| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //    http://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #ifndef _SYMBOL_TABLE_INCLUDED_ | 
 | #define _SYMBOL_TABLE_INCLUDED_ | 
 |  | 
 | // | 
 | // Symbol table for parsing.  Has these design characteristics: | 
 | // | 
 | // * Same symbol table can be used to compile many shaders, to preserve | 
 | //   effort of creating and loading with the large numbers of built-in | 
 | //   symbols. | 
 | // | 
 | // * Name mangling will be used to give each function a unique name | 
 | //   so that symbol table lookups are never ambiguous.  This allows | 
 | //   a simpler symbol table structure. | 
 | // | 
 | // * Pushing and popping of scope, so symbol table will really be a stack | 
 | //   of symbol tables.  Searched from the top, with new inserts going into | 
 | //   the top. | 
 | // | 
 | // * Constants:  Compile time constant symbols will keep their values | 
 | //   in the symbol table.  The parser can substitute constants at parse | 
 | //   time, including doing constant folding and constant propagation. | 
 | // | 
 | // * No temporaries:  Temporaries made from operations (+, --, .xy, etc.) | 
 | //   are tracked in the intermediate representation, not the symbol table. | 
 | // | 
 |  | 
 | #if defined(__ANDROID__) && !defined(ANDROID_HOST_BUILD) && !defined(ANDROID_NDK_BUILD) | 
 | #include "../../Common/DebugAndroid.hpp" | 
 | #else | 
 | #include <assert.h> | 
 | #endif | 
 |  | 
 | #include "InfoSink.h" | 
 | #include "intermediate.h" | 
 | #include <set> | 
 |  | 
 | // | 
 | // Symbol base class.  (Can build functions or variables out of these...) | 
 | // | 
 | class TSymbol | 
 | { | 
 | public: | 
 | 	POOL_ALLOCATOR_NEW_DELETE() | 
 | 	TSymbol(const TString *n) :  name(n) { } | 
 | 	virtual ~TSymbol() { /* don't delete name, it's from the pool */ } | 
 |  | 
 | 	const TString& getName() const { return *name; } | 
 | 	virtual const TString& getMangledName() const { return getName(); } | 
 | 	virtual bool isFunction() const { return false; } | 
 | 	virtual bool isVariable() const { return false; } | 
 | 	void setUniqueId(int id) { uniqueId = id; } | 
 | 	int getUniqueId() const { return uniqueId; } | 
 | 	TSymbol(const TSymbol&); | 
 |  | 
 | protected: | 
 | 	const TString *name; | 
 | 	unsigned int uniqueId;      // For real comparing during code generation | 
 | }; | 
 |  | 
 | // | 
 | // Variable class, meaning a symbol that's not a function. | 
 | // | 
 | // There could be a separate class heirarchy for Constant variables; | 
 | // Only one of int, bool, or float, (or none) is correct for | 
 | // any particular use, but it's easy to do this way, and doesn't | 
 | // seem worth having separate classes, and "getConst" can't simply return | 
 | // different values for different types polymorphically, so this is | 
 | // just simple and pragmatic. | 
 | // | 
 | class TVariable : public TSymbol | 
 | { | 
 | public: | 
 | 	TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0), arrayInformationType(0) { } | 
 | 	virtual ~TVariable() { } | 
 | 	virtual bool isVariable() const { return true; } | 
 | 	TType& getType() { return type; } | 
 | 	const TType& getType() const { return type; } | 
