| //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCAsmBackend.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCAsmLayout.h" |
| #include "llvm/MC/MCCodeEmitter.h" |
| #include "llvm/MC/MCCodeView.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDwarf.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCFixup.h" |
| #include "llvm/MC/MCFixupKindInfo.h" |
| #include "llvm/MC/MCFragment.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/LEB128.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <cstring> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "assembler" |
| |
| namespace { |
| namespace stats { |
| |
| STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total"); |
| STATISTIC(EmittedRelaxableFragments, |
| "Number of emitted assembler fragments - relaxable"); |
| STATISTIC(EmittedDataFragments, |
| "Number of emitted assembler fragments - data"); |
| STATISTIC(EmittedCompactEncodedInstFragments, |
| "Number of emitted assembler fragments - compact encoded inst"); |
| STATISTIC(EmittedAlignFragments, |
| "Number of emitted assembler fragments - align"); |
| STATISTIC(EmittedFillFragments, |
| "Number of emitted assembler fragments - fill"); |
| STATISTIC(EmittedOrgFragments, |
| "Number of emitted assembler fragments - org"); |
| STATISTIC(evaluateFixup, "Number of evaluated fixups"); |
| STATISTIC(FragmentLayouts, "Number of fragment layouts"); |
| STATISTIC(ObjectBytes, "Number of emitted object file bytes"); |
| STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps"); |
| STATISTIC(RelaxedInstructions, "Number of relaxed instructions"); |
| STATISTIC(PaddingFragmentsRelaxations, |
| "Number of Padding Fragments relaxations"); |
| STATISTIC(PaddingFragmentsBytes, |
| "Total size of all padding from adding Fragments"); |
| |
| } // end namespace stats |
| } // end anonymous namespace |
| |
| // FIXME FIXME FIXME: There are number of places in this file where we convert |
| // what is a 64-bit assembler value used for computation into a value in the |
| // object file, which may truncate it. We should detect that truncation where |
| // invalid and report errors back. |
| |
| /* *** */ |
| |
| MCAssembler::MCAssembler(MCContext &Context, |
| std::unique_ptr<MCAsmBackend> Backend, |
| std::unique_ptr<MCCodeEmitter> Emitter, |
| std::unique_ptr<MCObjectWriter> Writer) |
| : Context(Context), Backend(std::move(Backend)), |
| Emitter(std::move(Emitter)), Writer(std::move(Writer)), |
| BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false), |
| IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) { |
| VersionInfo.Major = 0; // Major version == 0 for "none specified" |
| } |
| |
| MCAssembler::~MCAssembler() = default; |
| |
| void MCAssembler::reset() { |
| Sections.clear(); |
| Symbols.clear(); |
| IndirectSymbols.clear(); |
| DataRegions.clear(); |
| LinkerOptions.clear(); |
| FileNames.clear(); |
| ThumbFuncs.clear(); |
| BundleAlignSize = 0; |
| RelaxAll = false; |
| SubsectionsViaSymbols = false; |
| IncrementalLinkerCompatible = false; |
| ELFHeaderEFlags = 0; |
| LOHContainer.reset(); |
| VersionInfo.Major = 0; |
| |
| // reset objects owned by us |
| if (getBackendPtr()) |
| getBackendPtr()->reset(); |
| if (getEmitterPtr()) |
| getEmitterPtr()->reset(); |
| if (getWriterPtr()) |
| getWriterPtr()->reset(); |
| getLOHContainer().reset(); |
| } |
| |
| bool MCAssembler::registerSection(MCSection &Section) { |
| if (Section.isRegistered()) |
| return false; |
| Sections.push_back(&Section); |
| Section.setIsRegistered(true); |
| return true; |
| } |
| |
| bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const { |
| if (ThumbFuncs.count(Symbol)) |
| return true; |
| |
| if (!Symbol->isVariable()) |
| return false; |
| |
| const MCExpr *Expr = Symbol->getVariableValue(); |
| |
| MCValue V; |
| if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr)) |
| return false; |
| |
| if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None) |
| return false; |
| |
| const MCSymbolRefExpr *Ref = V.getSymA(); |
| if (!Ref) |
| return false; |
| |
| if (Ref->getKind() != MCSymbolRefExpr::VK_None) |
| return false; |
| |
| const MCSymbol &Sym = Ref->getSymbol(); |
| if (!isThumbFunc(&Sym)) |
| return false; |
| |
| ThumbFuncs.insert(Symbol); // Cache it. |
| return true; |
| } |
| |
| bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const { |
| // Non-temporary labels should always be visible to the linker. |
| if (!Symbol.isTemporary()) |
| return true; |
| |
| // Absolute temporary labels are never visible. |
| if (!Symbol.isInSection()) |
| return false; |
| |
| if (Symbol.isUsedInReloc()) |
| return true; |
| |
| return false; |
| } |
| |
