|  | //===-- APInt.cpp - Implement APInt class ---------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a class to represent arbitrary precision integer | 
|  | // constant values and provide a variety of arithmetic operations on them. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <climits> | 
|  | #include <cmath> | 
|  | #include <cstdlib> | 
|  | #include <cstring> | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "apint" | 
|  |  | 
|  | /// A utility function for allocating memory, checking for allocation failures, | 
|  | /// and ensuring the contents are zeroed. | 
|  | inline static uint64_t* getClearedMemory(unsigned numWords) { | 
|  | uint64_t * result = new uint64_t[numWords]; | 
|  | assert(result && "APInt memory allocation fails!"); | 
|  | memset(result, 0, numWords * sizeof(uint64_t)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /// A utility function for allocating memory and checking for allocation | 
|  | /// failure.  The content is not zeroed. | 
|  | inline static uint64_t* getMemory(unsigned numWords) { | 
|  | uint64_t * result = new uint64_t[numWords]; | 
|  | assert(result && "APInt memory allocation fails!"); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /// A utility function that converts a character to a digit. | 
|  | inline static unsigned getDigit(char cdigit, uint8_t radix) { | 
|  | unsigned r; | 
|  |  | 
|  | if (radix == 16 || radix == 36) { | 
|  | r = cdigit - '0'; | 
|  | if (r <= 9) | 
|  | return r; | 
|  |  | 
|  | r = cdigit - 'A'; | 
|  | if (r <= radix - 11U) | 
|  | return r + 10; | 
|  |  | 
|  | r = cdigit - 'a'; | 
|  | if (r <= radix - 11U) | 
|  | return r + 10; | 
|  |  | 
|  | radix = 10; | 
|  | } | 
|  |  | 
|  | r = cdigit - '0'; | 
|  | if (r < radix) | 
|  | return r; | 
|  |  | 
|  | return -1U; | 
|  | } | 
|  |  | 
|  |  | 
|  | void APInt::initSlowCase(uint64_t val, bool isSigned) { | 
|  | pVal = getClearedMemory(getNumWords()); | 
|  | pVal[0] = val; | 
|  | if (isSigned && int64_t(val) < 0) | 
|  | for (unsigned i = 1; i < getNumWords(); ++i) | 
|  | pVal[i] = -1ULL; | 
|  | } | 
|  |  | 
|  | void APInt::initSlowCase(const APInt& that) { | 
|  | pVal = getMemory(getNumWords()); | 
|  | memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); | 
|  | } | 
|  |  | 
|  | void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { | 
|  | assert(BitWidth && "Bitwidth too small"); | 
|  | assert(bigVal.data() && "Null pointer detected!"); | 
|  | if (isSingleWord()) | 
|  | VAL = bigVal[0]; | 
|  | else { | 
|  | // Get memory, cleared to 0 | 
|  | pVal = getClearedMemory(getNumWords()); | 
|  | // Calculate the number of words to copy | 
|  | unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); | 
|  | // Copy the words from bigVal to pVal | 
|  | memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); | 
|  | } | 
|  | // Make sure unused high bits are cleared | 
|  | clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) | 
|  | : BitWidth(numBits), VAL(0) { | 
|  | initFromArray(bigVal); | 
|  | } | 
|  |  | 
|  | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) | 
|  | : BitWidth(numBits), VAL(0) { | 
|  | initFromArray(makeArrayRef(bigVal, numWords)); | 
|  | } | 
|  |  | 
|  | APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) | 
|  | : BitWidth(numbits), VAL(0) { | 
|  | assert(BitWidth && "Bitwidth too small"); | 
|  | fromString(numbits, Str, radix); | 
|  | } | 
|  |  | 
|  | APInt& APInt::AssignSlowCase(const APInt& RHS) { | 
|  | // Don't do anything for X = X | 
|  | if (this == &RHS) | 
|  | return *this; | 
|  |  | 
|  | if (BitWidth == RHS.getBitWidth()) { | 
|  | // assume same bit-width single-word case is already handled | 
|  | assert(!isSingleWord()); | 
|  | memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | if (isSingleWord()) { | 
|  | // assume case where both are single words is already handled | 
|  | assert(!RHS.isSingleWord()); | 
|  | VAL = 0; | 
|  | pVal = getMemory(RHS.getNumWords()); | 
|  | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); | 
|  | } else if (getNumWords() == RHS.getNumWords()) | 
|  | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); | 
|  | else if (RHS.isSingleWord()) { | 
|  | delete [] pVal; | 
|  | VAL = RHS.VAL; | 
|  | } else { | 
|  | delete [] pVal; | 
|  | pVal = getMemory(RHS.getNumWords()); | 
|  | memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); | 
|  | } | 
|  | BitWidth = RHS.BitWidth; | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator=(uint64_t RHS) { | 
|  | if (isSingleWord()) | 
|  | VAL = RHS; | 
|  | else { | 
|  | pVal[0] = RHS; | 
|  | memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); | 
|  | } | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// This method 'profiles' an APInt for use with FoldingSet. | 
|  | void APInt::Profile(FoldingSetNodeID& ID) const { | 
|  | ID.AddInteger(BitWidth); | 
|  |  | 
|  | if (isSingleWord()) { | 
|  | ID.AddInteger(VAL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned NumWords = getNumWords(); | 
|  | for (unsigned i = 0; i < NumWords; ++i) | 
|  | ID.AddInteger(pVal[i]); | 
|  | } | 
|  |  | 
|  | /// This function adds a single "digit" integer, y, to the multiple | 
|  | /// "digit" integer array,  x[]. x[] is modified to reflect the addition and | 
|  | /// 1 is returned if there is a carry out, otherwise 0 is returned. | 
|  | /// @returns the carry of the addition. | 
|  | static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { | 
|  | for (unsigned i = 0; i < len; ++i) { | 
|  | dest[i] = y + x[i]; | 
|  | if (dest[i] < y) | 
|  | y = 1; // Carry one to next digit. | 
|  | else { | 
|  | y = 0; // No need to carry so exit early | 
|  | break; | 
|  | } | 
|  | } | 
|  | return y; | 
|  | } | 
|  |  | 
|  | /// @brief Prefix increment operator. Increments the APInt by one. | 
|  | APInt& APInt::operator++() { | 
|  | if (isSingleWord()) | 
|  | ++VAL; | 
|  | else | 
|  | add_1(pVal, pVal, getNumWords(), 1); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// This function subtracts a single "digit" (64-bit word), y, from | 
|  | /// the multi-digit integer array, x[], propagating the borrowed 1 value until | 
|  | /// no further borrowing is neeeded or it runs out of "digits" in x.  The result | 
|  | /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. | 
|  | /// In other words, if y > x then this function returns 1, otherwise 0. | 
|  | /// @returns the borrow out of the subtraction | 
|  | static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { | 
|  | for (unsigned i = 0; i < len; ++i) { | 
|  | uint64_t X = x[i]; | 
|  | x[i] -= y; | 
|  | if (y > X) | 
|  | y = 1;  // We have to "borrow 1" from next "digit" | 
|  | else { | 
|  | y = 0;  // No need to borrow | 
|  | break;  // Remaining digits are unchanged so exit early | 
|  | } | 
|  | } | 
|  | return bool(y); | 
|  | } | 
|  |  | 
|  | /// @brief Prefix decrement operator. Decrements the APInt by one. | 
|  | APInt& APInt::operator--() { | 
|  | if (isSingleWord()) | 
|  | --VAL; | 
|  | else | 
|  | sub_1(pVal, getNumWords(), 1); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// This function adds the integer array x to the integer array Y and | 
|  | /// places the result in dest. | 
|  | /// @returns the carry out from the addition | 
|  | /// @brief General addition of 64-bit integer arrays | 
|  | static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, | 
|  | unsigned len) { | 
|  | bool carry = false; | 
|  | for (unsigned i = 0; i< len; ++i) { | 
|  | uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x | 
|  | dest[i] = x[i] + y[i] + carry; | 
|  | carry = dest[i] < limit || (carry && dest[i] == limit); | 
|  | } | 
|  | return carry; | 
|  | } | 
|  |  | 
|  | /// Adds the RHS APint to this APInt. | 
|  | /// @returns this, after addition of RHS. | 
|  | /// @brief Addition assignment operator. | 
|  | APInt& APInt::operator+=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) | 
|  | VAL += RHS.VAL; | 
|  | else { | 
|  | add(pVal, pVal, RHS.pVal, getNumWords()); | 
|  | } | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator+=(uint64_t RHS) { | 
|  | if (isSingleWord()) | 
|  | VAL += RHS; | 
|  | else | 
|  | add_1(pVal, pVal, getNumWords(), RHS); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// Subtracts the integer array y from the integer array x | 
|  | /// @returns returns the borrow out. | 
|  | /// @brief Generalized subtraction of 64-bit integer arrays. | 
|  | static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, | 
|  | unsigned len) { | 
|  | bool borrow = false; | 
|  | for (unsigned i = 0; i < len; ++i) { | 
|  | uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; | 
|  | borrow = y[i] > x_tmp || (borrow && x[i] == 0); | 
|  | dest[i] = x_tmp - y[i]; | 
|  | } | 
|  | return borrow; | 
|  | } | 
|  |  | 
|  | /// Subtracts the RHS APInt from this APInt | 
|  | /// @returns this, after subtraction | 
|  | /// @brief Subtraction assignment operator. | 
|  | APInt& APInt::operator-=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) | 
|  | VAL -= RHS.VAL; | 
|  | else | 
|  | sub(pVal, pVal, RHS.pVal, getNumWords()); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator-=(uint64_t RHS) { | 
|  | if (isSingleWord()) | 
|  | VAL -= RHS; | 
|  | else | 
|  | sub_1(pVal, getNumWords(), RHS); | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | /// Multiplies an integer array, x, by a uint64_t integer and places the result | 
|  | /// into dest. | 
|  | /// @returns the carry out of the multiplication. | 
|  | /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. | 
|  | static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { | 
|  | // Split y into high 32-bit part (hy)  and low 32-bit part (ly) | 
|  | uint64_t ly = y & 0xffffffffULL, hy = y >> 32; | 
|  | uint64_t carry = 0; | 
|  |  | 
|  | // For each digit of x. | 
|  | for (unsigned i = 0; i < len; ++i) { | 
|  | // Split x into high and low words | 
|  | uint64_t lx = x[i] & 0xffffffffULL; | 
|  | uint64_t hx = x[i] >> 32; | 
|  | // hasCarry - A flag to indicate if there is a carry to the next digit. | 
|  | // hasCarry == 0, no carry | 
|  | // hasCarry == 1, has carry | 
|  | // hasCarry == 2, no carry and the calculation result == 0. | 
|  | uint8_t hasCarry = 0; | 
|  | dest[i] = carry + lx * ly; | 
|  | // Determine if the add above introduces carry. | 
|  | hasCarry = (dest[i] < carry) ? 1 : 0; | 
|  | carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); | 
|  | // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + | 
|  | // (2^32 - 1) + 2^32 = 2^64. | 
|  | hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); | 
|  |  | 
|  | carry += (lx * hy) & 0xffffffffULL; | 
|  | dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); | 
|  | carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + | 
|  | (carry >> 32) + ((lx * hy) >> 32) + hx * hy; | 
|  | } | 
|  | return carry; | 
|  | } | 
|  |  | 
|  | /// Multiplies integer array x by integer array y and stores the result into | 
|  | /// the integer array dest. Note that dest's size must be >= xlen + ylen. | 
|  | /// @brief Generalized multiplicate of integer arrays. | 
|  | static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], | 
|  | unsigned ylen) { | 
|  | dest[xlen] = mul_1(dest, x, xlen, y[0]); | 
|  | for (unsigned i = 1; i < ylen; ++i) { | 
|  | uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; | 
|  | uint64_t carry = 0, lx = 0, hx = 0; | 
|  | for (unsigned j = 0; j < xlen; ++j) { | 
|  | lx = x[j] & 0xffffffffULL; | 
|  | hx = x[j] >> 32; | 
|  | // hasCarry - A flag to indicate if has carry. | 
|  | // hasCarry == 0, no carry | 
|  | // hasCarry == 1, has carry | 
|  | // hasCarry == 2, no carry and the calculation result == 0. | 
|  | uint8_t hasCarry = 0; | 
|  | uint64_t resul = carry + lx * ly; | 
|  | hasCarry = (resul < carry) ? 1 : 0; | 
|  | carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); | 
|  | hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); | 
|  |  | 
|  | carry += (lx * hy) & 0xffffffffULL; | 
|  | resul = (carry << 32) | (resul & 0xffffffffULL); | 
|  | dest[i+j] += resul; | 
|  | carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ | 
|  | (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + | 
|  | ((lx * hy) >> 32) + hx * hy; | 
|  | } | 