 | 	bool isUserType() const { return userType; } | 
 | 	void setQualifier(TQualifier qualifier) { type.setQualifier(qualifier); } | 
 | 	void updateArrayInformationType(TType *t) { arrayInformationType = t; } | 
 | 	TType* getArrayInformationType() { return arrayInformationType; } | 
 |  | 
 | 	ConstantUnion* getConstPointer() | 
 | 	{ | 
 | 		if (!unionArray) | 
 | 			unionArray = new ConstantUnion[type.getObjectSize()]; | 
 |  | 
 | 		return unionArray; | 
 | 	} | 
 |  | 
 | 	ConstantUnion* getConstPointer() const { return unionArray; } | 
 | 	bool isConstant() const { return unionArray != nullptr; } | 
 |  | 
 | 	void shareConstPointer( ConstantUnion *constArray) | 
 | 	{ | 
 | 		if (unionArray == constArray) | 
 | 			return; | 
 |  | 
 | 		delete[] unionArray; | 
 | 		unionArray = constArray; | 
 | 	} | 
 |  | 
 | protected: | 
 | 	TType type; | 
 | 	bool userType; | 
 | 	// we are assuming that Pool Allocator will free the memory allocated to unionArray | 
 | 	// when this object is destroyed | 
 | 	ConstantUnion *unionArray; | 
 | 	TType *arrayInformationType;  // this is used for updating maxArraySize in all the references to a given symbol | 
 | }; | 
 |  | 
 | // | 
 | // The function sub-class of symbols and the parser will need to | 
 | // share this definition of a function parameter. | 
 | // | 
 | struct TParameter | 
 | { | 
 | 	TString *name; | 
 | 	TType *type; | 
 | }; | 
 |  | 
 | // | 
 | // The function sub-class of a symbol. | 
 | // | 
 | class TFunction : public TSymbol | 
 | { | 
 | public: | 
 | 	TFunction(TOperator o) : | 
 | 		TSymbol(0), | 
 | 		returnType(TType(EbtVoid, EbpUndefined)), | 
 | 		op(o), | 
 | 		defined(false), | 
 | 		prototypeDeclaration(false) { } | 
 | 	TFunction(const TString *name, const TType& retType, TOperator tOp = EOpNull, const char *ext = "") : | 
 | 		TSymbol(name), | 
 | 		returnType(retType), | 
 | 		mangledName(TFunction::mangleName(*name)), | 
 | 		op(tOp), | 
 | 		extension(ext), | 
 | 		defined(false), | 
 | 		prototypeDeclaration(false) { } | 
 | 	virtual ~TFunction(); | 
 | 	virtual bool isFunction() const { return true; } | 
 |  | 
 | 	static TString mangleName(const TString& name) { return name + '('; } | 
 | 	static TString unmangleName(const TString& mangledName) | 
 | 	{ | 
 | 		return TString(mangledName.c_str(), mangledName.find_first_of('(')); | 
 | 	} | 
 |  | 
 | 	void addParameter(TParameter& p) | 
 | 	{ | 
 | 		parameters.push_back(p); | 
 | 		mangledName = mangledName + p.type->getMangledName(); | 
 | 	} | 
 |  | 
 | 	const TString& getMangledName() const { return mangledName; } | 
 | 	const TType& getReturnType() const { return returnType; } | 
 |  | 
 | 	TOperator getBuiltInOp() const { return op; } | 
 | 	const TString& getExtension() const { return extension; } | 
 |  | 
 | 	void setDefined() { defined = true; } | 
 | 	bool isDefined() { return defined; } | 
 | 	void setHasPrototypeDeclaration() { prototypeDeclaration = true; } | 
 | 	bool hasPrototypeDeclaration() const { return prototypeDeclaration; } | 
 |  | 
 | 	size_t getParamCount() const { return parameters.size(); } | 
 | 	const TParameter& getParam(int i) const { return parameters[i]; } | 
 |  | 