| const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const { |
| // Linker visible symbols define atoms. |
| if (isSymbolLinkerVisible(S)) |
| return &S; |
| |
| // Absolute and undefined symbols have no defining atom. |
| if (!S.isInSection()) |
| return nullptr; |
| |
| // Non-linker visible symbols in sections which can't be atomized have no |
| // defining atom. |
| if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols( |
| *S.getFragment()->getParent())) |
| return nullptr; |
| |
| // Otherwise, return the atom for the containing fragment. |
| return S.getFragment()->getAtom(); |
| } |
| |
| bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout, |
| const MCFixup &Fixup, const MCFragment *DF, |
| MCValue &Target, uint64_t &Value, |
| bool &WasForced) const { |
| ++stats::evaluateFixup; |
| |
| // FIXME: This code has some duplication with recordRelocation. We should |
| // probably merge the two into a single callback that tries to evaluate a |
| // fixup and records a relocation if one is needed. |
| |
| // On error claim to have completely evaluated the fixup, to prevent any |
| // further processing from being done. |
| const MCExpr *Expr = Fixup.getValue(); |
| MCContext &Ctx = getContext(); |
| Value = 0; |
| WasForced = false; |
| if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) { |
| Ctx.reportError(Fixup.getLoc(), "expected relocatable expression"); |
| return true; |
| } |
| if (const MCSymbolRefExpr *RefB = Target.getSymB()) { |
| if (RefB->getKind() != MCSymbolRefExpr::VK_None) { |
| Ctx.reportError(Fixup.getLoc(), |
| "unsupported subtraction of qualified symbol"); |
| return true; |
| } |
| } |
| |
| assert(getBackendPtr() && "Expected assembler backend"); |
| bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags & |
| MCFixupKindInfo::FKF_IsPCRel; |
| |
| bool IsResolved = false; |
| if (IsPCRel) { |
| if (Target.getSymB()) { |
| IsResolved = false; |
| } else if (!Target.getSymA()) { |
| IsResolved = false; |
| } else { |
| const MCSymbolRefExpr *A = Target.getSymA(); |
| const MCSymbol &SA = A->getSymbol(); |
| if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) { |
| IsResolved = false; |
| } else if (auto *Writer = getWriterPtr()) { |
| IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl( |
| *this, SA, *DF, false, true); |
| } |
| } |
| } else { |
| IsResolved = Target.isAbsolute(); |
| } |
| |
| Value = Target.getConstant(); |
| |
| if (const MCSymbolRefExpr *A = Target.getSymA()) { |
| const MCSymbol &Sym = A->getSymbol(); |
| if (Sym.isDefined()) |
| Value += Layout.getSymbolOffset(Sym); |
| } |
| if (const MCSymbolRefExpr *B = Target.getSymB()) { |
| const MCSymbol &Sym = B->getSymbol(); |
| if (Sym.isDefined()) |
| Value -= Layout.getSymbolOffset(Sym); |
| } |
| |
| bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags & |
| MCFixupKindInfo::FKF_IsAlignedDownTo32Bits; |
| assert((ShouldAlignPC ? IsPCRel : true) && |
| "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!"); |
| |
| if (IsPCRel) { |
| uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset(); |
| |
| // A number of ARM fixups in Thumb mode require that the effective PC |
| // address be determined as the 32-bit aligned version of the actual offset. |
| if (ShouldAlignPC) Offset &= ~0x3; |
| Value -= Offset; |
| } |
| |
| // Let the backend force a relocation if needed. |
| if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) { |
| IsResolved = false; |
| WasForced = true; |
| } |
| |
| return IsResolved; |
| } |
| |
| uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout, |
| const MCFragment &F) const { |
| assert(getBackendPtr() && "Requires assembler backend"); |
| switch (F.getKind()) { |
| case MCFragment::FT_Data: |
| return cast<MCDataFragment>(F).getContents().size(); |
| case MCFragment::FT_Relaxable: |
| return cast<MCRelaxableFragment>(F).getContents().size(); |
| case MCFragment::FT_CompactEncodedInst: |
| return cast<MCCompactEncodedInstFragment>(F).getContents().size(); |
| case MCFragment::FT_Fill: { |
| auto &FF = cast<MCFillFragment>(F); |
| int64_t NumValues = 0; |
| if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) { |
| getContext().reportError(FF.getLoc(), |
| "expected assembly-time absolute expression"); |
| return 0; |
| } |
| int64_t Size = NumValues * FF.getValueSize(); |
| if (Size < 0) { |
| getContext().reportError(FF.getLoc(), "invalid number of bytes"); |
| return 0; |
| } |
| return Size; |
| } |
| |
| case MCFragment::FT_LEB: |
| return cast<MCLEBFragment>(F).getContents().size(); |
| |
| case MCFragment::FT_Padding: |
| return cast<MCPaddingFragment>(F).getSize(); |
| |
| case MCFragment::FT_SymbolId: |
| return 4; |
| |
