| int ConstantBlock = ConstantAddressBlock(Block); |
| |
| SDValue Slots[4]; |
| for (unsigned i = 0; i < 4; i++) { |
| // We want Const position encoded with the following formula : |
| // (((512 + (kc_bank << 12) + const_index) << 2) + chan) |
| // const_index is Ptr computed by llvm using an alignment of 16. |
| // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and |
| // then div by 4 at the ISel step |
| SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, |
| DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32)); |
| Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr); |
| } |
| EVT NewVT = MVT::v4i32; |
| unsigned NumElements = 4; |
| if (VT.isVector()) { |
| NewVT = VT; |
| NumElements = VT.getVectorNumElements(); |
| } |
| SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements)); |
| if (!VT.isVector()) { |
| Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, |
| DAG.getConstant(0, DL, MVT::i32)); |
| } |
| SDValue MergedValues[2] = { |
| Result, |
| Chain |
| }; |
| return DAG.getMergeValues(MergedValues, DL); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| SDValue R600TargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| switch (N->getOpcode()) { |
| // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a) |
| case ISD::FP_ROUND: { |
| SDValue Arg = N->getOperand(0); |
| if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) { |
| return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0), |
| Arg.getOperand(0)); |
| } |
| break; |
| } |
| |
| // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) -> |
| // (i32 select_cc f32, f32, -1, 0 cc) |
| // |
| // Mesa's GLSL frontend generates the above pattern a lot and we can lower |
| // this to one of the SET*_DX10 instructions. |
| case ISD::FP_TO_SINT: { |
| SDValue FNeg = N->getOperand(0); |
| if (FNeg.getOpcode() != ISD::FNEG) { |
| return SDValue(); |
| } |
| SDValue SelectCC = FNeg.getOperand(0); |
| if (SelectCC.getOpcode() != ISD::SELECT_CC || |
| SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS |
| SelectCC.getOperand(2).getValueType() != MVT::f32 || // True |
| !isHWTrueValue(SelectCC.getOperand(2)) || |
| !isHWFalseValue(SelectCC.getOperand(3))) { |
| return SDValue(); |
| } |
| |
| return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0), |
| SelectCC.getOperand(0), // LHS |
| SelectCC.getOperand(1), // RHS |
| DAG.getConstant(-1, DL, MVT::i32), // True |
| DAG.getConstant(0, DL, MVT::i32), // False |
| SelectCC.getOperand(4)); // CC |
| } |
| |
| // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx |
| // => build_vector elt0, ... , NewEltIdx, ... , eltN |
| case ISD::INSERT_VECTOR_ELT: { |
| SDValue InVec = N->getOperand(0); |
| SDValue InVal = N->getOperand(1); |
| SDValue EltNo = N->getOperand(2); |
| |
| // If the inserted element is an UNDEF, just use the input vector. |
| if (InVal.isUndef()) |
| return InVec; |
| |
| EVT VT = InVec.getValueType(); |
| |
| // If we can't generate a legal BUILD_VECTOR, exit |
| if (!isOperationLegal(ISD::BUILD_VECTOR, VT)) |
| return SDValue(); |
| |
| // Check that we know which element is being inserted |
| if (!isa<ConstantSDNode>(EltNo)) |
| return SDValue(); |
| unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); |
| |
| // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially |
| // be converted to a BUILD_VECTOR). Fill in the Ops vector with the |
| // vector elements. |
| SmallVector<SDValue, 8> Ops; |
| if (InVec.getOpcode() == ISD::BUILD_VECTOR) { |
| Ops.append(InVec.getNode()->op_begin(), |
| InVec.getNode()->op_end()); |
| } else if (InVec.isUndef()) { |
| unsigned NElts = VT.getVectorNumElements(); |
| Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); |
| } else { |
| return SDValue(); |
| } |
| |
| // Insert the element |
| if (Elt < Ops.size()) { |
| // All the operands of BUILD_VECTOR must have the same type; |
