blob: 5862cdb0416695c22c540824d2f44d79937a7f51 [file] [log] [blame]
//===- GCNRegPressure.h -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H
#define LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H
#include "AMDGPUSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <limits>
namespace llvm {
class MachineRegisterInfo;
class raw_ostream;
struct GCNRegPressure {
enum RegKind {
SGPR32,
SGPR_TUPLE,
VGPR32,
VGPR_TUPLE,
AGPR32,
AGPR_TUPLE,
TOTAL_KINDS
};
GCNRegPressure() {
clear();
}
bool empty() const { return getSGPRNum() == 0 && getVGPRNum() == 0; }
void clear() { std::fill(&Value[0], &Value[TOTAL_KINDS], 0); }
unsigned getSGPRNum() const { return Value[SGPR32]; }
unsigned getVGPRNum() const { return std::max(Value[VGPR32], Value[AGPR32]); }
unsigned getVGPRTuplesWeight() const { return std::max(Value[VGPR_TUPLE],
Value[AGPR_TUPLE]); }
unsigned getSGPRTuplesWeight() const { return Value[SGPR_TUPLE]; }
unsigned getOccupancy(const GCNSubtarget &ST) const {
return std::min(ST.getOccupancyWithNumSGPRs(getSGPRNum()),
ST.getOccupancyWithNumVGPRs(getVGPRNum()));
}
void inc(unsigned Reg,
LaneBitmask PrevMask,
LaneBitmask NewMask,
const MachineRegisterInfo &MRI);
bool higherOccupancy(const GCNSubtarget &ST, const GCNRegPressure& O) const {
return getOccupancy(ST) > O.getOccupancy(ST);
}
bool less(const GCNSubtarget &ST, const GCNRegPressure& O,
unsigned MaxOccupancy = std::numeric_limits<unsigned>::max()) const;
bool operator==(const GCNRegPressure &O) const {
return std::equal(&Value[0], &Value[TOTAL_KINDS], O.Value);
}
bool operator!=(const GCNRegPressure &O) const {
return !(*this == O);
}
void print(raw_ostream &OS, const GCNSubtarget *ST = nullptr) const;
void dump() const { print(dbgs()); }
private:
unsigned Value[TOTAL_KINDS];
static unsigned getRegKind(unsigned Reg, const MachineRegisterInfo &MRI);
friend GCNRegPressure max(const GCNRegPressure &P1,
const GCNRegPressure &P2);
};
inline GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2) {
GCNRegPressure Res;
for (unsigned I = 0; I < GCNRegPressure::TOTAL_KINDS; ++I)
Res.Value[I] = std::max(P1.Value[I], P2.Value[I]);
return Res;
}
class GCNRPTracker {
public:
using LiveRegSet = DenseMap<unsigned, LaneBitmask>;
protected:
const LiveIntervals &LIS;
LiveRegSet LiveRegs;
GCNRegPressure CurPressure, MaxPressure;
const MachineInstr *LastTrackedMI = nullptr;
mutable const MachineRegisterInfo *MRI = nullptr;
GCNRPTracker(const LiveIntervals &LIS_) : LIS(LIS_) {}
void reset(const MachineInstr &MI, const LiveRegSet *LiveRegsCopy,
bool After);
public:
// live regs for the current state
const decltype(LiveRegs) &getLiveRegs() const { return LiveRegs; }
const MachineInstr *getLastTrackedMI() const { return LastTrackedMI; }
void clearMaxPressure() { MaxPressure.clear(); }
// returns MaxPressure, resetting it
decltype(MaxPressure) moveMaxPressure() {
auto Res = MaxPressure;
MaxPressure.clear();
return Res;
}
decltype(LiveRegs) moveLiveRegs() {
return std::move(LiveRegs);
}
static void printLiveRegs(raw_ostream &OS, const LiveRegSet& LiveRegs,
const MachineRegisterInfo &MRI);
};
class GCNUpwardRPTracker : public GCNRPTracker {
public:
GCNUpwardRPTracker(const LiveIntervals &LIS_) : GCNRPTracker(LIS_) {}
// reset tracker to the point just below MI
// filling live regs upon this point using LIS
void reset(const MachineInstr &MI, const LiveRegSet *LiveRegs = nullptr);
// move to the state just above the MI
void recede(const MachineInstr &MI);
// checks whether the tracker's state after receding MI corresponds
// to reported by LIS
bool isValid() const;
};
class GCNDownwardRPTracker : public GCNRPTracker {
// Last position of reset or advanceBeforeNext
MachineBasicBlock::const_iterator NextMI;
MachineBasicBlock::const_iterator MBBEnd;
public:
GCNDownwardRPTracker(const LiveIntervals &LIS_) : GCNRPTracker(LIS_) {}
const MachineBasicBlock::const_iterator getNext() const { return NextMI; }
// Reset tracker to the point before the MI
// filling live regs upon this point using LIS.