| case MCFragment::FT_Align: { |
| const MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| unsigned Offset = Layout.getFragmentOffset(&AF); |
| unsigned Size = OffsetToAlignment(Offset, AF.getAlignment()); |
| // If we are padding with nops, force the padding to be larger than the |
| // minimum nop size. |
| if (Size > 0 && AF.hasEmitNops()) { |
| while (Size % getBackend().getMinimumNopSize()) |
| Size += AF.getAlignment(); |
| } |
| if (Size > AF.getMaxBytesToEmit()) |
| return 0; |
| return Size; |
| } |
| |
| case MCFragment::FT_Org: { |
| const MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| MCValue Value; |
| if (!OF.getOffset().evaluateAsValue(Value, Layout)) { |
| getContext().reportError(OF.getLoc(), |
| "expected assembly-time absolute expression"); |
| return 0; |
| } |
| |
| uint64_t FragmentOffset = Layout.getFragmentOffset(&OF); |
| int64_t TargetLocation = Value.getConstant(); |
| if (const MCSymbolRefExpr *A = Value.getSymA()) { |
| uint64_t Val; |
| if (!Layout.getSymbolOffset(A->getSymbol(), Val)) { |
| getContext().reportError(OF.getLoc(), "expected absolute expression"); |
| return 0; |
| } |
| TargetLocation += Val; |
| } |
| int64_t Size = TargetLocation - FragmentOffset; |
| if (Size < 0 || Size >= 0x40000000) { |
| getContext().reportError( |
| OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) + |
| "' (at offset '" + Twine(FragmentOffset) + "')"); |
| return 0; |
| } |
| return Size; |
| } |
| |
| case MCFragment::FT_Dwarf: |
| return cast<MCDwarfLineAddrFragment>(F).getContents().size(); |
| case MCFragment::FT_DwarfFrame: |
| return cast<MCDwarfCallFrameFragment>(F).getContents().size(); |
| case MCFragment::FT_CVInlineLines: |
| return cast<MCCVInlineLineTableFragment>(F).getContents().size(); |
| case MCFragment::FT_CVDefRange: |
| return cast<MCCVDefRangeFragment>(F).getContents().size(); |
| case MCFragment::FT_Dummy: |
| llvm_unreachable("Should not have been added"); |
| } |
| |
| llvm_unreachable("invalid fragment kind"); |
| } |
| |
| void MCAsmLayout::layoutFragment(MCFragment *F) { |
| MCFragment *Prev = F->getPrevNode(); |
| |
| // We should never try to recompute something which is valid. |
| assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!"); |
| // We should never try to compute the fragment layout if its predecessor |
| // isn't valid. |
| assert((!Prev || isFragmentValid(Prev)) && |
| "Attempt to compute fragment before its predecessor!"); |
| |
| ++stats::FragmentLayouts; |
| |
| // Compute fragment offset and size. |
| if (Prev) |
| F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev); |
| else |
| F->Offset = 0; |
| LastValidFragment[F->getParent()] = F; |
| |
| // If bundling is enabled and this fragment has instructions in it, it has to |
| // obey the bundling restrictions. With padding, we'll have: |
| // |
| // |
| // BundlePadding |
| // ||| |
| // ------------------------------------- |
| // Prev |##########| F | |
| // ------------------------------------- |
| // ^ |
| // | |
| // F->Offset |
| // |
| // The fragment's offset will point to after the padding, and its computed |
| // size won't include the padding. |
| // |
| // When the -mc-relax-all flag is used, we optimize bundling by writting the |
| // padding directly into fragments when the instructions are emitted inside |
| // the streamer. When the fragment is larger than the bundle size, we need to |
| // ensure that it's bundle aligned. This means that if we end up with |
| // multiple fragments, we must emit bundle padding between fragments. |
| // |
| // ".align N" is an example of a directive that introduces multiple |
| // fragments. We could add a special case to handle ".align N" by emitting |
| // within-fragment padding (which would produce less padding when N is less |
| // than the bundle size), but for now we don't. |
| // |
| if (Assembler.isBundlingEnabled() && F->hasInstructions()) { |
| assert(isa<MCEncodedFragment>(F) && |
| "Only MCEncodedFragment implementations have instructions"); |
| MCEncodedFragment *EF = cast<MCEncodedFragment>(F); |
| uint64_t FSize = Assembler.computeFragmentSize(*this, *EF); |
| |
| if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize()) |
| report_fatal_error("Fragment can't be larger than a bundle size"); |
| |
| uint64_t RequiredBundlePadding = |
| computeBundlePadding(Assembler, EF, EF->Offset, FSize); |
| if (RequiredBundlePadding > UINT8_MAX) |
| report_fatal_error("Padding cannot exceed 255 bytes"); |
| EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding)); |
| EF->Offset += RequiredBundlePadding; |
| } |
| } |
| |
| void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) { |
