| //===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Implementation of the MC-JIT runtime dynamic linker. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "dyld" | 
 | #include "llvm/ADT/OwningPtr.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "RuntimeDyldImpl.h" | 
 | using namespace llvm; | 
 | using namespace llvm::object; | 
 |  | 
 | namespace llvm { | 
 |  | 
 | bool RuntimeDyldMachO:: | 
 | resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel, | 
 |                   unsigned Type, unsigned Size) { | 
 |   // This just dispatches to the proper target specific routine. | 
 |   switch (CPUType) { | 
 |   default: assert(0 && "Unsupported CPU type!"); | 
 |   case mach::CTM_x86_64: | 
 |     return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value, | 
 |                                    isPCRel, Type, Size); | 
 |   case mach::CTM_ARM: | 
 |     return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value, | 
 |                                 isPCRel, Type, Size); | 
 |   } | 
 |   llvm_unreachable(""); | 
 | } | 
 |  | 
 | bool RuntimeDyldMachO:: | 
 | resolveX86_64Relocation(uintptr_t Address, uintptr_t Value, | 
 |                         bool isPCRel, unsigned Type, | 
 |                         unsigned Size) { | 
 |   // If the relocation is PC-relative, the value to be encoded is the | 
 |   // pointer difference. | 
 |   if (isPCRel) | 
 |     // FIXME: It seems this value needs to be adjusted by 4 for an effective PC | 
 |     // address. Is that expected? Only for branches, perhaps? | 
 |     Value -= Address + 4; | 
 |  | 
 |   switch(Type) { | 
 |   default: | 
 |     llvm_unreachable("Invalid relocation type!"); | 
 |   case macho::RIT_X86_64_Unsigned: | 
 |   case macho::RIT_X86_64_Branch: { | 
 |     // Mask in the target value a byte at a time (we don't have an alignment | 
 |     // guarantee for the target address, so this is safest). | 
 |     uint8_t *p = (uint8_t*)Address; | 
 |     for (unsigned i = 0; i < Size; ++i) { | 
 |       *p++ = (uint8_t)Value; | 
 |       Value >>= 8; | 
 |     } | 
 |     return false; | 
 |   } | 
 |   case macho::RIT_X86_64_Signed: | 
 |   case macho::RIT_X86_64_GOTLoad: | 
 |   case macho::RIT_X86_64_GOT: | 
 |   case macho::RIT_X86_64_Subtractor: | 
 |   case macho::RIT_X86_64_Signed1: | 
 |   case macho::RIT_X86_64_Signed2: | 
 |   case macho::RIT_X86_64_Signed4: | 
 |   case macho::RIT_X86_64_TLV: | 
 |     return Error("Relocation type not implemented yet!"); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value, | 
 |                                          bool isPCRel, unsigned Type, | 
 |                                          unsigned Size) { | 
 |   // If the relocation is PC-relative, the value to be encoded is the | 
 |   // pointer difference. | 
 |   if (isPCRel) { | 
 |     Value -= Address; | 
 |     // ARM PCRel relocations have an effective-PC offset of two instructions | 
 |     // (four bytes in Thumb mode, 8 bytes in ARM mode). | 
 |     // FIXME: For now, assume ARM mode. | 
 |     Value -= 8; | 
 |   } | 
 |  | 
 |   switch(Type) { | 
 |   default: | 
 |     llvm_unreachable("Invalid relocation type!"); | 
 |   case macho::RIT_Vanilla: { | 
 |     llvm_unreachable("Invalid relocation type!"); | 
 |     // Mask in the target value a byte at a time (we don't have an alignment | 
 |     // guarantee for the target address, so this is safest). | 
 |     uint8_t *p = (uint8_t*)Address; | 
 |     for (unsigned i = 0; i < Size; ++i) { | 
 |       *p++ = (uint8_t)Value; | 
 |       Value >>= 8; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case macho::RIT_ARM_Branch24Bit: { | 
 |     // Mask the value into the target address. We know instructions are | 
 |     // 32-bit aligned, so we can do it all at once. | 
 |     uint32_t *p = (uint32_t*)Address; | 
 |     // The low two bits of the value are not encoded. | 
 |     Value >>= 2; | 
 |     // Mask the value to 24 bits. | 