|  | dest[i+xlen] = carry; | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator*=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) { | 
|  | VAL *= RHS.VAL; | 
|  | clearUnusedBits(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Get some bit facts about LHS and check for zero | 
|  | unsigned lhsBits = getActiveBits(); | 
|  | unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; | 
|  | if (!lhsWords) | 
|  | // 0 * X ===> 0 | 
|  | return *this; | 
|  |  | 
|  | // Get some bit facts about RHS and check for zero | 
|  | unsigned rhsBits = RHS.getActiveBits(); | 
|  | unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; | 
|  | if (!rhsWords) { | 
|  | // X * 0 ===> 0 | 
|  | clearAllBits(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Allocate space for the result | 
|  | unsigned destWords = rhsWords + lhsWords; | 
|  | uint64_t *dest = getMemory(destWords); | 
|  |  | 
|  | // Perform the long multiply | 
|  | mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); | 
|  |  | 
|  | // Copy result back into *this | 
|  | clearAllBits(); | 
|  | unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; | 
|  | memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); | 
|  | clearUnusedBits(); | 
|  |  | 
|  | // delete dest array and return | 
|  | delete[] dest; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator&=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) { | 
|  | VAL &= RHS.VAL; | 
|  | return *this; | 
|  | } | 
|  | unsigned numWords = getNumWords(); | 
|  | for (unsigned i = 0; i < numWords; ++i) | 
|  | pVal[i] &= RHS.pVal[i]; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator|=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) { | 
|  | VAL |= RHS.VAL; | 
|  | return *this; | 
|  | } | 
|  | unsigned numWords = getNumWords(); | 
|  | for (unsigned i = 0; i < numWords; ++i) | 
|  | pVal[i] |= RHS.pVal[i]; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt& APInt::operator^=(const APInt& RHS) { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) { | 
|  | VAL ^= RHS.VAL; | 
|  | this->clearUnusedBits(); | 
|  | return *this; | 
|  | } | 
|  | unsigned numWords = getNumWords(); | 
|  | for (unsigned i = 0; i < numWords; ++i) | 
|  | pVal[i] ^= RHS.pVal[i]; | 
|  | return clearUnusedBits(); | 
|  | } | 
|  |  | 
|  | APInt APInt::AndSlowCase(const APInt& RHS) const { | 
|  | unsigned numWords = getNumWords(); | 
|  | uint64_t* val = getMemory(numWords); | 
|  | for (unsigned i = 0; i < numWords; ++i) | 
|  | val[i] = pVal[i] & RHS.pVal[i]; | 
|  | return APInt(val, getBitWidth()); | 
|  | } | 
|  |  | 
|  | APInt APInt::OrSlowCase(const APInt& RHS) const { | 
|  | unsigned numWords = getNumWords(); | 
|  | uint64_t *val = getMemory(numWords); | 
|  | for (unsigned i = 0; i < numWords; ++i) | 
|  | val[i] = pVal[i] | RHS.pVal[i]; | 
|  | return APInt(val, getBitWidth()); | 
|  | } | 
|  |  | 
|  | APInt APInt::XorSlowCase(const APInt& RHS) const { | 
|  | unsigned numWords = getNumWords(); | 
|  | uint64_t *val = getMemory(numWords); | 
|  | for (unsigned i = 0; i < numWords; ++i) | 
|  | val[i] = pVal[i] ^ RHS.pVal[i]; | 
|  |  | 
|  | APInt Result(val, getBitWidth()); | 
|  | // 0^0==1 so clear the high bits in case they got set. | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | APInt APInt::operator*(const APInt& RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) | 
|  | return APInt(BitWidth, VAL * RHS.VAL); | 
|  | APInt Result(*this); | 
|  | Result *= RHS; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool APInt::EqualSlowCase(const APInt& RHS) const { | 
|  | return std::equal(pVal, pVal + getNumWords(), RHS.pVal); | 
|  | } | 
|  |  | 
|  | bool APInt::EqualSlowCase(uint64_t Val) const { | 
|  | unsigned n = getActiveBits(); | 
|  | if (n <= APINT_BITS_PER_WORD) | 
|  | return pVal[0] == Val; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool APInt::ult(const APInt& RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); | 
|  | if (isSingleWord()) | 
|  | return VAL < RHS.VAL; | 
|  |  | 
|  | // Get active bit length of both operands | 
|  | unsigned n1 = getActiveBits(); | 
|  | unsigned n2 = RHS.getActiveBits(); | 
|  |  | 
|  | // If magnitude of LHS is less than RHS, return true. | 
|  | if (n1 < n2) | 
|  | return true; | 
|  |  | 
|  | // If magnitude of RHS is greather than LHS, return false. | 
|  | if (n2 < n1) | 
|  | return false; | 
|  |  | 
|  | // If they bot fit in a word, just compare the low order word | 
|  | if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) | 
|  | return pVal[0] < RHS.pVal[0]; | 
|  |  | 
|  | // Otherwise, compare all words | 
|  | unsigned topWord = whichWord(std::max(n1,n2)-1); | 
|  | for (int i = topWord; i >= 0; --i) { | 
|  | if (pVal[i] > RHS.pVal[i]) | 
|  | return false; | 
|  | if (pVal[i] < RHS.pVal[i]) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool APInt::slt(const APInt& RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); | 
|  | if (isSingleWord()) { | 
|  | int64_t lhsSext = SignExtend64(VAL, BitWidth); | 
|  | int64_t rhsSext = SignExtend64(RHS.VAL, BitWidth); | 
|  | return lhsSext < rhsSext; | 
|  | } | 
|  |  | 
|  | bool lhsNeg = isNegative(); | 
|  | bool rhsNeg = RHS.isNegative(); | 
|  |  | 
|  | // If the sign bits don't match, then (LHS < RHS) if LHS is negative | 
|  | if (lhsNeg != rhsNeg) | 
|  | return lhsNeg; | 
|  |  | 
|  | // Otherwise we can just use an unsigned comparision, because even negative | 
|  | // numbers compare correctly this way if both have the same signed-ness. | 
|  | return ult(RHS); | 
|  | } | 
|  |  | 
|  | void APInt::setBit(unsigned bitPosition) { | 
|  | if (isSingleWord()) | 
|  | VAL |= maskBit(bitPosition); | 
|  | else | 
|  | pVal[whichWord(bitPosition)] |= maskBit(bitPosition); | 
|  | } | 
|  |  | 
|  | /// Set the given bit to 0 whose position is given as "bitPosition". | 
|  | /// @brief Set a given bit to 0. | 
|  | void APInt::clearBit(unsigned bitPosition) { | 
|  | if (isSingleWord()) | 
|  | VAL &= ~maskBit(bitPosition); | 
|  | else | 
|  | pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); | 
|  | } | 
|  |  | 
|  | /// @brief Toggle every bit to its opposite value. | 
|  |  | 
|  | /// Toggle a given bit to its opposite value whose position is given | 
|  | /// as "bitPosition". | 
|  | /// @brief Toggles a given bit to its opposite value. | 
|  | void APInt::flipBit(unsigned bitPosition) { | 
|  | assert(bitPosition < BitWidth && "Out of the bit-width range!"); | 
|  | if ((*this)[bitPosition]) clearBit(bitPosition); | 
|  | else setBit(bitPosition); | 
|  | } | 
|  |  | 
|  | unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { | 
|  | assert(!str.empty() && "Invalid string length"); | 
|  | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || | 
|  | radix == 36) && | 
|  | "Radix should be 2, 8, 10, 16, or 36!"); | 
|  |  | 
|  | size_t slen = str.size(); | 
|  |  | 
|  | // Each computation below needs to know if it's negative. | 
|  | StringRef::iterator p = str.begin(); | 
|  | unsigned isNegative = *p == '-'; | 
|  | if (*p == '-' || *p == '+') { | 
|  | p++; | 
|  | slen--; | 
|  | assert(slen && "String is only a sign, needs a value."); | 
|  | } | 
|  |  | 
|  | // For radixes of power-of-two values, the bits required is accurately and | 
|  | // easily computed | 
|  | if (radix == 2) | 
|  | return slen + isNegative; | 
|  | if (radix == 8) | 
|  | return slen * 3 + isNegative; | 
|  | if (radix == 16) | 
|  | return slen * 4 + isNegative; | 
|  |  | 
|  | // FIXME: base 36 | 
|  |  | 
|  | // This is grossly inefficient but accurate. We could probably do something | 
|  | // with a computation of roughly slen*64/20 and then adjust by the value of | 
|  | // the first few digits. But, I'm not sure how accurate that could be. | 
|  |  | 
|  | // Compute a sufficient number of bits that is always large enough but might | 
|  | // be too large. This avoids the assertion in the constructor. This | 
|  | // calculation doesn't work appropriately for the numbers 0-9, so just use 4 | 
|  | // bits in that case. | 
|  | unsigned sufficient | 
|  | = radix == 10? (slen == 1 ? 4 : slen * 64/18) | 
|  | : (slen == 1 ? 7 : slen * 16/3); | 
|  |  | 
|  | // Convert to the actual binary value. | 
|  | APInt tmp(sufficient, StringRef(p, slen), radix); | 
|  |  | 
|  | // Compute how many bits are required. If the log is infinite, assume we need | 
|  | // just bit. | 
|  | unsigned log = tmp.logBase2(); | 
|  | if (log == (unsigned)-1) { | 
|  | return isNegative + 1; | 
|  | } else { | 
|  | return isNegative + log + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | hash_code llvm::hash_value(const APInt &Arg) { | 
|  | if (Arg.isSingleWord()) | 
|  | return hash_combine(Arg.VAL); | 
|  |  | 
|  | return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); | 
|  | } | 
|  |  | 
|  | bool APInt::isSplat(unsigned SplatSizeInBits) const { | 
|  | assert(getBitWidth() % SplatSizeInBits == 0 && | 
|  | "SplatSizeInBits must divide width!"); | 
|  | // We can check that all parts of an integer are equal by making use of a | 
|  | // little trick: rotate and check if it's still the same value. | 
|  | return *this == rotl(SplatSizeInBits); | 
|  | } | 
|  |  | 
|  | /// This function returns the high "numBits" bits of this APInt. | 
|  | APInt APInt::getHiBits(unsigned numBits) const { | 
|  | return APIntOps::lshr(*this, BitWidth - numBits); | 
|  | } | 
|  |  | 
|  | /// This function returns the low "numBits" bits of this APInt. | 
|  | APInt APInt::getLoBits(unsigned numBits) const { | 
|  | return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), | 
|  | BitWidth - numBits); | 
|  | } | 
|  |  | 
|  | unsigned APInt::countLeadingZerosSlowCase() const { | 
|  | unsigned Count = 0; | 
|  | for (int i = getNumWords()-1; i >= 0; --i) { | 
|  | integerPart V = pVal[i]; | 
|  | if (V == 0) | 
|  | Count += APINT_BITS_PER_WORD; | 
|  | else { | 
|  | Count += llvm::countLeadingZeros(V); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Adjust for unused bits in the most significant word (they are zero). | 
|  | unsigned Mod = BitWidth % APINT_BITS_PER_WORD; | 
|  | Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned APInt::countLeadingOnes() const { | 
|  | if (isSingleWord()) | 
|  | return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth)); | 
|  |  | 
|  | unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; | 
|  | unsigned shift; | 
|  | if (!highWordBits) { | 
|  | highWordBits = APINT_BITS_PER_WORD; | 
|  | shift = 0; | 
|  | } else { | 
|  | shift = APINT_BITS_PER_WORD - highWordBits; | 
|  | } | 
|  | int i = getNumWords() - 1; | 
|  | unsigned Count = llvm::countLeadingOnes(pVal[i] << shift); | 
|  | if (Count == highWordBits) { | 
|  | for (i--; i >= 0; --i) { | 
|  | if (pVal[i] == -1ULL) | 
|  | Count += APINT_BITS_PER_WORD; | 
|  | else { | 
|  | Count += llvm::countLeadingOnes(pVal[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | unsigned APInt::countTrailingZeros() const { | 
|  | if (isSingleWord()) | 
|  | return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth); | 
|  | unsigned Count = 0; | 
|  | unsigned i = 0; | 
|  | for (; i < getNumWords() && pVal[i] == 0; ++i) | 
|  | Count += APINT_BITS_PER_WORD; | 
|  | if (i < getNumWords()) | 
|  | Count += llvm::countTrailingZeros(pVal[i]); | 
|  | return std::min(Count, BitWidth); | 
|  | } | 
|  |  | 
|  | unsigned APInt::countTrailingOnesSlowCase() const { | 
|  | unsigned Count = 0; | 
|  | unsigned i = 0; | 
|  | for (; i < getNumWords() && pVal[i] == -1ULL; ++i) | 
|  | Count += APINT_BITS_PER_WORD; | 
|  | if (i < getNumWords()) | 
|  | Count += llvm::countTrailingOnes(pVal[i]); | 
|  | return std::min(Count, BitWidth); | 
|  | } | 
|  |  | 
|  | unsigned APInt::countPopulationSlowCase() const { | 
|  | unsigned Count = 0; | 
|  | for (unsigned i = 0; i < getNumWords(); ++i) | 
|  | Count += llvm::countPopulation(pVal[i]); | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | /// Perform a logical right-shift from Src to Dst, which must be equal or | 
|  | /// non-overlapping, of Words words, by Shift, which must be less than 64. | 
|  | static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, | 
|  | unsigned Shift) { | 
|  | uint64_t Carry = 0; | 
|  | for (int I = Words - 1; I >= 0; --I) { | 
|  | uint64_t Tmp = Src[I]; | 
|  | Dst[I] = (Tmp >> Shift) | Carry; | 