| bool New = !Symbol.isRegistered(); |
| if (Created) |
| *Created = New; |
| if (New) { |
| Symbol.setIsRegistered(true); |
| Symbols.push_back(&Symbol); |
| } |
| } |
| |
| void MCAssembler::writeFragmentPadding(raw_ostream &OS, |
| const MCEncodedFragment &EF, |
| uint64_t FSize) const { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| // Should NOP padding be written out before this fragment? |
| unsigned BundlePadding = EF.getBundlePadding(); |
| if (BundlePadding > 0) { |
| assert(isBundlingEnabled() && |
| "Writing bundle padding with disabled bundling"); |
| assert(EF.hasInstructions() && |
| "Writing bundle padding for a fragment without instructions"); |
| |
| unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize); |
| if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) { |
| // If the padding itself crosses a bundle boundary, it must be emitted |
| // in 2 pieces, since even nop instructions must not cross boundaries. |
| // v--------------v <- BundleAlignSize |
| // v---------v <- BundlePadding |
| // ---------------------------- |
| // | Prev |####|####| F | |
| // ---------------------------- |
| // ^-------------------^ <- TotalLength |
| unsigned DistanceToBoundary = TotalLength - getBundleAlignSize(); |
| if (!getBackend().writeNopData(OS, DistanceToBoundary)) |
| report_fatal_error("unable to write NOP sequence of " + |
| Twine(DistanceToBoundary) + " bytes"); |
| BundlePadding -= DistanceToBoundary; |
| } |
| if (!getBackend().writeNopData(OS, BundlePadding)) |
| report_fatal_error("unable to write NOP sequence of " + |
| Twine(BundlePadding) + " bytes"); |
| } |
| } |
| |
| /// Write the fragment \p F to the output file. |
| static void writeFragment(raw_ostream &OS, const MCAssembler &Asm, |
| const MCAsmLayout &Layout, const MCFragment &F) { |
| // FIXME: Embed in fragments instead? |
| uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F); |
| |
| support::endianness Endian = Asm.getBackend().Endian; |
| |
| if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F)) |
| Asm.writeFragmentPadding(OS, *EF, FragmentSize); |
| |
| // This variable (and its dummy usage) is to participate in the assert at |
| // the end of the function. |
| uint64_t Start = OS.tell(); |
| (void) Start; |
| |
| ++stats::EmittedFragments; |
| |
| switch (F.getKind()) { |
| case MCFragment::FT_Align: { |
| ++stats::EmittedAlignFragments; |
| const MCAlignFragment &AF = cast<MCAlignFragment>(F); |
| assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!"); |
| |
| uint64_t Count = FragmentSize / AF.getValueSize(); |
| |
| // FIXME: This error shouldn't actually occur (the front end should emit |
| // multiple .align directives to enforce the semantics it wants), but is |
| // severe enough that we want to report it. How to handle this? |
| if (Count * AF.getValueSize() != FragmentSize) |
| report_fatal_error("undefined .align directive, value size '" + |
| Twine(AF.getValueSize()) + |
| "' is not a divisor of padding size '" + |
| Twine(FragmentSize) + "'"); |
| |
| // See if we are aligning with nops, and if so do that first to try to fill |
| // the Count bytes. Then if that did not fill any bytes or there are any |
| // bytes left to fill use the Value and ValueSize to fill the rest. |
| // If we are aligning with nops, ask that target to emit the right data. |
| if (AF.hasEmitNops()) { |
| if (!Asm.getBackend().writeNopData(OS, Count)) |
| report_fatal_error("unable to write nop sequence of " + |
| Twine(Count) + " bytes"); |
| break; |
| } |
| |
| // Otherwise, write out in multiples of the value size. |
| for (uint64_t i = 0; i != Count; ++i) { |
| switch (AF.getValueSize()) { |
| default: llvm_unreachable("Invalid size!"); |
| case 1: OS << char(AF.getValue()); break; |
| case 2: |
| support::endian::write<uint16_t>(OS, AF.getValue(), Endian); |
| break; |
| case 4: |
| support::endian::write<uint32_t>(OS, AF.getValue(), Endian); |
| break; |
| case 8: |
| support::endian::write<uint64_t>(OS, AF.getValue(), Endian); |
| break; |
| } |
| } |
| break; |
| } |
| |
| case MCFragment::FT_Data: |
| ++stats::EmittedDataFragments; |
| OS << cast<MCDataFragment>(F).getContents(); |
| break; |
| |
| case MCFragment::FT_Relaxable: |
| ++stats::EmittedRelaxableFragments; |
| OS << cast<MCRelaxableFragment>(F).getContents(); |
| break; |
| |
| case MCFragment::FT_CompactEncodedInst: |
| ++stats::EmittedCompactEncodedInstFragments; |
| OS << cast<MCCompactEncodedInstFragment>(F).getContents(); |
| break; |
| |
| case MCFragment::FT_Fill: { |
| ++stats::EmittedFillFragments; |
| const MCFillFragment &FF = cast<MCFillFragment>(F); |
| uint64_t V = FF.getValue(); |
| unsigned VSize = FF.getValueSize(); |