 |     Value &= 0xffffff; | 
 |     // FIXME: If the destination is a Thumb function (and the instruction | 
 |     // is a non-predicated BL instruction), we need to change it to a BLX | 
 |     // instruction instead. | 
 |  | 
 |     // Insert the value into the instruction. | 
 |     *p = (*p & ~0xffffff) | Value; | 
 |     break; | 
 |   } | 
 |   case macho::RIT_ARM_ThumbBranch22Bit: | 
 |   case macho::RIT_ARM_ThumbBranch32Bit: | 
 |   case macho::RIT_ARM_Half: | 
 |   case macho::RIT_ARM_HalfDifference: | 
 |   case macho::RIT_Pair: | 
 |   case macho::RIT_Difference: | 
 |   case macho::RIT_ARM_LocalDifference: | 
 |   case macho::RIT_ARM_PreboundLazyPointer: | 
 |     return Error("Relocation type not implemented yet!"); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool RuntimeDyldMachO:: | 
 | loadSegment32(const MachOObject *Obj, | 
 |               const MachOObject::LoadCommandInfo *SegmentLCI, | 
 |               const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { | 
 |   InMemoryStruct<macho::SegmentLoadCommand> SegmentLC; | 
 |   Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC); | 
 |   if (!SegmentLC) | 
 |     return Error("unable to load segment load command"); | 
 |  | 
 |   for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) { | 
 |     InMemoryStruct<macho::Section> Sect; | 
 |     Obj->ReadSection(*SegmentLCI, SectNum, Sect); | 
 |     if (!Sect) | 
 |       return Error("unable to load section: '" + Twine(SectNum) + "'"); | 
 |  | 
 |     // FIXME: For the time being, we're only loading text segments. | 
 |     if (Sect->Flags != 0x80000400) | 
 |       continue; | 
 |  | 
 |     // Address and names of symbols in the section. | 
 |     typedef std::pair<uint64_t, StringRef> SymbolEntry; | 
 |     SmallVector<SymbolEntry, 64> Symbols; | 
 |     // Index of all the names, in this section or not. Used when we're | 
 |     // dealing with relocation entries. | 
 |     SmallVector<StringRef, 64> SymbolNames; | 
 |     for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { | 
 |       InMemoryStruct<macho::SymbolTableEntry> STE; | 
 |       Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE); | 
 |       if (!STE) | 
 |         return Error("unable to read symbol: '" + Twine(i) + "'"); | 
 |       if (STE->SectionIndex > SegmentLC->NumSections) | 
 |         return Error("invalid section index for symbol: '" + Twine(i) + "'"); | 
 |       // Get the symbol name. | 
 |       StringRef Name = Obj->getStringAtIndex(STE->StringIndex); | 
 |       SymbolNames.push_back(Name); | 
 |  | 
 |       // Just skip symbols not defined in this section. | 
 |       if ((unsigned)STE->SectionIndex - 1 != SectNum) | 
 |         continue; | 
 |  | 
 |       // FIXME: Check the symbol type and flags. | 
 |       if (STE->Type != 0xF)  // external, defined in this section. | 
 |         continue; | 
 |       // Flags == 0x8 marks a thumb function for ARM, which is fine as it | 
 |       // doesn't require any special handling here. | 
 |       if (STE->Flags != 0x0 && STE->Flags != 0x8) | 
 |         continue; | 
 |  | 
 |       // Remember the symbol. | 
 |       Symbols.push_back(SymbolEntry(STE->Value, Name)); | 
 |  | 
 |       DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << | 
 |             (Sect->Address + STE->Value) << "\n"); | 
 |     } | 
 |     // Sort the symbols by address, just in case they didn't come in that way. | 
 |     array_pod_sort(Symbols.begin(), Symbols.end()); | 
 |  | 
 |     // If there weren't any functions (odd, but just in case...) | 
 |     if (!Symbols.size()) | 
 |       continue; | 
 |  | 
 |     // Extract the function data. | 
 |     uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset, | 
 |                                            SegmentLC->FileSize).data(); | 
 |     for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { | 
 |       uint64_t StartOffset = Sect->Address + Symbols[i].first; | 