 | protected: | 
 | 	typedef TVector<TParameter> TParamList; | 
 | 	TParamList parameters; | 
 | 	TType returnType; | 
 | 	TString mangledName; | 
 | 	TOperator op; | 
 | 	TString extension; | 
 | 	bool defined; | 
 | 	bool prototypeDeclaration; | 
 | }; | 
 |  | 
 |  | 
 | class TSymbolTableLevel | 
 | { | 
 | public: | 
 | 	typedef TMap<TString, TSymbol*> tLevel; | 
 | 	typedef tLevel::const_iterator const_iterator; | 
 | 	typedef const tLevel::value_type tLevelPair; | 
 | 	typedef std::pair<tLevel::iterator, bool> tInsertResult; | 
 |  | 
 | 	POOL_ALLOCATOR_NEW_DELETE() | 
 | 	TSymbolTableLevel() { } | 
 | 	~TSymbolTableLevel(); | 
 |  | 
 | 	bool insert(TSymbol *symbol); | 
 |  | 
 | 	// Insert a function using its unmangled name as the key. | 
 | 	bool insertUnmangled(TFunction *function); | 
 |  | 
 | 	TSymbol *find(const TString &name) const; | 
 |  | 
 | 	static int nextUniqueId() | 
 | 	{ | 
 | 		return ++uniqueId; | 
 | 	} | 
 |  | 
 | protected: | 
 | 	tLevel level; | 
 | 	static int uniqueId;     // for unique identification in code generation | 
 | }; | 
 |  | 
 | enum ESymbolLevel | 
 | { | 
 | 	COMMON_BUILTINS, | 
 | 	ESSL1_BUILTINS, | 
 | 	ESSL3_BUILTINS, | 
 | 	LAST_BUILTIN_LEVEL = ESSL3_BUILTINS, | 
 | 	GLOBAL_LEVEL | 
 | }; | 
 |  | 
 | inline bool IsGenType(const TType *type) | 
 | { | 
 | 	if(type) | 
 | 	{ | 
 | 		TBasicType basicType = type->getBasicType(); | 
 | 		return basicType == EbtGenType || basicType == EbtGenIType || basicType == EbtGenUType || basicType == EbtGenBType; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | inline bool IsVecType(const TType *type) | 
 | { | 
 | 	if(type) | 
 | 	{ | 
 | 		TBasicType basicType = type->getBasicType(); | 
 | 		return basicType == EbtVec || basicType == EbtIVec || basicType == EbtUVec || basicType == EbtBVec; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | inline TType *GenType(TType *type, int size) | 
 | { | 
 | 	ASSERT(size >= 1 && size <= 4); | 
 |  | 
 | 	if(!type) | 
 | 	{ | 
 | 		return nullptr; | 
 | 	} | 
 |  | 
 | 	ASSERT(!IsVecType(type)); | 
 |  | 
 | 	switch(type->getBasicType()) | 
 | 	{ | 
 | 	case EbtGenType:  return new TType(EbtFloat, size); | 
 | 	case EbtGenIType: return new TType(EbtInt, size); | 
 | 	case EbtGenUType: return new TType(EbtUInt, size); | 
 | 	case EbtGenBType: return new TType(EbtBool, size); | 
 | 	default: return type; | 
 | 	} | 
 | } | 
 |  | 
 | inline TType *VecType(TType *type, int size) | 
 | { | 
 | 	ASSERT(size >= 2 && size <= 4); | 
 |  | 
 | 	if(!type) | 
 | 	{ | 
 | 		return nullptr; | 
 | 	} | 
 |  | 
 | 	ASSERT(!IsGenType(type)); | 
 |  | 
 | 	switch(type->getBasicType()) | 
 | 	{ | 
 | 	case EbtVec:  return new TType(EbtFloat, size); | 
 | 	case EbtIVec: return new TType(EbtInt, size); | 
 | 	case EbtUVec: return new TType(EbtUInt, size); | 
 | 	case EbtBVec: return new TType(EbtBool, size); | 
 | 	default: return type; | 
 | 	} | 
 | } | 
 |  | 
 | class TSymbolTable | 
 | { | 
 | public: | 
 | 	TSymbolTable() | 
 | 		: mGlobalInvariant(false) | 
 | 	{ | 
 | 		// | 
 | 		// The symbol table cannot be used until push() is called, but | 
 | 		// the lack of an initial call to push() can be used to detect | 