| const unsigned MaxChunkSize = 16; |
| char Data[MaxChunkSize]; |
| // Duplicate V into Data as byte vector to reduce number of |
| // writes done. As such, do endian conversion here. |
| for (unsigned I = 0; I != VSize; ++I) { |
| unsigned index = Endian == support::little ? I : (VSize - I - 1); |
| Data[I] = uint8_t(V >> (index * 8)); |
| } |
| for (unsigned I = VSize; I < MaxChunkSize; ++I) |
| Data[I] = Data[I - VSize]; |
| |
| // Set to largest multiple of VSize in Data. |
| const unsigned NumPerChunk = MaxChunkSize / VSize; |
| // Set ChunkSize to largest multiple of VSize in Data |
| const unsigned ChunkSize = VSize * NumPerChunk; |
| |
| // Do copies by chunk. |
| StringRef Ref(Data, ChunkSize); |
| for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I) |
| OS << Ref; |
| |
| // do remainder if needed. |
| unsigned TrailingCount = FragmentSize % ChunkSize; |
| if (TrailingCount) |
| OS.write(Data, TrailingCount); |
| break; |
| } |
| |
| case MCFragment::FT_LEB: { |
| const MCLEBFragment &LF = cast<MCLEBFragment>(F); |
| OS << LF.getContents(); |
| break; |
| } |
| |
| case MCFragment::FT_Padding: { |
| if (!Asm.getBackend().writeNopData(OS, FragmentSize)) |
| report_fatal_error("unable to write nop sequence of " + |
| Twine(FragmentSize) + " bytes"); |
| break; |
| } |
| |
| case MCFragment::FT_SymbolId: { |
| const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F); |
| support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian); |
| break; |
| } |
| |
| case MCFragment::FT_Org: { |
| ++stats::EmittedOrgFragments; |
| const MCOrgFragment &OF = cast<MCOrgFragment>(F); |
| |
| for (uint64_t i = 0, e = FragmentSize; i != e; ++i) |
| OS << char(OF.getValue()); |
| |
| break; |
| } |
| |
| case MCFragment::FT_Dwarf: { |
| const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F); |
| OS << OF.getContents(); |
| break; |
| } |
| case MCFragment::FT_DwarfFrame: { |
| const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F); |
| OS << CF.getContents(); |
| break; |
| } |
| case MCFragment::FT_CVInlineLines: { |
| const auto &OF = cast<MCCVInlineLineTableFragment>(F); |
| OS << OF.getContents(); |
| break; |
| } |
| case MCFragment::FT_CVDefRange: { |
| const auto &DRF = cast<MCCVDefRangeFragment>(F); |
| OS << DRF.getContents(); |
| break; |
| } |
| case MCFragment::FT_Dummy: |
| llvm_unreachable("Should not have been added"); |
| } |
| |
| assert(OS.tell() - Start == FragmentSize && |
| "The stream should advance by fragment size"); |
| } |
| |
| void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec, |
| const MCAsmLayout &Layout) const { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| |
| // Ignore virtual sections. |
| if (Sec->isVirtualSection()) { |
| assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!"); |
| |
| // Check that contents are only things legal inside a virtual section. |
| for (const MCFragment &F : *Sec) { |
| switch (F.getKind()) { |
| default: llvm_unreachable("Invalid fragment in virtual section!"); |
| case MCFragment::FT_Data: { |
| // Check that we aren't trying to write a non-zero contents (or fixups) |
| // into a virtual section. This is to support clients which use standard |
| // directives to fill the contents of virtual sections. |
| const MCDataFragment &DF = cast<MCDataFragment>(F); |
| if (DF.fixup_begin() != DF.fixup_end()) |
| report_fatal_error("cannot have fixups in virtual section!"); |
| for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i) |
| if (DF.getContents()[i]) { |
| if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec)) |
| report_fatal_error("non-zero initializer found in section '" + |
| ELFSec->getSectionName() + "'"); |
| else |
| report_fatal_error("non-zero initializer found in virtual section"); |
| } |
| break; |
| } |
| case MCFragment::FT_Align: |
| // Check that we aren't trying to write a non-zero value into a virtual |
| // section. |
| assert((cast<MCAlignFragment>(F).getValueSize() == 0 || |
| cast<MCAlignFragment>(F).getValue() == 0) && |
| "Invalid align in virtual section!"); |
| break; |
| case MCFragment::FT_Fill: |
| assert((cast<MCFillFragment>(F).getValue() == 0) && |
| "Invalid fill in virtual section!"); |
| break; |
| } |
| } |
| |
| return; |
| } |
| |
| uint64_t Start = OS.tell(); |
| (void)Start; |
| |
| for (const MCFragment &F : *Sec) |
| writeFragment(OS, *this, Layout, F); |
| |
| assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec)); |
| } |
| |
| std::tuple<MCValue, uint64_t, bool> |
| MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F, |
| const MCFixup &Fixup) { |
| // Evaluate the fixup. |
| MCValue Target; |
| uint64_t FixedValue; |
| bool WasForced; |
| bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue, |
| WasForced); |
| if (!IsResolved) { |
| // The fixup was unresolved, we need a relocation. Inform the object |
| // writer of the relocation, and give it an opportunity to adjust the |
| // fixup value if need be. |
| if (Target.getSymA() && Target.getSymB() && |
| getBackend().requiresDiffExpressionRelocations()) { |
| // The fixup represents the difference between two symbols, which the |
| // backend has indicated must be resolved at link time. Split up the fixup |
| // into two relocations, one for the add, and one for the sub, and emit |
| // both of these. The constant will be associated with the add half of the |
| // expression. |
| MCFixup FixupAdd = MCFixup::createAddFor(Fixup); |
| MCValue TargetAdd = |
| MCValue::get(Target.getSymA(), nullptr, Target.getConstant()); |
| getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd, |
| FixedValue); |
| MCFixup FixupSub = MCFixup::createSubFor(Fixup); |
| MCValue TargetSub = MCValue::get(Target.getSymB()); |
| getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub, |
| FixedValue); |
| } else { |
| getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, |
| FixedValue); |
| } |
| } |
| return std::make_tuple(Target, FixedValue, IsResolved); |
| } |
| |
| void MCAssembler::layout(MCAsmLayout &Layout) { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| DEBUG_WITH_TYPE("mc-dump", { |
| errs() << "assembler backend - pre-layout\n--\n"; |
| dump(); }); |
| |
| // Create dummy fragments and assign section ordinals. |
| unsigned SectionIndex = 0; |
| for (MCSection &Sec : *this) { |
| // Create dummy fragments to eliminate any empty sections, this simplifies |
| // layout. |
| if (Sec.getFragmentList().empty()) |
| new MCDataFragment(&Sec); |
| |
| Sec.setOrdinal(SectionIndex++); |
| } |
| |
| // Assign layout order indices to sections and fragments. |
| for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) { |
| MCSection *Sec = Layout.getSectionOrder()[i]; |
| Sec->setLayoutOrder(i); |
| |
| unsigned FragmentIndex = 0; |
| for (MCFragment &Frag : *Sec) |
| Frag.setLayoutOrder(FragmentIndex++); |
| } |
| |
| // Layout until everything fits. |
| while (layoutOnce(Layout)) |
| if (getContext().hadError()) |
| return; |
| |
| DEBUG_WITH_TYPE("mc-dump", { |
| errs() << "assembler backend - post-relaxation\n--\n"; |
| dump(); }); |
| |
| // Finalize the layout, including fragment lowering. |
| finishLayout(Layout); |
| |
| DEBUG_WITH_TYPE("mc-dump", { |
| errs() << "assembler backend - final-layout\n--\n"; |
| dump(); }); |
| |
| // Allow the object writer a chance to perform post-layout binding (for |
| // example, to set the index fields in the symbol data). |
| getWriter().executePostLayoutBinding(*this, Layout); |
| |
| // Evaluate and apply the fixups, generating relocation entries as necessary. |
| for (MCSection &Sec : *this) { |
| for (MCFragment &Frag : Sec) { |
| // Data and relaxable fragments both have fixups. So only process |
| // those here. |
| // FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups |
| // being templated makes this tricky. |
| if (isa<MCEncodedFragment>(&Frag) && |
| isa<MCCompactEncodedInstFragment>(&Frag)) |
| continue; |
| if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag)) |
| continue; |
| ArrayRef<MCFixup> Fixups; |
| MutableArrayRef<char> Contents; |
| const MCSubtargetInfo *STI = nullptr; |
| if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) { |
| Fixups = FragWithFixups->getFixups(); |
| Contents = FragWithFixups->getContents(); |
| STI = FragWithFixups->getSubtargetInfo(); |
| assert(!FragWithFixups->hasInstructions() || STI != nullptr); |
| } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) { |
| Fixups = FragWithFixups->getFixups(); |
| Contents = FragWithFixups->getContents(); |
| STI = FragWithFixups->getSubtargetInfo(); |
| assert(!FragWithFixups->hasInstructions() || STI != nullptr); |
| } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) { |
| Fixups = FragWithFixups->getFixups(); |
| Contents = FragWithFixups->getContents(); |
| } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) { |
| Fixups = FragWithFixups->getFixups(); |
| Contents = FragWithFixups->getContents(); |
| } else |
| llvm_unreachable("Unknown fragment with fixups!"); |
| for (const MCFixup &Fixup : Fixups) { |
| uint64_t FixedValue; |
| bool IsResolved; |
| MCValue Target; |
| std::tie(Target, FixedValue, IsResolved) = |
| handleFixup(Layout, Frag, Fixup); |
| getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue, |
| IsResolved, STI); |
| } |
| } |
| } |
| } |
| |
| void MCAssembler::Finish() { |
| // Create the layout object. |