| // we enforce that here. |
| EVT OpVT = Ops[0].getValueType(); |
| if (InVal.getValueType() != OpVT) |
| InVal = OpVT.bitsGT(InVal.getValueType()) ? |
| DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) : |
| DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal); |
| Ops[Elt] = InVal; |
| } |
| |
| // Return the new vector |
| return DAG.getBuildVector(VT, DL, Ops); |
| } |
| |
| // Extract_vec (Build_vector) generated by custom lowering |
| // also needs to be customly combined |
| case ISD::EXTRACT_VECTOR_ELT: { |
| SDValue Arg = N->getOperand(0); |
| if (Arg.getOpcode() == ISD::BUILD_VECTOR) { |
| if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| unsigned Element = Const->getZExtValue(); |
| return Arg->getOperand(Element); |
| } |
| } |
| if (Arg.getOpcode() == ISD::BITCAST && |
| Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && |
| (Arg.getOperand(0).getValueType().getVectorNumElements() == |
| Arg.getValueType().getVectorNumElements())) { |
| if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| unsigned Element = Const->getZExtValue(); |
| return DAG.getNode(ISD::BITCAST, DL, N->getVTList(), |
| Arg->getOperand(0).getOperand(Element)); |
| } |
| } |
| break; |
| } |
| |
| case ISD::SELECT_CC: { |
| // Try common optimizations |
| if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI)) |
| return Ret; |
| |
| // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq -> |
| // selectcc x, y, a, b, inv(cc) |
| // |
| // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne -> |
| // selectcc x, y, a, b, cc |
| SDValue LHS = N->getOperand(0); |
| if (LHS.getOpcode() != ISD::SELECT_CC) { |
| return SDValue(); |
| } |
| |
| SDValue RHS = N->getOperand(1); |
| SDValue True = N->getOperand(2); |
| SDValue False = N->getOperand(3); |
| ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get(); |
| |
| if (LHS.getOperand(2).getNode() != True.getNode() || |
| LHS.getOperand(3).getNode() != False.getNode() || |
| RHS.getNode() != False.getNode()) { |
| return SDValue(); |
| } |
| |
| switch (NCC) { |
| default: return SDValue(); |
| case ISD::SETNE: return LHS; |
| case ISD::SETEQ: { |
| ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get(); |
| LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType()); |
| if (DCI.isBeforeLegalizeOps() || |
| isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType())) |
| return DAG.getSelectCC(DL, |
| LHS.getOperand(0), |
| LHS.getOperand(1), |
| LHS.getOperand(2), |
| LHS.getOperand(3), |
| LHSCC); |
| break; |
| } |
| } |
| return SDValue(); |
| } |
| |
| case AMDGPUISD::R600_EXPORT: { |
| SDValue Arg = N->getOperand(1); |
| if (Arg.getOpcode() != ISD::BUILD_VECTOR) |
| break; |
| |
| SDValue NewArgs[8] = { |
| N->getOperand(0), // Chain |
| SDValue(), |
| N->getOperand(2), // ArrayBase |
| N->getOperand(3), // Type |
| N->getOperand(4), // SWZ_X |
| N->getOperand(5), // SWZ_Y |
| N->getOperand(6), // SWZ_Z |
| N->getOperand(7) // SWZ_W |
| }; |
| NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL); |
| return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs); |
| } |
| case AMDGPUISD::TEXTURE_FETCH: { |
| SDValue Arg = N->getOperand(1); |
| if (Arg.getOpcode() != ISD::BUILD_VECTOR) |
| break; |
| |
| SDValue NewArgs[19] = { |
| N->getOperand(0), |
| N->getOperand(1), |
| N->getOperand(2), |
| N->getOperand(3), |
| N->getOperand(4), |
| N->getOperand(5), |
| N->getOperand(6), |
| N->getOperand(7), |
| N->getOperand(8), |
| N->getOperand(9), |
| N->getOperand(10), |
| N->getOperand(11), |
| N->getOperand(12), |
| N->getOperand(13), |
| N->getOperand(14), |
| N->getOperand(15), |
| N->getOperand(16), |
| N->getOperand(17), |
| N->getOperand(18), |
| }; |
| NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL); |
| return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs); |
| } |
| |
| case ISD::LOAD: { |
| LoadSDNode *LoadNode = cast<LoadSDNode>(N); |