 | 		// that the symbol table has not been preloaded with built-ins. | 
 | 		// | 
 | 	} | 
 |  | 
 | 	~TSymbolTable() | 
 | 	{ | 
 | 		while(currentLevel() > LAST_BUILTIN_LEVEL) | 
 | 		{ | 
 | 			pop(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bool isEmpty() { return table.empty(); } | 
 | 	bool atBuiltInLevel() { return currentLevel() <= LAST_BUILTIN_LEVEL; } | 
 | 	bool atGlobalLevel() { return currentLevel() <= GLOBAL_LEVEL; } | 
 | 	void push() | 
 | 	{ | 
 | 		table.push_back(new TSymbolTableLevel); | 
 | 		precisionStack.push_back( PrecisionStackLevel() ); | 
 | 	} | 
 |  | 
 | 	void pop() | 
 | 	{ | 
 | 		delete table[currentLevel()]; | 
 | 		table.pop_back(); | 
 | 		precisionStack.pop_back(); | 
 | 	} | 
 |  | 
 | 	bool declare(TSymbol *symbol) | 
 | 	{ | 
 | 		return insert(currentLevel(), symbol); | 
 | 	} | 
 |  | 
 | 	bool insert(ESymbolLevel level, TSymbol *symbol) | 
 | 	{ | 
 | 		return table[level]->insert(symbol); | 
 | 	} | 
 |  | 
 | 	bool insertConstInt(ESymbolLevel level, const char *name, int value) | 
 | 	{ | 
 | 		TVariable *constant = new TVariable(NewPoolTString(name), TType(EbtInt, EbpUndefined, EvqConstExpr, 1)); | 
 | 		constant->getConstPointer()->setIConst(value); | 
 | 		return insert(level, constant); | 
 | 	} | 
 |  | 
 | 	void insertBuiltIn(ESymbolLevel level, TOperator op, const char *ext, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) | 
 | 	{ | 
 | 		if(ptype1->getBasicType() == EbtGSampler2D) | 
 | 		{ | 
 | 			insertUnmangledBuiltIn(name); | 
 | 			bool gvec4 = (rvalue->getBasicType() == EbtGVec4); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler2D), ptype2, ptype3, ptype4, ptype5); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler2D), ptype2, ptype3, ptype4, ptype5); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler2D), ptype2, ptype3, ptype4, ptype5); | 
 | 		} | 
 | 		else if(ptype1->getBasicType() == EbtGSampler3D) | 
 | 		{ | 
 | 			insertUnmangledBuiltIn(name); | 
 | 			bool gvec4 = (rvalue->getBasicType() == EbtGVec4); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler3D), ptype2, ptype3, ptype4, ptype5); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler3D), ptype2, ptype3, ptype4, ptype5); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler3D), ptype2, ptype3, ptype4, ptype5); | 
 | 		} | 
 | 		else if(ptype1->getBasicType() == EbtGSamplerCube) | 
 | 		{ | 
 | 			insertUnmangledBuiltIn(name); | 
 | 			bool gvec4 = (rvalue->getBasicType() == EbtGVec4); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSamplerCube), ptype2, ptype3, ptype4, ptype5); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISamplerCube), ptype2, ptype3, ptype4, ptype5); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSamplerCube), ptype2, ptype3, ptype4, ptype5); | 
 | 		} | 
 | 		else if(ptype1->getBasicType() == EbtGSampler2DArray) | 
 | 		{ | 
 | 			insertUnmangledBuiltIn(name); | 
 | 			bool gvec4 = (rvalue->getBasicType() == EbtGVec4); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtFloat, 4) : rvalue, name, new TType(EbtSampler2DArray), ptype2, ptype3, ptype4, ptype5); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtInt, 4) : rvalue, name, new TType(EbtISampler2DArray), ptype2, ptype3, ptype4, ptype5); | 