| MCAsmLayout Layout(*this); |
| layout(Layout); |
| |
| // Write the object file. |
| stats::ObjectBytes += getWriter().writeObject(*this, Layout); |
| } |
| |
| bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup, |
| const MCRelaxableFragment *DF, |
| const MCAsmLayout &Layout) const { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| MCValue Target; |
| uint64_t Value; |
| bool WasForced; |
| bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced); |
| if (Target.getSymA() && |
| Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 && |
| Fixup.getKind() == FK_Data_1) |
| return false; |
| return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF, |
| Layout, WasForced); |
| } |
| |
| bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F, |
| const MCAsmLayout &Layout) const { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| // If this inst doesn't ever need relaxation, ignore it. This occurs when we |
| // are intentionally pushing out inst fragments, or because we relaxed a |
| // previous instruction to one that doesn't need relaxation. |
| if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo())) |
| return false; |
| |
| for (const MCFixup &Fixup : F->getFixups()) |
| if (fixupNeedsRelaxation(Fixup, F, Layout)) |
| return true; |
| |
| return false; |
| } |
| |
| bool MCAssembler::relaxInstruction(MCAsmLayout &Layout, |
| MCRelaxableFragment &F) { |
| assert(getEmitterPtr() && |
| "Expected CodeEmitter defined for relaxInstruction"); |
| if (!fragmentNeedsRelaxation(&F, Layout)) |
| return false; |
| |
| ++stats::RelaxedInstructions; |
| |
| // FIXME-PERF: We could immediately lower out instructions if we can tell |
| // they are fully resolved, to avoid retesting on later passes. |
| |
| // Relax the fragment. |
| |
| MCInst Relaxed; |
| getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed); |
| |
| // Encode the new instruction. |
| // |
| // FIXME-PERF: If it matters, we could let the target do this. It can |
| // probably do so more efficiently in many cases. |
| SmallVector<MCFixup, 4> Fixups; |
| SmallString<256> Code; |
| raw_svector_ostream VecOS(Code); |
| getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo()); |
| |
| // Update the fragment. |
| F.setInst(Relaxed); |
| F.getContents() = Code; |
| F.getFixups() = Fixups; |
| |
| return true; |
| } |
| |
| bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout, |
| MCPaddingFragment &PF) { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| uint64_t OldSize = PF.getSize(); |
| if (!getBackend().relaxFragment(&PF, Layout)) |
| return false; |
| uint64_t NewSize = PF.getSize(); |
| |
| ++stats::PaddingFragmentsRelaxations; |
| stats::PaddingFragmentsBytes += NewSize; |
| stats::PaddingFragmentsBytes -= OldSize; |
| return true; |
| } |
| |
| bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) { |
| uint64_t OldSize = LF.getContents().size(); |
| int64_t Value; |
| bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout); |
| if (!Abs) |
| report_fatal_error("sleb128 and uleb128 expressions must be absolute"); |
| SmallString<8> &Data = LF.getContents(); |
| Data.clear(); |
| raw_svector_ostream OSE(Data); |
| // The compiler can generate EH table assembly that is impossible to assemble |
| // without either adding padding to an LEB fragment or adding extra padding |
| // to a later alignment fragment. To accommodate such tables, relaxation can |
| // only increase an LEB fragment size here, not decrease it. See PR35809. |
| if (LF.isSigned()) |
| encodeSLEB128(Value, OSE, OldSize); |
| else |
| encodeULEB128(Value, OSE, OldSize); |
| return OldSize != LF.getContents().size(); |
| } |
| |
| bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout, |
| MCDwarfLineAddrFragment &DF) { |
| MCContext &Context = Layout.getAssembler().getContext(); |
| uint64_t OldSize = DF.getContents().size(); |
| int64_t AddrDelta; |
| bool Abs; |
| if (getBackend().requiresDiffExpressionRelocations()) |
| Abs = DF.getAddrDelta().evaluateAsAbsolute(AddrDelta, Layout); |
| else { |
| Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); |
| assert(Abs && "We created a line delta with an invalid expression"); |
| } |
| int64_t LineDelta; |
| LineDelta = DF.getLineDelta(); |
| SmallVectorImpl<char> &Data = DF.getContents(); |
| Data.clear(); |
| raw_svector_ostream OSE(Data); |
| DF.getFixups().clear(); |
| |
| if (Abs) { |
| MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta, |
| AddrDelta, OSE); |
| } else { |
| uint32_t Offset; |
| uint32_t Size; |
| bool SetDelta = MCDwarfLineAddr::FixedEncode(Context, |
| getDWARFLinetableParams(), |
| LineDelta, AddrDelta, |
| OSE, &Offset, &Size); |