|  | Carry = Tmp << (64 - Shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt APInt::byteSwap() const { | 
|  | assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); | 
|  | if (BitWidth == 16) | 
|  | return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); | 
|  | if (BitWidth == 32) | 
|  | return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); | 
|  | if (BitWidth == 48) { | 
|  | unsigned Tmp1 = unsigned(VAL >> 16); | 
|  | Tmp1 = ByteSwap_32(Tmp1); | 
|  | uint16_t Tmp2 = uint16_t(VAL); | 
|  | Tmp2 = ByteSwap_16(Tmp2); | 
|  | return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); | 
|  | } | 
|  | if (BitWidth == 64) | 
|  | return APInt(BitWidth, ByteSwap_64(VAL)); | 
|  |  | 
|  | APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); | 
|  | for (unsigned I = 0, N = getNumWords(); I != N; ++I) | 
|  | Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); | 
|  | if (Result.BitWidth != BitWidth) { | 
|  | lshrNear(Result.pVal, Result.pVal, getNumWords(), | 
|  | Result.BitWidth - BitWidth); | 
|  | Result.BitWidth = BitWidth; | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | APInt APInt::reverseBits() const { | 
|  | switch (BitWidth) { | 
|  | case 64: | 
|  | return APInt(BitWidth, llvm::reverseBits<uint64_t>(VAL)); | 
|  | case 32: | 
|  | return APInt(BitWidth, llvm::reverseBits<uint32_t>(VAL)); | 
|  | case 16: | 
|  | return APInt(BitWidth, llvm::reverseBits<uint16_t>(VAL)); | 
|  | case 8: | 
|  | return APInt(BitWidth, llvm::reverseBits<uint8_t>(VAL)); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | APInt Val(*this); | 
|  | APInt Reversed(*this); | 
|  | int S = BitWidth - 1; | 
|  |  | 
|  | const APInt One(BitWidth, 1); | 
|  |  | 
|  | for ((Val = Val.lshr(1)); Val != 0; (Val = Val.lshr(1))) { | 
|  | Reversed <<= 1; | 
|  | Reversed |= (Val & One); | 
|  | --S; | 
|  | } | 
|  |  | 
|  | Reversed <<= S; | 
|  | return Reversed; | 
|  | } | 
|  |  | 
|  | APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, | 
|  | const APInt& API2) { | 
|  | APInt A = API1, B = API2; | 
|  | while (!!B) { | 
|  | APInt T = B; | 
|  | B = APIntOps::urem(A, B); | 
|  | A = T; | 
|  | } | 
|  | return A; | 
|  | } | 
|  |  | 
|  | APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { | 
|  | union { | 
|  | double D; | 
|  | uint64_t I; | 
|  | } T; | 
|  | T.D = Double; | 
|  |  | 
|  | // Get the sign bit from the highest order bit | 
|  | bool isNeg = T.I >> 63; | 
|  |  | 
|  | // Get the 11-bit exponent and adjust for the 1023 bit bias | 
|  | int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; | 
|  |  | 
|  | // If the exponent is negative, the value is < 0 so just return 0. | 
|  | if (exp < 0) | 
|  | return APInt(width, 0u); | 
|  |  | 
|  | // Extract the mantissa by clearing the top 12 bits (sign + exponent). | 
|  | uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; | 
|  |  | 
|  | // If the exponent doesn't shift all bits out of the mantissa | 
|  | if (exp < 52) | 
|  | return isNeg ? -APInt(width, mantissa >> (52 - exp)) : | 
|  | APInt(width, mantissa >> (52 - exp)); | 
|  |  | 
|  | // If the client didn't provide enough bits for us to shift the mantissa into | 
|  | // then the result is undefined, just return 0 | 
|  | if (width <= exp - 52) | 
|  | return APInt(width, 0); | 
|  |  | 
|  | // Otherwise, we have to shift the mantissa bits up to the right location | 
|  | APInt Tmp(width, mantissa); | 
|  | Tmp = Tmp.shl((unsigned)exp - 52); | 
|  | return isNeg ? -Tmp : Tmp; | 
|  | } | 
|  |  | 
|  | /// This function converts this APInt to a double. | 
|  | /// The layout for double is as following (IEEE Standard 754): | 
|  | ///  -------------------------------------- | 
|  | /// |  Sign    Exponent    Fraction    Bias | | 
|  | /// |-------------------------------------- | | 
|  | /// |  1[63]   11[62-52]   52[51-00]   1023 | | 
|  | ///  -------------------------------------- | 
|  | double APInt::roundToDouble(bool isSigned) const { | 
|  |  | 
|  | // Handle the simple case where the value is contained in one uint64_t. | 
|  | // It is wrong to optimize getWord(0) to VAL; there might be more than one word. | 
|  | if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { | 
|  | if (isSigned) { | 
|  | int64_t sext = SignExtend64(getWord(0), BitWidth); | 
|  | return double(sext); | 
|  | } else | 
|  | return double(getWord(0)); | 
|  | } | 
|  |  | 
|  | // Determine if the value is negative. | 
|  | bool isNeg = isSigned ? (*this)[BitWidth-1] : false; | 
|  |  | 
|  | // Construct the absolute value if we're negative. | 
|  | APInt Tmp(isNeg ? -(*this) : (*this)); | 
|  |  | 
|  | // Figure out how many bits we're using. | 
|  | unsigned n = Tmp.getActiveBits(); | 
|  |  | 
|  | // The exponent (without bias normalization) is just the number of bits | 
|  | // we are using. Note that the sign bit is gone since we constructed the | 
|  | // absolute value. | 
|  | uint64_t exp = n; | 
|  |  | 
|  | // Return infinity for exponent overflow | 
|  | if (exp > 1023) { | 
|  | if (!isSigned || !isNeg) | 
|  | return std::numeric_limits<double>::infinity(); | 
|  | else | 
|  | return -std::numeric_limits<double>::infinity(); | 
|  | } | 
|  | exp += 1023; // Increment for 1023 bias | 
|  |  | 
|  | // Number of bits in mantissa is 52. To obtain the mantissa value, we must | 
|  | // extract the high 52 bits from the correct words in pVal. | 
|  | uint64_t mantissa; | 
|  | unsigned hiWord = whichWord(n-1); | 
|  | if (hiWord == 0) { | 
|  | mantissa = Tmp.pVal[0]; | 
|  | if (n > 52) | 
|  | mantissa >>= n - 52; // shift down, we want the top 52 bits. | 
|  | } else { | 
|  | assert(hiWord > 0 && "huh?"); | 
|  | uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); | 
|  | uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); | 
|  | mantissa = hibits | lobits; | 
|  | } | 
|  |  | 
|  | // The leading bit of mantissa is implicit, so get rid of it. | 
|  | uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; | 
|  | union { | 
|  | double D; | 
|  | uint64_t I; | 
|  | } T; | 
|  | T.I = sign | (exp << 52) | mantissa; | 
|  | return T.D; | 
|  | } | 
|  |  | 
|  | // Truncate to new width. | 
|  | APInt APInt::trunc(unsigned width) const { | 
|  | assert(width < BitWidth && "Invalid APInt Truncate request"); | 
|  | assert(width && "Can't truncate to 0 bits"); | 
|  |  | 
|  | if (width <= APINT_BITS_PER_WORD) | 
|  | return APInt(width, getRawData()[0]); | 
|  |  | 
|  | APInt Result(getMemory(getNumWords(width)), width); | 
|  |  | 
|  | // Copy full words. | 
|  | unsigned i; | 
|  | for (i = 0; i != width / APINT_BITS_PER_WORD; i++) | 
|  | Result.pVal[i] = pVal[i]; | 
|  |  | 
|  | // Truncate and copy any partial word. | 
|  | unsigned bits = (0 - width) % APINT_BITS_PER_WORD; | 
|  | if (bits != 0) | 
|  | Result.pVal[i] = pVal[i] << bits >> bits; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Sign extend to a new width. | 
|  | APInt APInt::sext(unsigned width) const { | 
|  | assert(width > BitWidth && "Invalid APInt SignExtend request"); | 
|  |  | 
|  | if (width <= APINT_BITS_PER_WORD) { | 
|  | uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); | 
|  | val = (int64_t)val >> (width - BitWidth); | 
|  | return APInt(width, val >> (APINT_BITS_PER_WORD - width)); | 
|  | } | 
|  |  | 
|  | APInt Result(getMemory(getNumWords(width)), width); | 
|  |  | 
|  | // Copy full words. | 
|  | unsigned i; | 
|  | uint64_t word = 0; | 
|  | for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { | 
|  | word = getRawData()[i]; | 
|  | Result.pVal[i] = word; | 
|  | } | 
|  |  | 
|  | // Read and sign-extend any partial word. | 
|  | unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; | 
|  | if (bits != 0) | 
|  | word = (int64_t)getRawData()[i] << bits >> bits; | 
|  | else | 
|  | word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); | 
|  |  | 
|  | // Write remaining full words. | 
|  | for (; i != width / APINT_BITS_PER_WORD; i++) { | 
|  | Result.pVal[i] = word; | 
|  | word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); | 
|  | } | 
|  |  | 
|  | // Write any partial word. | 
|  | bits = (0 - width) % APINT_BITS_PER_WORD; | 
|  | if (bits != 0) | 
|  | Result.pVal[i] = word << bits >> bits; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | //  Zero extend to a new width. | 
|  | APInt APInt::zext(unsigned width) const { | 
|  | assert(width > BitWidth && "Invalid APInt ZeroExtend request"); | 
|  |  | 
|  | if (width <= APINT_BITS_PER_WORD) | 
|  | return APInt(width, VAL); | 
|  |  | 
|  | APInt Result(getMemory(getNumWords(width)), width); | 
|  |  | 
|  | // Copy words. | 
|  | unsigned i; | 
|  | for (i = 0; i != getNumWords(); i++) | 
|  | Result.pVal[i] = getRawData()[i]; | 
|  |  | 
|  | // Zero remaining words. | 
|  | memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | APInt APInt::zextOrTrunc(unsigned width) const { | 
|  | if (BitWidth < width) | 
|  | return zext(width); | 
|  | if (BitWidth > width) | 
|  | return trunc(width); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt APInt::sextOrTrunc(unsigned width) const { | 
|  | if (BitWidth < width) | 
|  | return sext(width); | 
|  | if (BitWidth > width) | 
|  | return trunc(width); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt APInt::zextOrSelf(unsigned width) const { | 
|  | if (BitWidth < width) | 
|  | return zext(width); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | APInt APInt::sextOrSelf(unsigned width) const { | 
|  | if (BitWidth < width) | 
|  | return sext(width); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /// Arithmetic right-shift this APInt by shiftAmt. | 
|  | /// @brief Arithmetic right-shift function. | 
|  | APInt APInt::ashr(const APInt &shiftAmt) const { | 
|  | return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
|  | } | 
|  |  | 
|  | /// Arithmetic right-shift this APInt by shiftAmt. | 
|  | /// @brief Arithmetic right-shift function. | 
|  | APInt APInt::ashr(unsigned shiftAmt) const { | 
|  | assert(shiftAmt <= BitWidth && "Invalid shift amount"); | 
|  | // Handle a degenerate case | 
|  | if (shiftAmt == 0) | 
|  | return *this; | 
|  |  | 
|  | // Handle single word shifts with built-in ashr | 
|  | if (isSingleWord()) { | 
|  | if (shiftAmt == BitWidth) | 
|  | return APInt(BitWidth, 0); // undefined | 
|  | return APInt(BitWidth, SignExtend64(VAL, BitWidth) >> shiftAmt); | 
|  | } | 
|  |  | 
|  | // If all the bits were shifted out, the result is, technically, undefined. | 
|  | // We return -1 if it was negative, 0 otherwise. We check this early to avoid | 
|  | // issues in the algorithm below. | 
|  | if (shiftAmt == BitWidth) { | 
|  | if (isNegative()) | 
|  | return APInt(BitWidth, -1ULL, true); | 
|  | else | 
|  | return APInt(BitWidth, 0); | 
|  | } | 
|  |  | 
|  | // Create some space for the result. | 
|  | uint64_t * val = new uint64_t[getNumWords()]; | 
|  |  | 
|  | // Compute some values needed by the following shift algorithms | 
|  | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word | 
|  | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift | 
|  | unsigned breakWord = getNumWords() - 1 - offset; // last word affected | 
|  | unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? | 
|  | if (bitsInWord == 0) | 
|  | bitsInWord = APINT_BITS_PER_WORD; | 
|  |  | 
|  | // If we are shifting whole words, just move whole words | 
|  | if (wordShift == 0) { | 
|  | // Move the words containing significant bits | 
|  | for (unsigned i = 0; i <= breakWord; ++i) | 
|  | val[i] = pVal[i+offset]; // move whole word | 
|  |  | 
|  | // Adjust the top significant word for sign bit fill, if negative | 
|  | if (isNegative()) | 
|  | if (bitsInWord < APINT_BITS_PER_WORD) | 
|  | val[breakWord] |= ~0ULL << bitsInWord; // set high bits | 
|  | } else { | 
|  | // Shift the low order words | 
|  | for (unsigned i = 0; i < breakWord; ++i) { | 
|  | // This combines the shifted corresponding word with the low bits from | 
|  | // the next word (shifted into this word's high bits). | 
|  | val[i] = (pVal[i+offset] >> wordShift) | | 
|  | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); | 
|  | } | 
|  |  | 
|  | // Shift the break word. In this case there are no bits from the next word | 
|  | // to include in this word. | 
|  | val[breakWord] = pVal[breakWord+offset] >> wordShift; | 
|  |  | 