 | 			insertBuiltIn(level, gvec4 ? new TType(EbtUInt, 4) : rvalue, name, new TType(EbtUSampler2DArray), ptype2, ptype3, ptype4, ptype5); | 
 | 		} | 
 | 		else if(IsGenType(rvalue) || IsGenType(ptype1) || IsGenType(ptype2) || IsGenType(ptype3)) | 
 | 		{ | 
 | 			ASSERT(!ptype4); | 
 | 			insertUnmangledBuiltIn(name); | 
 | 			insertBuiltIn(level, op, ext, GenType(rvalue, 1), name, GenType(ptype1, 1), GenType(ptype2, 1), GenType(ptype3, 1)); | 
 | 			insertBuiltIn(level, op, ext, GenType(rvalue, 2), name, GenType(ptype1, 2), GenType(ptype2, 2), GenType(ptype3, 2)); | 
 | 			insertBuiltIn(level, op, ext, GenType(rvalue, 3), name, GenType(ptype1, 3), GenType(ptype2, 3), GenType(ptype3, 3)); | 
 | 			insertBuiltIn(level, op, ext, GenType(rvalue, 4), name, GenType(ptype1, 4), GenType(ptype2, 4), GenType(ptype3, 4)); | 
 | 		} | 
 | 		else if(IsVecType(rvalue) || IsVecType(ptype1) || IsVecType(ptype2) || IsVecType(ptype3)) | 
 | 		{ | 
 | 			ASSERT(!ptype4); | 
 | 			insertUnmangledBuiltIn(name); | 
 | 			insertBuiltIn(level, op, ext, VecType(rvalue, 2), name, VecType(ptype1, 2), VecType(ptype2, 2), VecType(ptype3, 2)); | 
 | 			insertBuiltIn(level, op, ext, VecType(rvalue, 3), name, VecType(ptype1, 3), VecType(ptype2, 3), VecType(ptype3, 3)); | 
 | 			insertBuiltIn(level, op, ext, VecType(rvalue, 4), name, VecType(ptype1, 4), VecType(ptype2, 4), VecType(ptype3, 4)); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			TFunction *function = new TFunction(NewPoolTString(name), *rvalue, op, ext); | 
 |  | 
 | 			TParameter param1 = {0, ptype1}; | 
 | 			function->addParameter(param1); | 
 |  | 
 | 			if(ptype2) | 
 | 			{ | 
 | 				TParameter param2 = {0, ptype2}; | 
 | 				function->addParameter(param2); | 
 | 			} | 
 |  | 
 | 			if(ptype3) | 
 | 			{ | 
 | 				TParameter param3 = {0, ptype3}; | 
 | 				function->addParameter(param3); | 
 | 			} | 
 |  | 
 | 			if(ptype4) | 
 | 			{ | 
 | 				TParameter param4 = {0, ptype4}; | 
 | 				function->addParameter(param4); | 
 | 			} | 
 |  | 
 | 			if(ptype5) | 
 | 			{ | 
 | 				TParameter param5 = {0, ptype5}; | 
 | 				function->addParameter(param5); | 
 | 			} | 
 |  | 
 | 			ASSERT(hasUnmangledBuiltIn(name)); | 
 | 			insert(level, function); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	void insertBuiltIn(ESymbolLevel level, TOperator op, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) | 
 | 	{ | 
 | 		insertUnmangledBuiltIn(name); | 
 | 		insertBuiltIn(level, op, "", rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5); | 
 | 	} | 
 |  | 
 | 	void insertBuiltIn(ESymbolLevel level, TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0, TType *ptype4 = 0, TType *ptype5 = 0) | 
 | 	{ | 
 | 		insertUnmangledBuiltIn(name); | 
 | 		insertBuiltIn(level, EOpNull, rvalue, name, ptype1, ptype2, ptype3, ptype4, ptype5); | 
 | 	} | 
 |  | 
 | 	TSymbol *find(const TString &name, int shaderVersion, bool *builtIn = nullptr, bool *sameScope = nullptr) const; | 
 | 	TSymbol *findBuiltIn(const TString &name, int shaderVersion) const; | 
 |  | 
 | 	TSymbolTableLevel *getOuterLevel() const | 
 | 	{ | 
 | 		assert(currentLevel() >= 1); | 
 | 		return table[currentLevel() - 1]; | 