| SDValue Ptr = LoadNode->getBasePtr(); |
| if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS && |
| isa<ConstantSDNode>(Ptr)) |
| return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG); |
| break; |
| } |
| |
| default: break; |
| } |
| |
| return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); |
| } |
| |
| bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx, |
| SDValue &Src, SDValue &Neg, SDValue &Abs, |
| SDValue &Sel, SDValue &Imm, |
| SelectionDAG &DAG) const { |
| const R600InstrInfo *TII = Subtarget->getInstrInfo(); |
| if (!Src.isMachineOpcode()) |
| return false; |
| |
| switch (Src.getMachineOpcode()) { |
| case R600::FNEG_R600: |
| if (!Neg.getNode()) |
| return false; |
| Src = Src.getOperand(0); |
| Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32); |
| return true; |
| case R600::FABS_R600: |
| if (!Abs.getNode()) |
| return false; |
| Src = Src.getOperand(0); |
| Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32); |
| return true; |
| case R600::CONST_COPY: { |
| unsigned Opcode = ParentNode->getMachineOpcode(); |
| bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; |
| |
| if (!Sel.getNode()) |
| return false; |
| |
| SDValue CstOffset = Src.getOperand(0); |
| if (ParentNode->getValueType(0).isVector()) |
| return false; |
| |
| // Gather constants values |
| int SrcIndices[] = { |
| TII->getOperandIdx(Opcode, R600::OpName::src0), |
| TII->getOperandIdx(Opcode, R600::OpName::src1), |
| TII->getOperandIdx(Opcode, R600::OpName::src2), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_X), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_Y), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_Z), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_W), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_X), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_Y), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_Z), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_W) |
| }; |
| std::vector<unsigned> Consts; |
| for (int OtherSrcIdx : SrcIndices) { |
| int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx); |
| if (OtherSrcIdx < 0 || OtherSelIdx < 0) |
| continue; |
| if (HasDst) { |
| OtherSrcIdx--; |
| OtherSelIdx--; |
| } |
| if (RegisterSDNode *Reg = |
| dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) { |
| if (Reg->getReg() == R600::ALU_CONST) { |
| ConstantSDNode *Cst |
| = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx)); |
| Consts.push_back(Cst->getZExtValue()); |
| } |
| } |
| } |
| |
| ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset); |
| Consts.push_back(Cst->getZExtValue()); |
| if (!TII->fitsConstReadLimitations(Consts)) { |
| return false; |
| } |
| |
| Sel = CstOffset; |
| Src = DAG.getRegister(R600::ALU_CONST, MVT::f32); |
| return true; |
| } |
| case R600::MOV_IMM_GLOBAL_ADDR: |
| // Check if the Imm slot is used. Taken from below. |
| if (cast<ConstantSDNode>(Imm)->getZExtValue()) |
| return false; |
| Imm = Src.getOperand(0); |
| Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32); |
| return true; |
| case R600::MOV_IMM_I32: |
| case R600::MOV_IMM_F32: { |
| unsigned ImmReg = R600::ALU_LITERAL_X; |
| uint64_t ImmValue = 0; |
| |
| if (Src.getMachineOpcode() == R600::MOV_IMM_F32) { |
| ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0)); |
| float FloatValue = FPC->getValueAPF().convertToFloat(); |
| if (FloatValue == 0.0) { |
| ImmReg = R600::ZERO; |
| } else if (FloatValue == 0.5) { |
| ImmReg = R600::HALF; |
| } else if (FloatValue == 1.0) { |
| ImmReg = R600::ONE; |
| } else { |
| ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); |
| } |
| } else { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0)); |
| uint64_t Value = C->getZExtValue(); |
| if (Value == 0) { |
| ImmReg = R600::ZERO; |
| } else if (Value == 1) { |
| ImmReg = R600::ONE_INT; |
| } else { |
| ImmValue = Value; |