|  | // Deal with sign extension in the break word, and possibly the word before | 
|  | // it. | 
|  | if (isNegative()) { | 
|  | if (wordShift > bitsInWord) { | 
|  | if (breakWord > 0) | 
|  | val[breakWord-1] |= | 
|  | ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); | 
|  | val[breakWord] |= ~0ULL; | 
|  | } else | 
|  | val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remaining words are 0 or -1, just assign them. | 
|  | uint64_t fillValue = (isNegative() ? -1ULL : 0); | 
|  | for (unsigned i = breakWord+1; i < getNumWords(); ++i) | 
|  | val[i] = fillValue; | 
|  | APInt Result(val, BitWidth); | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Logical right-shift this APInt by shiftAmt. | 
|  | /// @brief Logical right-shift function. | 
|  | APInt APInt::lshr(const APInt &shiftAmt) const { | 
|  | return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
|  | } | 
|  |  | 
|  | /// Logical right-shift this APInt by shiftAmt. | 
|  | /// @brief Logical right-shift function. | 
|  | APInt APInt::lshr(unsigned shiftAmt) const { | 
|  | if (isSingleWord()) { | 
|  | if (shiftAmt >= BitWidth) | 
|  | return APInt(BitWidth, 0); | 
|  | else | 
|  | return APInt(BitWidth, this->VAL >> shiftAmt); | 
|  | } | 
|  |  | 
|  | // If all the bits were shifted out, the result is 0. This avoids issues | 
|  | // with shifting by the size of the integer type, which produces undefined | 
|  | // results. We define these "undefined results" to always be 0. | 
|  | if (shiftAmt >= BitWidth) | 
|  | return APInt(BitWidth, 0); | 
|  |  | 
|  | // If none of the bits are shifted out, the result is *this. This avoids | 
|  | // issues with shifting by the size of the integer type, which produces | 
|  | // undefined results in the code below. This is also an optimization. | 
|  | if (shiftAmt == 0) | 
|  | return *this; | 
|  |  | 
|  | // Create some space for the result. | 
|  | uint64_t * val = new uint64_t[getNumWords()]; | 
|  |  | 
|  | // If we are shifting less than a word, compute the shift with a simple carry | 
|  | if (shiftAmt < APINT_BITS_PER_WORD) { | 
|  | lshrNear(val, pVal, getNumWords(), shiftAmt); | 
|  | APInt Result(val, BitWidth); | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Compute some values needed by the remaining shift algorithms | 
|  | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; | 
|  | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; | 
|  |  | 
|  | // If we are shifting whole words, just move whole words | 
|  | if (wordShift == 0) { | 
|  | for (unsigned i = 0; i < getNumWords() - offset; ++i) | 
|  | val[i] = pVal[i+offset]; | 
|  | for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) | 
|  | val[i] = 0; | 
|  | APInt Result(val, BitWidth); | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Shift the low order words | 
|  | unsigned breakWord = getNumWords() - offset -1; | 
|  | for (unsigned i = 0; i < breakWord; ++i) | 
|  | val[i] = (pVal[i+offset] >> wordShift) | | 
|  | (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); | 
|  | // Shift the break word. | 
|  | val[breakWord] = pVal[breakWord+offset] >> wordShift; | 
|  |  | 
|  | // Remaining words are 0 | 
|  | for (unsigned i = breakWord+1; i < getNumWords(); ++i) | 
|  | val[i] = 0; | 
|  | APInt Result(val, BitWidth); | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Left-shift this APInt by shiftAmt. | 
|  | /// @brief Left-shift function. | 
|  | APInt APInt::shl(const APInt &shiftAmt) const { | 
|  | // It's undefined behavior in C to shift by BitWidth or greater. | 
|  | return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); | 
|  | } | 
|  |  | 
|  | APInt APInt::shlSlowCase(unsigned shiftAmt) const { | 
|  | // If all the bits were shifted out, the result is 0. This avoids issues | 
|  | // with shifting by the size of the integer type, which produces undefined | 
|  | // results. We define these "undefined results" to always be 0. | 
|  | if (shiftAmt == BitWidth) | 
|  | return APInt(BitWidth, 0); | 
|  |  | 
|  | // If none of the bits are shifted out, the result is *this. This avoids a | 
|  | // lshr by the words size in the loop below which can produce incorrect | 
|  | // results. It also avoids the expensive computation below for a common case. | 
|  | if (shiftAmt == 0) | 
|  | return *this; | 
|  |  | 
|  | // Create some space for the result. | 
|  | uint64_t * val = new uint64_t[getNumWords()]; | 
|  |  | 
|  | // If we are shifting less than a word, do it the easy way | 
|  | if (shiftAmt < APINT_BITS_PER_WORD) { | 
|  | uint64_t carry = 0; | 
|  | for (unsigned i = 0; i < getNumWords(); i++) { | 
|  | val[i] = pVal[i] << shiftAmt | carry; | 
|  | carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); | 
|  | } | 
|  | APInt Result(val, BitWidth); | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Compute some values needed by the remaining shift algorithms | 
|  | unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; | 
|  | unsigned offset = shiftAmt / APINT_BITS_PER_WORD; | 
|  |  | 
|  | // If we are shifting whole words, just move whole words | 
|  | if (wordShift == 0) { | 
|  | for (unsigned i = 0; i < offset; i++) | 
|  | val[i] = 0; | 
|  | for (unsigned i = offset; i < getNumWords(); i++) | 
|  | val[i] = pVal[i-offset]; | 
|  | APInt Result(val, BitWidth); | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Copy whole words from this to Result. | 
|  | unsigned i = getNumWords() - 1; | 
|  | for (; i > offset; --i) | 
|  | val[i] = pVal[i-offset] << wordShift | | 
|  | pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); | 
|  | val[offset] = pVal[0] << wordShift; | 
|  | for (i = 0; i < offset; ++i) | 
|  | val[i] = 0; | 
|  | APInt Result(val, BitWidth); | 
|  | Result.clearUnusedBits(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | APInt APInt::rotl(const APInt &rotateAmt) const { | 
|  | return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); | 
|  | } | 
|  |  | 
|  | APInt APInt::rotl(unsigned rotateAmt) const { | 
|  | rotateAmt %= BitWidth; | 
|  | if (rotateAmt == 0) | 
|  | return *this; | 
|  | return shl(rotateAmt) | lshr(BitWidth - rotateAmt); | 
|  | } | 
|  |  | 
|  | APInt APInt::rotr(const APInt &rotateAmt) const { | 
|  | return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); | 
|  | } | 
|  |  | 
|  | APInt APInt::rotr(unsigned rotateAmt) const { | 
|  | rotateAmt %= BitWidth; | 
|  | if (rotateAmt == 0) | 
|  | return *this; | 
|  | return lshr(rotateAmt) | shl(BitWidth - rotateAmt); | 
|  | } | 
|  |  | 
|  | // Square Root - this method computes and returns the square root of "this". | 
|  | // Three mechanisms are used for computation. For small values (<= 5 bits), | 
|  | // a table lookup is done. This gets some performance for common cases. For | 
|  | // values using less than 52 bits, the value is converted to double and then | 
|  | // the libc sqrt function is called. The result is rounded and then converted | 
|  | // back to a uint64_t which is then used to construct the result. Finally, | 
|  | // the Babylonian method for computing square roots is used. | 
|  | APInt APInt::sqrt() const { | 
|  |  | 
|  | // Determine the magnitude of the value. | 
|  | unsigned magnitude = getActiveBits(); | 
|  |  | 
|  | // Use a fast table for some small values. This also gets rid of some | 
|  | // rounding errors in libc sqrt for small values. | 
|  | if (magnitude <= 5) { | 
|  | static const uint8_t results[32] = { | 
|  | /*     0 */ 0, | 
|  | /*  1- 2 */ 1, 1, | 
|  | /*  3- 6 */ 2, 2, 2, 2, | 
|  | /*  7-12 */ 3, 3, 3, 3, 3, 3, | 
|  | /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, | 
|  | /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
|  | /*    31 */ 6 | 
|  | }; | 
|  | return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); | 
|  | } | 
|  |  | 
|  | // If the magnitude of the value fits in less than 52 bits (the precision of | 
|  | // an IEEE double precision floating point value), then we can use the | 
|  | // libc sqrt function which will probably use a hardware sqrt computation. | 
|  | // This should be faster than the algorithm below. | 
|  | if (magnitude < 52) { | 
|  | return APInt(BitWidth, | 
|  | uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); | 
|  | } | 
|  |  | 
|  | // Okay, all the short cuts are exhausted. We must compute it. The following | 
|  | // is a classical Babylonian method for computing the square root. This code | 
|  | // was adapted to APInt from a wikipedia article on such computations. | 
|  | // See http://www.wikipedia.org/ and go to the page named | 
|  | // Calculate_an_integer_square_root. | 
|  | unsigned nbits = BitWidth, i = 4; | 
|  | APInt testy(BitWidth, 16); | 
|  | APInt x_old(BitWidth, 1); | 
|  | APInt x_new(BitWidth, 0); | 
|  | APInt two(BitWidth, 2); | 
|  |  | 
|  | // Select a good starting value using binary logarithms. | 
|  | for (;; i += 2, testy = testy.shl(2)) | 
|  | if (i >= nbits || this->ule(testy)) { | 
|  | x_old = x_old.shl(i / 2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Use the Babylonian method to arrive at the integer square root: | 
|  | for (;;) { | 
|  | x_new = (this->udiv(x_old) + x_old).udiv(two); | 
|  | if (x_old.ule(x_new)) | 
|  | break; | 
|  | x_old = x_new; | 
|  | } | 
|  |  | 
|  | // Make sure we return the closest approximation | 
|  | // NOTE: The rounding calculation below is correct. It will produce an | 
|  | // off-by-one discrepancy with results from pari/gp. That discrepancy has been | 
|  | // determined to be a rounding issue with pari/gp as it begins to use a | 
|  | // floating point representation after 192 bits. There are no discrepancies | 
|  | // between this algorithm and pari/gp for bit widths < 192 bits. | 
|  | APInt square(x_old * x_old); | 
|  | APInt nextSquare((x_old + 1) * (x_old +1)); | 
|  | if (this->ult(square)) | 
|  | return x_old; | 
|  | assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); | 
|  | APInt midpoint((nextSquare - square).udiv(two)); | 
|  | APInt offset(*this - square); | 
|  | if (offset.ult(midpoint)) | 
|  | return x_old; | 
|  | return x_old + 1; | 
|  | } | 
|  |  | 
|  | /// Computes the multiplicative inverse of this APInt for a given modulo. The | 
|  | /// iterative extended Euclidean algorithm is used to solve for this value, | 
|  | /// however we simplify it to speed up calculating only the inverse, and take | 
|  | /// advantage of div+rem calculations. We also use some tricks to avoid copying | 
|  | /// (potentially large) APInts around. | 
|  | APInt APInt::multiplicativeInverse(const APInt& modulo) const { | 
|  | assert(ult(modulo) && "This APInt must be smaller than the modulo"); | 
|  |  | 
|  | // Using the properties listed at the following web page (accessed 06/21/08): | 
|  | //   http://www.numbertheory.org/php/euclid.html | 
|  | // (especially the properties numbered 3, 4 and 9) it can be proved that | 
|  | // BitWidth bits suffice for all the computations in the algorithm implemented | 
|  | // below. More precisely, this number of bits suffice if the multiplicative | 
|  | // inverse exists, but may not suffice for the general extended Euclidean | 
|  | // algorithm. | 
|  |  | 
|  | APInt r[2] = { modulo, *this }; | 
|  | APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; | 
|  | APInt q(BitWidth, 0); | 
|  |  | 
|  | unsigned i; | 
|  | for (i = 0; r[i^1] != 0; i ^= 1) { | 
|  | // An overview of the math without the confusing bit-flipping: | 
|  | // q = r[i-2] / r[i-1] | 
|  | // r[i] = r[i-2] % r[i-1] | 
|  | // t[i] = t[i-2] - t[i-1] * q | 
|  | udivrem(r[i], r[i^1], q, r[i]); | 
|  | t[i] -= t[i^1] * q; | 
|  | } | 
|  |  | 
|  | // If this APInt and the modulo are not coprime, there is no multiplicative | 
|  | // inverse, so return 0. We check this by looking at the next-to-last | 
|  | // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean | 
|  | // algorithm. | 
|  | if (r[i] != 1) | 
|  | return APInt(BitWidth, 0); | 
|  |  | 
|  | // The next-to-last t is the multiplicative inverse.  However, we are | 
|  | // interested in a positive inverse. Calcuate a positive one from a negative | 
|  | // one if necessary. A simple addition of the modulo suffices because | 
|  | // abs(t[i]) is known to be less than *this/2 (see the link above). | 
|  | return t[i].isNegative() ? t[i] + modulo : t[i]; | 
|  | } | 
|  |  | 