 | 	} | 
 |  | 
 | 	bool setDefaultPrecision(const TPublicType &type, TPrecision prec) | 
 | 	{ | 
 | 		if (IsSampler(type.type)) | 
 | 			return true;  // Skip sampler types for the time being | 
 | 		if (type.type != EbtFloat && type.type != EbtInt) | 
 | 			return false; // Only set default precision for int/float | 
 | 		if (type.primarySize > 1 || type.secondarySize > 1 || type.array) | 
 | 			return false; // Not allowed to set for aggregate types | 
 | 		int indexOfLastElement = static_cast<int>(precisionStack.size()) - 1; | 
 | 		precisionStack[indexOfLastElement][type.type] = prec; // Uses map operator [], overwrites the current value | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	// Searches down the precisionStack for a precision qualifier for the specified TBasicType | 
 | 	TPrecision getDefaultPrecision( TBasicType type) | 
 | 	{ | 
 | 		// unsigned integers use the same precision as signed | 
 | 		if (type == EbtUInt) type = EbtInt; | 
 |  | 
 | 		if( type != EbtFloat && type != EbtInt ) return EbpUndefined; | 
 | 		int level = static_cast<int>(precisionStack.size()) - 1; | 
 | 		assert( level >= 0); // Just to be safe. Should not happen. | 
 | 		PrecisionStackLevel::iterator it; | 
 | 		TPrecision prec = EbpUndefined; // If we dont find anything we return this. Should we error check this? | 
 | 		while( level >= 0 ){ | 
 | 			it = precisionStack[level].find( type ); | 
 | 			if( it != precisionStack[level].end() ){ | 
 | 				prec = (*it).second; | 
 | 				break; | 
 | 			} | 
 | 			level--; | 
 | 		} | 
 | 		return prec; | 
 | 	} | 
 |  | 
 | 	// This records invariant varyings declared through | 
 | 	// "invariant varying_name;". | 
 | 	void addInvariantVarying(const std::string &originalName) | 
 | 	{ | 
 | 		mInvariantVaryings.insert(originalName); | 
 | 	} | 
 | 	// If this returns false, the varying could still be invariant | 
 | 	// if it is set as invariant during the varying variable | 
 | 	// declaration - this piece of information is stored in the | 
 | 	// variable's type, not here. | 
 | 	bool isVaryingInvariant(const std::string &originalName) const | 
 | 	{ | 
 | 		return (mGlobalInvariant || | 
 | 			mInvariantVaryings.count(originalName) > 0); | 
 | 	} | 
 |  | 
 | 	void setGlobalInvariant() { mGlobalInvariant = true; } | 
 | 	bool getGlobalInvariant() const { return mGlobalInvariant; } | 
 |  | 
 | 	bool hasUnmangledBuiltIn(const char *name) { return mUnmangledBuiltinNames.count(std::string(name)) > 0; } | 
 |  | 
 | private: | 
 | 	// Used to insert unmangled functions to check redeclaration of built-ins in ESSL 3.00. | 
 | 	void insertUnmangledBuiltIn(const char *name) { mUnmangledBuiltinNames.insert(std::string(name)); } | 
 |  | 
 | protected: | 
 | 	ESymbolLevel currentLevel() const { return static_cast<ESymbolLevel>(table.size() - 1); } | 
 |  | 
 | 	std::vector<TSymbolTableLevel*> table; | 
 | 	typedef std::map< TBasicType, TPrecision > PrecisionStackLevel; | 
 | 	std::vector< PrecisionStackLevel > precisionStack; | 
 |  | 
 | 	std::set<std::string> mUnmangledBuiltinNames; | 
 |  | 
 | 	std::set<std::string> mInvariantVaryings; | 
 | 	bool mGlobalInvariant; | 
 | }; | 
 |  | 
 | #endif // _SYMBOL_TABLE_INCLUDED_ |