| } |
| } |
| |
| // Check that we aren't already using an immediate. |
| // XXX: It's possible for an instruction to have more than one |
| // immediate operand, but this is not supported yet. |
| if (ImmReg == R600::ALU_LITERAL_X) { |
| if (!Imm.getNode()) |
| return false; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm); |
| assert(C); |
| if (C->getZExtValue()) |
| return false; |
| Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32); |
| } |
| Src = DAG.getRegister(ImmReg, MVT::i32); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| /// Fold the instructions after selecting them |
| SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node, |
| SelectionDAG &DAG) const { |
| const R600InstrInfo *TII = Subtarget->getInstrInfo(); |
| if (!Node->isMachineOpcode()) |
| return Node; |
| |
| unsigned Opcode = Node->getMachineOpcode(); |
| SDValue FakeOp; |
| |
| std::vector<SDValue> Ops(Node->op_begin(), Node->op_end()); |
| |
| if (Opcode == R600::DOT_4) { |
| int OperandIdx[] = { |
| TII->getOperandIdx(Opcode, R600::OpName::src0_X), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_Y), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_Z), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_W), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_X), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_Y), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_Z), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_W) |
| }; |
| int NegIdx[] = { |
| TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W) |
| }; |
| int AbsIdx[] = { |
| TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z), |
| TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W) |
| }; |
| for (unsigned i = 0; i < 8; i++) { |
| if (OperandIdx[i] < 0) |
| return Node; |
| SDValue &Src = Ops[OperandIdx[i] - 1]; |
| SDValue &Neg = Ops[NegIdx[i] - 1]; |
| SDValue &Abs = Ops[AbsIdx[i] - 1]; |
| bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; |
| int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); |
| if (HasDst) |
| SelIdx--; |
| SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; |
| if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG)) |
| return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); |
| } |
| } else if (Opcode == R600::REG_SEQUENCE) { |
| for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) { |
| SDValue &Src = Ops[i]; |
| if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG)) |
| return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); |
| } |
| } else { |
| if (!TII->hasInstrModifiers(Opcode)) |
| return Node; |
| int OperandIdx[] = { |
| TII->getOperandIdx(Opcode, R600::OpName::src0), |
| TII->getOperandIdx(Opcode, R600::OpName::src1), |
| TII->getOperandIdx(Opcode, R600::OpName::src2) |
| }; |
| int NegIdx[] = { |
| TII->getOperandIdx(Opcode, R600::OpName::src0_neg), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_neg), |
| TII->getOperandIdx(Opcode, R600::OpName::src2_neg) |
| }; |
| int AbsIdx[] = { |
| TII->getOperandIdx(Opcode, R600::OpName::src0_abs), |
| TII->getOperandIdx(Opcode, R600::OpName::src1_abs), |
| -1 |
| }; |
| for (unsigned i = 0; i < 3; i++) { |
| if (OperandIdx[i] < 0) |
| return Node; |
| SDValue &Src = Ops[OperandIdx[i] - 1]; |
| SDValue &Neg = Ops[NegIdx[i] - 1]; |
| SDValue FakeAbs; |
| SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs; |
| bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; |
| int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); |
| int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal); |
| if (HasDst) { |
| SelIdx--; |
| ImmIdx--; |
| } |
| SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; |
| SDValue &Imm = Ops[ImmIdx]; |
| if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG)) |
| return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); |
| } |
| } |
| |
| return Node; |
| } |