|  | /// Calculate the magic numbers required to implement a signed integer division | 
|  | /// by a constant as a sequence of multiplies, adds and shifts.  Requires that | 
|  | /// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S. | 
|  | /// Warren, Jr., chapter 10. | 
|  | APInt::ms APInt::magic() const { | 
|  | const APInt& d = *this; | 
|  | unsigned p; | 
|  | APInt ad, anc, delta, q1, r1, q2, r2, t; | 
|  | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | 
|  | struct ms mag; | 
|  |  | 
|  | ad = d.abs(); | 
|  | t = signedMin + (d.lshr(d.getBitWidth() - 1)); | 
|  | anc = t - 1 - t.urem(ad);   // absolute value of nc | 
|  | p = d.getBitWidth() - 1;    // initialize p | 
|  | q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc) | 
|  | r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc)) | 
|  | q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d) | 
|  | r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d)) | 
|  | do { | 
|  | p = p + 1; | 
|  | q1 = q1<<1;          // update q1 = 2p/abs(nc) | 
|  | r1 = r1<<1;          // update r1 = rem(2p/abs(nc)) | 
|  | if (r1.uge(anc)) {  // must be unsigned comparison | 
|  | q1 = q1 + 1; | 
|  | r1 = r1 - anc; | 
|  | } | 
|  | q2 = q2<<1;          // update q2 = 2p/abs(d) | 
|  | r2 = r2<<1;          // update r2 = rem(2p/abs(d)) | 
|  | if (r2.uge(ad)) {   // must be unsigned comparison | 
|  | q2 = q2 + 1; | 
|  | r2 = r2 - ad; | 
|  | } | 
|  | delta = ad - r2; | 
|  | } while (q1.ult(delta) || (q1 == delta && r1 == 0)); | 
|  |  | 
|  | mag.m = q2 + 1; | 
|  | if (d.isNegative()) mag.m = -mag.m;   // resulting magic number | 
|  | mag.s = p - d.getBitWidth();          // resulting shift | 
|  | return mag; | 
|  | } | 
|  |  | 
|  | /// Calculate the magic numbers required to implement an unsigned integer | 
|  | /// division by a constant as a sequence of multiplies, adds and shifts. | 
|  | /// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry | 
|  | /// S. Warren, Jr., chapter 10. | 
|  | /// LeadingZeros can be used to simplify the calculation if the upper bits | 
|  | /// of the divided value are known zero. | 
|  | APInt::mu APInt::magicu(unsigned LeadingZeros) const { | 
|  | const APInt& d = *this; | 
|  | unsigned p; | 
|  | APInt nc, delta, q1, r1, q2, r2; | 
|  | struct mu magu; | 
|  | magu.a = 0;               // initialize "add" indicator | 
|  | APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); | 
|  | APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); | 
|  | APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); | 
|  |  | 
|  | nc = allOnes - (allOnes - d).urem(d); | 
|  | p = d.getBitWidth() - 1;  // initialize p | 
|  | q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc | 
|  | r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc) | 
|  | q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d | 
|  | r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d) | 
|  | do { | 
|  | p = p + 1; | 
|  | if (r1.uge(nc - r1)) { | 
|  | q1 = q1 + q1 + 1;  // update q1 | 
|  | r1 = r1 + r1 - nc; // update r1 | 
|  | } | 
|  | else { | 
|  | q1 = q1+q1; // update q1 | 
|  | r1 = r1+r1; // update r1 | 
|  | } | 
|  | if ((r2 + 1).uge(d - r2)) { | 
|  | if (q2.uge(signedMax)) magu.a = 1; | 
|  | q2 = q2+q2 + 1;     // update q2 | 
|  | r2 = r2+r2 + 1 - d; // update r2 | 
|  | } | 
|  | else { | 
|  | if (q2.uge(signedMin)) magu.a = 1; | 
|  | q2 = q2+q2;     // update q2 | 
|  | r2 = r2+r2 + 1; // update r2 | 
|  | } | 
|  | delta = d - 1 - r2; | 
|  | } while (p < d.getBitWidth()*2 && | 
|  | (q1.ult(delta) || (q1 == delta && r1 == 0))); | 
|  | magu.m = q2 + 1; // resulting magic number | 
|  | magu.s = p - d.getBitWidth();  // resulting shift | 
|  | return magu; | 
|  | } | 
|  |  | 
|  | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) | 
|  | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The | 
|  | /// variables here have the same names as in the algorithm. Comments explain | 
|  | /// the algorithm and any deviation from it. | 
|  | static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, | 
|  | unsigned m, unsigned n) { | 
|  | assert(u && "Must provide dividend"); | 
|  | assert(v && "Must provide divisor"); | 
|  | assert(q && "Must provide quotient"); | 
|  | assert(u != v && u != q && v != q && "Must use different memory"); | 
|  | assert(n>1 && "n must be > 1"); | 
|  |  | 
|  | // b denotes the base of the number system. In our case b is 2^32. | 
|  | const uint64_t b = uint64_t(1) << 32; | 
|  |  | 
|  | DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); | 
|  | DEBUG(dbgs() << "KnuthDiv: original:"); | 
|  | DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); | 
|  | DEBUG(dbgs() << " by"); | 
|  | DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); | 
|  | DEBUG(dbgs() << '\n'); | 
|  | // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of | 
|  | // u and v by d. Note that we have taken Knuth's advice here to use a power | 
|  | // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of | 
|  | // 2 allows us to shift instead of multiply and it is easy to determine the | 
|  | // shift amount from the leading zeros.  We are basically normalizing the u | 
|  | // and v so that its high bits are shifted to the top of v's range without | 
|  | // overflow. Note that this can require an extra word in u so that u must | 
|  | // be of length m+n+1. | 
|  | unsigned shift = countLeadingZeros(v[n-1]); | 
|  | unsigned v_carry = 0; | 
|  | unsigned u_carry = 0; | 
|  | if (shift) { | 
|  | for (unsigned i = 0; i < m+n; ++i) { | 
|  | unsigned u_tmp = u[i] >> (32 - shift); | 
|  | u[i] = (u[i] << shift) | u_carry; | 
|  | u_carry = u_tmp; | 
|  | } | 
|  | for (unsigned i = 0; i < n; ++i) { | 
|  | unsigned v_tmp = v[i] >> (32 - shift); | 
|  | v[i] = (v[i] << shift) | v_carry; | 
|  | v_carry = v_tmp; | 
|  | } | 
|  | } | 
|  | u[m+n] = u_carry; | 
|  |  | 
|  | DEBUG(dbgs() << "KnuthDiv:   normal:"); | 
|  | DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); | 
|  | DEBUG(dbgs() << " by"); | 
|  | DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); | 
|  | DEBUG(dbgs() << '\n'); | 
|  |  | 
|  | // D2. [Initialize j.]  Set j to m. This is the loop counter over the places. | 
|  | int j = m; | 
|  | do { | 
|  | DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); | 
|  | // D3. [Calculate q'.]. | 
|  | //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') | 
|  | //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') | 
|  | // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease | 
|  | // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test | 
|  | // on v[n-2] determines at high speed most of the cases in which the trial | 
|  | // value qp is one too large, and it eliminates all cases where qp is two | 
|  | // too large. | 
|  | uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); | 
|  | DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); | 
|  | uint64_t qp = dividend / v[n-1]; | 
|  | uint64_t rp = dividend % v[n-1]; | 
|  | if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { | 
|  | qp--; | 
|  | rp += v[n-1]; | 
|  | if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) | 
|  | qp--; | 
|  | } | 
|  | DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); | 
|  |  | 
|  | // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with | 
|  | // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation | 
|  | // consists of a simple multiplication by a one-place number, combined with | 
|  | // a subtraction. | 
|  | // The digits (u[j+n]...u[j]) should be kept positive; if the result of | 
|  | // this step is actually negative, (u[j+n]...u[j]) should be left as the | 
|  | // true value plus b**(n+1), namely as the b's complement of | 
|  | // the true value, and a "borrow" to the left should be remembered. | 
|  | int64_t borrow = 0; | 
|  | for (unsigned i = 0; i < n; ++i) { | 
|  | uint64_t p = uint64_t(qp) * uint64_t(v[i]); | 
|  | int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p; | 
|  | u[j+i] = (unsigned)subres; | 
|  | borrow = (p >> 32) - (subres >> 32); | 
|  | DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] | 
|  | << ", borrow = " << borrow << '\n'); | 
|  | } | 
|  | bool isNeg = u[j+n] < borrow; | 
|  | u[j+n] -= (unsigned)borrow; | 
|  |  | 
|  | DEBUG(dbgs() << "KnuthDiv: after subtraction:"); | 
|  | DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); | 
|  | DEBUG(dbgs() << '\n'); | 
|  |  | 
|  | // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was | 
|  | // negative, go to step D6; otherwise go on to step D7. | 
|  | q[j] = (unsigned)qp; | 
|  | if (isNeg) { | 
|  | // D6. [Add back]. The probability that this step is necessary is very | 
|  | // small, on the order of only 2/b. Make sure that test data accounts for | 
|  | // this possibility. Decrease q[j] by 1 | 
|  | q[j]--; | 
|  | // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). | 
|  | // A carry will occur to the left of u[j+n], and it should be ignored | 
|  | // since it cancels with the borrow that occurred in D4. | 
|  | bool carry = false; | 
|  | for (unsigned i = 0; i < n; i++) { | 
|  | unsigned limit = std::min(u[j+i],v[i]); | 
|  | u[j+i] += v[i] + carry; | 
|  | carry = u[j+i] < limit || (carry && u[j+i] == limit); | 
|  | } | 
|  | u[j+n] += carry; | 
|  | } | 
|  | DEBUG(dbgs() << "KnuthDiv: after correction:"); | 
|  | DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); | 
|  | DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); | 
|  |  | 
|  | // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3. | 
|  | } while (--j >= 0); | 
|  |  | 
|  | DEBUG(dbgs() << "KnuthDiv: quotient:"); | 
|  | DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); | 
|  | DEBUG(dbgs() << '\n'); | 
|  |  | 
|  | // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired | 
|  | // remainder may be obtained by dividing u[...] by d. If r is non-null we | 
|  | // compute the remainder (urem uses this). | 
|  | if (r) { | 
|  | // The value d is expressed by the "shift" value above since we avoided | 
|  | // multiplication by d by using a shift left. So, all we have to do is | 
|  | // shift right here. In order to mak | 
|  | if (shift) { | 
|  | unsigned carry = 0; | 
|  | DEBUG(dbgs() << "KnuthDiv: remainder:"); | 
|  | for (int i = n-1; i >= 0; i--) { | 
|  | r[i] = (u[i] >> shift) | carry; | 
|  | carry = u[i] << (32 - shift); | 
|  | DEBUG(dbgs() << " " << r[i]); | 
|  | } | 
|  | } else { | 
|  | for (int i = n-1; i >= 0; i--) { | 
|  | r[i] = u[i]; | 
|  | DEBUG(dbgs() << " " << r[i]); | 
|  | } | 
|  | } | 
|  | DEBUG(dbgs() << '\n'); | 
|  | } | 
|  | DEBUG(dbgs() << '\n'); | 
|  | } | 
|  |  | 
|  | void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, | 
|  | unsigned rhsWords, APInt *Quotient, APInt *Remainder) { | 
|  | assert(lhsWords >= rhsWords && "Fractional result"); | 
|  |  | 
|  | // First, compose the values into an array of 32-bit words instead of | 
|  | // 64-bit words. This is a necessity of both the "short division" algorithm | 
|  | // and the Knuth "classical algorithm" which requires there to be native | 
|  | // operations for +, -, and * on an m bit value with an m*2 bit result. We | 
|  | // can't use 64-bit operands here because we don't have native results of | 
|  | // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't | 
|  | // work on large-endian machines. | 
|  | uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); | 
|  | unsigned n = rhsWords * 2; | 
|  | unsigned m = (lhsWords * 2) - n; | 
|  |  | 
|  | // Allocate space for the temporary values we need either on the stack, if | 
|  | // it will fit, or on the heap if it won't. | 
|  | unsigned SPACE[128]; | 
|  | unsigned *U = nullptr; | 
|  | unsigned *V = nullptr; | 
|  | unsigned *Q = nullptr; | 
|  | unsigned *R = nullptr; | 
|  | if ((Remainder?4:3)*n+2*m+1 <= 128) { | 
|  | U = &SPACE[0]; | 
|  | V = &SPACE[m+n+1]; | 
|  | Q = &SPACE[(m+n+1) + n]; | 
|  | if (Remainder) | 
|  | R = &SPACE[(m+n+1) + n + (m+n)]; | 
|  | } else { | 
|  | U = new unsigned[m + n + 1]; | 
|  | V = new unsigned[n]; | 
|  | Q = new unsigned[m+n]; | 
|  | if (Remainder) | 
|  | R = new unsigned[n]; | 
|  | } | 
|  |  | 
|  | // Initialize the dividend | 
|  | memset(U, 0, (m+n+1)*sizeof(unsigned)); | 
|  | for (unsigned i = 0; i < lhsWords; ++i) { | 
|  | uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); | 