// Returns false if block is empty except debug values.
bool reset(const MachineInstr &MI, const LiveRegSet *LiveRegs = nullptr);
// Move to the state right before the next MI. Returns false if reached
// end of the block.
bool advanceBeforeNext();
// Move to the state at the MI, advanceBeforeNext has to be called first.
void advanceToNext();
// Move to the state at the next MI. Returns false if reached end of block.
bool advance();
// Advance instructions until before End.
bool advance(MachineBasicBlock::const_iterator End);
// Reset to Begin and advance to End.
bool advance(MachineBasicBlock::const_iterator Begin,
MachineBasicBlock::const_iterator End,
const LiveRegSet *LiveRegsCopy = nullptr);
};
LaneBitmask getLiveLaneMask(unsigned Reg,
SlotIndex SI,
const LiveIntervals &LIS,
const MachineRegisterInfo &MRI);
GCNRPTracker::LiveRegSet getLiveRegs(SlotIndex SI,
const LiveIntervals &LIS,
const MachineRegisterInfo &MRI);
/// creates a map MachineInstr -> LiveRegSet
/// R - range of iterators on instructions
/// After - upon entry or exit of every instruction
/// Note: there is no entry in the map for instructions with empty live reg set
/// Complexity = O(NumVirtRegs * averageLiveRangeSegmentsPerReg * lg(R))
template <typename Range>
DenseMap<MachineInstr*, GCNRPTracker::LiveRegSet>
getLiveRegMap(Range &&R, bool After, LiveIntervals &LIS) {
std::vector<SlotIndex> Indexes;
Indexes.reserve(std::distance(R.begin(), R.end()));
auto &SII = *LIS.getSlotIndexes();
for (MachineInstr *I : R) {
auto SI = SII.getInstructionIndex(*I);
Indexes.push_back(After ? SI.getDeadSlot() : SI.getBaseIndex());
}
std::sort(Indexes.begin(), Indexes.end());
auto &MRI = (*R.begin())->getParent()->getParent()->getRegInfo();
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet> LiveRegMap;
SmallVector<SlotIndex, 32> LiveIdxs, SRLiveIdxs;
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
auto Reg = Register::index2VirtReg(I);
if (!LIS.hasInterval(Reg))
continue;
auto &LI = LIS.getInterval(Reg);
LiveIdxs.clear();
if (!LI.findIndexesLiveAt(Indexes, std::back_inserter(LiveIdxs)))
continue;
if (!LI.hasSubRanges()) {
for (auto SI : LiveIdxs)
LiveRegMap[SII.getInstructionFromIndex(SI)][Reg] =
MRI.getMaxLaneMaskForVReg(Reg);
} else
for (const auto &S : LI.subranges()) {
// constrain search for subranges by indexes live at main range
SRLiveIdxs.clear();
S.findIndexesLiveAt(LiveIdxs, std::back_inserter(SRLiveIdxs));
for (auto SI : SRLiveIdxs)
LiveRegMap[SII.getInstructionFromIndex(SI)][Reg] |= S.LaneMask;
}
}
return LiveRegMap;
}
inline GCNRPTracker::LiveRegSet getLiveRegsAfter(const MachineInstr &MI,
const LiveIntervals &LIS) {
return getLiveRegs(LIS.getInstructionIndex(MI).getDeadSlot(), LIS,
MI.getParent()->getParent()->getRegInfo());
}
inline GCNRPTracker::LiveRegSet getLiveRegsBefore(const MachineInstr &MI,
const LiveIntervals &LIS) {
return getLiveRegs(LIS.getInstructionIndex(MI).getBaseIndex(), LIS,
MI.getParent()->getParent()->getRegInfo());
}
template <typename Range>
GCNRegPressure getRegPressure(const MachineRegisterInfo &MRI,
Range &&LiveRegs) {
GCNRegPressure Res;
for (const auto &RM : LiveRegs)
Res.inc(RM.first, LaneBitmask::getNone(), RM.second, MRI);
return Res;
}
bool isEqual(const GCNRPTracker::LiveRegSet &S1,
const GCNRPTracker::LiveRegSet &S2);
void printLivesAt(SlotIndex SI,
const LiveIntervals &LIS,
const MachineRegisterInfo &MRI);
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H