 |       uint64_t EndOffset = Symbols[i + 1].first - 1; | 
 |       DEBUG(dbgs() << "Extracting function: " << Symbols[i].second | 
 |                    << " from [" << StartOffset << ", " << EndOffset << "]\n"); | 
 |       extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); | 
 |     } | 
 |     // The last symbol we do after since the end address is calculated | 
 |     // differently because there is no next symbol to reference. | 
 |     uint64_t StartOffset = Symbols[Symbols.size() - 1].first; | 
 |     uint64_t EndOffset = Sect->Size - 1; | 
 |     DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second | 
 |                  << " from [" << StartOffset << ", " << EndOffset << "]\n"); | 
 |     extractFunction(Symbols[Symbols.size()-1].second, | 
 |                     Base + StartOffset, Base + EndOffset); | 
 |  | 
 |     // Now extract the relocation information for each function and process it. | 
 |     for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { | 
 |       InMemoryStruct<macho::RelocationEntry> RE; | 
 |       Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); | 
 |       if (RE->Word0 & macho::RF_Scattered) | 
 |         return Error("NOT YET IMPLEMENTED: scattered relocations."); | 
 |       // Word0 of the relocation is the offset into the section where the | 
 |       // relocation should be applied. We need to translate that into an | 
 |       // offset into a function since that's our atom. | 
 |       uint32_t Offset = RE->Word0; | 
 |       // Look for the function containing the address. This is used for JIT | 
 |       // code, so the number of functions in section is almost always going | 
 |       // to be very small (usually just one), so until we have use cases | 
 |       // where that's not true, just use a trivial linear search. | 
 |       unsigned SymbolNum; | 
 |       unsigned NumSymbols = Symbols.size(); | 
 |       assert(NumSymbols > 0 && Symbols[0].first <= Offset && | 
 |              "No symbol containing relocation!"); | 
 |       for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) | 
 |         if (Symbols[SymbolNum + 1].first > Offset) | 
 |           break; | 
 |       // Adjust the offset to be relative to the symbol. | 
 |       Offset -= Symbols[SymbolNum].first; | 
 |       // Get the name of the symbol containing the relocation. | 
 |       StringRef TargetName = SymbolNames[SymbolNum]; | 
 |  | 
 |       bool isExtern = (RE->Word1 >> 27) & 1; | 
 |       // Figure out the source symbol of the relocation. If isExtern is true, | 
 |       // this relocation references the symbol table, otherwise it references | 
 |       // a section in the same object, numbered from 1 through NumSections | 
 |       // (SectionBases is [0, NumSections-1]). | 
 |       // FIXME: Some targets (ARM) use internal relocations even for | 
 |       // externally visible symbols, if the definition is in the same | 
 |       // file as the reference. We need to convert those back to by-name | 
 |       // references. We can resolve the address based on the section | 
 |       // offset and see if we have a symbol at that address. If we do, | 
 |       // use that; otherwise, puke. | 
 |       if (!isExtern) | 
 |         return Error("Internal relocations not supported."); | 
 |       uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value | 
 |       StringRef SourceName = SymbolNames[SourceNum]; | 
 |  | 
 |       // FIXME: Get the relocation addend from the target address. | 
 |  | 
 |       // Now store the relocation information. Associate it with the source | 
 |       // symbol. | 
 |       Relocations[SourceName].push_back(RelocationEntry(TargetName, | 
 |                                                         Offset, | 
 |                                                         RE->Word1, | 
 |                                                         0 /*Addend*/)); | 
 |       DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset | 