|  | U[i * 2] = (unsigned)(tmp & mask); | 
|  | U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); | 
|  | } | 
|  | U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. | 
|  |  | 
|  | // Initialize the divisor | 
|  | memset(V, 0, (n)*sizeof(unsigned)); | 
|  | for (unsigned i = 0; i < rhsWords; ++i) { | 
|  | uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); | 
|  | V[i * 2] = (unsigned)(tmp & mask); | 
|  | V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); | 
|  | } | 
|  |  | 
|  | // initialize the quotient and remainder | 
|  | memset(Q, 0, (m+n) * sizeof(unsigned)); | 
|  | if (Remainder) | 
|  | memset(R, 0, n * sizeof(unsigned)); | 
|  |  | 
|  | // Now, adjust m and n for the Knuth division. n is the number of words in | 
|  | // the divisor. m is the number of words by which the dividend exceeds the | 
|  | // divisor (i.e. m+n is the length of the dividend). These sizes must not | 
|  | // contain any zero words or the Knuth algorithm fails. | 
|  | for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { | 
|  | n--; | 
|  | m++; | 
|  | } | 
|  | for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) | 
|  | m--; | 
|  |  | 
|  | // If we're left with only a single word for the divisor, Knuth doesn't work | 
|  | // so we implement the short division algorithm here. This is much simpler | 
|  | // and faster because we are certain that we can divide a 64-bit quantity | 
|  | // by a 32-bit quantity at hardware speed and short division is simply a | 
|  | // series of such operations. This is just like doing short division but we | 
|  | // are using base 2^32 instead of base 10. | 
|  | assert(n != 0 && "Divide by zero?"); | 
|  | if (n == 1) { | 
|  | unsigned divisor = V[0]; | 
|  | unsigned remainder = 0; | 
|  | for (int i = m+n-1; i >= 0; i--) { | 
|  | uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; | 
|  | if (partial_dividend == 0) { | 
|  | Q[i] = 0; | 
|  | remainder = 0; | 
|  | } else if (partial_dividend < divisor) { | 
|  | Q[i] = 0; | 
|  | remainder = (unsigned)partial_dividend; | 
|  | } else if (partial_dividend == divisor) { | 
|  | Q[i] = 1; | 
|  | remainder = 0; | 
|  | } else { | 
|  | Q[i] = (unsigned)(partial_dividend / divisor); | 
|  | remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); | 
|  | } | 
|  | } | 
|  | if (R) | 
|  | R[0] = remainder; | 
|  | } else { | 
|  | // Now we're ready to invoke the Knuth classical divide algorithm. In this | 
|  | // case n > 1. | 
|  | KnuthDiv(U, V, Q, R, m, n); | 
|  | } | 
|  |  | 
|  | // If the caller wants the quotient | 
|  | if (Quotient) { | 
|  | // Set up the Quotient value's memory. | 
|  | if (Quotient->BitWidth != LHS.BitWidth) { | 
|  | if (Quotient->isSingleWord()) | 
|  | Quotient->VAL = 0; | 
|  | else | 
|  | delete [] Quotient->pVal; | 
|  | Quotient->BitWidth = LHS.BitWidth; | 
|  | if (!Quotient->isSingleWord()) | 
|  | Quotient->pVal = getClearedMemory(Quotient->getNumWords()); | 
|  | } else | 
|  | Quotient->clearAllBits(); | 
|  |  | 
|  | // The quotient is in Q. Reconstitute the quotient into Quotient's low | 
|  | // order words. | 
|  | // This case is currently dead as all users of divide() handle trivial cases | 
|  | // earlier. | 
|  | if (lhsWords == 1) { | 
|  | uint64_t tmp = | 
|  | uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); | 
|  | if (Quotient->isSingleWord()) | 
|  | Quotient->VAL = tmp; | 
|  | else | 
|  | Quotient->pVal[0] = tmp; | 
|  | } else { | 
|  | assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); | 
|  | for (unsigned i = 0; i < lhsWords; ++i) | 
|  | Quotient->pVal[i] = | 
|  | uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the caller wants the remainder | 
|  | if (Remainder) { | 
|  | // Set up the Remainder value's memory. | 
|  | if (Remainder->BitWidth != RHS.BitWidth) { | 
|  | if (Remainder->isSingleWord()) | 
|  | Remainder->VAL = 0; | 
|  | else | 
|  | delete [] Remainder->pVal; | 
|  | Remainder->BitWidth = RHS.BitWidth; | 
|  | if (!Remainder->isSingleWord()) | 
|  | Remainder->pVal = getClearedMemory(Remainder->getNumWords()); | 
|  | } else | 
|  | Remainder->clearAllBits(); | 
|  |  | 
|  | // The remainder is in R. Reconstitute the remainder into Remainder's low | 
|  | // order words. | 
|  | if (rhsWords == 1) { | 
|  | uint64_t tmp = | 
|  | uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); | 
|  | if (Remainder->isSingleWord()) | 
|  | Remainder->VAL = tmp; | 
|  | else | 
|  | Remainder->pVal[0] = tmp; | 
|  | } else { | 
|  | assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); | 
|  | for (unsigned i = 0; i < rhsWords; ++i) | 
|  | Remainder->pVal[i] = | 
|  | uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clean up the memory we allocated. | 
|  | if (U != &SPACE[0]) { | 
|  | delete [] U; | 
|  | delete [] V; | 
|  | delete [] Q; | 
|  | delete [] R; | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt APInt::udiv(const APInt& RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  |  | 
|  | // First, deal with the easy case | 
|  | if (isSingleWord()) { | 
|  | assert(RHS.VAL != 0 && "Divide by zero?"); | 
|  | return APInt(BitWidth, VAL / RHS.VAL); | 
|  | } | 
|  |  | 
|  | // Get some facts about the LHS and RHS number of bits and words | 
|  | unsigned rhsBits = RHS.getActiveBits(); | 
|  | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); | 
|  | assert(rhsWords && "Divided by zero???"); | 
|  | unsigned lhsBits = this->getActiveBits(); | 
|  | unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); | 
|  |  | 
|  | // Deal with some degenerate cases | 
|  | if (!lhsWords) | 
|  | // 0 / X ===> 0 | 
|  | return APInt(BitWidth, 0); | 
|  | else if (lhsWords < rhsWords || this->ult(RHS)) { | 
|  | // X / Y ===> 0, iff X < Y | 
|  | return APInt(BitWidth, 0); | 
|  | } else if (*this == RHS) { | 
|  | // X / X ===> 1 | 
|  | return APInt(BitWidth, 1); | 
|  | } else if (lhsWords == 1 && rhsWords == 1) { | 
|  | // All high words are zero, just use native divide | 
|  | return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); | 
|  | } | 
|  |  | 
|  | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
|  | APInt Quotient(1,0); // to hold result. | 
|  | divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr); | 
|  | return Quotient; | 
|  | } | 
|  |  | 
|  | APInt APInt::sdiv(const APInt &RHS) const { | 
|  | if (isNegative()) { | 
|  | if (RHS.isNegative()) | 
|  | return (-(*this)).udiv(-RHS); | 
|  | return -((-(*this)).udiv(RHS)); | 
|  | } | 
|  | if (RHS.isNegative()) | 
|  | return -(this->udiv(-RHS)); | 
|  | return this->udiv(RHS); | 
|  | } | 
|  |  | 
|  | APInt APInt::urem(const APInt& RHS) const { | 
|  | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  | if (isSingleWord()) { | 
|  | assert(RHS.VAL != 0 && "Remainder by zero?"); | 
|  | return APInt(BitWidth, VAL % RHS.VAL); | 
|  | } | 
|  |  | 
|  | // Get some facts about the LHS | 
|  | unsigned lhsBits = getActiveBits(); | 
|  | unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); | 
|  |  | 
|  | // Get some facts about the RHS | 
|  | unsigned rhsBits = RHS.getActiveBits(); | 
|  | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); | 
|  | assert(rhsWords && "Performing remainder operation by zero ???"); | 
|  |  | 
|  | // Check the degenerate cases | 
|  | if (lhsWords == 0) { | 
|  | // 0 % Y ===> 0 | 
|  | return APInt(BitWidth, 0); | 
|  | } else if (lhsWords < rhsWords || this->ult(RHS)) { | 
|  | // X % Y ===> X, iff X < Y | 
|  | return *this; | 
|  | } else if (*this == RHS) { | 
|  | // X % X == 0; | 
|  | return APInt(BitWidth, 0); | 
|  | } else if (lhsWords == 1) { | 
|  | // All high words are zero, just use native remainder | 
|  | return APInt(BitWidth, pVal[0] % RHS.pVal[0]); | 
|  | } | 
|  |  | 
|  | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | 
|  | APInt Remainder(1,0); | 
|  | divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder); | 
|  | return Remainder; | 
|  | } | 
|  |  | 
|  | APInt APInt::srem(const APInt &RHS) const { | 
|  | if (isNegative()) { | 
|  | if (RHS.isNegative()) | 
|  | return -((-(*this)).urem(-RHS)); | 
|  | return -((-(*this)).urem(RHS)); | 
|  | } | 
|  | if (RHS.isNegative()) | 
|  | return this->urem(-RHS); | 
|  | return this->urem(RHS); | 
|  | } | 
|  |  | 
|  | void APInt::udivrem(const APInt &LHS, const APInt &RHS, | 
|  | APInt &Quotient, APInt &Remainder) { | 
|  | assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); | 
|  |  | 
|  | // First, deal with the easy case | 
|  | if (LHS.isSingleWord()) { | 
|  | assert(RHS.VAL != 0 && "Divide by zero?"); | 
|  | uint64_t QuotVal = LHS.VAL / RHS.VAL; | 
|  | uint64_t RemVal = LHS.VAL % RHS.VAL; | 
|  | Quotient = APInt(LHS.BitWidth, QuotVal); | 
|  | Remainder = APInt(LHS.BitWidth, RemVal); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get some size facts about the dividend and divisor | 
|  | unsigned lhsBits  = LHS.getActiveBits(); | 
|  | unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); | 
|  | unsigned rhsBits  = RHS.getActiveBits(); | 
|  | unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); | 
|  |  | 
|  | // Check the degenerate cases | 
|  | if (lhsWords == 0) { | 
|  | Quotient = 0;                // 0 / Y ===> 0 | 
|  | Remainder = 0;               // 0 % Y ===> 0 | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (lhsWords < rhsWords || LHS.ult(RHS)) { | 
|  | Remainder = LHS;            // X % Y ===> X, iff X < Y | 
|  | Quotient = 0;               // X / Y ===> 0, iff X < Y | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (LHS == RHS) { | 
|  | Quotient  = 1;              // X / X ===> 1 | 
|  | Remainder = 0;              // X % X ===> 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (lhsWords == 1 && rhsWords == 1) { | 
|  | // There is only one word to consider so use the native versions. | 
|  | uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; | 
|  | uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; | 
|  | Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); | 
|  | Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, lets do it the long way | 
|  | divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); | 
|  | } | 
|  |  | 
|  | void APInt::sdivrem(const APInt &LHS, const APInt &RHS, | 
|  | APInt &Quotient, APInt &Remainder) { | 
|  | if (LHS.isNegative()) { | 
|  | if (RHS.isNegative()) | 
|  | APInt::udivrem(-LHS, -RHS, Quotient, Remainder); | 
|  | else { | 
|  | APInt::udivrem(-LHS, RHS, Quotient, Remainder); | 
|  | Quotient = -Quotient; | 
|  | } | 
|  | Remainder = -Remainder; | 
|  | } else if (RHS.isNegative()) { | 
|  | APInt::udivrem(LHS, -RHS, Quotient, Remainder); | 
|  | Quotient = -Quotient; | 
|  | } else { | 
|  | APInt::udivrem(LHS, RHS, Quotient, Remainder); | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this+RHS; | 
|  | Overflow = isNonNegative() == RHS.isNonNegative() && | 
|  | Res.isNonNegative() != isNonNegative(); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this+RHS; | 
|  | Overflow = Res.ult(RHS); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this - RHS; | 
|  | Overflow = isNonNegative() != RHS.isNonNegative() && | 
|  | Res.isNonNegative() != isNonNegative(); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this-RHS; | 
|  | Overflow = Res.ugt(*this); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { | 
|  | // MININT/-1  -->  overflow. | 
|  | Overflow = isMinSignedValue() && RHS.isAllOnesValue(); | 
|  | return sdiv(RHS); | 
|  | } | 
|  |  | 
|  | APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this * RHS; | 
|  |  | 
|  | if (*this != 0 && RHS != 0) | 
|  | Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; | 
|  | else | 
|  | Overflow = false; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { | 
|  | APInt Res = *this * RHS; | 
|  |  | 
|  | if (*this != 0 && RHS != 0) | 
|  | Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; | 
|  | else | 
|  | Overflow = false; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { | 
|  | Overflow = ShAmt.uge(getBitWidth()); | 
|  | if (Overflow) | 
|  | return APInt(BitWidth, 0); | 
|  |  | 
|  | if (isNonNegative()) // Don't allow sign change. | 
|  | Overflow = ShAmt.uge(countLeadingZeros()); | 
|  | else | 
|  | Overflow = ShAmt.uge(countLeadingOnes()); | 
|  |  | 
|  | return *this << ShAmt; | 