| // Add Fixups for address delta or new address. |
| const MCExpr *FixupExpr; |
| if (SetDelta) { |
| FixupExpr = &DF.getAddrDelta(); |
| } else { |
| const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta()); |
| FixupExpr = ABE->getLHS(); |
| } |
| DF.getFixups().push_back( |
| MCFixup::create(Offset, FixupExpr, |
| MCFixup::getKindForSize(Size, false /*isPCRel*/))); |
| } |
| |
| return OldSize != Data.size(); |
| } |
| |
| bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout, |
| MCDwarfCallFrameFragment &DF) { |
| MCContext &Context = Layout.getAssembler().getContext(); |
| uint64_t OldSize = DF.getContents().size(); |
| int64_t AddrDelta; |
| bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout); |
| assert(Abs && "We created call frame with an invalid expression"); |
| (void) Abs; |
| SmallString<8> &Data = DF.getContents(); |
| Data.clear(); |
| raw_svector_ostream OSE(Data); |
| MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE); |
| return OldSize != Data.size(); |
| } |
| |
| bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout, |
| MCCVInlineLineTableFragment &F) { |
| unsigned OldSize = F.getContents().size(); |
| getContext().getCVContext().encodeInlineLineTable(Layout, F); |
| return OldSize != F.getContents().size(); |
| } |
| |
| bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout, |
| MCCVDefRangeFragment &F) { |
| unsigned OldSize = F.getContents().size(); |
| getContext().getCVContext().encodeDefRange(Layout, F); |
| return OldSize != F.getContents().size(); |
| } |
| |
| bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) { |
| // Holds the first fragment which needed relaxing during this layout. It will |
| // remain NULL if none were relaxed. |
| // When a fragment is relaxed, all the fragments following it should get |
| // invalidated because their offset is going to change. |
| MCFragment *FirstRelaxedFragment = nullptr; |
| |
| // Attempt to relax all the fragments in the section. |
| for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) { |
| // Check if this is a fragment that needs relaxation. |
| bool RelaxedFrag = false; |
| switch(I->getKind()) { |
| default: |
| break; |
| case MCFragment::FT_Relaxable: |
| assert(!getRelaxAll() && |
| "Did not expect a MCRelaxableFragment in RelaxAll mode"); |
| RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I)); |
| break; |
| case MCFragment::FT_Dwarf: |
| RelaxedFrag = relaxDwarfLineAddr(Layout, |
| *cast<MCDwarfLineAddrFragment>(I)); |
| break; |
| case MCFragment::FT_DwarfFrame: |
| RelaxedFrag = |
| relaxDwarfCallFrameFragment(Layout, |
| *cast<MCDwarfCallFrameFragment>(I)); |
| break; |
| case MCFragment::FT_LEB: |
| RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I)); |
| break; |
| case MCFragment::FT_Padding: |
| RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I)); |
| break; |
| case MCFragment::FT_CVInlineLines: |
| RelaxedFrag = |
| relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I)); |
| break; |
| case MCFragment::FT_CVDefRange: |
| RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I)); |
| break; |
| } |
| if (RelaxedFrag && !FirstRelaxedFragment) |
| FirstRelaxedFragment = &*I; |
| } |
| if (FirstRelaxedFragment) { |
| Layout.invalidateFragmentsFrom(FirstRelaxedFragment); |
| return true; |
| } |
| return false; |
| } |
| |
| bool MCAssembler::layoutOnce(MCAsmLayout &Layout) { |
| ++stats::RelaxationSteps; |
| |
| bool WasRelaxed = false; |
| for (iterator it = begin(), ie = end(); it != ie; ++it) { |
| MCSection &Sec = *it; |
| while (layoutSectionOnce(Layout, Sec)) |
| WasRelaxed = true; |
| } |
| |
| return WasRelaxed; |
| } |
| |
| void MCAssembler::finishLayout(MCAsmLayout &Layout) { |
| assert(getBackendPtr() && "Expected assembler backend"); |
| // The layout is done. Mark every fragment as valid. |
| for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) { |
| MCSection &Section = *Layout.getSectionOrder()[i]; |
| Layout.getFragmentOffset(&*Section.rbegin()); |
| computeFragmentSize(Layout, *Section.rbegin()); |
| } |
| getBackend().finishLayout(*this, Layout); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void MCAssembler::dump() const{ |
| raw_ostream &OS = errs(); |
| |
| OS << "<MCAssembler\n"; |
| OS << " Sections:[\n "; |
| for (const_iterator it = begin(), ie = end(); it != ie; ++it) { |
| if (it != begin()) OS << ",\n "; |
| it->dump(); |
| } |
| OS << "],\n"; |
| OS << " Symbols:["; |
| |
| for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) { |
| if (it != symbol_begin()) OS << ",\n "; |
| OS << "("; |
| it->dump(); |
| OS << ", Index:" << it->getIndex() << ", "; |
| OS << ")"; |
| } |
| OS << "]>\n"; |
| } |
| #endif |