 |                    << " from '" << SourceName << "(Word1: " | 
 |                    << format("0x%x", RE->Word1) << ")\n"); | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | bool RuntimeDyldMachO:: | 
 | loadSegment64(const MachOObject *Obj, | 
 |               const MachOObject::LoadCommandInfo *SegmentLCI, | 
 |               const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) { | 
 |   InMemoryStruct<macho::Segment64LoadCommand> Segment64LC; | 
 |   Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC); | 
 |   if (!Segment64LC) | 
 |     return Error("unable to load segment load command"); | 
 |  | 
 |   for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) { | 
 |     InMemoryStruct<macho::Section64> Sect; | 
 |     Obj->ReadSection64(*SegmentLCI, SectNum, Sect); | 
 |     if (!Sect) | 
 |       return Error("unable to load section: '" + Twine(SectNum) + "'"); | 
 |  | 
 |     // FIXME: For the time being, we're only loading text segments. | 
 |     if (Sect->Flags != 0x80000400) | 
 |       continue; | 
 |  | 
 |     // Address and names of symbols in the section. | 
 |     typedef std::pair<uint64_t, StringRef> SymbolEntry; | 
 |     SmallVector<SymbolEntry, 64> Symbols; | 
 |     // Index of all the names, in this section or not. Used when we're | 
 |     // dealing with relocation entries. | 
 |     SmallVector<StringRef, 64> SymbolNames; | 
 |     for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) { | 
 |       InMemoryStruct<macho::Symbol64TableEntry> STE; | 
 |       Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE); | 
 |       if (!STE) | 
 |         return Error("unable to read symbol: '" + Twine(i) + "'"); | 
 |       if (STE->SectionIndex > Segment64LC->NumSections) | 
 |         return Error("invalid section index for symbol: '" + Twine(i) + "'"); | 
 |       // Get the symbol name. | 
 |       StringRef Name = Obj->getStringAtIndex(STE->StringIndex); | 
 |       SymbolNames.push_back(Name); | 
 |  | 
 |       // Just skip symbols not defined in this section. | 
 |       if ((unsigned)STE->SectionIndex - 1 != SectNum) | 
 |         continue; | 
 |  | 
 |       // FIXME: Check the symbol type and flags. | 
 |       if (STE->Type != 0xF)  // external, defined in this section. | 
 |         continue; | 
 |       if (STE->Flags != 0x0) | 
 |         continue; | 
 |  | 
 |       // Remember the symbol. | 
 |       Symbols.push_back(SymbolEntry(STE->Value, Name)); | 
 |  | 
 |       DEBUG(dbgs() << "Function sym: '" << Name << "' @ " << | 
 |             (Sect->Address + STE->Value) << "\n"); | 
 |     } | 
 |     // Sort the symbols by address, just in case they didn't come in that way. | 
 |     array_pod_sort(Symbols.begin(), Symbols.end()); | 
 |  | 
 |     // If there weren't any functions (odd, but just in case...) | 
 |     if (!Symbols.size()) | 
 |       continue; | 
 |  | 
 |     // Extract the function data. | 
 |     uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset, | 
 |                                            Segment64LC->FileSize).data(); | 
 |     for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) { | 
 |       uint64_t StartOffset = Sect->Address + Symbols[i].first; | 
 |       uint64_t EndOffset = Symbols[i + 1].first - 1; | 
 |       DEBUG(dbgs() << "Extracting function: " << Symbols[i].second | 
 |                    << " from [" << StartOffset << ", " << EndOffset << "]\n"); | 
 |       extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset); | 
 |     } | 
 |     // The last symbol we do after since the end address is calculated | 
 |     // differently because there is no next symbol to reference. | 
 |     uint64_t StartOffset = Symbols[Symbols.size() - 1].first; | 
 |     uint64_t EndOffset = Sect->Size - 1; | 
 |     DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second | 
 |                  << " from [" << StartOffset << ", " << EndOffset << "]\n"); | 
 |     extractFunction(Symbols[Symbols.size()-1].second, | 