|  | } | 
|  |  | 
|  | APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { | 
|  | Overflow = ShAmt.uge(getBitWidth()); | 
|  | if (Overflow) | 
|  | return APInt(BitWidth, 0); | 
|  |  | 
|  | Overflow = ShAmt.ugt(countLeadingZeros()); | 
|  |  | 
|  | return *this << ShAmt; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { | 
|  | // Check our assumptions here | 
|  | assert(!str.empty() && "Invalid string length"); | 
|  | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || | 
|  | radix == 36) && | 
|  | "Radix should be 2, 8, 10, 16, or 36!"); | 
|  |  | 
|  | StringRef::iterator p = str.begin(); | 
|  | size_t slen = str.size(); | 
|  | bool isNeg = *p == '-'; | 
|  | if (*p == '-' || *p == '+') { | 
|  | p++; | 
|  | slen--; | 
|  | assert(slen && "String is only a sign, needs a value."); | 
|  | } | 
|  | assert((slen <= numbits || radix != 2) && "Insufficient bit width"); | 
|  | assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); | 
|  | assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); | 
|  | assert((((slen-1)*64)/22 <= numbits || radix != 10) && | 
|  | "Insufficient bit width"); | 
|  |  | 
|  | // Allocate memory | 
|  | if (!isSingleWord()) | 
|  | pVal = getClearedMemory(getNumWords()); | 
|  |  | 
|  | // Figure out if we can shift instead of multiply | 
|  | unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); | 
|  |  | 
|  | // Set up an APInt for the digit to add outside the loop so we don't | 
|  | // constantly construct/destruct it. | 
|  | APInt apdigit(getBitWidth(), 0); | 
|  | APInt apradix(getBitWidth(), radix); | 
|  |  | 
|  | // Enter digit traversal loop | 
|  | for (StringRef::iterator e = str.end(); p != e; ++p) { | 
|  | unsigned digit = getDigit(*p, radix); | 
|  | assert(digit < radix && "Invalid character in digit string"); | 
|  |  | 
|  | // Shift or multiply the value by the radix | 
|  | if (slen > 1) { | 
|  | if (shift) | 
|  | *this <<= shift; | 
|  | else | 
|  | *this *= apradix; | 
|  | } | 
|  |  | 
|  | // Add in the digit we just interpreted | 
|  | if (apdigit.isSingleWord()) | 
|  | apdigit.VAL = digit; | 
|  | else | 
|  | apdigit.pVal[0] = digit; | 
|  | *this += apdigit; | 
|  | } | 
|  | // If its negative, put it in two's complement form | 
|  | if (isNeg) { | 
|  | --(*this); | 
|  | this->flipAllBits(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, | 
|  | bool Signed, bool formatAsCLiteral) const { | 
|  | assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || | 
|  | Radix == 36) && | 
|  | "Radix should be 2, 8, 10, 16, or 36!"); | 
|  |  | 
|  | const char *Prefix = ""; | 
|  | if (formatAsCLiteral) { | 
|  | switch (Radix) { | 
|  | case 2: | 
|  | // Binary literals are a non-standard extension added in gcc 4.3: | 
|  | // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html | 
|  | Prefix = "0b"; | 
|  | break; | 
|  | case 8: | 
|  | Prefix = "0"; | 
|  | break; | 
|  | case 10: | 
|  | break; // No prefix | 
|  | case 16: | 
|  | Prefix = "0x"; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Invalid radix!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // First, check for a zero value and just short circuit the logic below. | 
|  | if (*this == 0) { | 
|  | while (*Prefix) { | 
|  | Str.push_back(*Prefix); | 
|  | ++Prefix; | 
|  | }; | 
|  | Str.push_back('0'); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; | 
|  |  | 
|  | if (isSingleWord()) { | 
|  | char Buffer[65]; | 
|  | char *BufPtr = Buffer+65; | 
|  |  | 
|  | uint64_t N; | 
|  | if (!Signed) { | 
|  | N = getZExtValue(); | 
|  | } else { | 
|  | int64_t I = getSExtValue(); | 
|  | if (I >= 0) { | 
|  | N = I; | 
|  | } else { | 
|  | Str.push_back('-'); | 
|  | N = -(uint64_t)I; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (*Prefix) { | 
|  | Str.push_back(*Prefix); | 
|  | ++Prefix; | 
|  | }; | 
|  |  | 
|  | while (N) { | 
|  | *--BufPtr = Digits[N % Radix]; | 
|  | N /= Radix; | 
|  | } | 
|  | Str.append(BufPtr, Buffer+65); | 
|  | return; | 
|  | } | 
|  |  | 
|  | APInt Tmp(*this); | 
|  |  | 
|  | if (Signed && isNegative()) { | 
|  | // They want to print the signed version and it is a negative value | 
|  | // Flip the bits and add one to turn it into the equivalent positive | 
|  | // value and put a '-' in the result. | 
|  | Tmp.flipAllBits(); | 
|  | ++Tmp; | 
|  | Str.push_back('-'); | 
|  | } | 
|  |  | 
|  | while (*Prefix) { | 
|  | Str.push_back(*Prefix); | 
|  | ++Prefix; | 
|  | }; | 
|  |  | 
|  | // We insert the digits backward, then reverse them to get the right order. | 
|  | unsigned StartDig = Str.size(); | 
|  |  | 
|  | // For the 2, 8 and 16 bit cases, we can just shift instead of divide | 
|  | // because the number of bits per digit (1, 3 and 4 respectively) divides | 
|  | // equaly.  We just shift until the value is zero. | 
|  | if (Radix == 2 || Radix == 8 || Radix == 16) { | 
|  | // Just shift tmp right for each digit width until it becomes zero | 
|  | unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); | 
|  | unsigned MaskAmt = Radix - 1; | 
|  |  | 
|  | while (Tmp != 0) { | 
|  | unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; | 
|  | Str.push_back(Digits[Digit]); | 
|  | Tmp = Tmp.lshr(ShiftAmt); | 
|  | } | 
|  | } else { | 
|  | APInt divisor(Radix == 10? 4 : 8, Radix); | 
|  | while (Tmp != 0) { | 
|  | APInt APdigit(1, 0); | 
|  | APInt tmp2(Tmp.getBitWidth(), 0); | 
|  | divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, | 
|  | &APdigit); | 
|  | unsigned Digit = (unsigned)APdigit.getZExtValue(); | 
|  | assert(Digit < Radix && "divide failed"); | 
|  | Str.push_back(Digits[Digit]); | 
|  | Tmp = tmp2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reverse the digits before returning. | 
|  | std::reverse(Str.begin()+StartDig, Str.end()); | 
|  | } | 
|  |  | 
|  | /// Returns the APInt as a std::string. Note that this is an inefficient method. | 
|  | /// It is better to pass in a SmallVector/SmallString to the methods above. | 
|  | std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { | 
|  | SmallString<40> S; | 
|  | toString(S, Radix, Signed, /* formatAsCLiteral = */false); | 
|  | return S.str(); | 
|  | } | 
|  |  | 
|  |  | 
|  | LLVM_DUMP_METHOD void APInt::dump() const { | 
|  | SmallString<40> S, U; | 
|  | this->toStringUnsigned(U); | 
|  | this->toStringSigned(S); | 
|  | dbgs() << "APInt(" << BitWidth << "b, " | 
|  | << U << "u " << S << "s)"; | 
|  | } | 
|  |  | 
|  | void APInt::print(raw_ostream &OS, bool isSigned) const { | 
|  | SmallString<40> S; | 
|  | this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); | 
|  | OS << S; | 
|  | } | 
|  |  | 
|  | // This implements a variety of operations on a representation of | 
|  | // arbitrary precision, two's-complement, bignum integer values. | 
|  |  | 
|  | // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe | 
|  | // and unrestricting assumption. | 
|  | static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!"); | 
|  |  | 
|  | /* Some handy functions local to this file.  */ | 
|  | namespace { | 
|  |  | 
|  | /* Returns the integer part with the least significant BITS set. | 
|  | BITS cannot be zero.  */ | 
|  | static inline integerPart | 
|  | lowBitMask(unsigned int bits) | 
|  | { | 
|  | assert(bits != 0 && bits <= integerPartWidth); | 
|  |  | 
|  | return ~(integerPart) 0 >> (integerPartWidth - bits); | 
|  | } | 
|  |  | 
|  | /* Returns the value of the lower half of PART.  */ | 
|  | static inline integerPart | 
|  | lowHalf(integerPart part) | 
|  | { | 
|  | return part & lowBitMask(integerPartWidth / 2); | 
|  | } | 
|  |  | 
|  | /* Returns the value of the upper half of PART.  */ | 
|  | static inline integerPart | 
|  | highHalf(integerPart part) | 
|  | { | 
|  | return part >> (integerPartWidth / 2); | 
|  | } | 
|  |  | 
|  | /* Returns the bit number of the most significant set bit of a part. | 
|  | If the input number has no bits set -1U is returned.  */ | 
|  | static unsigned int | 
|  | partMSB(integerPart value) | 
|  | { | 
|  | return findLastSet(value, ZB_Max); | 
|  | } | 
|  |  | 
|  | /* Returns the bit number of the least significant set bit of a | 
|  | part.  If the input number has no bits set -1U is returned.  */ | 
|  | static unsigned int | 
|  | partLSB(integerPart value) | 
|  | { | 
|  | return findFirstSet(value, ZB_Max); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sets the least significant part of a bignum to the input value, and | 
|  | zeroes out higher parts.  */ | 
|  | void | 
|  | APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | assert(parts > 0); | 
|  |  | 
|  | dst[0] = part; | 
|  | for (i = 1; i < parts; i++) | 
|  | dst[i] = 0; | 
|  | } | 
|  |  | 
|  | /* Assign one bignum to another.  */ | 
|  | void | 
|  | APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < parts; i++) | 
|  | dst[i] = src[i]; | 
|  | } | 
|  |  | 
|  | /* Returns true if a bignum is zero, false otherwise.  */ | 
|  | bool | 
|  | APInt::tcIsZero(const integerPart *src, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < parts; i++) | 
|  | if (src[i]) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Extract the given bit of a bignum; returns 0 or 1.  */ | 
|  | int | 
|  | APInt::tcExtractBit(const integerPart *parts, unsigned int bit) | 
|  | { | 
|  | return (parts[bit / integerPartWidth] & | 
|  | ((integerPart) 1 << bit % integerPartWidth)) != 0; | 
|  | } | 
|  |  | 
|  | /* Set the given bit of a bignum. */ | 
|  | void | 
|  | APInt::tcSetBit(integerPart *parts, unsigned int bit) | 
|  | { | 
|  | parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); | 
|  | } | 
|  |  | 
|  | /* Clears the given bit of a bignum. */ | 
|  | void | 
|  | APInt::tcClearBit(integerPart *parts, unsigned int bit) | 
|  | { | 
|  | parts[bit / integerPartWidth] &= | 
|  | ~((integerPart) 1 << (bit % integerPartWidth)); | 
|  | } | 
|  |  | 
|  | /* Returns the bit number of the least significant set bit of a | 
|  | number.  If the input number has no bits set -1U is returned.  */ | 
|  | unsigned int | 
|  | APInt::tcLSB(const integerPart *parts, unsigned int n) | 
|  | { | 
|  | unsigned int i, lsb; | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | if (parts[i] != 0) { | 
|  | lsb = partLSB(parts[i]); | 
|  |  | 
|  | return lsb + i * integerPartWidth; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1U; | 
|  | } | 
|  |  | 
|  | /* Returns the bit number of the most significant set bit of a number. | 
|  | If the input number has no bits set -1U is returned.  */ | 
|  | unsigned int | 
|  | APInt::tcMSB(const integerPart *parts, unsigned int n) | 
|  | { | 
|  | unsigned int msb; | 
|  |  | 
|  | do { | 
|  | --n; | 
|  |  | 
|  | if (parts[n] != 0) { | 
|  | msb = partMSB(parts[n]); | 
|  |  | 
|  | return msb + n * integerPartWidth; | 
|  | } | 
|  | } while (n); | 
|  |  | 
|  | return -1U; | 
|  | } | 
|  |  | 
|  | /* Copy the bit vector of width srcBITS from SRC, starting at bit | 
|  | srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes | 
|  | the least significant bit of DST.  All high bits above srcBITS in | 
|  | DST are zero-filled.  */ | 
|  | void | 
|  | APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, | 
|  | unsigned int srcBits, unsigned int srcLSB) | 
|  | { | 
|  | unsigned int firstSrcPart, dstParts, shift, n; | 
|  |  | 
|  | dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; | 
|  | assert(dstParts <= dstCount); | 
|  |  | 
|  | firstSrcPart = srcLSB / integerPartWidth; | 
|  | tcAssign (dst, src + firstSrcPart, dstParts); | 
|  |  | 
|  | shift = srcLSB % integerPartWidth; | 
|  | tcShiftRight (dst, dstParts, shift); | 
|  |  | 
|  | /* We now have (dstParts * integerPartWidth - shift) bits from SRC | 
|  | in DST.  If this is less that srcBits, append the rest, else | 
|  | clear the high bits.  */ | 
|  | n = dstParts * integerPartWidth - shift; | 
|  | if (n < srcBits) { | 
|  | integerPart mask = lowBitMask (srcBits - n); | 
|  | dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) | 
|  | << n % integerPartWidth); | 
|  | } else if (n > srcBits) { | 
|  | if (srcBits % integerPartWidth) | 
|  | dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); | 
|  | } | 
|  |  | 
|  | /* Clear high parts.  */ | 
|  | while (dstParts < dstCount) | 
|  | dst[dstParts++] = 0; | 
|  | } | 
|  |  | 