 |                     Base + StartOffset, Base + EndOffset); | 
 |  | 
 |     // Now extract the relocation information for each function and process it. | 
 |     for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) { | 
 |       InMemoryStruct<macho::RelocationEntry> RE; | 
 |       Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE); | 
 |       if (RE->Word0 & macho::RF_Scattered) | 
 |         return Error("NOT YET IMPLEMENTED: scattered relocations."); | 
 |       // Word0 of the relocation is the offset into the section where the | 
 |       // relocation should be applied. We need to translate that into an | 
 |       // offset into a function since that's our atom. | 
 |       uint32_t Offset = RE->Word0; | 
 |       // Look for the function containing the address. This is used for JIT | 
 |       // code, so the number of functions in section is almost always going | 
 |       // to be very small (usually just one), so until we have use cases | 
 |       // where that's not true, just use a trivial linear search. | 
 |       unsigned SymbolNum; | 
 |       unsigned NumSymbols = Symbols.size(); | 
 |       assert(NumSymbols > 0 && Symbols[0].first <= Offset && | 
 |              "No symbol containing relocation!"); | 
 |       for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum) | 
 |         if (Symbols[SymbolNum + 1].first > Offset) | 
 |           break; | 
 |       // Adjust the offset to be relative to the symbol. | 
 |       Offset -= Symbols[SymbolNum].first; | 
 |       // Get the name of the symbol containing the relocation. | 
 |       StringRef TargetName = SymbolNames[SymbolNum]; | 
 |  | 
 |       bool isExtern = (RE->Word1 >> 27) & 1; | 
 |       // Figure out the source symbol of the relocation. If isExtern is true, | 
 |       // this relocation references the symbol table, otherwise it references | 
 |       // a section in the same object, numbered from 1 through NumSections | 
 |       // (SectionBases is [0, NumSections-1]). | 
 |       if (!isExtern) | 
 |         return Error("Internal relocations not supported."); | 
 |       uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value | 
 |       StringRef SourceName = SymbolNames[SourceNum]; | 
 |  | 
 |       // FIXME: Get the relocation addend from the target address. | 
 |  | 
 |       // Now store the relocation information. Associate it with the source | 
 |       // symbol. | 
 |       Relocations[SourceName].push_back(RelocationEntry(TargetName, | 
 |                                                         Offset, | 
 |                                                         RE->Word1, | 
 |                                                         0 /*Addend*/)); | 
 |       DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset | 
 |                    << " from '" << SourceName << "(Word1: " | 
 |                    << format("0x%x", RE->Word1) << ")\n"); | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) { | 
 |   // If the linker is in an error state, don't do anything. | 
 |   if (hasError()) | 
 |     return true; | 
 |   // Load the Mach-O wrapper object. | 
 |   std::string ErrorStr; | 
 |   OwningPtr<MachOObject> Obj( | 
 |     MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr)); | 
 |   if (!Obj) | 
 |     return Error("unable to load object: '" + ErrorStr + "'"); | 
 |  | 
 |   // Get the CPU type information from the header. | 
 |   const macho::Header &Header = Obj->getHeader(); | 
 |  | 
 |   // FIXME: Error checking that the loaded object is compatible with | 
 |   //        the system we're running on. | 
 |   CPUType = Header.CPUType; | 
 |   CPUSubtype = Header.CPUSubtype; | 
 |  | 
 |   // Validate that the load commands match what we expect. | 
 |   const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0, | 
 |     *DysymtabLCI = 0; | 
 |   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) { | 
 |     const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i); | 