|  | /* DST += RHS + C where C is zero or one.  Returns the carry flag.  */ | 
|  | integerPart | 
|  | APInt::tcAdd(integerPart *dst, const integerPart *rhs, | 
|  | integerPart c, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | assert(c <= 1); | 
|  |  | 
|  | for (i = 0; i < parts; i++) { | 
|  | integerPart l; | 
|  |  | 
|  | l = dst[i]; | 
|  | if (c) { | 
|  | dst[i] += rhs[i] + 1; | 
|  | c = (dst[i] <= l); | 
|  | } else { | 
|  | dst[i] += rhs[i]; | 
|  | c = (dst[i] < l); | 
|  | } | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* DST -= RHS + C where C is zero or one.  Returns the carry flag.  */ | 
|  | integerPart | 
|  | APInt::tcSubtract(integerPart *dst, const integerPart *rhs, | 
|  | integerPart c, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | assert(c <= 1); | 
|  |  | 
|  | for (i = 0; i < parts; i++) { | 
|  | integerPart l; | 
|  |  | 
|  | l = dst[i]; | 
|  | if (c) { | 
|  | dst[i] -= rhs[i] + 1; | 
|  | c = (dst[i] >= l); | 
|  | } else { | 
|  | dst[i] -= rhs[i]; | 
|  | c = (dst[i] > l); | 
|  | } | 
|  | } | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* Negate a bignum in-place.  */ | 
|  | void | 
|  | APInt::tcNegate(integerPart *dst, unsigned int parts) | 
|  | { | 
|  | tcComplement(dst, parts); | 
|  | tcIncrement(dst, parts); | 
|  | } | 
|  |  | 
|  | /*  DST += SRC * MULTIPLIER + CARRY   if add is true | 
|  | DST  = SRC * MULTIPLIER + CARRY   if add is false | 
|  |  | 
|  | Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC | 
|  | they must start at the same point, i.e. DST == SRC. | 
|  |  | 
|  | If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is | 
|  | returned.  Otherwise DST is filled with the least significant | 
|  | DSTPARTS parts of the result, and if all of the omitted higher | 
|  | parts were zero return zero, otherwise overflow occurred and | 
|  | return one.  */ | 
|  | int | 
|  | APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, | 
|  | integerPart multiplier, integerPart carry, | 
|  | unsigned int srcParts, unsigned int dstParts, | 
|  | bool add) | 
|  | { | 
|  | unsigned int i, n; | 
|  |  | 
|  | /* Otherwise our writes of DST kill our later reads of SRC.  */ | 
|  | assert(dst <= src || dst >= src + srcParts); | 
|  | assert(dstParts <= srcParts + 1); | 
|  |  | 
|  | /* N loops; minimum of dstParts and srcParts.  */ | 
|  | n = dstParts < srcParts ? dstParts: srcParts; | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | integerPart low, mid, high, srcPart; | 
|  |  | 
|  | /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. | 
|  |  | 
|  | This cannot overflow, because | 
|  |  | 
|  | (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) | 
|  |  | 
|  | which is less than n^2.  */ | 
|  |  | 
|  | srcPart = src[i]; | 
|  |  | 
|  | if (multiplier == 0 || srcPart == 0)        { | 
|  | low = carry; | 
|  | high = 0; | 
|  | } else { | 
|  | low = lowHalf(srcPart) * lowHalf(multiplier); | 
|  | high = highHalf(srcPart) * highHalf(multiplier); | 
|  |  | 
|  | mid = lowHalf(srcPart) * highHalf(multiplier); | 
|  | high += highHalf(mid); | 
|  | mid <<= integerPartWidth / 2; | 
|  | if (low + mid < low) | 
|  | high++; | 
|  | low += mid; | 
|  |  | 
|  | mid = highHalf(srcPart) * lowHalf(multiplier); | 
|  | high += highHalf(mid); | 
|  | mid <<= integerPartWidth / 2; | 
|  | if (low + mid < low) | 
|  | high++; | 
|  | low += mid; | 
|  |  | 
|  | /* Now add carry.  */ | 
|  | if (low + carry < low) | 
|  | high++; | 
|  | low += carry; | 
|  | } | 
|  |  | 
|  | if (add) { | 
|  | /* And now DST[i], and store the new low part there.  */ | 
|  | if (low + dst[i] < low) | 
|  | high++; | 
|  | dst[i] += low; | 
|  | } else | 
|  | dst[i] = low; | 
|  |  | 
|  | carry = high; | 
|  | } | 
|  |  | 
|  | if (i < dstParts) { | 
|  | /* Full multiplication, there is no overflow.  */ | 
|  | assert(i + 1 == dstParts); | 
|  | dst[i] = carry; | 
|  | return 0; | 
|  | } else { | 
|  | /* We overflowed if there is carry.  */ | 
|  | if (carry) | 
|  | return 1; | 
|  |  | 
|  | /* We would overflow if any significant unwritten parts would be | 
|  | non-zero.  This is true if any remaining src parts are non-zero | 
|  | and the multiplier is non-zero.  */ | 
|  | if (multiplier) | 
|  | for (; i < srcParts; i++) | 
|  | if (src[i]) | 
|  | return 1; | 
|  |  | 
|  | /* We fitted in the narrow destination.  */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* DST = LHS * RHS, where DST has the same width as the operands and | 
|  | is filled with the least significant parts of the result.  Returns | 
|  | one if overflow occurred, otherwise zero.  DST must be disjoint | 
|  | from both operands.  */ | 
|  | int | 
|  | APInt::tcMultiply(integerPart *dst, const integerPart *lhs, | 
|  | const integerPart *rhs, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  | int overflow; | 
|  |  | 
|  | assert(dst != lhs && dst != rhs); | 
|  |  | 
|  | overflow = 0; | 
|  | tcSet(dst, 0, parts); | 
|  |  | 
|  | for (i = 0; i < parts; i++) | 
|  | overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, | 
|  | parts - i, true); | 
|  |  | 
|  | return overflow; | 
|  | } | 
|  |  | 
|  | /* DST = LHS * RHS, where DST has width the sum of the widths of the | 
|  | operands.  No overflow occurs.  DST must be disjoint from both | 
|  | operands.  Returns the number of parts required to hold the | 
|  | result.  */ | 
|  | unsigned int | 
|  | APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, | 
|  | const integerPart *rhs, unsigned int lhsParts, | 
|  | unsigned int rhsParts) | 
|  | { | 
|  | /* Put the narrower number on the LHS for less loops below.  */ | 
|  | if (lhsParts > rhsParts) { | 
|  | return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); | 
|  | } else { | 
|  | unsigned int n; | 
|  |  | 
|  | assert(dst != lhs && dst != rhs); | 
|  |  | 
|  | tcSet(dst, 0, rhsParts); | 
|  |  | 
|  | for (n = 0; n < lhsParts; n++) | 
|  | tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); | 
|  |  | 
|  | n = lhsParts + rhsParts; | 
|  |  | 
|  | return n - (dst[n - 1] == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If RHS is zero LHS and REMAINDER are left unchanged, return one. | 
|  | Otherwise set LHS to LHS / RHS with the fractional part discarded, | 
|  | set REMAINDER to the remainder, return zero.  i.e. | 
|  |  | 
|  | OLD_LHS = RHS * LHS + REMAINDER | 
|  |  | 
|  | SCRATCH is a bignum of the same size as the operands and result for | 
|  | use by the routine; its contents need not be initialized and are | 
|  | destroyed.  LHS, REMAINDER and SCRATCH must be distinct. | 
|  | */ | 
|  | int | 
|  | APInt::tcDivide(integerPart *lhs, const integerPart *rhs, | 
|  | integerPart *remainder, integerPart *srhs, | 
|  | unsigned int parts) | 
|  | { | 
|  | unsigned int n, shiftCount; | 
|  | integerPart mask; | 
|  |  | 
|  | assert(lhs != remainder && lhs != srhs && remainder != srhs); | 
|  |  | 
|  | shiftCount = tcMSB(rhs, parts) + 1; | 
|  | if (shiftCount == 0) | 
|  | return true; | 
|  |  | 
|  | shiftCount = parts * integerPartWidth - shiftCount; | 
|  | n = shiftCount / integerPartWidth; | 
|  | mask = (integerPart) 1 << (shiftCount % integerPartWidth); | 
|  |  | 
|  | tcAssign(srhs, rhs, parts); | 
|  | tcShiftLeft(srhs, parts, shiftCount); | 
|  | tcAssign(remainder, lhs, parts); | 
|  | tcSet(lhs, 0, parts); | 
|  |  | 
|  | /* Loop, subtracting SRHS if REMAINDER is greater and adding that to | 
|  | the total.  */ | 
|  | for (;;) { | 
|  | int compare; | 
|  |  | 
|  | compare = tcCompare(remainder, srhs, parts); | 
|  | if (compare >= 0) { | 
|  | tcSubtract(remainder, srhs, 0, parts); | 
|  | lhs[n] |= mask; | 
|  | } | 
|  |  | 
|  | if (shiftCount == 0) | 
|  | break; | 
|  | shiftCount--; | 
|  | tcShiftRight(srhs, parts, 1); | 
|  | if ((mask >>= 1) == 0) { | 
|  | mask = (integerPart) 1 << (integerPartWidth - 1); | 
|  | n--; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Shift a bignum left COUNT bits in-place.  Shifted in bits are zero. | 
|  | There are no restrictions on COUNT.  */ | 
|  | void | 
|  | APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) | 
|  | { | 
|  | if (count) { | 
|  | unsigned int jump, shift; | 
|  |  | 
|  | /* Jump is the inter-part jump; shift is is intra-part shift.  */ | 
|  | jump = count / integerPartWidth; | 
|  | shift = count % integerPartWidth; | 
|  |  | 
|  | while (parts > jump) { | 
|  | integerPart part; | 
|  |  | 
|  | parts--; | 
|  |  | 
|  | /* dst[i] comes from the two parts src[i - jump] and, if we have | 
|  | an intra-part shift, src[i - jump - 1].  */ | 
|  | part = dst[parts - jump]; | 
|  | if (shift) { | 
|  | part <<= shift; | 
|  | if (parts >= jump + 1) | 
|  | part |= dst[parts - jump - 1] >> (integerPartWidth - shift); | 
|  | } | 
|  |  | 
|  | dst[parts] = part; | 
|  | } | 
|  |  | 
|  | while (parts > 0) | 
|  | dst[--parts] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Shift a bignum right COUNT bits in-place.  Shifted in bits are | 
|  | zero.  There are no restrictions on COUNT.  */ | 
|  | void | 
|  | APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) | 
|  | { | 
|  | if (count) { | 
|  | unsigned int i, jump, shift; | 
|  |  | 
|  | /* Jump is the inter-part jump; shift is is intra-part shift.  */ | 
|  | jump = count / integerPartWidth; | 
|  | shift = count % integerPartWidth; | 
|  |  | 
|  | /* Perform the shift.  This leaves the most significant COUNT bits | 
|  | of the result at zero.  */ | 
|  | for (i = 0; i < parts; i++) { | 
|  | integerPart part; | 
|  |  | 
|  | if (i + jump >= parts) { | 
|  | part = 0; | 
|  | } else { | 
|  | part = dst[i + jump]; | 
|  | if (shift) { | 
|  | part >>= shift; | 
|  | if (i + jump + 1 < parts) | 
|  | part |= dst[i + jump + 1] << (integerPartWidth - shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | dst[i] = part; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Bitwise and of two bignums.  */ | 
|  | void | 
|  | APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < parts; i++) | 
|  | dst[i] &= rhs[i]; | 
|  | } | 
|  |  | 
|  | /* Bitwise inclusive or of two bignums.  */ | 
|  | void | 
|  | APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < parts; i++) | 
|  | dst[i] |= rhs[i]; | 
|  | } | 
|  |  | 
|  | /* Bitwise exclusive or of two bignums.  */ | 
|  | void | 
|  | APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < parts; i++) | 
|  | dst[i] ^= rhs[i]; | 
|  | } | 
|  |  | 
|  | /* Complement a bignum in-place.  */ | 
|  | void | 
|  | APInt::tcComplement(integerPart *dst, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < parts; i++) | 
|  | dst[i] = ~dst[i]; | 
|  | } | 
|  |  | 
|  | /* Comparison (unsigned) of two bignums.  */ | 
|  | int | 
|  | APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, | 
|  | unsigned int parts) | 
|  | { | 
|  | while (parts) { | 
|  | parts--; | 
|  | if (lhs[parts] == rhs[parts]) | 
|  | continue; | 
|  |  | 
|  | if (lhs[parts] > rhs[parts]) | 
|  | return 1; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Increment a bignum in-place, return the carry flag.  */ | 
|  | integerPart | 
|  | APInt::tcIncrement(integerPart *dst, unsigned int parts) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < parts; i++) | 
|  | if (++dst[i] != 0) | 
|  | break; | 
|  |  | 
|  | return i == parts; | 
|  | } | 
|  |  | 
|  | /* Decrement a bignum in-place, return the borrow flag.  */ | 
|  | integerPart | 
|  | APInt::tcDecrement(integerPart *dst, unsigned int parts) { | 
|  | for (unsigned int i = 0; i < parts; i++) { | 
|  | // If the current word is non-zero, then the decrement has no effect on the | 
|  | // higher-order words of the integer and no borrow can occur. Exit early. | 
|  | if (dst[i]--) | 
|  | return 0; | 
|  | } | 
|  | // If every word was zero, then there is a borrow. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set the least significant BITS bits of a bignum, clear the | 
|  | rest.  */ | 
|  | void | 
|  | APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, | 
|  | unsigned int bits) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | i = 0; | 
|  | while (bits > integerPartWidth) { | 
|  | dst[i++] = ~(integerPart) 0; | 
|  | bits -= integerPartWidth; | 
|  | } | 
|  |  | 
|  | if (bits) | 
|  | dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); | 
|  |  | 
|  | while (i < parts) | 
|  | dst[i++] = 0; | 
|  | } |