 |     switch (LCI.Command.Type) { | 
 |     case macho::LCT_Segment: | 
 |     case macho::LCT_Segment64: | 
 |       if (SegmentLCI) | 
 |         return Error("unexpected input object (multiple segments)"); | 
 |       SegmentLCI = &LCI; | 
 |       break; | 
 |     case macho::LCT_Symtab: | 
 |       if (SymtabLCI) | 
 |         return Error("unexpected input object (multiple symbol tables)"); | 
 |       SymtabLCI = &LCI; | 
 |       break; | 
 |     case macho::LCT_Dysymtab: | 
 |       if (DysymtabLCI) | 
 |         return Error("unexpected input object (multiple symbol tables)"); | 
 |       DysymtabLCI = &LCI; | 
 |       break; | 
 |     default: | 
 |       return Error("unexpected input object (unexpected load command"); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!SymtabLCI) | 
 |     return Error("no symbol table found in object"); | 
 |   if (!SegmentLCI) | 
 |     return Error("no symbol table found in object"); | 
 |  | 
 |   // Read and register the symbol table data. | 
 |   InMemoryStruct<macho::SymtabLoadCommand> SymtabLC; | 
 |   Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC); | 
 |   if (!SymtabLC) | 
 |     return Error("unable to load symbol table load command"); | 
 |   Obj->RegisterStringTable(*SymtabLC); | 
 |  | 
 |   // Read the dynamic link-edit information, if present (not present in static | 
 |   // objects). | 
 |   if (DysymtabLCI) { | 
 |     InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC; | 
 |     Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC); | 
 |     if (!DysymtabLC) | 
 |       return Error("unable to load dynamic link-exit load command"); | 
 |  | 
 |     // FIXME: We don't support anything interesting yet. | 
 | //    if (DysymtabLC->LocalSymbolsIndex != 0) | 
 | //      return Error("NOT YET IMPLEMENTED: local symbol entries"); | 
 | //    if (DysymtabLC->ExternalSymbolsIndex != 0) | 
 | //      return Error("NOT YET IMPLEMENTED: non-external symbol entries"); | 
 | //    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries) | 
 | //      return Error("NOT YET IMPLEMENTED: undefined symbol entries"); | 
 |   } | 
 |  | 
 |   // Load the segment load command. | 
 |   if (SegmentLCI->Command.Type == macho::LCT_Segment) { | 
 |     if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC)) | 
 |       return true; | 
 |   } else { | 
 |     if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Assign an address to a symbol name and resolve all the relocations | 
 | // associated with it. | 
 | void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) { | 
 |   // Assign the address in our symbol table. | 
 |   SymbolTable[Name] = Addr; | 
 |  | 
 |   RelocationList &Relocs = Relocations[Name]; | 
 |   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { | 
 |     RelocationEntry &RE = Relocs[i]; | 
 |     uint8_t *Target = SymbolTable[RE.Target] + RE.Offset; | 
 |     bool isPCRel = (RE.Data >> 24) & 1; | 
 |     unsigned Type = (RE.Data >> 28) & 0xf; | 
 |     unsigned Size = 1 << ((RE.Data >> 25) & 3); | 
 |  | 
 |     DEBUG(dbgs() << "Resolving relocation at '" << RE.Target | 
 |           << "' + " << RE.Offset << " (" << format("%p", Target) << ")" | 
 |           << " from '" << Name << " (" << format("%p", Addr) << ")" | 
 |           << "(" << (isPCRel ? "pcrel" : "absolute") | 
 |           << ", type: " << Type << ", Size: " << Size << ").\n"); | 
 |  | 
 |     resolveRelocation(Target, Addr, isPCRel, Type, Size); | 
 |     RE.isResolved = true; | 
 |   } | 
 | } | 
 |  | 
 | bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) { | 
 |   StringRef Magic = InputBuffer->getBuffer().slice(0, 4); | 
 |   if (Magic == "\xFE\xED\xFA\xCE") return true; | 
 |   if (Magic == "\xCE\xFA\xED\xFE") return true; | 
 |   if (Magic == "\xFE\xED\xFA\xCF") return true; | 
 |   if (Magic == "\xCF\xFA\xED\xFE") return true; | 
 |   return false; | 
 | } | 
 |  | 
 | } // end namespace llvm |